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We report on a detailed experimental investigation of the equation of state (EoS) of the three-dimensional
Fermi-Hubbard model (FHM) in its generalized SUðNÞ-symmetric form, using a degenerate ytterbium gas
in an optical lattice. In its more common spin-1=2 form, the FHM is a central model of condensed-matter
physics. The generalization to N > 2 was first used to describe multi-orbital materials and is expected to
exhibit novel many-body phases in a complex phase diagram. By realizing and locally probing the SUðNÞ
FHMwith ultracold atoms, we obtain model-free access to thermodynamic quantities. The measurement of
the EoS and the local compressibility allows us to characterize the crossover from a compressible metal to
an incompressible Mott insulator. We reach specific entropies above Néel order but below that of
uncorrelated spins. Having access to the EoS of such a system represents an important step towards probing
predicted novel SUðNÞ phases.
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Strongly correlated fermionic many-body systems play a
fundamental role in modern condensed-matter physics. A
central model for these systems is the Fermi-Hubbard
model (FHM), originally developed for describing inter-
acting electrons in a crystal. It explains a wide range of
observed phenomena such as metal-to-insulator transitions
and magnetic order, and is believed to capture the essential
physics of d-wave superfluidity in high-temperature super-
conductors [1,2]. The generalized SUðNÞ-symmetric
version of the FHM was originally studied in the context
of transition-metal oxides with effective higher spin [3].
Although the FHM has been the object of a large number

of studies in past decades, reaching a complete under-
standing has remained an elusive task, even for the spin-
1=2 case. For strong repulsive interactions, the SU(2) FHM
is known to give rise to a paramagnetic Mott insulator,
where antiferromagnetic order emerges below the Néel
temperature. Already in this limit of strong interactions and
low temperature, the SUðN > 2Þ case has been predicted to
exhibit a rich phase diagram with a variety of different
correlated states [4–13].
The development of experimental implementations of

the three-dimensional (3D) FHM with ultracold atoms has
provided a new approach for advancing our understanding
of strongly correlated fermions in lattices [14]. The recent
realization of degenerate gases of strontium and ytterbium
[15,16], in combination with optical lattices, allows us to

extend this beyond the conventional spin-1=2 FHM and to
access the more general SUðN > 2Þ symmetry. Numerical
calculations in this regime are, so far,mostly limited toT ¼ 0,
low dimensions, or approximated correlations. Accurate
predictions of thermodynamic quantities are even harder to
obtain than for the SU(2) case, as most algorithms struggle
with larger N due to the unfavorable scaling of the Hilbert
space. Probing the thermodynamics of such systems, imple-
mented with ultracold atoms, provides access to this chal-
lenging regime and allows for the testing of novel algorithms
by direct comparison of thermodynamical quantities.
Fermionic 173Yb has nuclear spin I ¼ 5=2 but no elec-

tronic angular momentum in the ground state (J ¼ 0).
Therefore, nuclear and electronic angular momenta are
decoupled, making the atomic interactions independent of
the nuclear spin state and making the system SUðNÞ
symmetric, with N ≤ 2I þ 1 ¼ 6 being the number of
populated nuclear spin states [17]. One important manifes-
tation of largeN is an enhanced Pomeranchuk effect, leading
to a suppression of particle-hole excitations in the lattice
[18]. Owing to this, the first evidence of an incompressible
phase in an SU(6) 173Yb gas has recently been reported, at an
entropy level that does not support a Mott insulator in lower
spin gases [19].
The SUðNÞ-symmetric FHM for arbitrary spin multi-

plicity N can be written as [11]

Ĥ ¼ −tX
hi;ji;σ

ðĉ†iσ ĉjσ þ H:c:Þ þ U
2

X
i;σ≠σ0

n̂iσn̂iσ0 þ
X
i;σ

Vin̂iσ:

Here, hi; ji denote neighboring lattice site indices, t is the
tunneling matrix element between them, U is the on-site
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interaction, and Vi is a position-dependent energy offset
that accounts for the confining potential. We denote with
t� ¼ 12t the kinetic energy associated with the bandwidth
of the 3D lattice. The operator ĉiσ annihilates a fermion at
site i with spin index σ ¼ 1;…; N, and n̂iσ ¼ ĉ†iσ ĉiσ are the
respective number operators.
In this work, we measure and analyze the equation of

state (EoS) of an SUðNÞ Fermi gas in a cubic optical lattice,
for temperatures above the magnetic ordering temperature.
The EoS is a thermodynamic relation that contains all the
macroscopic properties of the system and, because of its
generality, is particularly well suited to benchmark numeri-
cal simulations [20,21]. We take advantage of the confining
potential and the local density approximation (LDA) to
map the trapped heterogeneous gas with a fixed number
of particles to a locally homogeneous gas in the grand
canonical ensemble with μi ¼ μ0 − Vi, where μ0 is the
chemical potential at the center of the trap. The validity of
the LDA for fermions trapped in optical lattices above
the Néel temperature was previously verified by numerical
calculations [22]. We determine the EoS for the density
nðμ; T; N;U; t�Þ over a wide range of parameters. In
particular, we focus on the highest spin multiplicity of
our system N ¼ 6 and on the case N ¼ 3, which was the
subject of several theoretical studies [8–10,12,13,23].
By deriving the local compressibility directly from the
measured EoS, we are able to detect the emergence of the
incompressible Mott phase.
In our experiment, we start by preparing a degenerate

Fermi gas of 173Yb with initially N ¼ 6 equally populated
spin components via evaporative cooling in a crossed
optical dipole trap (see Appendix A for details). We then
set N by removing individual spin components. The Fermi
gas is then loaded into the lowest energy band of a 3D
optical lattice with cubic symmetry and lattice spacing
d ¼ λ=2 operating at a wavelength of λ ¼ 759 nm (see
Appendix B). We vary the lattice depth between 3Er

and 15Er, with Er ¼ h2=2mλ2 being the recoil energy, a
range for which the tight-binding approximation is valid.
Adjusting the lattice depth allows us to tune the system
from U=t� ¼ 0.128þ0.004−0.008 to U=t� ¼ 11.0þ1.1−1.0 , spanning a
range of 2 orders of magnitude.
In order to measure the local atomic density in the trap,

we probe the cloud by performing in situ spin-independent
absorption imaging along the z axis of the lattice. The
spatial resolution is approximately 1.2 μm ≈ 3.2d. Because
of the high optical density of the trapped cloud, saturated
absorption imaging at high light intensity is used (see
Appendix C and Ref. [24] for details). The resulting
integrated two-dimensional density distribution ~nðx; yÞ is
shown in Fig. 1(a). Exploiting the carefully characterized
geometry of the trap configuration, we determine the local
3D density nðr; yÞ by performing an inverse Abel transform
with y as the symmetry axis [25]. The elliptic trap
symmetry around the y axis is taken into account in the

Abel transform by an appropriate rescaling along the z
direction. Since the transformation becomes very sensitive
to noise close to the symmetry axis, we consider only data
with r > 7 μm, where the standard error of the mean
(s.e.m.) is typically 2% or lower. In Fig. 1(b), the
azimuthally averaged density is shown as a function of
the distance to the trap center for different values of the
lattice depth. For the averaging, data within�4.8 μm along
the y axis were used.
Two regimes can be distinguished: For low lattice

depths, where the interaction energy is smaller than the
kinetic energy (U < t�), the density decreases smoothly
from the center to the edge of the trap, indicating that the
system is compressible everywhere. For high lattice depths
(U > t�), we observe the formation of a plateau of constant
density, as expected for a Mott insulating state [26]. In this
region, the atomic density computed using an independent
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FIG. 1. Density profile of an SU(6) Fermi gas in an optical
lattice with harmonic confinement. (a) Measured density distri-
bution integrated along the line of sight (bottom) and local trap
density obtained by performing the inverse Abel transform,
displaying a plateau nðr; yÞ ¼ 1 (top) for interaction strength
U=t� ¼ 6.4 (V ¼ 13Er). Three experimental realizations are
averaged for the displayed data. (b) Local atomic density as a
function of the distance to the trap center for different interaction
parameters U=t�.
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calibration is compatible with the expected value of one
fermion per lattice site (see Appendix E). Because of the
higher precision of this measurement, the density of an
SU(6) insulator in this region is used as the density
reference in this paper.
To determine thermodynamic quantities, the EoS is

obtained by relating the 3D atom density distribution
and the chemical potential: n½μ ¼ μ0 − Vðr; yÞ�. This is
done for different values of interaction strength U=t� and
number of spin components N ¼ 3, 6. In Fig. 2, examples
for small (U=t� ¼ 0.128), intermediate (U=t� ¼ 0.89), and
large (U=t� ¼ 3.6) interaction strengths are given.
In the presence of a weak lattice (U ≪ t�), the system is in

a normal metallic state, well described by the SUðNÞ Fermi-
liquid theory [27] with enhanced mass and interactions due
to the presence of the lattice. In particular, for low densities
nd3 ≪ 1, interactions can be neglected, and the EoS is well
approximated by that of a noninteracting Fermi gas, as
shown in Fig. 2(a). We use this observation to determine μ0
of the gases with U=t� ≤ 0.89 (see Appendix D for details).
For high densities nd3 ≳ 1, the approximation fails. In
this regime, the deviation from the noninteracting model
increases as a function of N because of the higher number of
particles and interaction channels for a given value of μ,
scaling approximately as (N − 1) [27].
For deep lattice potentials, tunneling is highly sup-

pressed (t ≪ kBT) and interactions are strong (U ≫ t�).
In this regime, the lattice sites can approximately be
regarded as independent. We construct a low-tunneling
model using a high-temperature series expansion (HTSE)
up to Oðt=kBTÞ2 [18,28] (see Appendix D for details).
This model fits the measured EoS data well, with T ¼
0.13ð1ÞU=kB and T ¼ 0.18ð1ÞU=kB for SU(6) and
SU(3), respectively [see Fig. 2(c)]. The lower temperature
in the SU(6) case is due to both the lower initial temperature
and the stronger Pomeranchuk effect. As the HTSE fit
sensitivity to the trap confinement is higher than the
precision of the independent trap calibration, we allow a
variation of the confinement parameter in the model within
the bounds given by the calibration.
The role of the SUðNÞ symmetry in the EoS is simple in

the limit of negligible interactions: The density scales
linearly with N for fixed chemical potential. This depend-
ence is well reproduced by the data, as shown in Fig. 2(a).
For high lattice depths, and therefore larger U=t�, the effect
is twofold: First, the Pomeranchuk effect leads to lower
temperatures in systems with higher N [18,19]. Second, for
a given finite temperature, the EoS in the strongly interact-
ing regime is N dependent in a nontrivial way because of
the different quantum statistics [12]. To illustrate this, we
compare the low-tunneling model for the SU(2) case and
the EoS for SU(6) in Fig. 2(c). As shown in the inset, a
measurable discrepancy is present because of the different
N-dependent quantum statistics, which cannot be attributed
to different temperature T or central chemical potential μ0.

In the regime of intermediate interaction strength,
comparable to the kinetic energy (U ≈ t�), the system is
in a strongly correlated many-body state. No exact deter-
mination of the EoS is available yet to compare to our data,
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FIG. 2. EoS of the SU(6)- (blue circles) and the SU(3)- (red
diamonds) spin symmetric Fermi gas in a lattice. Density as a
function of the chemical potential for various interaction
strengths: (a) U=t� ¼0.128 (b) U=t� ¼0.89 and (c) U=t� ¼3.6.
Solid lines are fits to the non-interacting Fermi gas EoS, with
points nd3 < 0.5 included in the fit. Dashed lines are the fits to
the low tunneling model for SU(6) (blue) and SU(3) (red). An
SU(2) model fit to the SU(6) data is shown for comparison
(green), with the temperature T and the central chemical potential
μ0 as fit parameters. Error bars are the standard error of the mean
(s.e.m. of the binned data).
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displayed in Fig. 2(b). Nevertheless, having model-free
access to the EoS allows us to directly determine the local
compressibility ~κ ¼ n2κ ¼ ∂n=∂μjT. This can be used to
probe the emergence of the incompressible phase and to
study the crossover between metal and Mott insulator, as
shown in Fig. 3. For the strongly interacting case, we
distinguish a metallic outer layer 0 < nd3 < 1 and a
metallic core 1 < nd3, separated by a Mott shell with
nd3 ¼ 1. In this regime, the low-tunneling model compares
well with our results, with very small compressibilities in
the Mott regions.
To characterize the onset of the Mott phase, we deter-

mine the minimum of compressibility ~κmin around unit
filling, in a range nd3 ∈ ½0.85; 1.15�, as a function of the
interaction parameter (Fig. 3). We observe a suppression of
~κmin by roughly 1 order of magnitude when increasing the
interaction strength. For large U=t�, the compressibility
saturates at a minimum value and the Mott shell is formed.
The behavior is consistent with numerical calculations [23].
To further characterize the state in the lattice, we estimate

the entropy per particle s of the SU(6) gas. We determine
the entropy before and after a round-trip, consisting of
loading the atoms into the lattice and back into the dipole
trap, by measuring the degeneracy parameter T=TF in the
dipole trap, where TF is the Fermi temperature. This gives a
lower and an upper estimate for s in the lattice (see Fig. 4).
For low lattice depths, we observe a constant entropy rise
associated with the transfer from the bulk into the lattice
and back. Above U ≈ t�, with the appearance of the
incompressible phase, we find an additional entropy
increase. This increase also persists for very low ramp
speeds, which could indicate diminished adiabaticity due to

the insulating phase crossover hindering mass flow.
However, we observe that also for these high lattice depths,
the entropy is at or below the maximum spin entropy
s=kB ¼ lnð6Þ even after a full round-trip that includes the
reversed second ramp. This indicates that the orientations
of the spins in the lattice are likely not fully random,
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FIG. 3. Compressibility of SU(6)- (blue circles) and SU(3)- (red diamonds) spin-symmetric Fermi gases in a lattice. (a) compressibility
as a function of density in the intermediate regime U=t� ¼ 0.59. (b) compressibility as a function of density in the strongly interacting
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Error bars denote the confidence intervals of the linear regression used to obtain ~κ.
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allowing for the presence of partial spin correlations in
the system.
In the regime of validity of the low-tunneling model,

lower entropy corresponds to lower temperature and Mott
shells with sharper edges. Although fitting the model
provides a good match to the measured SU(6)-EoS data
as shown in Fig. 2(c), the obtained temperature is signifi-
cantly higher than that expected for the very low entropy
measured in the round-trip experiment.
An interpretation could be that a suppression of mass

flow close to the Mott crossover prevents the formation of
sharp Mott shell edges, yielding higher fitted temperatures.
This nonadiabatic freezing of the mass flow would then
have to be largely reversible in order to explain the fact
that the measured entropy in the equilibrated gas after the
round-trip ramp is still lower than what the result of the
HTSE fit inside the lattice suggests.
In the SU(3) case, the same effect is not observed.

However, here the measured entropies are higher than the
saturated spin entropy s=kB ¼ lnð3Þ, and even for adiabatic
loading, a wider metallic transition region around the
Mott shells is therefore expected because of the weaker
Pomeranchuk cooling effect. The expected width is larger
than the one observed in SU(6) and is consistent with
the measured shape in the SU(3) case. We also observe that
the entropy increase caused by the round-trip sequence is
smaller in the SU(3) case, approximately 0.35 kB as
opposed to 0.6 kB for SU(6). An interpretation could be
that the freezing effect becomes more relevant for very low
temperatures, where the resulting strong density gradients
are expected to form in the atomic distribution.
An implication for the lattice loading procedure

could be that mass flow is blocked before the density
configuration of a fully equilibrated low-temperature gas
is reached, at least in an ensemble with a strong
Pomeranchuk effect. At the same time, this deviation
from adiabaticity causes only moderate heating, with an
entropy gain lower than what would correspond to a fully
thermalized density distribution of the observed shape in
the lattice. Understanding a possible edge-softening effect
and its implications on the entropy distribution, as well as
the underlying microscopic processes, could benefit from
modeling the loading process itself, in analogy to current
efforts for bosons in one dimension [29]. At the same
time, the generalization to SU(6) 3D theory at low filling,
and including spin correlations, is a challenge for current
numerical methods.
In conclusion, we use in situ probing to measure the

equation of state of an SUðNÞ-symmetric Fermi gas in a 3D
lattice. We obtain a very low compressibility in the Mott
insulating phase and measure an entropy below that of
uncorrelated spins. These findings make the system a
promising starting point towards novel magnetically ordered
many-body states in highly spin-symmetric systems [4,5,
11–13,27]. An incompressible phase with filling nd3 ¼ 1

is expected to faithfully realize the SUðNÞ-symmetric
Heisenberg model, paving the way towards studying unex-
plored systems with reduced dimensions such as chains
[30–32] and new magnetic phases in square lattices [4].

We acknowledge fruitful discussions with Christophe
Salomon and Tarik Yefsah. This work was supported by
the ERC through the synergy grant UQUAM and by the
European Union’s Horizon 2020 funding (D.R.F.).

APPENDIX A: PREPARATION OF
SUðNÞ FERMI GASES

Approximately 3.5 million ground-state atoms of 173Yb,
with equal populations in the nuclear spin states, are loaded
into a crossed optical dipole trap operating at a wavelength
of λ ¼ 1064 nm. Forced evaporative cooling produces a
degenerate Fermi gas of 5000 atoms per spin state at
temperature T ¼ 0.07ð1ÞTF, where TF is the Fermi temper-
ature. The gas is very weakly interacting since kFas ≲ 0.07,
with as ¼ 199.4a0 being the s-wave scattering length
and a0 the Bohr radius. We perform state preparation by
driving the 1S0 → 3P1 optical transition to remove
unwanted nuclear spin states from the trap, in the presence
of a homogeneous magnetic field that lifts the spin-state
degeneracy. Using this technique, we generate an SU(3)
Fermi gas with a temperature of 0.15ð1ÞTF, with a residual
fraction of unwanted spin components below 5% per
component.

APPENDIX B: LOADING INTO
THE OPTICAL LATTICE

At the end of evaporation, the atoms are transferred into
a cubic optical lattice in two steps. The sample is first
loaded into a shallow lattice with depth V ¼ 3Er in
150 ms, avoiding band excitations. We then ramp the
lattice depth to the final value, between V ¼ 3Er and
V ¼ 15Er, in 150 ms. The atoms are trapped in the
combined harmonic confinement produced by the lattice
beams and the crossed optical dipole trap. During the
ramp-up of the lattice, the power in the vertical arm of
the dipole trap beam is ramped down for technical
reasons. The resulting confinement frequencies vary
between ωx;y;z¼2π×ð31;42;183ÞHz at 3Er, ωx;y;z ¼ 2π ×
ð21; 33; 183Þ Hz at 7Er and are approximately constant
for V > 7Er. We verified the validity of the harmonic
approximation for our experimental trap configuration, by
taking into account the combined Gaussian beam profiles.
The variation of U=t� in the region occupied by the atoms
is estimated to be below 8%.
Dilute samples are loaded into the lattice in order to

minimize losses and heating from three-body recombina-
tion, which is not suppressed by Pauli blocking for N > 2
(see Appendix F).
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APPENDIX C: HIGH-INTENSITY IMAGING

The atom cloud has a typical optical density around 2 in
the trap center. In order to perform in situ absorption
imaging, we saturate the imaging transition 1S0 → 1P1 with
light intensity I ¼ 15Isat, where Isat ¼ 60 mW=cm2. The
optical resolution is about 1.2 μm, determined as described
in Ref. [33]. The imaging pulse has a duration of 5 μs,
sufficiently short to avoid atoms escaping from the focal
plane and to minimize the Doppler shift due to photon
scattering. Imaging is performed in the absence of
magnetic fields in order to have spin-independent detec-
tion. Nevertheless, a 6% difference between the densities of
the Mott plateaus is found by comparing the SU(6) and
SU(3) gases, likely caused by the different line strengths
within the hyperfine substructure of the imaging transition.
In order to correctly determine the density of the gas

using high-intensity absorption imaging, we use the modi-
fied Lambert-Beer law [24], which accounts for saturation
of the imaging transition:

OD ¼ −α ln
�
If
Ii

�
þ Ii − If

Isat
; ðC1Þ

where OD is the optical density, Ii the incident light
intensity, If the final light intensity after absorption, and
Isat the saturation intensity. The saturation intensity Isat is
calculated from the linewidth and wavelength of the
transition and additionally verified by an intensity-
dependent linewidth measurement.
The α parameter is extracted by varying the saturation

parameter I=Isat and adjusting its value in a way that the
measured optical density from Eq. (C1) is independent of the
light intensity, as shown in Fig. 5. It accounts for a transition
strength lower than 1 and, potentially, a systematic error
when determining the value of the light intensity impinging
on the atoms.

APPENDIX D: ANALYTICAL MODELS

In the absence of interactions, the EoS of anN-component
harmonically confined Fermi gas is

nðμ; TÞ ¼ −N
�
mkBT
2πℏ2

�
3=2

Li3=2ð−eμ=kBTÞ;

where Li3=2 denotes the polylogarithm of order 3=2. This
expression is also valid in the presence of a weak lattice
potential, provided that the effective mass associated with the
dispersion of the lowest band is used.
In the strongly interacting regime, the low-tunneling

model is obtained using a high-temperature series expan-
sion (HTSE) of the grand canonical potential up to second
order in t=kBT [18,19,28]:

Ω ¼ Ω0 þ ΔΩ;

Ω0ðμ; TÞ ¼ −ð1=βÞ lnZ0ðT; μÞ;

Z0ðμ; TÞ ¼
XN
n¼0

�
N
n

�
e−β½ðU=2Þnðn−1Þ−μn�

−βΔΩ ¼
�
βt
Z0

�
2
zN

�
1
2

P
N
n1¼1

�
N−1
n1−1

�
2
x2n1−1yðn1−1Þ2

− 1

βU

XN
n1≠n2

�
N − 1

n1 − 1

��
N − 1

n2 − 1

�

×
xn1þn2−1y1

2
n1ðn1−1Þþ1

2
ðn2−1Þðn2−2Þ

n1 − n2

�
;

with z being the number of next neighbors in the lattice,
x ¼ eβμ, y ¼ e−βU, andΩ0ðμ; TÞ the grand potential and Z0

the partition function in the atomic limit.

APPENDIX E: FITTING AND CALIBRATION

The effective optical scattering cross section σ of the
atoms is calibrated using the known EoS of the polarized
Fermi gas in the dipole trap with known trap frequencies.
We obtain σ=σ0 ¼ 0.222� 0.034 with σ0 ¼ ð3=2πÞλ2.
The HTSE model fit to the measured EoS, effectively

fitting the amplitude of the plateau, is more sensitive to
the optical cross section and yields σ=σ0 ¼ 0.257� 0.013,
which is used in this work. The plateau density for the
N ¼ 6 data shown is therefore fixed to 1=d3, whereas an
independent fit for the N¼3 case yields nd3¼0.94�0.02,
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FIG. 5. Density profiles of the harmonically trapped SU(6) gas
for various saturation parameters without saturation correction
(top) and with saturation correction of Eq. (C1) with α ¼ 3.05
(bottom).
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possibly due to residual spin dependence of the imaging
technique.

APPENDIX F: CHARACTERIZATION
OF THREE-BODY LOSSES

In order to avoid three-body losses in the lattice, we keep
the central average filling below nd3 ≃ 1.7. For higher
filling factors, we observe a fast density decay in the central
region of the cloud in addition to a slow density decay due
to vacuum losses and technical heating of the lattice beams,
as shown in Fig. 6. We fit a double exponential decay to the
core density of the cloud

nðtÞ ¼ nd � e−t=τv þ n3 � e−tð3=τvþ1=τ3Þ; ðF1Þ

where nd is the density of singly and doubly occupied sites,
n3 is the density of triply occupied sites, and τv,τ3 denote
the vacuum lifetime and three-body loss time scale,
respectively. We extract a loss rate γ¼1=τ3¼2.4ð3ÞHz
in a 15Er deep lattice. The scaling of the loss rate as a
function of the lattice depth is found to be compatible with
the expected scaling of a three-body decay rate,

γ ¼ β3

Z
d3xwðxÞ6; ðF2Þ

where wðxÞ is the lattice depth-dependent Wannier function
[34,35]. Using Eq. (F2), we determine the β3 coefficient
independently for three lattice depths V¼15Er, V ¼ 22Er,
and V ¼ 30Er. From these measurements, we obtain an
estimate of the three-body loss rate coefficient β3 ¼
2.3ð6Þ × 10−29 cm6=s. This value is of the same order of
magnitude as previously reported three-body loss rate
coefficients in alkali atoms [34].
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