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Latticemodels of fermions, bosons, and spins have long served to elucidate the essential physics of quantum
phase transitions in a variety of systems. Generalizing such models to incorporate driving and dissipation has
opened new vistas to investigate nonequilibrium phenomena and dissipative phase transitions in interacting
many-body systems. We present a framework for the treatment of such open quantum lattices based on a
resummation scheme for the Lindblad perturbation series. Employing a convenient diagrammatic repre-
sentation, we utilize this method to obtain relevant observables for the open Jaynes-Cummings lattice, a model
of special interest for open-system quantum simulation. We demonstrate that the resummation framework
allows us to reliably predict observables for both finite and infinite Jaynes-Cummings lattices with different
lattice geometries. The resummation of the Lindblad perturbation series can thus serve as a valuable tool in
validating open quantum simulators, such as circuit-QED lattices, currently being investigated experimentally.
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I. INTRODUCTION

Lattice models describe particles or spins residing on a
set of sites, arranged in a regular fashion. Different types
of interactions among these components are possible and
can be included in the formulation of the model. For this
reason, lattice models can cover a large arena of physical
systems and phenomena. Prominent examples are the
fermionic Hubbard model [1–3], the Bose-Hubbard model
[4,5], and the Heisenberg model [6,7].
Open quantum lattices extend the lattice-model concept.

They include the effects of environment and external
driving fields coupled to the lattice. Such open lattices
generally describe nonequilibrium phenomena and are of
great interest in many subfields of physics—ranging from
condensed matter [8–10] and AMO physics [11–17] to
applications in quantum information [18–23]. Recently,
many studies of open quantum lattices have advanced our
understanding of many-body systems under nonequili-
brium conditions [14,17,24]. Examples of phenomena
predicted to emerge in certain scenarios include nonequili-
brium critical behavior [8,11,24–37], topological phases

[15,16,38], and quantum chaos [17,39]. Open quantum
lattices, especially with engineered coupling to baths, also
play an increasingly vital role in the development of
quantum information technology such as quantum comput-
ing hardware [18–20,23] and quantum networks [22].
The study of open quantum lattices tends to be challeng-

ing.Analytical and numerical techniques for open lattices are
currently less developed than their counterparts for closed
lattices. While for a large class of open quantum lattices the
Lindbladmaster equation provides an appropriate theoretical
framework [40,41], numerical methods for solving this
master equation directly, such as exact diagonalization
[42,43], time evolution, or averaging of quantum trajectories
[44], are computationally demanding and become quickly
infeasible as lattice size increases. More sophisticated
numerical techniques have been suggested and are further
being developed, including matrix-product [45,46], self-
consistent projection operator methods [47], and variational
methods [48,49]. These methods can handle larger lattices to
some degree but come with their own specific drawbacks.
As a result, the development of quantum simulators

based on photons is particularly intriguing. Photonic
systems represent an interesting open-system complement
to the well-established paradigm of ultracold-atom quan-
tum simulators. Since photons do not possess a chemical
potential (however, see Ref. [50] for a proposal to engineer
a chemical potential), realistic photonic lattices will
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typically include coherent driving and photon loss [51].

Such systems will thus be a particular useful tool to better
understand, gain intuition, and ultimately devise tractable
effective models for open quantum lattices of interest.
Experiments with photonic quantum simulators will shed
definitive light on both dynamical and steady-state phe-
nomena by employing well-defined artificial lattice struc-
tures and systematically controlling parameters including
drive strength, photon frequency, and strength of the
mediated photon-photon interaction. Very promising exper-
imental progress in this direction has already been made in
the circuit QED architecture [51–53].
An experimental quantum simulator requires careful

initial steps of validation [54] to ensure that the given
physical system is correctly implementing the intended
model. The validation procedure naturally demands that,
for specific parameter regimes, theoretical understanding and
reliable quantitative predictions are available and enable a
comparison between theory and the experimental data
obtained from the quantum simulator. For the purpose of
validation, we utilize the well-controlled approximation
scheme of nondegenerate Lindblad perturbation theory
[28,55–58], which is not based on Keldysh Green’s func-
tions. We are particularly interested in the steady-state
behavior of open lattices, which can be directly related to
experimental observables such asmicrowave transmission in
circuit-QED lattices [52,53]. Steady-state quantities are of
paramount importance for the detection of dissipative phase
transitions [11,24–26,28–30,32,34,36,59–63]. In the work
presented here, we take a crucial step beyond finite-order
perturbation theory by demonstrating a partial resummation
of the perturbation series for the steady-state solution of the
Lindblad master equation. We then employ this method to
study an open Jaynes-Cummings (JC) lattice (Fig. 1) and
establish that the resummation affords a significant improve-
ment of the approximation accuracy. We illustrate the
method’s versatility in handling both finite-size and infinite
lattices as well as different geometries and dimensionalities

in a natural way. The method is hence well suited for
validating data from the first circuit-QED quantum simu-
lators currently being investigated [64].
Our discussion is structured as follows. We set the stage

with a general review of (Markovian) open quantum lattices
in Sec. II, examining their theoretical description in terms
of the Lindblad master equation. Section III forms the
centerpiece of our theoretical framework: Here,we introduce
the resummation scheme by which we can include certain
perturbative corrections up to infinite order, and formally
show its validity. We then apply this technique to the open
JC lattice model in Sec. IV. After a few preparatory steps
(Sec. IVA) and including use of third-quantization methods
[65–72] to obtain an exact solution in the absence of
perturbation (Sec. IV B), we perform the resummation and
obtain results for steady-state observables (Sec. IV C). We
finally compare our results to both finite-order perturbation
theory and exact solutions (where available) and discuss the
role of finite-size effects and lattice structures (Sec. IVD).
We conclude with a summary in Sec. V.

II. BACKGROUND: LINDBLAD FORMALISM
FOR DRIVEN, DISSIPATIVE LATTICES

Open quantum lattice models are widely used to
study many-body physics under nonequilibrium conditions.
There exists a large variety of such lattice models, including
open photon lattices [12,13,73], Jaynes-Cummings lattices
[26,29,30,62,74,75], Dicke-type models [24,25,76–78],
and lattices with different types of interactions [33,79,80].
Open lattices are not limited to bosons but may also involve
fermions and spins andmay include both on-site and off-site
interactions. We denote the Hamiltonians governing the
unitary evolution from on-site and off-site terms by hr and
Vrr0 , respectively. The resulting generic systemHamiltonian
is then given by

H ¼
X
r

hr þ
X
r≠r0

Vrr0 : ð1Þ

FIG. 1. Open quantum lattices of different dimensionalities and geometries. The examples show Jaynes-Cummings lattices in
which photons can hop between neighboring resonators (dark boxes) and experience an interaction mediated by the coupling to
two-level systems (represented as spin systems). Lattice types of interest include (a) one-dimensional Jaynes-Cummings chains,
(b) two-dimensional arrays such as the depicted square lattice, and (c) more artificial arrangements of theoretical interest, such as the
global-coupling scenario where each site is connected to all other sites.
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Inmany cases, off-site interactions can be limited to nearest-
neighbor pairs hr; r0i.
For an open quantum lattice, we further account for the

coupling to environmental degrees of freedom. Considering
the effective dynamics of the lattice only, one finds that the
environment generally induces nonunitary evolution, which
cannot be captured by an effective lattice Hamiltonian.
The environment induces effects such as dissipation and
decoherence, so the time evolution of the reduced density
matrix of the lattice ρgenerally deviates from the unitary von
Neumann equation _ρ ¼ −i½H; ρ�.
In many relevant cases of weak coupling to the

environment, the lattice system will undergo Markovian
dynamics: The state of the system at the current time t
fully determines the state at the slightly advanced time
tþ dt in the future. (Another way to express this is to say
that there are no “memory effects.”) Under a fairly general
set of conditions [40], the time evolution of ρ is then
described by the Lindblad master equation [40,41],

_ρ ¼ −i½H; ρ� þ
X
j

γjD½fj�ρ: ð2Þ

The influence of the environment is thus encoded in the
damping terms

P
jγjD½fj�, whereD½fj�ρ≡ fjρf

†
j − f†j fjρ=2 −

ρf†j fj=2 is called the dissipator. Typically, each particular
jump operator fj points to a particular nonunitary process.
For example, photon decay commonly results from the
photon annihilation operator a acting as the jump operator.
(This statement is oversimplifying matters somewhat. In
general, care must be taken to derive the appropriate jump
operator for a particular system and environment coupling
[40,81].) The prefactor γj characterizes the rate of the
damping process.
As a concrete example of an open quantum lattice and

paradigm for interacting photon lattices, we consider the
driven, damped Jaynes-Cummings lattice (Fig. 2). In this
system, each site consists of a harmonic oscillator, such as
the mode of an electromagnetic resonator, coupled coher-
ently to a two-level system, referred to as “qubit” in the
following. Each site can be driven by a coherent tone.
For simplicity, we consider the situation of a global drive
frequency ωd, identical on each site.
The single-site Hamiltonian for this lattice is the Jaynes-

Cummings Hamiltonian plus drive term,

hr ¼ δωra
†
rar þ δΩrσ

þ
r σ

−
r þ grðarσþr þ a†rσ−r Þ

þ ϵrðar þ a†rÞ: ð3Þ

In the usual way, we have already eliminated the original
time dependence of the drive by switching to a frame
rotating with the drive frequency. Consequently, the photon
and qubit terms involve frequency detunings relative to the
drive. Specifically, we have δωr ≡ ωr − ωd for the photon

mode with frequency ωr, and δΩr ≡Ωr − ωd for the qubit
with frequency Ωr on site r. Photon and qubit excitations
are created (annihilated) by the standard ladder operators a†r
and σþr (ar and σ−r ), respectively. We denote the strengths of
the Jaynes-Cummings coupling and of the coherent drive
tone by gr and ϵr. Off-site terms of this lattice arise from the
hopping of photons between sites r and r0 with rate κrr0 :

Vrr0 ¼ κrr0 ða†rar0 þ ara
†
r0 Þ: ð4Þ

The full Hamiltonian consists of the appropriate sum of
on-site and off-site contributions (as given above).
Finally, we consider the damping induced by photon

decay (rate γr) and qubit relaxation (rate Γr). If both
processes occur because of coupling to separate zero-
temperature baths, then the appropriate jump operators
can be shown to be the photon annihilation operator ar
and the pseudospin lowering operator σ−r . Overall, we thus
obtain the Lindblad master equation

_ρ ¼ −i½H; ρ� þ
X
r

γrD½ar�ρþ
X
r

ΓrD½σ−r �ρ: ð5Þ

We frequently find it convenient to write the Lindblad
master equation in the short form _ρ ¼ Lρ. Here, L is the so-
called Liouville superoperator. The term “superoperators”
designates an object mapping an ordinary Hilbert-space
operator such as ρ to another Hilbert-space operator. (In our
notation, we distinguish superoperators, operators, and
real/complex numbers by using double-stroke, sans-serif,
and regular lettering, respectively.) Using this shorthand of
the master equation, we can easily characterize the steady
state ρs of the lattice: It is the stationary solution of this
Lindblad master equation, i.e.,

FIG. 2. Constituents of the Jaynes-Cummings lattice: Two-level
systems are driven coherently with strength ϵ and exchange
excitations with local harmonic oscillators at a rate set by g.
Together, a pair of two-level system and oscillator form one site
of the Jaynes-Cummings system. Nearest-neighbor sites are
coupled by propagation of oscillator excitations with rate ∼κ.
Dissipation is included in the form of two-level relaxation (rate Γ)
and oscillator relaxation (rate γ). In the circuit-QED realization,
two-level systems are implemented by superconducting qubits,
and oscillators by photon modes of on-chip microwave resonators
with typical frequencies in the range of a few GHz.
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_ρs ¼ Lρs ¼ 0; ð6Þ

with normalization trρs ¼ 1.
Mathematically, the equation Lρs ¼ 0 is a system of

linear equations for the components of ρs. It can also be
interpreted as a special instance of the eigenvalue problem
for the Liouville superoperator L,

Luμ ¼ λμuμ; ð7Þ

namely, as the instance of eigenvalue λμ ¼ 0. (We always
take μ ¼ 0 to denote this case in the following.) The steady
state ρs is thus the eigenstate u0 ¼ ρs of L associated with
the eigenvalue λ0 ¼ 0. While it is tempting to think of
Eq. (7) as a superoperator analogue of the stationary
Schrödinger equation, it is important to note that the
Liouville superoperator L is, in general, not Hermitian;
i.e., L† is not equal to L. Hence, its eigenvalues may be
complex valued, and we have to distinguish right eigen-
states uμ from left eigenstates ŭμ, given by

ŭ†μL ¼ ŭ†μλμ: ð8Þ

As long as we keep this in mind, however, it is useful to
mimic bra-ket notation and allow ourselves the freedom to
write operators and their adjoints also in the alternative
form uμ ↔ juμÞ and ŭ†μ ↔ ðŭμj. We can then denote the
Hilbert-Schmidt inner product between operators as
ðxjyÞ≡ tr½x†y�. Linear algebra dictates that the right and
left eigenstates of L are orthogonal and, by appropriate
normalization, can be chosen to be orthonormal,

ðŭνjuμÞ ¼ δμν: ð9Þ

Assuming that the eigenstates of L form a complete set
[82], we can represent an arbitrary operator X as

jXÞ ¼
X
μ

juμÞðŭμjXÞ ¼
X
μ

ðXÞμjuμÞ ð10Þ

and an arbitrary superoperator A as

A ¼
X
μ;ν

juμÞðŭμjAjuνÞðŭνj ¼
X
μ;ν

ðAÞμνjuμÞðŭνj: ð11Þ

Except for the matter of left vs right eigenvectors, these
expressions are familiar from the usual decomposition of
states and operators in Hilbert space, and we will make use
of them in Sec. III.

III. LINDBLAD PERTURBATION THEORY
AND RESUMMATION

In this section, we present the formalism of Lindblad
perturbation theory and its resummation. This section
remains general and is applicable to Markovian open

quantum systems of various types. The concrete application
of the formalism to an open Jaynes-Cummings lattice
follows in Sec. IV. Together, these two sections constitute
the central result of our paper.
Consider the general case of an open quantum system

with Hamiltonian H and Liouville superoperator L. We
assume that L is amenable to a perturbative treatment and
can be decomposed into a sum L ¼ L0 þ L1, consisting of
the unperturbed Liouville superoperator L0 and the per-
turbation L1. For L0 to qualify as such, it is expected that we
can obtain its spectrum exactly. We denote the resulting
unperturbed eigenvalues by λ0μ and the corresponding
unperturbed right and left eigenstates by ju0μÞ and ðŭ0μj,
respectively.
The spectra of L and L0 differ, but corrections may be

calculated by a perturbative series expansion if L1 is
“sufficiently small.” The corrections to eigenvalues and
eigenstates can then be determined recursively, order by
order [58]. Our interest here primarily regards the steady
state ρs, and we apply Lindblad perturbation theory
assuming the nondegenerate case in which the steady state
is unique. Two remarks may be useful for clarification.
First, we emphasize that nondegeneracy refers to the
spectrum of L0, not to the Hamiltonian H; we make no
assumptions about the spectrum of H. Second, we note that
nonuniqueness of the steady state and resulting nonanaly-
ticities are crucial at the phase boundary of a dissipative
phase transition. Perturbative series expansions will gen-
erally not hold directly at such a boundary but may still be
applicable in its vicinity.
Turning now to the concrete series expansion jρsÞ ¼P
jjρjÞ of the steady state, we note that the jth order

contribution ρj is obtained from the recursion relation

jρjÞ ¼ −L−1
0 L1jρj−1Þ: ð12Þ

Here, inversion of L0 will always be understood as
restricted to the space orthogonal [83] to the unperturbed
steady state, i.e., L−1

0 ¼ P
μ>0ðλ0μÞ−1juμÞðŭμj. With this, we

obtain the formal expression

jρjÞ ¼ ð−L−1
0 L1Þjjρ0Þ ¼ Ujjρ0Þ; ð13Þ

where ρ0 is the unperturbed steady state of L0, and we
have introduced the shorthand U≡ −L−1

0 L1. The matrix
elements of the U superoperator are

ðUÞμν ¼ ðŭ0μjUju0νÞ ¼ −ðŭ0μjL1ju0νÞ=λ0μ ð14Þ

for μ > 0 and ðUÞ0ν ¼ 0. Using this shorthand, we write the
jth order contribution to the steady state in the form of the
chain expression
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jρjÞ ¼
X

μ1;μ2;…;μj

ju0μjÞ · ðUÞμjμj−1 � � � ðUÞμ2μ1ðUÞμ10 ð15Þ

and represent it diagrammatically as shown in Fig. 3(a).
As a diagrammatic rule, we choose dots to represent
unperturbed eigenstates, ju0μjÞ, and interconnecting lines
to represent factors of U. Reading from the left to right, the
leftmost state is the unperturbed steady state jρ0Þ ¼ ju00Þ,
and the rightmost one the final state jρμjÞ which appears
explicitly in the expression (15). All intermediate states
and the final state, μ1 through μj, are subject to summation
but cannot coincide with the initial unperturbed steady state
because of ðUÞ0ν ¼ 0.
To facilitate our resummation scheme for the steady-state

series

jρsÞ ¼
X∞
j¼0

Ujjρ0Þ; ð16Þ

we decompose the U superoperator into two parts

U1 ¼ S1 þ T1: ð17Þ

To make the definition parallel to expressions to come, we
have explicitly recorded the exponent j ¼ 1 on the left-
hand side. We now specify the terms on the right-hand side

in such a way that resummation takes a particular simple
form. We define the first-order S superoperator as the
diagonal part of U1, i.e., ðS1Þμν ¼ δμνðU1Þμν. Accordingly,
S1 and L0 share the same set of right eigenstates, i.e.,
S1ju0μÞ ¼ Σ1;μju0μÞ, and the eigenvalue is Σ1;μ ¼ ðU1Þμμ. We
see that this simplicity of S1 will be important for the
resummation of the series, Eq. (16). The term T 1 in Eq. (17)
is the off-diagonal remainder of the U superoperator.
A simplification of the previous expressions occurs when

making the natural assumption that the perturbation L1 is
itself off diagonal with respect to the unperturbed eigen-
states of L0. (Whenever L1 does not satisfy this assumption,
a simple redefinition of L0 and L1 can be used to turn L1 off
diagonal.) Now, if L1 is off diagonal, so is U ¼ −L−1

0 L1,
and we immediately obtain

S1 ¼ 0 and T 1 ¼ U: ð18Þ

This may initially make the decomposition of U seem
pointless, but we will see momentarily that this simplifi-
cation does not carry over to higher orders j > 1, thus
justifying our approach.
We next consider the second-order term U2jρ0Þ, which

warrants a decomposition of U2 ¼ T 1U into

T1U ¼ S2 þ T 2: ð19Þ

Analogous to our strategy above, we define the second-
order S superoperator, as the diagonal part of the left-hand
side,

ðS2Þμν ¼ δμνðT 1UÞμν ¼ δμν
X
τ

ðUÞντðUÞτν: ð20Þ

Note that the off-diagonal character of U automatically
leads to exclusion of the term with τ ¼ ν. As before, T 2

represents the remaining off-diagonal part in Eq. (19). We
represent S2 by the loop diagram shown in Fig. 3(b). Since
S2 is diagonal, its initial and final states ju0μÞ must be
identical. However, the intermediate state ju0τÞ involved in
the expression (20) must differ from ju0μÞ.
For resummation of terms to infinite order, we need to

formulate our decomposition strategy for arbitrary order j.
It is natural to extend the definitions for diagonal and off-
diagonal superoperators, Eqs. (19) and (20), by setting

T j−1U ¼ Sj þ T j; ðSjÞμν ¼ δμνðT j−1UÞμν: ð21Þ

The recurrence relation is solved by

T j ¼ ⟦⟦ � � � ⟦⟦U⟧U⟧ � � �U⟧U⟧ ðj timesÞ; ð22Þ

where ⟦A⟧ denotes the off-diagonal part of A with respect
to the unperturbed basis fju0μÞg. We must note, however,
that the definition (21) does not yet determine a unique

(a)

(b)

(c)

FIG. 3. Diagrams for perturbative corrections. (a) The order-j
correction to the steady state [Eq. (15)] is depicted as a chain of j
lines, each representing one factor U. The chain connects jþ 1
dots symbolizing L0 eigenstates. The leftmost state is the
unperturbed steady state jρjÞ ¼ ju00Þ, the rightmost one the
unperturbed eigenstate ju0μjÞ, giving rise to one specific correction
term. The full correction is obtained by summation over final and
intermediate states μ1;…; μj. (b) The resummation superoperator
f is the sum of all (reducible and irreducible) S superoperators.
Each S diagram starts and ends with the same unperturbed
eigenstate. (c) Resummation combines evaluation of S and T
superoperators. Terms of rank j are comprised of the fully
off-diagonal chain specified by T j and final application of the
resummation superoperator.
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separation scheme beyond second order. Consider, for
instance, the case of the third-order term involving U3.
While we know the decomposition of U2 ¼ T1U from
Eq. (19), we still have the freedom to perform the
substitution for either U3 ¼ UðU2Þ or U3 ¼ ðU2ÞU. Both
forms are mathematically equivalent, but only the system-
atic usage of one replacement rule produces expressions
for which resummation becomes simple. We consistently
employ the form

Uj ¼ Uj−1⎵U; ð23Þ

where Uj−1⎵ signals that Uj−1 is to be replaced by an

expression composed of S, T , and U superoperators.
Multiple replacements, in some cases making use of the
identity U ¼ T1, may be necessary to reach the final
decomposed form only involving S and T superoperators.
For illustration, we consider the decompositions of U3,

U4, and U5. For the third-order case, we first make use of
Eq. (23) and then Eq. (21) to obtain

U3 ¼ U2
⎵U ¼ T1U⎵U ¼ T2Uþ S2U: ð24Þ

The last term on the right-hand side cannot be simplified
further (except for substituting U ¼ T 1); the first term is
further decomposed by using Eq. (21), leading to the final
expression

U3 ¼ T2U⎵þ S2T 1 ¼ S3 þ T 3 þ S2T1: ð25Þ

For the fourth order, we merely sketch the decomposition,

U4 ¼ U3
⎵U ¼ S2T1U⎵þ S3Uþ S4 þ T4

¼ S4 þ S2
2 þ S3T 1 þ S2T2 þ T 4: ð26Þ

We give the fifth-order result without showing substeps,

U5 ¼ S5 þ S2S3 þ S3S2

þ ðS4 þ S2
2ÞT 1 þ S3T2 þ S2T3 þ T 5: ð27Þ

Inspection of Eqs. (25)–(27) indicates a systematic
structure underlying the expressions, namely,

Uj ¼
Xj

k¼0

sj−kT k: ð28Þ

Each term in this sum has one factor of Tk of order 0 ≤
k ≤ j and a prefactor sj−k consisting of all possible
combinations of S superoperators of total order j − k. A
formal proof of this is given in Appendix A. [Recall

from Eq. (18) that S1 ¼ 0, which reduces the number of
terms significantly.] Using the decomposition (28) and
regrouping terms according to each occurrence of T j, we
can now rewrite the perturbation series for the steady state
in the form

jρsÞ ¼
X∞
j¼0

Xj

k¼0

sj−kTkjρ0Þ ¼ f
X∞
j¼0

T jjρ0Þ: ð29Þ

Here, the superoperator f ¼ fðS1;S2;…Þ ¼ P∞
n¼0 sn

implements the resummation of terms that we have been
aiming for. It is given by

f ¼ 1þS2þS3þS4þS2
2þS5þS2S3þS3S2…; ð30Þ

i.e., the sum of all possible products of S superoperators
(explicitly shown up to fifth order here). Diagrammatically,
we represent f in the form shown in Fig. 3(b). Because of
the definitions of Sj and T j as diagonal and off-diagonal
superoperators, Sj corresponds to a loop diagram with
initial and final states being identical, all (j − 1) inter-
mediate states being different from the initial or final state,
and consecutive intermediate states being different from
each other.
The role of Sj resembles that of an irreducible self-

energy contribution of order j in closed-system perturba-
tion theory. Similarly, the physical interpretation of Sj has
to wait until we apply the formalism to a physical system,
for example, the Jaynes-Cummings lattice model in
Sec. IV C. Moreover, if we define S ¼ P∞

j¼1 Sj as the
sum of all irreducible “self-energy” contributions, we can
rewrite f ¼ P∞

j¼0 S
j ¼ ð1 − SÞ−1 and obtain

jρsÞ ¼
X∞
j¼0

1

1 − S
T jjρ0Þ ð31Þ

for our resummed series expansion of the steady state.
Because of the ð1 − SÞ−1 prefactor, each term jρ½j�Þ ¼
ð1 − SÞ−1T jjρ0Þ in this sum includes perturbative correc-
tions up to infinite order. We therefore call the term jρ½j�Þ the
rank-j term of the resummed series. We note that, formally,
Eq. (31) is an exact expression for the steady state. Practical
calculations will typically involve a truncation in both the
maximum summation index j and the maximum order of
irreducible self-energy contributions taken into account.
We represent individual terms jρ½j�Þ in the resummed

series by the type of diagram shown in Fig. 3(c). The final-
state dot is marked with a circle to indicate the inclusion of
the self-energy correction. The diagrammatic rules are
similar to the case without resummation, Fig. 3(a), except
that the off-diagonal nature of T j in addition requires
that all intermediate states be different from the final state.
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This is simple to infer when writing T j in the form of
Eq. (22). Each diagram then translates to an expression
with the following structure:

jρ½j�Þ ¼
X
μj

X
ν1;…;νj−1≠μj

ju0μjÞ
�

1

1 − S

�
μjμj

× ðUÞμjνj−1ðUÞνj−1νj−2…ðUÞν2ν1ðUÞν10: ð32Þ

IV. APPLICATION TO THE OPEN
JAYNES-CUMMINGS LATTICE

Lindblad perturbation theory and resummation as dis-
cussed in the previous section are applicable to a large class
of open quantum systems. Here, we present its concrete use
in studying the open Jaynes-Cummings lattice [Eqs. (1) and
(3)–(5)] as a specific example of an open driven quantum
lattice. The example is of particular interest because of its
role as a minimal model for highly anticipated experiments
with circuit-QED lattices [64]. The photonic backbone of
the lattice has already been demonstrated in the exper-
imental work by Underwood et al. [51].

A. Preparatory steps

We consider a uniform lattice, in which resonator
frequencies, qubit frequencies, and related quantities have
uniform values across the lattice. (Disorder levels, espe-
cially in qubit frequencies, may need to be considered
carefully for detailed modeling of future circuit-QED
experiments, but this consideration is beyond the scope
of the present paper.) We find the modes of the photonic
lattice structure by diagonalizing the N × N hopping
matrix, N being the number of lattice sites [84]. For
periodic lattices, diagonalization is achieved in the usual
way by switching from real space to momentum space via
the transformation ar ¼

P
k ~ake

ik·r=
ffiffiffiffi
N

p
. Here, photons

inside the mode with quasimomentum k are annihilated by
~ak, and k runs over all reciprocal lattice vectors from the
first Brillouin zone. Note that k ¼ 0 corresponds to the
uniform mode with identical amplitudes on all sites, which
is the mode being excited by a global coherent drive.
Depending on the values of model parameters, it is

beneficial to perform a displacement transformation that
eliminates the coherent drive on the photon mode and
converts it into an effective qubit drive instead. This is
particularly helpful when the uniform photon mode is
approximately in a coherent state with a large number of
photons. The coherent displacement then serves as a tool
incorporating this insight directly into the unperturbed
Liouville superoperator and mitigates the need for large
photon number cutoffs. (In a regime of low photon
occupation, however, the displacement transformation
can be skipped and the perturbative treatment carried out
directly.) The displacement is applied to the k ¼ 0 mode,
i.e., b0 ¼ ~a0 − α, with α ¼ −

ffiffiffiffi
N

p
ϵ=ðδωk¼0 − iγ=2Þ.

After this displacement, the resonator drive is converted
into an effective qubit drive of strength ϵq ¼ gα=

ffiffiffiffi
N

p
.

The resulting Hamiltonian has the form

H0 ¼
X
k

Hk
r þ

X
r

Hr
q þ

X
k;r

Hkr
rq ; ð33Þ

where the three terms correspond to the photon, qubit,
and photon-qubit coupling contributions. The resonator
part now lacks the drive term, Hk

r ¼ δωkb
†
kbk. (We define

bk ¼ ~ak for k ≠ 0 to unify notation.) The qubit
Hamiltonian including the effective drive reads

Hr
q ¼ δΩσþr σ−r þ ðϵqσþr þ ϵ�qσ−r Þ; ð34Þ

and the interaction Hamiltonian is given by

Hkr
rq ¼ gffiffiffiffi

N
p ðbkσþr eik·r þ b†kσ−r e−ik·rÞ: ð35Þ

Finally, the dissipator term simply transforms as
γ
P

rD½ ~ar� ¼ γ
P

kD½bk�.
In the absence of the interaction Hkr

rq , resonator modes
and qubits decouple, and the associated master equation is
exactly solvable. This presents us with an ideal starting
point for a perturbative treatment of Hkr

rq , which physically
is a very sensible treatment of the dispersive regime. The
unperturbed Liouville superoperator is then L0 ¼

P
kL

k
r þP

rL
r
q with separate photon contribution, Lk

r •¼−i½Hk
r ;• �þ

D½bk�•, and qubit contribution, Lr
q• ≡ −i½Hr

q;• � þ D½σ−r �•.

B. Exact solution for the unperturbed lattice problem

We can diagonalize the photonic part
P

kL
k
r analytically

by using the third-quantization method [65–72] (or
alternative techniques; see, e.g., Ref. [85]). This
method employs the superoperators bk, b

‡
k, ck, c

‡
k, which

mimic boson annihilation and creation operators and are
defined by

bkρ ¼ bkρ and b‡kρ ¼ b†kρ − ρb†k; ð36Þ

ckρ ¼ ρb†k and c‡kρ ¼ ρbk − bkρ: ð37Þ

While b‡r and br are not proper adjoints, the use of the
unconventional “‡” symbol is motivated by the fact that it
leads to commutation relations of the ordinary form,

½bk;b‡k0 � ¼ ½ck; c‡k0 � ¼ δkk0 ; ð38Þ

and all other commutators vanish. Thanks to this commu-
tator algebra, Lk

r takes on the compact form [68]

Lk
r ¼ tkb

‡
kbk þ t�kc

‡
kck: ð39Þ
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Here, bk (b‡k) and ck (c‡k) may be viewed as “normal-
mode” superoperators with complex-valued “mode
frequencies” tk ¼ −iδωk − γ=2.
From this result, it is straightforward to read off

eigenvalues and eigenstates of Lk
r , analogous to the way

one finds eigenvalues and eigenstates of a noninteracting
boson Hamiltonian. For a given k mode, the right and
left “vacuum states” obey bkjrk00Þ ¼ ckjrk00Þ ¼ 0 and
ðr̆k00jb‡k ¼ ðr̆k00jc‡k ¼ 0. The right vacuum state is therefore
the projector jrk00Þ ¼ j0kih0kj onto the pure state without
any photons in mode k. One can show that the left vacuum
states must always coincide with the identity operator,
ðr̆k00j ¼ 1.
The “excited” eigenstates of Lk

r are obtained by acting
with the creation superoperators on the vacuum states.
For given k, this means

jrkmnÞ ¼
1ffiffiffiffiffiffiffiffiffiffi
m!n!

p ðb‡kÞmðc‡kÞnjrk00Þ ð40Þ

and

ðr̆kmnj ¼
1ffiffiffiffiffiffiffiffiffiffi
m!n!

p ðr̆k00jðbkÞmðckÞn: ð41Þ

The corresponding eigenvalues are λkmn ¼ mtk þ nt�k
(m; n ¼ 0; 1;…). When forming the appropriate product
states and summing eigenvalues over k, we thus obtain the
entire spectrum of the photonic part

P
kL

k
r .

Moreover, the qubit Liouvillian
P

rL
r
q can be diagon-

alized exactly since it decomposes into a direct product of
4 × 4matrices. For each Lr

q, we denote the eigenvalues, and
right and left eigenstates by lr

μ, jqrμÞ and ðq̆rμj, respectively
(μ ¼ 0;…; 3). Except for special parameters, analytical
expressions for these quantities are too lengthy to provide
much insight and will hence not be recorded here.
Altogether, right and left eigenstates of the full-lattice

Liouvillian L0 thus take the form

ju0~m ~n ~μÞ ¼ ⊗
k
jrkmknkÞ⊗r jq

r
μrÞ; ð42Þ

with corresponding eigenvalues

λ0~m ~n ~μ ¼
X
k

λkmknk þ
X
r

lr
μr : ð43Þ

The multi-indices ~m, ~n, and ~μ collect the sets of all
“quantum numbers” mk, nk, and μr. Thus, we are ready
for the perturbative treatment of the Liouvillian L1 captur-
ing the Jaynes-Cummings interaction Hkr

rq .

C. Perturbative treatment and resummation

The perturbation superoperator decomposes into a sum
L1 ¼

P
k;rL

kr
1 , in which each term describes the interaction

between an individual resonator mode k and a qubit at
position r:

Lkr
1 • ¼ −i

gffiffiffiffi
N

p ½bkσþr eik·r þ b†kσ−r e−ik·r;• �: ð44Þ

It is therefore convenient to write the U superoperator
(see Sec. III) as an analogous sum, i.e., U ¼ P

k;rU
kr with

Ukr ¼ −L−1
0 Lkr

1 . Each Ukr is off diagonal with respect to
the unperturbed basis, so that Ukr ¼ ⟦Ukr⟧ ¼ Tkr

1 holds.
The rank-1 term in the resummation [Eq. (31)] is

given by

jρ½1�Þ ¼ 1

1 − S

X
k;r

Ukrjρ0Þ

¼
X
k;r

X
~s

1

1 − S
jρ½1�kr~sÞðρ̆

½1�
kr~sjUkrjρ0Þ: ð45Þ

Here, jρ½1�kr~sÞ ¼ jrkmnqrμÞ ⊗
k0≠k

jrk0
00Þ⊗

r0≠r
jqr00 Þ is an interacting

cluster involving the photon mode k and qubit at position
r in state ~s ¼ ðm; n; μÞ. In a similar manner, we see that the
rank-2 term

jρ½2�Þ ¼ 1

1 − S

X
k;k0;r;r0

⟦⟦Ukr⟧Uk0r0⟧jρ0Þ

¼
X

k;k0;r;r0

X
½~s ~s0�

1

1 − S
jρ½2�

kr~s;k0r0 ~s0
Þ

× ðρ̆½2�
kr~s;k0r0 ~s0

jUkrjρ½1�
k0r0 ~s0

Þðρ̆½1�
k0r0 ~s0

jUk0r0 jρ0Þ ð46Þ

incorporates the resummation of a cluster jρ½2�
kr~s;k0r0 ~s0

Þ
composed of two photon modes and two qubits in states

~s and ~s0. (The bracket notation in the corresponding
summation signals that the allowed choices of these states
is dictated by the off-diagonalism requirements in

T2 ¼ ⟦⟦Ukr⟧Uk0r0⟧.) In the definition of jρ½2�
kr~s;k0r0 ~s0

Þ, several
cases must be distinguished according to whether k ¼ k0
and/or r ¼ r0. For the case where both pairs are distinct,
we have

jρ½2�
kr~s;k0r0 ~s0

Þ ¼ jrkmnrk
0

m0n0q
r
μqr

0
μ0 Þ ⊗

k00≠k;k0
jrk00
00 Þ ⊗

r00≠r;r0
jqr000 Þ:

Analogous definitions hold in the other three cases.
By inspection of Eqs. (45) and (46), we expect that, in

general, the rank-j correction consists of a sum over all
possible terms in which clusters of j photon modes and j
qubits deviate from the unperturbed density matrix. Thanks
to resummation, interaction within each cluster includes
terms up to infinite order. We note that this cluster structure
directly implies a hierarchy of correlations with increasing
rank j. Specifically, each n-point correlation function with

p photon and q qubit operators, hbð†Þk1
� � � bð†Þkp

σa1r1 � � � σ
aq
rq iss,
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does not trivially separate into a product of correlators if the
rank j of the correction satisfies j ≥ maxfp; qg. We also
emphasize that clusters automatically include long-range
correlations between distant qubits.
The essential tasks of determining the perturbative

corrections and resummation consist of evaluating matrix
elements of the form given in Eqs. (45) and (46) and
computing the effect of the resummation superoperator S to
a given order. We illustrate the procedure for the example of
rank-1 corrections. Plugging in the definition of Ukr and
recalling that L0 is diagonal with respect to the unperturbed
basis states, we obtain

ðρ̆½1�kr~sjUkrjrk00qr0Þ ¼ −ðr̆kmnq̆rμjLkr
1 jrk00qr0Þ=λkr~s

¼ itrðr̆k†mnq̆r†μ ½Hkr
rq ; rk00q

r
0�Þ=λkr~s; ð47Þ

where λkr~s ¼ λkmn þ lr
μ. Once the commutator is opened, it

is useful to note that the simple properties of the Lr

eigenstates lead to vanishing overlaps trðr̆k†mnb
ð†Þ
k rkmnÞ ¼

trðr̆k†mnrkmnb
ð†Þ
k Þ ¼ 0, so any application of Ukr must switch

to a different resonator-mode eigenstate. The same does not
hold for traces of the qubit degrees of freedom; i.e., the
overlaps trðq̆k†μ σþr qkμ Þ, etc., may indeed be nonzero. As a
result, we obtain the two types of terms for the rank-1
correction,which are diagrammatically depicted in Fig. 4(a).
The evaluation of rank-2 corrections follows the same basic
scheme. Unsurprisingly, it is more tedious, and we only
show two examples of corresponding diagrams in Fig. 4(b).
The effect of the resummation superoperator is to

redistribute weights among cluster contributions. Since S
is diagonal with respect to unperturbed Liouvillian eigen-
states, we can cast its contribution into a particular form
Sju0~sÞ ¼ ju0~sÞðŭ0~s jSju0~sÞ and evaluate the occurring matrix
element as follows. We choose an appropriate truncation
for the series S ¼ S2 þ S3 þ � � � of irreducible resumma-
tion operators ðSjÞ~s ~s0 ¼ δ

~s ~s0 ðT j−1UÞ~s ~s0 . Matrix elements

for Sj are calculated in the same way as for jρ½j�Þ except that

the final state of the chain must be identical to the initial
state. Figure 5 shows the resulting two diagrams for S2.
Physically, these diagrams and their resummation capture
the fact that the coupling between resonator modes and
qubits alters the frequencies and lifetimes of Liouvillian
eigenstates. Specifically, the resummation accounts for
virtual processes in which excitations are repeatedly
created, exchanged between qubits and resonator modes,
and annihilated. The first diagram in Fig. 5, for instance,
describes the creation of a qubit excitation, its swapping
into a resonator mode and back into a qubit, and final
annihilation. (The analogous reverse process where a
missing excitation is swapped back and forth is included
in this diagram as well.) The second diagram differs from
the former by the altered qubit state in the virtual inter-
mediate state. These second-order diagrams involve at most
one excitation at a time; higher-order virtual processes
allow more excitations. We emphasize that the physical
interpretation is based on eigenstates of the Liouvillian
rather than states in Hilbert space.
The above calculation of perturbative corrections and

resummation may be simplified if we are merely interested
in steady-state expectation values (rather than in the density
matrix itself). As an example, consider computing an
expectation value of a local qubit operator σar up to
corrections of rank j, hσar i ≈

Pj
j0¼0

trðσarρ½j0�Þ. To effect
the desired simplification, we recall that all eigenstates of
Lk
r and Lr

q other than the steady state must be traceless, i.e.,
trðqrμÞ ¼ 0 for μ ≠ 0 and trðrkmnÞ ¼ 0 for nonzero m or n
[86]. Therefore, any perturbative contribution ∼trðσaru0~m ~n ~μÞ
in which μr0 ≠ 0 for some r0 ≠ r will immediately vanish
since the partial trace over the qubit at position r0 is zero.
Similarly, any term with ðmk; nkÞ ≠ ð0; 0Þ for some photon
mode k will vanish. As a result, none of the rank-1
corrections [Fig. 4(a)] contributes to local qubit expectation
values. Only those diagrams that terminate in a state labeled
ðrÞ will yield a nonzero contribution to hσar i. Analogous
diagrammatic rules apply for photon-mode operators.

(a) (b)

FIG. 4. Diagrams for perturbative treatment and resummation of a JC lattice. In each panel, the top part shows the general diagram
labeled by constituents deviating from the steady-state configuration. The bottom parts are JC-lattice specific diagrams, with the upper
branch denoting photon modes and the lower one qubit degrees of freedom. (a) Rank-1 corrections. There are two classes of terms with
either a photon mode or a cluster of a photon mode k and a qubit at r deviating from the unperturbed steady-state configuration. Each
interaction vertex g must switch the photon mode configuration but may leave that of the qubit unchanged. Terminating symbols on the
right signal application of the resummation superoperator ð1 − SÞ−1. (b) Two examples of rank-2 corrections, which differ in the number
of involved photon modes and qubits and in the number of constituents deviating from the steady-state configuration.
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D. Perturbative results for a near-resonant regime

We now illustrate the validity and improvement achieved
by (partial) resummation of the Lindblad perturbation
series. For this purpose, we compare perturbative results
for finite-size Jaynes-Cummings chains [Fig. 2(a)] to exact
results computed via quantum trajectories methods.
Perturbative resummation further allows us to treat periodic
chains (or, open chains if desired) of sizes beyond the
computational capabilities of exact quantum-trajectory
solutions. Finally, we can carry out perturbative resumma-
tion even for an infinite system with chain or global-
coupling geometry. This versatility enables us to predict
finite-size effects and the approach to the thermodynamic
limit, as well as differences according to distinct lattice
geometries. (We discuss the quite moderate computational
costs of the perturbative treatment in Appendix B.)
In our treatment, we capture photon-mediated qubit-

qubit interactions by second-order Lindblad perturbation
theory with resummation based on single-loop terms S2

(i.e., corrections of rank 2 in the above terminology). The
most natural regime for treating the Jaynes-Cummings
coupling perturbatively in this way is the dispersive regime

where the detuning Δ ¼ minkjΩ − ωkj between qubit and
photon-mode frequencies is large compared to their mutual
coupling strength g [87]. We have confirmed by exact
numerics that the perturbation theory is indeed reliable in
this regime and, over a wide range of parameters, we
identify g2=ΓΔ as the relevant small parameter governing
the series expansion.
In the following, we choose to present results from

exploring a different parameter regime more directly based
on the open-system nature of Jaynes-Cummings lattices.
Specifically, we consider the case where photon hopping
dominates over both photon decay and Jaynes-Cummings
coupling and where the latter two are permitted to be of the
same order, i.e., κ ≫ g ∼ γ. The strong hopping κ shifts the
spectral weight of the photon modes away from the bare
resonator frequency, which is chosen to be degenerate with
the qubit frequency, Ω ¼ ω. This regime is not fully
dispersive, so nonlinearities are more pronounced and
the significance of resummation becomes easily visible.
Moreover, the condition g ∼ γ results in weakly perturbed
coherent states for the photon modes over the full range of
weak to strong drive strengths, without any particular
limitation.
We begin with the comparison between perturbative and

exact results for the steady state of few-site Jaynes-
Cummings chains with periodic boundary conditions. In
our calculations, we have considered several qubit and
resonator expectation values. Among those, we find that
jhσ−ij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hσxi2 þ hσyi2

p
=2 is a convenient choice for

clearly resolving resonances. Representing the reduced
steady-state density matrix for one of the qubits by means
of the Bloch sphere picture, this quantity is directly
proportional to the distance of the Bloch vector from the
z axis [see Fig. 6(a)]. Computing exact steady-state
solutions for Jaynes-Cummings chains even as small as

FIG. 5. Evaluation of the S superoperator. S is needed for
resummation, and it is composed of irreducible diagrams starting
and terminating in the same state. The two diagrams show the
leading-order contributions, S2.
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FIG. 6. Comparison between perturbative results and exact solution. (a) Within the Bloch-sphere picture, the steady-state expectation
value jhσ−ij is directly proportional to the distance of the Bloch vector (representing ρqubits ) from the z axis. Panel (b) shows jhσ−ij as a
function of detuning δΩ between drive and bare qubit frequency, in units of the qubit relaxation rate Γ. Qubits are held in resonance with
the bare resonator frequency, Ω ¼ ω. Exact and perturbative results for chain sizes N ¼ 2 and 4 are in good agreement. (See text for
explanation of deviations close to δΩ ¼ 0 in the N ¼ 4 case.) (c) Curves here depict the absolute deviations between exact and
perturbative results for calculations with (solid lines) and without resummation (dashed lines). Perturbation theory is not sufficient to
describe the region close to δΩ ¼ 0 for N ¼ 4 (see text). Outside this region, resummation consistently improves agreement with the
exact solution. (Parameters: g=Γ ¼ 3, ϵ=Γ ¼ 20, κ=Γ ¼ 10, and γ=Γ ¼ 4.)
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four sites is a nontrivial task, which we accomplish by
averaging of quantum trajectories. For instance, exact
results presented in Fig. 6 for N ¼ 4 were determined
from stochastic time evolution of a quantum state vector of
size 104. Sufficient averaging of a single data point required
a runtime of several days on one core.
The comparison between exact and rank-2 perturbative

data (including resummation at the level of S2) in Fig. 6(b)
shows very good agreement and indicates that the resum-
mation procedure closely matches the exact solution. Plots
in this figure show the steady-state value of jhσ−ij as a
function of the detuning δΩ ¼ Ω − ωd between the drive
and the bare qubit frequency. Multiple resonances are
visible over the chosen frequency range (the nature of
which we will further discuss below). The only notable
quantitative deviations occur for N ¼ 4 in the vicinity of
the bare qubit frequency where δΩ ¼ 0. This deviation has
a simple explanation: A look ahead at Fig. 8(b) shows that
the four-site chain has a photon mode with large spectral
weight directly on resonance with the bare qubit frequency,
so we must expect the perturbative treatment in g to break
down. With the exception of this finding, we conclude that
resummation of the perturbative series in the chosen
parameter regime works very well. The improvement
gained over the pure second-order approximation is illus-
trated in Fig. 6(c). In this panel, curves show the difference
between approximate and exact results, Δhσ−i ¼
hσ−iapprox − hσ−iexact, for the case including resummation
(solid lines) and lacking resummation (dashed lines).
Excluding the pathological region for N ¼ 4 around
δΩ ¼ 0, we observe that resummation consistently
improves the results, reducing the deviation from the exact
solution. The improvement is especially significant in the
resonance region between δΩ=Γ ≈ −17 and −23. Here,
the drive populates the uniform mode (centered at
δΩ=Γ ¼ −20) and renders photon-mediated qubit-qubit
interaction important, making resummation of corrections
up to infinite order particularly fruitful.
The improvement gained by including resummation is

even more striking for the three-site chain. In Fig. 7, the
comparison between exact and perturbative results (no
resummation) shows three regions with significant devia-
tions. The deviations for δΩ=Γ ≈ −24 and −14 arise from
spurious resonance peaks, which we can trace back to the
poles of the inverse L−1

0 of the unperturbed Liouville
superoperator [Eq. (12)]. Resummation nicely cures these
spurious peaks, effectively by shifting away poles of the
relevant superoperators. This indicates that including
resummation has an effect beyond simply truncating the
perturbative series at higher orders. The deviation for
δΩ=Γ ≈ 1 is associated with the resonance dip being
wrongly shifted. Resummation improves the prediction
of not just the resonance position but also its shape. These
resonances contain information on many-body effects due
to the coupling between the resonators and qubits. Hence,

curing both wrongly shifted and spurious resonances by
including resummation is vital and crucial for verification
of experimental data.
We next turn to the discussion of the resonances visible

in Fig. 6 and shown for additional site numbers N in
Fig. 8(a). For small chain lengths up to N ¼ 5 sites, we
observe three resonances labeled A, B, and C in the range
of drive frequencies spanning the photon-chain eigenmodes
and qubit frequencies. [The uniform photon mode has the
lowest frequency, δΩ=Γ ¼ −20, and the bare qubit fre-
quency is at δΩ=Γ ¼ 0; see vertical lines in Fig. 8(b)]. We
find that the detailed positions and strengths of resonances
depends on the number of sites, revealing systematic finite-
size effects for chains of short lengths. Both the nature and
N dependence of resonances can be explained, or at least
motivated, by the following considerations.
The resonance marked A directly coincides with the

frequency of the uniform photon mode. Equivalent inter-
pretations of the resonance can be given based on the
original Hamiltonian Eq. (3) with a coherent tone driving
this particular mode with strength ϵ, or for the Hamiltonian
following the displacement transformation Eqs. (33) and
(34). Employing the language of the latter description,
we note that the strength ϵq ¼ −gϵ=ðδωk¼0 − iγ=2Þ of
the effective qubit drive reaches its local maximum at
the uniform-mode frequency (δΩ=Γ ¼ −20). This peak
in the off-resonant Rabi drive, modified byweak coupling to
photon modes, is responsible for resonance A. Its depend-
ence on the site number N is relatively weak and mainly
affects the shoulders of the resonance. This is further
confirmed by our results for the infinite-system case with
periodic-chain and global-coupling geometry [Fig. 8(c)].

σ

FIG. 7. Comparison between perturbative results with resum-
mation (solid line) and without (dashed line) for the three-site
chain. The result without resummation shows three regions
with significant deviations from the exact solution (dots) for
δΩ=Γ ≈ −24, −14 and 1. These deviations (spurious and wrongly
shifted resonances) are cured by including corrections obtained
by resummation. (All system parameters are identical to those
in Fig. 6.)
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Both show the same resonance A but differ in the resonance
shoulders.
For resonance B, the N dependence of resonance

position and strength is much more pronounced. The
general region where B occurs is close to δΩ ¼ 0, i.e.,
where bare qubit frequency and drive frequency match.
Upon displacement, the drive transforms into an effective
Rabi drive on each qubit [Eq. (34)]. Hence, the presence
of a resonance is natural, and variations in its strength
and precise position must be governed by the Jaynes-
Cummings interaction playing the role of the perturbation
in our treatment [Eq. (44)]. The importance of this
interaction is influenced by the position of photon-mode
resonances ωk relative to the bare qubit frequency.
In Figs. 8(b) and 8(d), we depict width and position of
photon modes in terms of the spectral function
sðωÞ ¼ P

k½ðγ=2Þ=ðω − ωkÞ2 þ ðγ=2Þ2�, which is the
sum over individual Lorentzians for each photon mode,
normalized such that

R
dωsðωÞ ¼ 1. Inspection of reso-

nance-B positions [Figs. 8(a) and 8(c)] and peaks in the
spectral function [Figs. 8(b) and 8(d)] shows that peaks in
sðωÞ with significant weight in the region Ω� g, shift B
resonances towards the close-by photon mode (such as for
N ¼ 3, 5). Further, it is clear that strongly increased weight
of the spectral function directly at the qubit frequency

(such as for N ¼ 4 and for the global-coupling geometry)
endangers the validity of perturbation theory in the Jaynes-
Cummings coupling. Above, we recognized this as the
reason for the observed deviations between perturbation
theory and an exact solution close to δΩ ¼ 0 in the N ¼ 4
case. A look at the spectral function for the global-coupling
geometry shows that the same issue occurs here.
Accordingly, we show the perturbative result in Fig. 8(c)
only with dashes in that region.
We note that steady-state expectation values for infinite

lattices are not always easily accessible by other methods.
Thanks to the possibility of carrying out leading-order
resummation analytically in the infinite-system case, our
treatment gives direct access to the thermodynamic limit of
different lattice geometries. Here, we have chosen two
extreme cases: the infinite periodic chain with a minimum
number of links between sites and the global-coupling
model with a maximum number of links. Figure 8(c)
depicts results for both lattice structures. We expect that
the region close to δΩ ¼ 0 is unproblematic for the infinite
chain case but potentially pathological for the global-
coupling model, which accumulates maximum spectral
weight at the bare qubit frequency [Fig. 8(d)]. Away from
the δΩ ¼ 0 range, the two geometries yield similar behav-
ior of jhσ−ij vs drive detuning δΩ. As before, characteristic
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FIG. 8. Perturbative results and spectral functions for periodic Jaynes-Cummings chains and global-coupling model. (a) shows the
qubit expectation value jhσ−ij for periodic chains with different site numbers N. We observe three resonance dips (labeled A–C). A and
B are located roughly at the driven photon mode and qubit frequencies, respectively. (b) Spectral functions resonator modes differ for
small site numbers. Presence and position of resonances near the qubit frequency explain theN-dependence of strength and shift of the B
resonance. (c,d) show analogous plots for infinite lattices with periodic chain or global-coupling geometry. Resonances A and B are
visible, but resonance C is (nearly) absent. [All system parameters are identical to those in Fig. 6.]
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differences occur primarily in the shoulders of resonance A.
Interestingly, resonance C is absent for both infinite
lattices, and we discuss the rather anomalous behavior of
this finite-size resonance next.
The anomalous properties of resonance C are illustrated

in Fig. 9. The position of this resonance close to δΩ=Γ ≈ 8
does not simply coincide with a resonance between photon
modes and bare qubits. Panel (a) shows the decrease of
the resonance strength for increasing chain length N.
Moreover, both resonance position and strength depend
sensitively on the drive power, approximately ϵ, as shown
in Fig. 9 for the dimer case, N ¼ 2. We investigate this
anomaly for the N ¼ 2 case, where a semiquantitative
reduced model can shed light on the origin and nature of
this resonance.
For N ¼ 2, we can confirm analytically that the anoma-

lous resonance C is closely related to an eigenstates jψi of
the displaced Hamiltonian H0 [Eq. (33)] without the
effective drive. This eigenstate comprises two excitations
distributed between the uniform mode and the qubits.
Truncation to first order in g=κ (a small quantity for the
chosen parameter set) yields

jψi ≈ 1ffiffiffi
2

p j10iðj↑↓i þ j↓↑iÞ

−
1ffiffiffi
2

p g
κ
j20ij↓↓i þ

1

2

g
κ
j00ij↑↑i ð48Þ

with eigenenergy 2Ωþ 2κ − g2=2κ. Here, jn0i is the
n-photon state of the uniform mode and j↑↑i, etc., denote
states of the qubits on the two sites. The effective drive
Hamiltonian with strength ϵq connects the ground state
jgi ¼ j00ij↓↓i to the state jψi via two intermediate states
jri and jqi (see Fig. 10). These intermediate states belong
to the one-excitation manifold and primarily consist either
of a photon in the uniform mode or of a qubit excitation,
respectively. Truncated again to first order in g=κ, jri and
jqi are given by

jri ≈ j10ij↓↓i þ
1

2
ffiffiffi
2

p g
κ
j00iðj↑↓i þ j↓↑iÞ; ð49Þ

jqi ≈ 1ffiffiffi
2

p j00iðj↑↓i þ j↓↑iÞ − 1

2

g
κ
j10ij↓↓i: ð50Þ

Our description of the anomalous resonance in the follow-
ing is based on the effective four-level model spanned by
the states jgi, jri, jqi, and jψi (see Fig. 10).
Within this model, the effective drive Hamiltonian

connects the ground state jgi to the two-excitation state
jψi via jri and jqi. Since the effective drive creates (or
annihilates) qubit excitations only, there is stronger hybridi-
zation of jgi with jqi (strength of approximately ϵq) than
with jri (strength of approximately ϵqg=κ). An analogous
argument applies to explain hybridization of jri with jψi
[again, strength of approximately ϵq)]. We thus obtain the
picture of two pairs of hybridized states, jgi ↔ jqi and
jri ↔ jψi, with only small-drive matrix elements connect-
ing the pairs.
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FIG. 9. Dependence of the anomalous resonance C on site number N and drive strength ϵ. (a) The anomalous dip becomes less
prominent with increasing N (even) and nearly vanishes for the infinite chain. (The same trend applies to odd site numbers.) (b) For the
dimer case, N ¼ 2, the position of the anomalous resonance shifts monotonically with increasing drive strength ϵ. The same trend is
observed for longer chains. (Parameters are chosen the same as in Fig. 6.)
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FIG. 10. Effective four-level model explaining the anomalous
resonance. The transitions jgi ↔ jqi and jri ↔ jψi strongly
hybridize two pairs of states. The anomalous resonance results
from transitions between the two hybridized doublets. Since the
energy separation between hybridized doublets depends on drive
strength ϵ, so does the position of the anomalous resonance.
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Because of the energy differences between states within
each pair, hybridization is only partial. The two emerging
hybridized states relevant to the anomalous resonance have
significant overlap with the ground state jgi in one case and
the two-excitation state jψi in the other case. The resonance
C can be approximately viewed as a resonance between
these two hybridized states. Note that the degree of
hybridization critically depends on the effective drive
strength ϵq, which is in turn proportional to the drive
strength ϵ. As a consequence, the energy separation
between the two relevant hybridized states depends on
drive strength as observed in Fig. 9(b).
The generalization of the effective four-level model to

periodic chains with a larger number of sites N is difficult
because of the proliferation of degeneracies among eigen-
states of H0 in the absence of a drive. Based on our
perturbative calculations, we find a clear trend of diminish-
ing resonance strength with increasing number of sites
[Fig. 9(a)]. The anomalous resonance C hence provides an
interesting example of an interaction-induced feature lim-
ited to a small N, which should be accessible in experi-
ments with Jaynes-Cummings chains of only a few sites.

V. CONCLUSION

We have extended the general Lindblad perturbation
framework to include resummation of an infinite subset of
perturbative corrections. We have formulated the scheme at
a general level, emphasizing that this is not limited to a
particular open quantum system but benefits a variety of
problems in Markovian quantum systems amenable to
perturbative treatment. For the examples we have inves-
tigated, we find that the series resummation can signifi-
cantly improve the accuracy of the perturbative treatment.
We have applied perturbation theory with resummation to

a specific model of an open quantum lattice, the open
Jaynes-Cummings lattice, and have introduced a diagram-
matic representation systematically organizing the contrib-
uting terms. For small lattices, we find very good agreement
with exact results, which we obtained by extensive quantum
trajectory simulations for an interesting parameter regime
near resonance. Our perturbative treatment is capable of
predicting steady-state observables for both finite and
infinite Jaynes-Cummings lattices with different lattice
geometries and dimensionalities—thus including settings
that may not be easily accessible by other methods.
The capability of obtaining reliable results beyond

exactly solvable limits of open quantum lattices is particu-
larly promising as a method for validating experimental
implementations of quantum simulators. Concrete realiza-
tions of open quantum lattices are currently being inves-
tigated in the circuit QED architecture [64].
Finally, questions that warrant future investigations

regard the relation between mean-field approximations,
suitable choices of resummation, and additional justifica-
tion of the resummation series for specific physics systems

within the presented formalism. We note that resummation
schemes are also common within the framework of
Keldysh Green’s functions. However, handling (pseudo)
spin degrees of freedom tends to be more challenging
within this method. It will be interesting to compare and
relate results obtainable with both our method and the
Keldysh technique in the context of simpler systems such
as the open Bose-Hubbard lattice. Further investigations
into spectra of Liouvillians, handling cases of degeneracies
of the Liouvillian spectrum, and extending resummation to
time-dependent perturbation theory offer exciting perspec-
tives for the study of dissipative phase transitions in open
quantum systems.
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APPENDIX A: DETAILS OF RESUMMATION

This appendix provides the proof that powers of the U
superoperator can be written as [Eq. (28)],

Uj ¼
Xj

k¼0

sj−kT k; ðA1Þ

where the prefactor sj−k consists of all possible combina-
tions of S superoperators of total order j − k. The defi-
nitions of the involved T superoperator and S superoperator
[Eqs. (18) and (21)] are

S1 ¼ 0; T1 ¼ U; ðA2Þ
T j−1U ¼ Sj þ T j; ðSjÞμν ¼ δμνðT j−1UÞμν: ðA3Þ

We further define s0 ¼ T 0 ¼ 1.
We prove Eq. (A1) by mathematical induction. The U1

case clearly satisfies Eq. (A1),

U1 ¼ T1 ¼ S11þ 1T1 ¼ s1T 0 þ s0T1: ðA4Þ
Assume that Eq. (A1) holds up to power j − 1, i.e.,

Uj−1 ¼
Xj−1
k¼0

skT j−1−k: ðA5Þ
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Then, the decomposition rule (23) yields

Uj ¼ Uj−1U ¼
Xj−1
k¼0

skT j−1−kU: ðA6Þ

The product T j−1−kU is separated according to Eq. (A3),
i.e., T j−1−kU ¼ Sj−k þ T j−k, so we obtain

Uj ¼
Xj−1
k¼0

skSj−k þ
Xj−1
k¼0

skT j−k: ðA7Þ

The first sum,
Pj−1

k¼0 skSj−k, consists of all products
of S superoperators with combined order j, i.e.,Pj−1

k¼0 skSj−k ¼ sj. As a result, it follows that

Uj ¼ sjT0 þ
Xj−1
k¼0

skT j−k ¼
Xj

k¼0

skT j−k; ðA8Þ

which concludes the proof.

APPENDIX B: COMPUTATIONAL COST FOR
PERTURBATIVE CALCULATIONS

The computational cost in calculating perturbative
results for the open Jaynes-Cummings lattice primarily
stems from summation over matrix elements of the Ukr

superoperator. For each summation, the number of terms is
given by N, which corresponds to either the number of
qubits or photon modes. The number of necessary sum-
mations for rank-j corrections is given by 2j [see Eqs. (45)
and (46)]. As a result, the overall cost scales algebraically
with the number of sites, namely, approximately N2j.
Results for infinite lattices hinge upon the possibility
to carry out summations analytically for specific cases,
such as for leading-rank corrections of infinite Jaynes-
Cummings lattices with periodic-chain or global-coupling
geometry.
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