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Nematicity and magnetism are two key features in Fe-based superconductors, and their interplay is one
of the most important unsolved problems. In FeSe, the magnetic order is absent below the structural
transition temperature Tstr ¼ 90 K, in stark contrast to the fact that the magnetism emerges slightly below
Tstr in other families. To understand such amazing material dependence, we investigate the spin-
fluctuation-mediated orbital order (nxz ≠ nyz) by focusing on the orbital-spin interplay driven by the
strong-coupling effect, called the vertex correction. This orbital-spin interplay is very strong in FeSe
because of the small ratio between the Hund’s and Coulomb interactions (J̄=Ū) and large dxz, dyz-orbital
weight at the Fermi level. For this reason, in the FeSe model, the orbital order is established irrespective of
the fact that the spin fluctuations are very weak, so the magnetism is absent below Tstr. In contrast, in the
LaFeAsO model, the magnetic order appears just below Tstr both experimentally and theoretically. Thus,
the orbital-spin interplay due to the vertex correction is the key ingredient in understanding the rich phase
diagram with nematicity and magnetism in Fe-based superconductors in a unified way.
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I. INTRODUCTION

In Fe-based superconductors, the origin of the electronic
nematic state and its relation to the magnetism have been a
central unsolved problem. Recently, the nonmagnetic
nematic state in FeSe has attracted increasing attention
as a key to solve the origin of the nematicity. FeSe
undergoes structural and superconducting transitions at
Tstr ¼ 90 K and Tc ¼ 9 K, respectively, whereas the mag-
netic transition is absent down to 0 K [1]. The strength of
the low-energy antiferromagnetic (AFM) fluctuations is
very weak above Tstr, while it starts to increase below Tstr
[2–7]. In stark contrast, the magnetic transition occurs at
Tmag slightly below Tstr in other undoped Fe-based super-
conductors. Since the relation Tstr > Tmag is unable to be
explained by the random-phase approximation (RPA), we
should develop the microscopic theory beyond the
mean-field-level approximations.
Up to now, two promising triggers for the structure

transition have been discussed intensively: In the spin-
nematic scenario [8–12], the trigger is the spin-nematic
order. This spin-fluctuation induced spin-quadrupole order
could emerge above Tmag in highly magnetically frustrated
systems. In the orbital order scenario [13–16], the trigger
is the ferro-orbital (FO) order nxz ≠ nyz. Above Tstr, the

strong orbital or spin-nematic fluctuations are observed by
the measurements of shear modulus C66 [2,17,18], Raman
spectroscopy [19–22], and in-plane resistivity anisotropy
[23,24]. The nematic orbital fluctuations originate from the
strong orbital-spin mode coupling due to the strong-
coupling effect, which is described by the Aslamazov-
Larkin vertex correction (AL-VC). The electronic nematic
state studied in single-orbital models [25] is more easily
realized in multiorbital systems thanks to the AL-VC
mechanism [16].
Except for the presence or absence of magnetism below

Tstr, FeSe and other Fe-based superconductors show
common electronic properties. Below Tstr, in both FeSe
and BaFe2As2, large orbital polarization ΔE≡ Eyz − Exz ∼
50 meV [26–33] is observed. Such largeΔE originates from
the electron-electron correlation since the lattice distortion
ða − bÞ=ðaþ bÞ is just 0.2%–0.3%, as we discuss based on
band calculation in Appendix A. Above Tstr, the electronic
nematic susceptibility is enhanced in both BaFe2As2
[17,19,23] and FeSe [2,18], following the similar Curie-
Weiss behavior. These facts indicate that the common
microscopic mechanism drives the nematic order and
fluctuations in all Fe-based superconductors, in spite of
the presence or absence of the magnetism.
The realistic multiorbital Hubbard models for Fe-based

superconductors, which are indispensable for the present
study, were derived by using the first-principles method in
Ref. [34]. To understand the absence of the magnetism
below Tstr in FeSe, one significant hint is the smallness of
the ratio between the Hund’s and Coulomb interactions,
J̄=Ū, since the Hund’s coupling enlarges (suppresses) the
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intrasite magnetic (orbital) polarization, which is verified
by the functional renormalization-group (fRG) theory
[35,36]. Another significant hint is the absence of the
dxy-orbital hole pocket in FeSe, which is favorable for
the orbital-spin interplay on the (dxz, dyz) orbitals due to the
AL-VC mechanism.
The goal of this paper is to explain the amazing variety of

the electronic nematic states in Fe-based superconductors,
especially the nonmagnetic nematic state in FeSe, on the
same footing microscopically. For this purpose, we study
the spin-fluctuation-mediated orbital order by applying the
self-consistent vertex-correction (SC-VC) method [16] to
the first-principles models. In FeSe, the orbital-spin inter-
play is significant because of the smallness of J̄=Ū and
the absence of a dxy-hole pocket. For this reason, the orbital
order is realized even when the spin fluctuations are
substantially weak. The rich variety of the phase diagrams
in Fe-based superconductors, such as the presence or
absence of the magnetic order in the nematic phase, are
well understood by analyzing the vertex correction seri-
ously. The SC-VC theory had been successfully applied to
explain the phase diagram in LaFeAs(O,H) [37], nematic
CDW in cuprates [38,39], and triplet superconductivity in
Sr2RuO4 [36].
We comment that the localized spin models have been

successfully applied to the nematic order, stripe magnetic
order, and so on [40]. On the other hand, weak-coupling
theories have also been satisfactorily applied to Fe-based
superconductors [41]. In the present work, we study the
mechanisms of the nematicity and magnetism in various
Fe-based superconductors in terms of the itinerant picture,
by taking the strong-coupling effect due to the AL-VC into
account. The significant role of the AL-VC on the orbital
fluctuations has been confirmed by the fRG theory [35,36].
The AL-VC is important to reproduce the Kugel-
Khomskii-type orbital-spin interaction [16].

II. MODEL HAMILTONIAN
AND SC-VC THEORY

Here, we study the realistic d-p Hubbard models

HMðrÞ ¼ H0
M þ rHU

M ð1Þ

for M ¼ LaFeAsO and FeSe by applying the SC-VC
method [16]. In Eq. (1),

H0
M ¼

X
k;lm;σ

c†k;lσh
0
M;lmðkÞck;mσ ð2Þ

is the 8-orbital d-p tight-binding (TB) model in k space,
which is obtained by using the WIEN2k and WANNIER90

software; see Appendix A for a detailed explanation. Here,
σ is the spin index, and l, m are the orbital indices:
Hereafter, we denote the five d orbitals d3z2−r2 , dxz, dyz, dxy,
dx2−y2 as 1,2,3,4,5, and three p orbitals as 6–8. The band

structure and Fermi surfaces (FSs) in the LaFeAsO model
are shown in Figs. 1(a) and 1(b), respectively. Similar FSs
with three holelike FSs (h-FSs) and two electronlike FSs
(e-FSs) exist in many Fe-based superconductors. In FeSe,
however, h-FS3 composed of a dxy orbital is absent, and the
size of each FS is very small as clarified by the ARPES
[27,32,33] and dHvA [42,43] studies. To reproduce the
experimental band structure of FeSe, we introduce the
additional intra-orbital hopping parameters into H0

FeSe, in
order to shift the dxy-orbital band (dxz=yz-orbital band) at
(Γ, M, X) points by (0, −0.25, þ0.24) [(−0.24, 0, þ0.12)]
in units of eV; see Appendix A. These energy shifts might
be induced by the self-energy [44]. The constructed FSs in
the FeSe model are shown in Fig. 1(c). Since each Fermi
pocket is very shallow, the superconductivity in FeSe could
be close to a BCS-BEC crossover [45].
In Eq. (1), HU

M is the first-principles screened Coulomb
potential for d orbitals given by the “constrained-RPA
method” [34] given as

HU
M ¼ 1

2

X
i;l;m;σ;σ0

fUm;lni;lσni;m;σ0 ð1 − δl;mδσ;−σ0 Þ

þ Jm;lc
†
i;mσci;lσðc†i;lσ0ci;mσ0 þ c†i;mσ0ci;lσ0δσ;−σ0 Þg; ð3Þ

FIG. 1. (a) Band structures of the eight-orbital TB models
for LaFeAsO and FeSe. (b) FSs for the LaFeAsO TB model.
(c) FSs for the FeSe TB model. The colors correspond to
2 (green), 3 (red), and 4 (blue), respectively.
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where Um;l and Jm;l are orbital-dependent Coulomb
and Hund’s interactions for d electrons, respectively
[34]. The averaged intra-orbital Coulomb interaction
Ū≡ 1

5

P
5
l¼1Ul;l and Hund’s interactions J̄ ≡ 1

10

P
l>mJl;m

are ðŪ; J̄Þ ¼ ð7.21; 0.681Þ for FeSe, and ðŪ; J̄Þ ¼
ð4.23; 0.568Þ for LaFeAsO in units of eV [34]. Thus,
the ratio J̄=Ū ¼ 0.0945 in FeSe is much smaller than the
ratio J̄=Ū ¼ 0.134 in LaFeAsO. Such strong material
dependence of (Ū, J̄) is understood as follows: Ul;m is
strongly screened by the screening bands (excluding the
eight bands in H0

M), whereas the screening of Jl;m is much
weaker and the number of the screening bands is small in
FeSe [46]. The factor rð<1Þ in Eq. (1) is introduced to
adjust the spin fluctuation strength. The ratio Jl;m=Ul;m is
unchanged by introducing the factor r [47,48].
The 8 × 8 Green function in the orbital basis is given as

ĜðkÞ ¼ ½ẑ−1iϵn þ μ − ĥ0MðkÞ�−1; ð4Þ

where k ¼ ðk; ϵn ¼ ð2nþ 1ÞπTÞ, ĥ0MðkÞ is the kinetic term
in Eq. (2), and ẑ−1 ≡ 1 − ∂Σ̂=∂ϵjϵ¼0 represents the mass
enhancement due to the self-energy at the Fermi level.
Here, we introduce the constant mass-enhancement factor
for the d orbital 1=zlð≥1Þ. Then, Eq. (4) gives the coherent
part of the Green function, which mainly determines the
low-energy electronic properties. In the present study, r and
zl are the fitting parameters. In FeSe, the orbital order is
obtained in the real first-principles Hamiltonian (r ≈ 1) by
taking the experimental mass-enhancement factors z−1l ≈ 4

into account, as shown later.
The d-orbital charge (spin) susceptibilities (per spin) is

given in the following 52 × 52 matrix form:

χ̂cðsÞðqÞ ¼ Φ̂cðsÞðqÞ½1 − Γ̂cðsÞΦ̂cðsÞðqÞ�−1; ð5Þ

where Φ̂cðsÞðqÞ ¼ χ̂0ðqÞ þ X̂cðsÞðqÞ is the irreducible sus-
ceptibility for the charge (spin) channel. In the SC-VC
theory, we employ the AL-VC as X̂c;sðqÞ and perform the
self-consistent calculation with respect to the AL-VC and
susceptibilities. Using the Green function in Eq. (4), the
bare susceptibility is

χ0l;l0;m;m0 ðqÞ ¼ −T
X
k

Gl;mðkþ qÞGm0;l0 ðkÞ; ð6Þ

where q ¼ ðq;ωl ¼ 2lπTÞ. Also, the AL-VC for the charge
susceptibility is given as

XAL;c
l;l0;m;m0 ðqÞ ¼ T

2

X
p

X
a∼h

Λl;l0;a;b;e;fðq;pÞf3Vs
a;b;c;dðpþ qÞ

×Vs
e;f;g;hð−pÞ þVc

a;b;c;dðpþ qÞVc
e;f;g;hð−pÞg

×Λm;m0;c;d;g;h
0ðq;pÞ; ð7Þ

where p ¼ ðp;ωmÞ, and V̂s;cðqÞ≡ Γ̂s;c þ Γ̂s;cχ̂s;cðqÞΓ̂s;c.
The three-point vertex Λ̂ðq;pÞ, which gives the coupling
between two magnons and one orbiton, is given as

Λl;l0;a;b;e;fðq;pÞ
¼ −T

X
k0
Gl;aðk0 þ qÞGf;l0 ðk0ÞGb;eðk0 − pÞ; ð8Þ

and Λ0
m;m0;c;d;g;hðq;pÞ≡ Λc;h;m;g;d;m0 ðq;pÞ þ Λg;d;m;c;h;m0

ðq;−p − qÞ. We stress that the strong temperature depend-
ence of the three-point vertex is significant for realizing the
orbital order. We include all U2 terms without the double
counting in order to obtain quantitatively reliable results.
Equation (7) means that the charge AL-VC becomes large
in the presence of strong spin fluctuations. More detailed
explanations are presented in the textbook [49].
In the present study, we neglected the spin-channel VCs

since they are expected to be unimportant as discussed
in Ref. [50]. In Appendix B, we verify the validity of this
simplification in the present model by performing a time-
consuming self-consistent calculation with respect to
both charge- and spin-channel Maki-Thompson (MT) and
AL-VCs.
Hereafter, we mainly discuss the total spin susceptibility,

χsðqÞ≡P
l;mχ

s
l;l;m;mðqÞ, and the orbital susceptibilities for

Ox2−y2 ¼ nxz − nyz, χc
x2−y2ðqÞ≡ χc2;2;2;2ðqÞ þ χc3;3;3;3ðqÞ−

2χc2;2;3;3ðqÞ. The divergence of χc
x2−y2ðqÞ at q ¼ 0 gives

rise to the FO order nxz ≠ nyz. The charge (spin) Stoner
factor αCðSÞ is given by the maximum eigenvalue of

Γ̂cðsÞΦ̂cðsÞðqÞ in Eq. (5), and the charge (spin) susceptibility
is enlarged in proportion to the charge (spin) Stoner
enhancement factor SCðSÞ ≡ ð1 − αCðSÞÞ−1.
As explained in Ref. [50], the development of χc

x2−y2ð0Þ
is mainly induced by the diagonal elements of Φ̂c with
respect to l ¼ 2, 3. If we drop the off-diagonal elements of
Φ̂c approximately, χcx2−y2ð0Þ is given as

χc
x2−y2ð0Þ ≈ 2Φc=ð1 − ð1 − 5J=UÞUΦcÞ; ð9Þ

where U≡U2;2¼U3;3, J≡J2;3, Φc ≡ χ0l;l;l;lð0Þ þ Xc
l;l;l;lð0Þ

(l ¼ 2 or 3). Thus, the charge Stoner factor is αC ¼
ð1− 5J=UÞUΦc ≈ ð1− 5J=UÞð1þUXcÞ, considering the
relation χ0ðqÞ ≈ 1=U. Within the RPA (Φc ¼ Φs ¼ χ0),
only the spin fluctuations develop since the relation
αS > αC is satisfied for J > 0. However, the opposite
relation αC > αS is realized if the relation Φ̂c ≫ χ0 is
satisfied because of the charge-channel AL-VC [37].

III. NUMERICAL RESULTS
FOR LaFeAsO AND FeSe

First, we analyze the LaFeAsO model based on the
SC-VC theory. For z ¼ 1 for each l, the obtained χsðqÞ and

NEMATICITY AND MAGNETISM IN FESE AND OTHER … PHYS. REV. X 6, 021032 (2016)

021032-3



χc
x2−y2ðqÞ are shown in Figs. 2(a) and 2(b), respectively,

for r ¼ 0.41 (Ū ¼ 1.74 eV) at T ¼ 50 meV. Here, the
number of k meshes is 32 × 32, and the number of
Matsubara frequencies is 256. Thus, both AFM and FO
susceptibilities develop divergently, and the realized
enhancement factors are SS ≈ 40 and SC ≈ 50. The r
dependence of the enhancement factors at T ¼ 50 meV
is shown in the inset of Fig. 2(c): Both SS and SC increase
with r, and they are equivalent at r� ¼ 0.41. The lower
the temperature is, the smaller r� is, whereas the value of
SS ¼ SC at r� is approximately independent of T. A similar
result is obtained in the BaFe2As2 model as shown in
Appendix C.
In addition, other antiferro-orbital susceptibilities

χcxzðqÞ ¼ 2½ χc3;4;3;4ðqÞ þ χc3;4;4;3ðqÞ� and χcyzðqÞ ¼
2½ χc2;4;2;4ðqÞ þ χc2;4;4;2ðqÞ� also develop moderately as
reported in previous studies [16,37,49]. The obtained results
are essentially similar to the results obtained in the five
d-orbital Hubbard model for LaFeAsO, as explained
in Ref. [16].
Figure 2(c) shows the temperature dependence of the

Stoner enhancement factors at r ¼ 0.41. Both SC and SS
approximately follow the Curie-Weiss behaviors with
the charge and spin Weiss temperatures θC ¼ 48 meV
and θS ¼ 40 meV, respectively. The obtained relation

χc
x2−y2ð0Þ ∝ ðT − θCÞ−1 is consistent with the Curie-

Weiss behavior of the nematic susceptibilities in
BaFe2As2, derived from C66 [17,18], Raman spectroscopy
[19,20], and in-plane resistivity anisotropy [23]. Since
θC ∼ θS, one could interpret that the orbital order in
LaFeAsO is driven by the spin fluctuations.
The orbital-spin interplay due to the AL-VC is intuitively

understood in terms of the strong-coupling picture
U ≫ Wband [37]: As shown in Fig. 2(d), when the FO
order nxz ≫ nyz is realized, the nearest-neighbor exchange

interaction has large anisotropy Jð1Þa ≫ Jð1Þb . Then, the stripe
AFM order with Q ¼ ðπ; 0Þ appears if Jð2Þ is not too small.
Thus, the FO order/fluctuations and AFM order/fluctua-
tions emerge cooperatively in the localized model, and such
Kugel-Khomskii-type orbital-spin interplay is explained by
the AL-VC in the weak-coupling picture.
Next, we analyze the FeSe model, in which the ratio J̄=Ū

is considerably small. In FeSe, the experimental mass-
enhancement factor is about 10 for the dxy orbital, and 3–4
for other d orbitals according to the ARPES study [27].
Therefore, we put z−1l ¼ z−1 for l ≠ 4 and z−14 ¼ 3z−1 in the
present study. We find that the peak of χsðqÞ moves from
q ¼ ðπ; πÞ to the experimental peak position q ¼ ðπ; 0Þ
[4–7] for z−14 ≥ 1.5z−1, and the results of the SC-VC
method are essentially unchanged for z−14 ≥ 1.5z−1.
Figures 3(a) and 3(b) show the obtained χsðqÞ and
χcx2−y2ðqÞ for r ¼ 0.25 (Ū ¼ 1.76 eV) at T ¼ 50 meV in

the case of z ¼ 1. We see that only the FO susceptibilities
develop divergently [SC ≈ 50], whereas the AFM suscep-
tibility remains small [SS ≈ 8], consistent with experiments
for FeSe. The r dependence of the Stoner enhancement
factors at T ¼ 50 meV is shown in the inset of Fig. 3(c):
With increasing r, SC increases rapidly whereas SS
remains small.
Figure 3(c) shows the temperature dependence of the

enhancement factors at r ¼ 0.25. We stress that SC approx-
imately follows the Curie-Weiss behavior with the Weiss
temperature θC ¼ 48 meV, which is consistent with the
experimental Curie-Weiss behavior with positive θC in
FeSe [2]. Since the spin Weiss temperature takes a large
negative value (θS ∼ −20 meV), which is also consistent
with experiments, one may consider that the orbital order in
FeSe stems from causes other than spin fluctuations.

IV. ORIGIN OF THE RELATION
SC ≫ SS IN FeSe

In this section, we discuss why the relation SC ≫ SS
(θC > 0 and θS < 0) is realized in FeSe. First, we focus on
the ratio between the Hund’s and Coulomb interactions
J̄=Ū. It is intuitively obvious that the ratio J̄=Ū is an
important control parameter for the orbital nematicity: For
larger J̄=Ū, the local configuration of the two electrons in
the (dxz, dyz) orbitals is jdxz;↑i ⊗ jdyz;↑i, where the

FIG. 2. (a) χsðqÞ and (b) χcx2−y2ðqÞ obtainedby theSC-VCmethod
for LaFeAsO (z ¼ 1). Note that other FO susceptibility [χcz2ðqÞ] and
antiferro-orbital susceptibilities [χcxz=yzðqÞ] also develop second-
arily. (c) Orbital (spin) enhancement factor SCðSÞ as a function of T
for LaFeAsO (z ¼ 1) at r ¼ 0.41. The charge and spin Weiss
temperatures are θC ¼ 48 meV and θS ¼ 40 meV, respectively.
Inset: SCðSÞ as a function of r at T ¼ 50 meV. Note that Ū ¼
4.23r eV for LaFeAsO. (d) Orbital-spin interplay in the localized
(dxz, dyz)-orbital model, known as the Kugel-Khomskii coupling.
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magnetic moment is sz ¼ 1, whereas the orbital polariza-
tion is nxz − nyz ¼ 0. Thus, the smallness of J̄=Ū in FeSe is
favorable for the emergence of the orbital order without
magnetization.
Microscopically, as we discuss in Sec. II, the charge

Stoner factor for χc
x2−y2ð0Þ is αC ≈ ð1 − 5J=UÞð1þUXcÞ,

where Xc is the charge AL-VC for orbital 2 or 3 at q ¼ 0.
Since J̄=Ū ¼ 0.0945 in FeSe, the orbital order is realized
by relatively small AL-VC: Xc ∼ 0.9χ0ð0Þ. In LaFeAsO, in
contrast, large AL-VC of order ∼2χ0ð0Þ is required to
realize the orbital order. The obtained AL-VCs in both
systems are shown in Fig. 9(c) in Appendix D.
We discuss why the AL-VC is important in the FeSe

model with θS < 0: As we explain in Appendix D, the T
dependence of the AL-VC is given as Xc ∼ Λ2TSS, where
Λ is the three-point vertex that represents the interference

between two short-living magnons. We find the relation
Λ2 ∝ T−a with a ≈ 1 at low temperatures due to the
good nesting between h-FSs and e-FSs [20]. Thanks to
the strong enhancement of Λ at low temperatures, the
orbital order (αC ¼ 1) is realized even if θS is negative.
(Note that TSS decreases as T → 0 when θS < 0.) Thus,
serious diagrammatic analysis of the AL-VC is necessary to
understand the rich normal-state phase diagrams in
Fe-based superconductors.
The enhancement of the nematic susceptibility due to the

significant T dependence of Λ2ð∝T−aÞ was discussed in
Refs. [20,21,51,52]. However, the reported exponent a is
not universal since it depends on the band structure and
temperature range. In Appendix E, we show the T
dependence of the three-point vertex for LaFeAsO and
FeSe models for a wide temperature range. It is found that
a ≈ 1 for T ¼ 20z ∼ 100z½meV�, where z < 1 is the band-
renormalization factor. Because of such large T dependence
of a, χcx2−y2ð0Þ obtained by the present study follows the

Curie-Weiss law only approximately.
Finally, we stress the importance of the orbital depend-

ence of the spin fluctuation strength. Since the dxy orbital
h-FS (h-FS3) is absent in FeSe, the relation χs

2ð3ÞðqÞ ≫
χs4ðqÞ ( χsl ðqÞ≡ χsl;l;l;lðqÞ) is realized. This condition is
favorable for the development of χc

x2−y2ð0Þ since Xc
2ð3Þ is

enlarged by the spin fluctuations on the (dxz, dyz) orbitals.
A more detailed analysis is given in Appendix D.

V. EFFECT OF THE MASS-ENHANCEMENT
FACTOR

Here, we study the effect of the mass-enhancement
factor: We study the FeSe model in the case of z−1 ¼ 4
for (dxz, dyz) orbitals. The obtained SC;S as functions of r
are shown in the inset of Fig. 3(d) at T ¼ 12.5 meV. Here,
SS remains small even for r ∼ 1 since the bare susceptibility
is suppressed by z. In contrast, SC is enlarged to 50 for
r ≈ 0.97, which is very close to the exact first-principles
Hubbard model HFeSeðr ¼ 1Þ. The T dependence of SC;S is
shown in Fig. 3(d): Good Curie-Weiss behavior with θC ¼
12 meV is obtained by putting r ¼ 0.97.
To understand the similarity between the results in

Fig. 3(c) for z ¼ 1 and the results in Fig. 3(d) for
z−1 ¼ 4, we prove that both αC and αS are independent
of z under the rescaling T → zT and ðU; JÞ → ðU; JÞ=z.
Here, we assume that z−1l ¼ z−1, and we neglect the T
dependence of μ for simplicity. Under the scaling T → zT,
the Green function Ĝðk; nÞ at Matsubara integer n given in
Eq. (4) is independent of z. For this reason, the bare
susceptibility χ0ðqÞ ¼ −T

P
k;nGðkþ q; nÞGðk; nÞ is pro-

portional to z. By following the same procedure, the three-
point vertex Λ is scaled by z, and therefore the AL-VC
Xcð0Þ ∼ TU4

P
qΛð0; qÞ2χsðqÞ2 is proportional to z under

the scaling T → zT and ðU; JÞ → ðU; JÞ=z. Thus, both spin

FIG. 3. (a) χsðqÞ and (b) χc
x2−y2ðqÞ obtained by the SC-VC

method for FeSe (z ¼ 1), for r ¼ 0.25 at T ¼ 50 meV. (c) T
dependence of the Stoner enhancement factors for FeSe (z ¼ 1)
at r ¼ 0.25. Note that Ū ¼ 7.21r eV for FeSe. Inset: Stoner
enhancement factors as a function of r for FeSe (z ¼ 1) at
T ¼ 50 meV. (d) T dependence of the enhancement factors for
FeSe (z−1 ¼ 4) at r ¼ 0.97. The charge and spin Weiss temper-
atures are θC ¼ 12 meV and θS ∼ −7.5 meV, respectively.
Inset: Stoner enhancement factors as a function of r for FeSe
(z−1 ¼ 4) at T ¼ 12.5 meV.
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and charge irreducible susceptibilities are proportional to z,
and both αS and αC are unchanged under the rescaling
T → zT and ðU; JÞ → ðU; JÞ=z. In other words, the Weiss
temperatures θSðCÞ are scaled by z. The validity of these
scaling relations is confirmed by the numerical study
in Fig. 3.
It is possible to obtain z−1 by calculating the self-energy

Σ̂ðkÞ together with χ̂s;cðqÞ self-consistently. In this case,
fine-tuning of r will be unnecessary since the relation
αS;C < 1 is assured if Σ̂ðkÞ and χ̂s;cðqÞ are calculated self-
consistently in two-dimensional systems (Mermin-Wagner
theorem) [53]. This is an important future issue.

VI. DISCUSSIONS

A. Spin fluctuation strength and k-dependent
orbital polarization below Tstr

Here, we study the electronic states in the FO order
nxz ≠ nyz established below the structure transition
temperature Tstr, at which the shear modulus C66 reaches
zero. According to the linear-response theory, C66 ∝
1 − gχc

x2−y2ð0Þ, where χc
x2−y2ð0Þ ∝ ðT − θCÞ−1 is the elec-

tronic orbital susceptibility given by the SC-VC theory, and
g is the phonon-mediated Jahn-Teller energy [54].
Therefore, C66 ∝ ðT − TstrÞ=ðT − θCÞ, and Tstr ¼ θC þ g
is slightly higher than θC because of the weak electron-
phonon coupling (g ≈ 10 ∼ 50 K) [2,17,18].
Figure 4(a) shows the T dependence of SS given by the

RPA for LaFeAsO and FeSe for z ¼ 1. Here, we introduce
the orbital polarization −ΔE=2 (ΔE=2) for the dxzðyzÞ level.
We put SS ¼ 20 (5) for LaFeAsO (FeSe) at Tstr ¼ 50 meV,
and we assume a mean-field-type T dependence; ΔE ¼
ΔE0 tanhð1.74

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tstr=T − 1

p Þ with ΔE0 ¼ 80 meV. (For
z−1 ¼ 4, the renormalized orbital polarization zΔE0 is just
20 meV.) In both LaFeAsO and FeSe, SS are enhanced by
ΔE since αS increases linearly with ΔE at q ¼ ðπ; 0Þ as
discussed in Ref. [54]. In LaFeAsO, the magnetic-order
temperature Tmag increases from θS to just below Tstr since
SS is already large at Tstr. In contrast, in FeSe, the
enhancement of χsðπ; 0Þ is much more moderate [55].
We also perform the self-consistent analysis of the orbital

polarization [ΔExzðkÞ, ΔEyzðkÞ] and anisotropic χsðqÞ,
which is a natural extension of the SC-VC theory into
the orbital ordered state [56]. The obtained SS and k-
dependent orbital polarizations are shown in Figs. 4(a)
(inset) and 4(b), respectively. The parameters are r ¼ 0.256
and 1=z4 ¼ 1.6. The difference Δn ¼ nxz − nyz is 0.2%.
The hole pocket around the Γ point becomes ellipsoidal
along the ky axis because of the “sign-reversing orbital
polarization,” in which ΔExzð0; kÞ − ΔEyzðk; 0Þ shows the
sign reversal as shown in Fig. 4(c). Because of this sign
reversal, SS in the inset of Fig. 4(a) tends to saturate below
40 meV [33]. Also, two Dirac-cone FSs appear around
the X point when ΔEyzðπ; 0Þ > 50 meV. These results are

essentially consistent with the recent ARPES studies
reported in Refs. [27–33]. The obtained orbital-polarization
[ΔExzðkÞ, ΔEyzðkÞ] belongs to the B1g representation, and
therefore it is consistent with the “d-wave orbital order”
discovered in Ref. [31]. The d-wave orbital order is
theoretically obtained by the mean-field approximation
by introducing a phenomenological long-range interaction
[57], whose microscopic origin might be the AL-VC
studied in this paper.
In the present FeSe model with z−14 ¼ 3, χsðq; 0Þ has a

maximum at q ¼ ðπ; 0Þ; ð0; πÞ without orbital order at
T ¼ 50 meV, as shown in Fig. 3(a). In the orbital ordered
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FIG. 4. (a) T dependence of SS for both LaFeAsO and
FeSe models (z ¼ 1). The FO order is introduced below
Tstr ¼ 50 meV. Inset: T dependence of SS for the FeSe model
obtained by calculating the k-dependent orbital polarization and
χsðqÞ self-consistently. SS tends to saturate below 40 meV
because of the sign-reversing orbital polarization. (b) Self-
consistent solution of the orbital polarization [ΔExzðkÞ,
ΔEyzðkÞ] in the orbital ordered state in the FeSe model at
T ¼ 50 meV. The shape of the C2-symmetric FSs in (b) is
consistent with the experimental reports [27–33]. We also show
(c) the ΔExzðyzÞðkÞ along the kyðxÞ axis and (d) the C2-symmetric
χsðqÞ in the orbital-ordered state.
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state, χsðq; 0Þ at q ¼ ðπ; 0Þ increases as shown in Fig. 4(d).
These results are consistent with the neutron scattering
study for FeSe for both T > Tstr and T < Tstr [4–7].
Essentially similar results are obtained for z−14 > 1.5 at
T ¼ 50 meV. We verified that χsðq; 0Þ has a clear maxi-
mum peak at q ¼ ðπ; 0Þ even for z−14 ¼ 1.1 below T ¼
10 meV using 128 × 128 k meshes. Experimentally,
z2;3=z4 is about 3 [27], and the relation z2;3=z4 ∼ 1.3 is
predicted by the dynamical-mean-field-theory in Ref. [44].
According to Ref. [4], χsðq;ωÞ shows the broad maxi-

mum at q ¼ ðπ; 0Þ at low energies (ω≲ 10 meV), and its
strength is almost independent for T > Tstr. The magnitude
of the low-energy spin susceptibility in FeSe is 1 order of
magnitude smaller than that in BaFe2As2 [58], whereas its
magnitude would be comparable to that in LiFeAs [59].
This experimental report in FeSe will be consistent with the
present theoretical result with the moderate SS ∼ 10 in
Figs. 3(c) and 3(d). Note that the experimental dispersion
relation in χsðq;ωÞ for ω≲ 100 meV is qualitatively
understood based on the present FeSe model by consid-
ering the band-renormalization factor [7].

B. The ratio θS=θC for FeSe, NaFeAs, BaFe2As2,
and LaFeAsO as functions of J̄=Ū

In Fig. 5(a), we summarize the ratio θS=θC obtained in
FeSe, NaFeAs, BaFe2As2, and LaFeAsO as a function of
J̄=Ū. Numerical studies for NaFeAs and BaFe2As2 are
presented in Appendix C. In NaFeAs and FeSe, in which
J̄=Ū is smaller, the obtained θS=θC decreases to 0.4 and
−0.4, respectively. In Fig. 5(a), experimental values of
Tmag=Tstr and θNMR=Tstr are also shown, where θNMR is
the Weiss temperature of 1=T1T above Tstr. Since Tstr ¼
θC þ g (g ≈ 10 ∼ 50 K) and θNMR ¼ θS, the relation
θNMR=Tstr ≲ θS=θC is expected theoretically. In addition,
the relation Tmag=Tstr ≳ θS=θC is expected since Tmag is
substantially higher than θS in the FO ordered state.
These two theoretically predicted relations are verified in
Fig. 5(a). Thus, the ratio θS=θC is well scaled by the
parameter J̄=Ū, consistent with the discussion in Sec. IV.
Figure 5(b) shows the critical value of the spin Stoner

factor for αC ≈ 1 in each model, αcrS . It is found that αcrS
increases with J̄=Ū qualitatively. In addition, we plot αcrS for
the FeSe (LaFeAsO) TB model with different Coulomb
interactions: H0

FeSeðLaFeAsOÞ þ rHU
M. In both FeSe and

LaFeAsO TB models, αcrS monotonically increases with
J̄=Ū, whereas αcrS is clearly small for the FeSe TB model.
There are two reasons why αcrS is smaller for the FeSe band
structure. One reason is the absence of the dxy-orbital h-FS
in FeSe: As we discussed in Sec. IV, the dxy-orbital spin
fluctuations are unnecessary for the development of
χcx2−y2ð0Þ because of the AL-VC. Another reason is the

smallness of the FSs in FeSe: We found that, numerically,
αcrS decreases when the size of the FS is smaller since the

three-point vertex Λm ≡ δχ0mðqÞ=δΔEm, which is odd with
respect to G, increases in magnitude when the particle-hole
asymmetry is large: In fact, we analyzed the undoped
LaFeAsO model with tiny FS pockets by introducing the
positive (negative) potential around the electron (hole) FS
and verified that the orbital order is realized by small αS.
Recently, the advantage of the small FSs for the nematicity
has been stressed by the renormalization group study
in Ref. [63].

C. Summary

The emergence of the electronic nematic order has
attracted increasing attention as a fundamental phenome-
non in strongly correlated metals. In this paper, we studied
the origin of the nematicity in Fe-based superconductors,
by paying special attention to the nonmagnetic nematic
order in FeSe. By applying the orbitalþ spin fluctuation
theory to the first-principles d-p Hubbard models, we
succeeded in explaining the rich variety of the phase
diagrams in Fe-based superconductors, such as the non-
magnetic or magnetic nematic order in FeSe or LaFeAsO.

FIG. 5. (a) θS=θC obtained for four theoretical models.
Experimental values of Tmag=Tstr and θNMR=Tstr are also shown.
θNMR is the Weiss temperature of 1=T1T obtained by the Curie-
Weiss fitting for T > Tstr in LaFeAsO [60], BaFe2As2 [61], and
NaFeAs [62]. In LaFeAsO, we derived θNMR ≈ 95 K from the
Curie-Weiss fitting of 1=T1T above Tstr. In FeSe, we derived
Tmag ¼ −10 ∼ −30 K from the Curie-Weiss fitting of 1=T1T
below Tstr [2]. Thus, theoretically expected relationships
θNMR=Tstr ≲ θS=θC and Tmag=Tstr ≳ θS=θC are verified. (b) αcrS
obtained for four theoretical models at αC ¼ 0.98. We also plot
αcrS for the hybrid models:H0

LaFeAsO þ rHU
M (LaFeAsO TBmodel)

and H0
FeSe þ rHU

M (FeSe TB model).
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The key model parameter to realize the rich phase diagram
is J=U: the ratio between the Hund’s and Coulomb
interactions. In addition, the ratio θS=θC tends to decrease
as the size of the FS shrinks, as discussed in Sec. VI B.
In both FeSe and LaFeAsO, strong orbital susceptibility

χc
x2−y2ð0Þ ∝ ðT − θCÞ−1 with positive θC is realized by the

strong orbital-spin interplay due to the strong-coupling
effect, called the Aslamazov-Larkin vertex correction in
field theory. In the FeSe model, ferro-orbital order is
established even when the spin Weiss temperature θS is
negative, as shown in Fig. 3, since the three-point vertex
(the coupling between two magnons and one orbiton)
increases at low temperatures as Λ ∝ T−0.5. In contrast,
the spin-nematic susceptibility driven by the spin suscep-
tibility should be T independent if θS < 0, as discussed in
Ref. [7]. Therefore, we conclude that the nematicity in FeSe
originates from the orbital order and fluctuations.
The nematic orbital fluctuations might play important

roles in the pairing mechanism in Fe-based superconduc-
tors [64]. In FeSe, Tc increases from 9 K to 40 K under
pressure, accompanied by the enhancement of spin fluc-
tuations [1]. At the same time, the system approaches the
orbital critical point since Tstr decreases to zero under
pressure. These facts indicate the important role of the
spinþ orbital fluctuations in FeSe.
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APPENDIX A: EIGHT-ORBITAL MODELS
FOR FeSe AND LaFeAsO

Here, we introduce the eight-orbital d-p models for
FeSe and LaFeAsO analyzed in the main text. We first
derived the first-principles tight-binding models using the
WIEN2k and WANNIER90 codes. Crystal structure parame-
ters of FeSe and LaFeAsO are given in Refs. [65] and [66],
respectively. The obtained band structure and FSs in the
LaFeAsO model are shown in Fig. 1 in the main text. In
deriving the FeSe model, we introduce the k-dependent
shifts for orbital l, δEl, in order to obtain the experimen-
tally observed FSs. In FeSe, we introduce the intra-orbital
hopping parameters into H0

FeSe in order to shift the dxy-
orbital band (dxz=yz-orbital band) at (Γ, M, X) points by
(0, −0.25, þ0.24) [(−0.24, 0, þ0.12)] in units of eV. Such
level shifts are introduced by the additional intra-orbital
hopping integrals: δton−site ¼ δEΓ=4þ δEM=4þ δEX=2,
δtnn ¼ δEΓ=8 − δEM=8, and δtnnn ¼ δEΓ=16þ δEM=16−
δEX=8. The band structure and FSs in the FeSe model are
shown in Fig. 1 in the main text.

We also explain the orbital-dependent Coulomb inter-
action. The bare Coulomb interaction for the spin channel
in the main text is

ðΓ̂sÞl1l2;l3l4 ¼

8>>>>>><
>>>>>>:

Ul1;l1 l1 ¼ l2 ¼ l3 ¼ l4
U0

l1;l2
l1 ¼ l3 ≠ l2 ¼ l4

Jl1;l3 l1 ¼ l2 ≠ l3 ¼ l4
Jl1;l2 l1 ¼ l4 ≠ l2 ¼ l3
0 otherwise:

ðA1Þ

Also, the bare Coulomb interaction for the charge channel
is

ðΓ̂cÞl1l2;l3l4 ¼

8>>>>>><
>>>>>>:

−Ul1;l1 l1 ¼ l2 ¼ l3 ¼ l4
U0

l1;l2
− 2Jl1;l2 l1 ¼ l3 ≠ l2 ¼ l4

−2U0
l1;l3

þ Jl1;l3 l1 ¼ l2 ≠ l3 ¼ l4
−Jl1;l2 l1 ¼ l4 ≠ l2 ¼ l3
0 otherwise:

ðA2Þ

Here, Ul;l, U0
l;l0 , and Jl;l0 are the first-principles Coulomb

interaction terms given in Ref. [34].
Finally, we perform the band calculations for the

orthorhombic phase of FeSe and LaFeAsO, based on
the experimental crystal structures. In both compounds,
the obtained band splitting is too small to explain the large
orbital polarization (about 60 meV) observed by ARPES
studies. This result means that the orbital order originates
from the electron-electron correlation, which is not
included in the band calculation.
Figure 6(a) is the nonmagnetic band structure in the

orthorhombic LaFeAsO obtained by the WIEN2k software.
The spin-orbit interaction is not taken into account. The
crystal structure parameters in the orthorhombic phase are
given in Ref. [66]. The orthorhombic structure deformation
ða − bÞ=ðaþ bÞ is 0.3%. Because of the electron-phonon
interaction, the fourfold symmetry of the band structure is
slightly violated: The splitting between the dxz and dyz
bands, ΔEband ≡ Eyz − Exz, is 16 meV at the X point, and
ΔEband ¼ 2 meV at the Γ point.
Figure 6(b) is the band structure in the orthorhombic

FeSe. In the orthorhombic phase, the nearest Fe-Fe length
is a ¼ 2.6716Å and b ¼ 2.6610Å, so ða − bÞ=ðaþ bÞ is
0.2% [65]. Here, the k-dependent orbital shift to fit the
ARPES band structure introduced above is not taken into
account. In FeSe, ΔEband ¼ 14 meV at the X point, and
ΔEband ¼ 3 meV at the Γ point. Thus, the sign-reversing
orbital splitting observed in Ref. [33] cannot be explained
by the band calculation.
The splitting is reduced by the renormalization factor z

due to the self-energy. Since z ∼ 1=3 in FeSe and
LaFeAsO, the renormalized splitting at the X point is
zΔEband ∼ 5 meV, which is 1 order of magnitude smaller
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than the experimental orbital splitting. Therefore, it is
confirmed that the origin of the electronic nematic state
in Fe-based superconductors is the electron-electron
correlation.

APPENDIX B: SMALLNESS OF THE VC
FOR THE SPIN SUSCEPTIBILITY

In the original SC-VC theory, the spin and charge
susceptibilities are calculated self-consistently by including
the MT-VC and AL-VC for the spin and charge suscep-
tibilities [16,49]. The strong orbital fluctuations are induced
by the charge-channel AL-VC in Fe-based SCs, Ru oxides
and cuprate SCs [16,37,50]. In the main text, we studied the
eight-orbital d-p Hubbard models based on the SC-VC
theory by taking the charge-channel AL-VC into account
self-consistently. The obtained χsðqÞ is equivalent to the
RPA since the spin-channel VCs are dropped. It is easy to
verify that the charge- and spin-channel MT-VCs are
negligible in the present model. However, the smallness
of the spin-channel AL-VC is verified only in the two-
orbital Hubbard model in Ref. [50].
Here, we study the FeSe model using the SC-VC

method by taking the MT-VC and AL-VC for both spin
and charge channels in order to confirm the validity of the
numerical study in the main text. The charge (spin)
susceptibilities are

χ̂cðsÞðqÞ ¼ Φ̂cðsÞðqÞ½1 − Γ̂cðsÞΦ̂cðsÞðqÞ�−1 ðB1Þ

where Φ̂cðsÞðqÞ ¼ χ̂0ðqÞ þ X̂MT;cðsÞðqÞ þ X̂AL;cðsÞðqÞ. The
spin-channel AL-VC is given as

XAL;s
l;l0;m;m0 ðqÞ ¼ T

2

X
p

X
a∼h

Λl;l0;a;b;e;fðq;pÞ

× ½fVc
a;b;c;dðpþ qÞVs

e;f;g;hð−pÞ
þ Vs

a;b;c;dðpþ qÞVc
e;f;g;hð−pÞg

× Λ0
m;m0;c;d;g;hðq;pÞ þ 2Vs

a;b;c;dðpþ qÞ
× Vs

e;f;g;hð−pÞΛ00
m;m0;c;d;g;hðq;pÞ�; ðB2Þ

where Λ00
m;m0;c;d;g;hðq;pÞ≡Λc;h;m;g;d;m0 ðq;pÞ−Λg;d;m;c;h;m0

ðq;−p−qÞ. Also, the expressions of the charge- and
spin-channel MT-VCs are given in Ref. [49]. The double-
counting second-order terms with respect to HU in
X̂MT;sðcÞ þ X̂AL;sðcÞ should be subtracted [49] to obtain
reliable results.
Figures 7(a) and 7(b) show the obtained χsðqÞ and

χc
x2−y2ðqÞ, respectively, for Ū ¼ 1.86 eV (r ¼ 0.26) at

T ¼ 50 meV. The Stoner factors are obtained as αS ¼
0.907 and αC ¼ 0.98. The obtained VCs XMTþAL;s

2 ðqÞ and
XMTþAL;c
2 ðqÞ for the dxz orbital in the present self-consistent

calculation are shown in Figs. 7(c) and 7(d), respectively.
Since X̂MTþAL;sðqÞ is very small, the obtained charge and
spin susceptibilities are very similar to the results in Fig. 3
in the main text. Therefore, the validity of the numerical
results in the main text is confirmed by performing the very
time-consuming self-consistent calculation with respect to
X̂MTþAL;s;cðqÞ and χ̂s;cðqÞ.

FIG. 7. (a) χsðqÞ and (b) χc
x2−y2ðqÞ given by the SC-VC theory,

by calculating both spin- and charge-channel VCs self-
consistently. The obtained results are quantitatively equivalent
to Fig. 3 in the main text. This fact means that the VC for the spin
channel is negligible. (c) XMTþAL;s

2 ðqÞ and (d) XMTþAL;c
2 ðqÞ

obtained by the present self-consistent calculation.

FIG. 6. Band structure of (a) LaFeAsO and (b) FeSe in the
experimental orthorhombic crystal structures obtained by the
WIEN2k software.
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APPENDIX C: ANALYSIS OF EFFECTIVE
MODELS OF BaFe2As2 AND NaFeAs

In the main text, we introduced the first-principles
models for LaFeAsO and FeSe and analyzed these models
by using the SC-VC method. Here, we also introduce the
effective models for BaFe2As2 and NaFeAs and analyze
them using the SC-VC method.
In both BaFe2As2 and NaFeAs, the FSs have relatively

large three-dimensional character. In addition, the
unfolding of the band structure in BaFe2As2 cannot be
performed exactly because of its body-centered tetragonal
crystal structure. Here, we introduce a simple effective
BaFe2As2 TB model H0

BaFe2As2
by magnifying the size of

the dxy-orbital hole-FS around k ¼ ðπ; πÞ in the LaFeAsO
unfolded model in order to reproduce the ARPES band
structure in Ba122 compounds. Here, we shifted the dxy-
orbital band at the M point by þ0.20 eV. As for NaFeAs,
we just use H0

LaFeAsO as an effective NaFeAs TB model,
e.g., H0

NaFeAs ¼ H0
LaFeAsO, considering that the FSs in

NaFeAs in the kz ¼ 0 plane are similar to the FSs in
LaFeAsO. We use HU

NaFeAs in place of HU
LiFeAs given

in Ref. [34].
The band structures and the FSs of the effective

TB models for BaFe2As2 and NaFeAs are shown in
Figs. 8(a)–8(c). Here, we perform the SC-VC analysis
for the models HM ¼ H0

M þ rHU
M (M ¼ BaFe2As2,

NaFeAs), where rð<1Þ is the reduction parameter. We
choose the parameter r to satisfy the charge Stoner factor,
αC ¼ 0.98. The obtained T dependence of the spin and
charge Stoner enhancement factors, SS ≡ ð1 − αSÞ−1 and
SC ≡ ð1 − αCÞ−1, respectively, are shown in Figs. 8(d)
and 8(e). As for BaFe2As2, both spin and orbital fluctua-
tions strongly develop at T ∼ 50 meV in the case of
r ¼ 0.36. This result is consistent with the experimental
relation Tmag ≈ Tstr in BaFe2As2. As for NaFeAs, only
orbital fluctuations strongly develop, whereas spin fluctua-
tions remain moderate at T ∼ 50 meV in the case of
r ¼ 0.287. This result is consistent with experimental
results in NaFeAs [62], in which Tmagð¼40 KÞ is more
than 10 Kelvin smaller than Tstrð¼53 KÞ. Thus, normal-
state phase diagrams in BaFe2As2 and NaFeAs are well
explained by analyzing their effective Hamiltonians using
the SC-VC method.

APPENDIX D: WHY ARE STRONG ORBITAL
FLUCTUATIONS INDUCED BY TINY SPIN

FLUCTUATIONS IN FeSe?

In the main text, we studied the first-principles d-p
Hubbard models for LaFeAsO and FeSe by applying the
SC-VC theory. In both models, strong spin-fluctuation-
driven orbital fluctuations are induced by AL-VC. In FeSe,
we found that very small spin susceptibility χsmax is
sufficient to realize the orbital order, consistent with
experimental results.
Here, we discuss why strong orbital fluctuations are

induced by tiny spin fluctuations in FeSe. In Figs. 9(a)
and 9(b), we show the spin and orbital susceptibilities,
χsmax ≡ χsðQÞ and χc

x2−y2ð0Þ≡ χc2;2;2;2ðqÞ þ χc3;3;3;3ðqÞ−
2χc2;2;3;3ð0Þ, in the FeSe model and LaFeAsO model
obtained by the SC-VC theory. Here, 32 × 32 k meshes
and 256 Matsubara frequencies are used. In both models,
the charge Stoner factor is αC ¼ 0.98 at T ¼ 50 meV, and
the obtained orbital susceptibilities show similar T depend-
ence. We set Ū ¼ 1.76 (r ¼ 0.25) in FeSe and Ū ¼ 1.74
(r ¼ 0.41) in LaFeAsO, as we did in the main text. As for
the spin susceptibility, in LaFeAsO, strong spin fluctua-
tions develop at T ¼ 50 meV (αS ¼ 0.98), consistent with

FIG. 8. (a) Band structures of H0
BaFe2As2

and H0
NaFeAs. (b) FSs of

H0
BaFe2As2

and (c) FSs of H0
NaFeAs. (d) T dependence of the spin

(charge) Stoner enhancement factors SSðCÞ obtained in HBaFe2As2 .
(Inset) Ū dependence of the Stoner enhancement factors. (e) Spin
and charge Stoner enhancement factors in HNaFeAs.
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previous theoretical studies [16,37]. In FeSe, in contrast,
χsmax is almost constant till T ¼ 50 meV (αS ¼ 0.87),
consistent with experimental reports in FeSe.
Now, we discuss why the spin fluctuation strength

required to realize αC ≈ 1 is so different from LaFeAsO
to FeSe. One reason is the difference in the ratio J̄=Ū:
Figure 9(c) shows the T dependence of the AL-VC
on the dxz orbital, XAL;c

2 ð0Þ≡ XAL;c
2;2;2;2ð0Þ, obtained in the

LaFeAsO and FeSe models. In both models, αC ¼ 0.98 is
satisfied at T ¼ 50 meV. At T ¼ 50 meV, the AL-VC for
FeSe is about one-half of that in LaFeAsO. Thus, small AL-
VC is enough to induce large orbital fluctuations in FeSe
since the charge Stoner factor is αC ≈ ð1 − 5J̄=ŪÞŪΦc

2ð0Þ.
In Fig. 9(d), we show that XAL;c∶ nonzero

2 ð0Þ≡ XAL;c
2 ð0Þ −

XAL;c∶ zero
2 ð0Þ is very small for both FeSe and LaFeAsO.

Here, “zero” represents the zero-Matsubara term (classical
contribution) in Eq. (7) in Sec. II. Thus, nonzero Matsubara
terms in the AL-VC are negligible in the present calculation
(by chance). Note that the U2 term in AL-VC gives a
negative contribution.
Another reason for the relation χsmaxðFeSeÞ ≪

χsmaxðLaFeAsOÞ at αC ≈ 1 is the difference in the orbital
dependence of the spin fluctuation strength: The AL-VC
for the xz orbital is approximately given as

XAL;c
2 ð0Þ ≈ 3TU4

X
p

jΛ2;2;2;2;2;2ð0; pÞj2χs2ðpÞ2; ðD1Þ

where we dropped the interorbital terms of χ̂s and Λ̂, and
we leave only the zero-Matsubara term in the Matsubara

summation in Eq. (7) in Sec. II. If Eq. (D1) is justified, only
the spin fluctuations on the (dxz; dyz) orbitals are important
for the FO fluctuations.
Figure 10(a) shows χs2ðQÞ for FeSe and LaFeAsO for the

same model parameters used in Fig. 9. As derived from
Fig. 9(a) and Fig. 10(a), the ratio χs2ðQÞ=χsðQÞ is just 0.22
in LaFeAsO, whereas the ratio increases to 0.53 in FeSe
since the relation χs4ðQÞ ≪ χs2ðQÞ [χs4ðQÞ ∼ χs2ðQÞ] is
satisfied in FeSe (LaFeAsO) because of the absence
(presence) of h-FS3. This orbital dependence of the spin
fluctuations in FeSe is favorable for realizing the FO
fluctuations.
To understand the model dependence of the AL-VC in

more detail, we calculate C2 ≡P
qχ

s
2ðqÞ2 and show the

result in Fig. 10(b): The ratio CLaFeAsO
2 =CFeSe

2 is just 1.35
since the width of the peak of χs2ðqÞ2 around q ¼ Q is much
wider in FeSe. We also examine the square of the three-
point vertex for the dxz orbital Λ2 ≡ Λ2;2;2;2;2;2ðq; pÞ at
q ¼ 0 and p ¼ Q in Fig. 10(c). In both models, the relation
jΛ2j2 ∝ T−a with a ≈ 1 is satisfied for a wide temperature
range: Such strong T dependence of the charge-spin
coupling Λ2 is essential for realizing the orbital fluctua-
tions, so it should be taken into account in the numerical
calculation. As a result, we obtain a crude approximation
for the AL-VC, ~XAL;c

2 ≡ 3U4jΛ2ð0; ð0; πÞÞj2TC2, and show
the result in Fig. 10(d). This crude approximation quali-
tatively reproduces the exact numerical results for both
FeSe and LaFeAsO given in Fig. 9(c).

50 100 150
0

20

40

60

T (meV)

LaFeAsO
FeSe

50 75 100
0

50

100

T (meV)

LaFeAsO
FeSe

)b()a(

)d()c(

50 100 150

0

0.5

1

1.5

T (meV)

LaFeAsO
FeSe

50 100 150
0

0.5

1

1.5

T (meV)

LaFeAsO
FeSe

s (Q
)

c x2
-y

2 (
0)

X
2A

L,
c (0

)

X
2A

L,
c:

no
n-

ze
ro

(0
)

FIG. 9. (a) Spin susceptibility χsðQÞ and (b) orbital suscep-
tibilities χc

x2−y2ð0Þ for FeSe and LaFeAsO as functions of T. We

put r ¼ 0.25 for FeSe and r ¼ 0.41 for LaFeAsO. (c) XAL;c
2 ð0Þ

and (d) XAL;c∶ non−zero
2 ð0Þ for FeSe and LaFeAsO.
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FIG. 10. (a) χs2ðQÞ, (b) C2 ≡P
qχ

s
2ðqÞ2, and (c) jΛ2j2 as

functions of T in FeSe and LaFeAsO. (d) The approximate
AL-VC for the dxz orbital ~XAL;c

2 ≡ 3U4jΛ2ð0; ð0; πÞÞj2TC2. In
both FeSe and LaFeAsO, the obtained ~XAL;c

2 qualitatively agrees
with the exact numerical calculations in Fig. 9(c).
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In summary, in both LaFeAsO and FeSe, strong orbital
fluctuations are induced by AL-VC for the dxzðyzÞ orbital,
XAL;c
2ð3Þ ð0Þ. In FeSe, very small spin susceptibility χsmax is

sufficient to realize the spin-fluctuation-driven orbital order
because of both the smallness of J̄=Ū and the largeness of
C2. Strong T dependence of Λ2 is essential for realizing the
orbital fluctuations due to AL-VC.

APPENDIX E: STRONG T DEPENDENCE
OF THE THREE-POINT VERTEX

In this paper, we found that the strong orbital fluctuations
in Fe-based superconductors originate from the AL-VC for
the orbital susceptibility. The moderate increment of the
AL-VC at low temperatures shown in Fig. 9(c) gives rise to
the Curie-Weiss behavior of χc

x2−y2ð0Þ. For the increment of

the AL-VC, the strong T dependence of the three-point
vertex, shown in Fig. 10(c), plays a significant role. Its
strong T dependence in Fe-based superconductors has been
pointed out in Refs. [20,21,51,52].
Here, we calculate the three-point vertex for LaFeAsO

and FeSe models for a wide temperature range with high
numerical accuracy, using 512 × 512 k meshes and about
2048 Matsubara frequencies. Figure 11 shows the square of
the three-point vertex for the dxz orbital Λ2ð0;QÞ≡
Λ2;2;2;2;2;2ð0;QÞ for T ≥ 10 meV. In both LaFeAsO and
FeSe models, the coefficient a of jΛ2ð0;QÞj2 ∝ T−a
depends on the temperature range. In both models, a ≈ 1
for T ¼ 20 ∼ 100 meV, so the numerical result in
Fig. 10(c) is confirmed by this accurate calculation.
When the band renormalization due to z < 1 is considered,
the relation a ≈ 1 is realized for T ¼ 20z ∼ 100z½meV�.
For T < 20z [meV], jΛ2ð0;QÞj2 saturates since the

temperature is smaller than the energy scale of the nesting.
For T > 100z [meV], the relation a ≈ 2 is realized as
discussed in Refs. [51,52]. Note that the chemical potential
μ becomes higher than that of the hole band at the Γ point
when T is higher than 100z (300z) [meV] in the FeSe
(LaFeAsO) model.

In Ref. [20], we reported the relation XAL;c
2 ð0Þ=T ∝

T−0.5ð1 − αSÞ−1 based on an approximate calculation for
the five-orbital LaFeAsO TB model. The factor T−0.5

originates from jΛ2j2. However, we performed a more
careful numerical analysis and found that the approximate
relation jΛ2j2 ∼ T−1 (a ≈ 1) is realized for T ∼ 50z [meV]
in the five-orbital model.

APPENDIX F: TWO DEFINITIONS OF
THE AVERAGED COULOMB AND

HUND’S INTERACTIONS

In the present study, the ratio between the intra-orbital
Coulomb interaction and Hund’s interaction, J̄=Ū, is the
essential control parameter. In this paper, we follow
the Hubbard-Kanamori definition: Ū ≡ 1

5

P
5
l¼1 Ul;l and

J̄ ≡ 1
10

P
l>mJl;m. This definition is used in Ref. [34]. By

using the Slater integrals [67], it is expressed as
Ū ¼ F0 þ 4

49
ðF2 þ F4Þ, Ū0 ¼ F0 − 1

49
ðF2 þ F4Þ, and J̄ ¼

5
98
ðF2 þ F4Þ [67]. According to the first-principles cRPA

method [34], the ratio J̄=Ū is 0.0945 for FeSe, and the
relation Ū0 ¼ Ū − 2J̄ is approximately satisfied.
In the first-principles studies, another definition of the

averaged interaction is used frequently: ~U ¼ F0 and
~J ¼ 1

14
ðF2 þ F4Þ. This definition is used in Refs. [68,69].

It is equivalent to ~U ¼ 1
25
ðP5

l¼1 Ul;l þ
P

l≠mU
0
l;mÞ and ~J ¼

~U − 1
10

P
l≠mðU0

l;m − Jl;mÞ [70,71].
Therefore, if we assume Ū0 ¼ Ū − 2J̄, which is actually

satisfied well in Ref. [34], we obtain the relations ~U ¼
Ū − 8

5
J̄ and ~J ¼ 7

5
J̄. Thus, ~J= ~U ¼ 0.224 obtained by the

first-principles study for FeSe in Ref. [68] corresponds to
J̄=Ū ¼ 0.127. Also, ~J= ~U ¼ 0.294 for LaFeAsO obtained
in Refs. [68,69] corresponds to J̄=Ū ¼ 0.157.
As shown in Ref. 5(b), the value of αcrS remains small

(about 0.9) in the FeSe TB model with ĤU
BaFe2As2

(J̄=Ū ¼ 0.12) or with ĤU
LaFeAsO (J̄=Ū ¼ 0.134). In each

case, the obtained T dependence of SS and SC is qualita-
tively similar to that shown in Fig. 3(c). Therefore, the main
results of the present study are unchanged even if J̄=Ū in
FeSe is slightly larger than 0.1.
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