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The formation of bound states involving multiple particles underlies many interesting quantum physical
phenomena, such as Efimov physics or superconductivity. In this work, we show the existence of an infinite
number of such states for some boson impurity models. They describe free bosons coupled to an impurity
and include some of the most representative models in quantum optics. We also propose a family of wave
functions to describe the bound states and verify that it accurately characterizes all parameter regimes
by comparing its predictions with exact numerical calculations for a one-dimensional tight-binding
Hamiltonian. For that model, we also analyze the nature of the bound states by studying the scaling
relations of physical quantities, such as the ground-state energy and localization length, and find a
nonanalytical behavior as a function of the coupling strength. Finally, we discuss how to test our theoretical
predictions in experimental platforms, such as photonic crystal structures and cold atoms in optical lattices.
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I. INTRODUCTION

Boson impurity models, where a two-level system (the
impurity) is coupled to a bosonic bath, appear in the
description of a variety of physical systems. In particular,
they constitute a central paradigm in the field of quantum
optics, where the impurity is an emitter (e.g., an atom), and
the bosonic bath corresponds to the modes of the electro-
magnetic field. Despite their simplicity, boson impurity
models display a variety of basic phenomena. One of the
most intriguing is the existence of a single-excitation bound
states (SEBS) for optical emitters interacting with photonic
band gap reservoirs [1] (see also Refs. [2,3]), giving rise to
interesting phenomena, such as fractional decays or locali-
zation phase transitions. In this work, we analyze the
existence of multiple-excitation bound states (MEBS) in
very generic boson impurity models, including those
considered in Refs. [1–3] and other central problems in
quantum optics. The existence of bound states lies at the
heart of many exotic phenomena, like three-body Efimov
states [4], and also very practical ones, like Cooper pairs in
superconductivity [5] or polarons [6,7] in electron trans-
port. Furthermore, the interest in MEBS is also triggered by
the experimental progress in atom-nanophotonics integra-
tion [8–13], as well as the dramatic consequences played by
SEBS on the generation of long-range interactions between
atoms [14–16].
In this work, we concentrate on a set of boson impurity

models described by a Hamiltonian of the form

H ¼ Δσee þ
X
k

εka
†
kak þ Ωffiffiffiffi

V
p

X
k

ηkða†kσge þ H:c:Þ: ð1Þ

Here, the two-level impurity has ground state jgi and excited
state jei, σee ¼ jeihej is the occupation number operator of
the excited state, σge ¼ jgihej is the transition operator from
the jei state to the jgi state (its Hermitian conjugate is for the
opposite process), V is the volume of the bosonic bath, ak is
the annihilation operator of the bath mode with momentum
k, and ηk is the momentum-dependent coupling profile
(typically represented by very smooth functions of k)
satisfying the normalization condition

P
kjηkj2=V ¼ 1.

The most relevant parameters are the detuning Δ, the
coupling strength Ω ≥ 0, and the dispersion relation εk that
we assume to describe a single band of width W. In the
quantum optical context, Δ describes the detuning between
the two-level transition and the lowest energy of the bath
Hamiltonian, and Ω the coupling strength in the rotating-
wave approximation limit. The third term thus describes the
process in which the emitter is deexcited by emitting a
photon into the bath. The Hamiltonian [Eq. (1)] models a
number of relevant problems, ranging from spontaneous
emission of a free atom, to the coupling of an emitter to a
photonic crystal in any spatial dimension, as well as a single
emitter in a high-Q cavity [Jaynes-Cummings (JC) model],
which is recovered in the limit of W → 0.
More than 20 years ago, it was discovered that for certain

dispersion relations [1–3] this Hamiltonian displays an
exact eigenstate of the form

jB1i ¼ αjeij0i þ βC†jgij0i; ð2Þ

where j0i is the vaccum state of the bath and C is a
collective bath mode given by a linear superposition of the
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ak’s. In particular, the boson density vanishes far away from
the position of the impurity, so that one can interpret that the
boson is trapped by the impurity. The length at which this
happens, the localization length, depends on the parameters
of the model. In recent years, bound states with two
excitations have been predicted for some particular
dispersion relations [17–22]. Furthermore, there is strong
numerical evidence that analogous models [23,24] (where
the number of excitations is not conserved)may also possess
bound states involving multiple excitations. Thus, some
questions that naturally arise are, does Hamiltonian Eq. (1)
possess multiple excitation bound states, and if so, what is
their origin, how can they be described precisely, and how
can they be observed experimentally?.
In this paper, we address all of these questions. First of

all, we show that for very generic dispersion relations, the
boson impurity model Eq. (1) may support infinitely many
bound states corresponding to different numbers of exci-
tations. We investigate the origin of those bound states in
the limit jΔj ≫ W, Ω, where one can view the impurity as
creating a potential for the bosonic bath, in which the
excitations may Bose-Einstein condense. We also postulate
a three-parameter family of (approximate) wave functions
for the bound states in the form

jBNi ¼ ðαjeihgj þ βC†ÞA†N−1jgij0i; ð3Þ
where A and C are linear combinations of the ak’s that
depend on the system parameters. We confirm that those
wave functions provide a very accurate description of the
MEBS for a specific model in one spatial dimension by
comparing their physical properties with the results
obtained using advanced density-matrix renormalization
group (DMRG) techniques [25,26]. In this model, we
investigate the properties of the MEBS for all parameter
regimes, and discover a region that cannot be described
perturbatively, in which the energy and correlation length
of the bound states are nonanalytical functions of Ω.
Additionally, we give exact expressions for the bound
states for up to three excitations in the general case. Finally,
we propose two different setups where the bound states
could be prepared and observed. The first one uses atoms in
optical lattices, where the role of the impurity is played by
the absence or presence of an atom in an internal state, and
the bath by the atoms in another internal state. The
dispersion relation can be designed by choosing the
geometry of the lattice, and the value of the two other
parameters, Δ and Ω, can be easily tuned by changing the
laser frequency and intensity. The second one corresponds
to the scenario of an atom coupled to a photonic crystal, and
it will be much harder to observe. However, in view of the
rapid experimental progress in different fronts [8–13], it is
not unforeseeable that some of those states or their
consequences could also be observed in the near future.
The paper is structured as follows: In Sec. II, we

introduce the general model and requirements that we

use throughout the paper. In Sec. III, we derive the
conditions for the existence of the MEBSs and find
analytical solutions in certain cases, which motivate us
to introduce a variational Ansatz for the MEBSs. To make
the discussions sufficiently compact, we skip some ines-
sential steps in the main text and the full details are
presented in the Appendixes. Then, in Sec. IV, we thor-
oughly study a particular example of a one-dimensional
bath with cosðkÞ dispersion relation and find excellent
agreement between the variational Ansatz and the DMRG
results. We explore the parameter space and reveal the
existence of different regimes, yielding different scaling of
the energies and localization lengths of the MEBS with the
relevant parameters of the system. Finally, in Sec. V, we
show how to prepare and detect these MEBSs in two
different implementations, and in Sec. VI, we conclude by
summarizing the main results of the paper.

II. MODEL

The very generic model that we use throughout the paper
is schematically depicted in Fig. 1. It consists of three parts:
a single impurity, a d-dimensional bath of free bosons, and
the coupling between impurity and bath. They correspond
to the three terms in the Hamiltonian [Eq. (1)]; i.e.,
H ¼ Himp þHbath þHint. Himp ¼ Δσee describes the
two-level impurity, and the operators σμν ¼ jμihνj are used
frequently in our discussions. Hbath ¼

P
kεka

†
kak

describes the bath with volume V and energy dispersion
εk, where a†kðakÞ is the creation (annihilation) operator
with momentum k. Without loss of generality, we assume
that the spectrum has a lower bound min jεkj ¼ 0, but its
bandwidth W may be finite or infinite (e.g., in the case of
εk ∼ jkj2 spectrum). Hint ¼ Ω

P
kηkða†kσge þ H:c:Þ= ffiffiffiffi

V
p

encodes the coupling between impurity and bath with a
strength parametrized by Ω. It can be written in the
coordinate space as

Hint ¼ Ω
X
j

ηjða†jσge þ H:c:Þ; ð4Þ

where aj ¼
P

kake
ik·rj=

ffiffiffiffi
V

p
is the annihilation operator

of the bosonic bath mode at position rj and

FIG. 1. Single impurity with energy Δ coupled through Ω to a
bath with dispersion relation εk and a bandwidth W. A bosonic
bound state (in red) localizes around the impurity.
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ηj ¼
P

jηke
ik·rj=V is the Fourier transform of the momen-

tum space coupling profile.
It is worth emphasizing that this class of models is

ubiquitous and appear in systems ranging from atom
coupled to photonic crystal waveguides [1–3,14–16],
superconducting qubits coupled to microwave resonators
[27], and cold atoms in state-dependent optical lattices
[28,29], as we show in Sec. V when we discuss the
preparation and detection of the MEBSs. Among the
different implementations, a one-dimensional bath with
dispersion relation εk ¼ 2J½1 − cosðkÞ� and ηj ¼ δj0 (this
can be obtained in a tight-binding model with nearest-
neighbor hopping) is especially attractive due to recent
developments in atom waveguide QED systems [8–13]. Its
properties are studied in detail using variational and
numerical methods in Sec. IV.

III. CONDITIONS FOR THE EXISTENCE
OF BOUND STATES

In this section, we derive the conditions for the existence
of bound states for arbitrary dispersion relations and spatial
dimensions. The Hamiltonian H commutes with the total
excitation number operator N ¼ σee þ

P
ka

†
kak, so we can

study the subspaces with different N separately. We first
revisit the bound state of one boson [1,14–16,30,31] in
Sec. III A in a way more general than what previous works
did. For the more interesting cases with multiple bosons,
we divide the parameter space into several regimes, as
depicted in Fig. 2. The division is based on the methods that
we use to understand them as well as the different scaling
behaviors of the physical quantities. Using analytical
methods, we prove in Sec. III B that bound states exist
in certain regimes. These results motivate us to introduce a
variational Ansatz in Sec. III C that can be used in all
regimes.

A. Single-excitation bound state

This case has been considered before in the literature, but
mainly focusing on baths with quadratic (ϵk ∼ jkj2) or
tight-binding [ϵk ∼

P
i cosðkiÞ] dispersions in different

spatial dimensions [1,14–16,30]. However, it is instructive
to revisit this problem because we can find the conditions
for the existence of bound states independent of the model.
The wave function of one boson in the system can be
written as

jB1i ¼ uejeij0i þ
X
k

fka
†
kjgij0i; ð5Þ

where j0i is the vacuum state of the bath. Bound states
would appear if the secular equation HjB1i ¼ E1jB1i has
solutions that lie outside of the bath spectrum, i.e., E1 <
min jεkj or E1 > max jεkj. For concreteness, we focus on
the low-energy SEBS with E1 < min jεkj, but the method
we present below can also be used to derive the conditions
for the upper ones if the bandwidth W is finite.
By defining the function

F1ðEÞ ¼ E − Δ −Ω2

Z
ddk
ð2πÞd

jηkj2
E − εk

; ð6Þ

the existence condition of SEBS is that F1ðEÞ ¼ 0 must
have solutions that lie outside of the bath spectrum. One
can show that F1ðEÞ has two properties: (i) it is a
monotonically increasing function and (ii) F1ðEÞ → −∞
as E → −∞. Thus, if we have F1ð0Þ > 0, there must be
only one solution to F1ðEÞ ¼ 0, and a unique bound state
with E1 < 0 appears. Therefore, the existence or absence of
a bound state is essentially determined by the integral

I0 ¼
Z

ddk
ð2πÞd

jηkj2
εk

: ð7Þ

For example, for one- and two-dimensional baths with
tight-binding and quadratic dispersions, I0 → ∞ due to an
infrared divergence (as long as jηkj2 does not vanish at
jkj ¼ 0 or is not a highly oscillatory function). In these
cases, there always exists a SEBS irrespective of Δ, Ω, or
W. However, if I0 converges to a finite positive value,
which happens for a three-dimensional bath with tight-
binding dispersion εk ¼ J½6 − 2 cosðkxÞ − 2 cosðkyÞ −
2 cosðkzÞ� (I0 ¼ 0.253=J in this case), a bound state exists
only if F1ð0Þ ¼ −Δþ Ω2I0 > 0.

B. Multiple-excitations bound states in strong- and
weak-coupling regimes

The analysis presented above can be extended to systems
with multiple excitations. The wave function in the sub-
space with N excitations can be written as

FIG. 2. Parameter space of the boson impurity model as a
function of Ω and Δ. Different colors denote regimes with
different EBS origin: perturbative excited (PE, green), perturba-
tive ground (PG, yellow), nonperturbative (NP, blue), and Jaynes-
Cummings (JC, red). The boundaries between these regimes are
not sharp and depend on the excitation number N. See the main
text for more details. For the one-dimensional tight-binding
model with cosðkÞ spectrum, the NP regime is further divided
into two subregimes NPI and NPII (light and dark tones)
characterized by different scaling behaviors. The three dashed
arrows (i)–(iii) denote the paths that we use in Figs. 3 and 4.
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jBNi ¼ jΨeijei þ jΨgijgi; ð8Þ

where the two states jΨei and jΨgi dress the impurity atom
when it is in jei and jgi, respectively. The existence of
bound states and their properties can be understood
analytically in some of the regimes depicted Fig. 2, where
the couplings are very strong or very weak.
For example, when the impurity-bath coupling strength

Ω is much larger than the detuning jΔj and the bandwidth
W (the red regime in Fig. 2), the dominant contribution to
the Hamiltonian is the coupling between the impurity and a
collective bath mode

P
jηja

†
j , so the physics is the same as

that of the well-known JC model [32].
For the opposite cases, where the impurity-bath coupling

is weak, such that Ω ≪ jΔj and Ω ≪ Δ −W (the darker
green and yellow regimes in Fig. 2), the coupling Hint is a
small perturbation to both the impurity and bath so we can
eliminate it to the first order of the coupling strength Ω
using a Fröhlich transformation, which leads to the effec-
tive Hamiltonian Heff ¼ ~Δσee þHbath þ Veff . It shows a
very clear physical picture: (i) the impurity energy Δ
acquires a Lamb shift and changes to

~Δ ¼ Δþ Ω2

V

X
k

jηkj2
Δ − εk

; ð9Þ

and, more importantly, (ii) a nonlocal potential

Veff ¼
Ω2

2V

X
k;k0

�
η�k0ηk
Δ − εk0

þ η�k0ηk
Δ − εk

�
a†kak0σz ð10Þ

is generated [σz ¼ ðσee − σggÞ], which localizes the exci-
tations around the impurity to form a MEBS.
We term the perturbative regime with negative (positive)

detuning Δ [see the green (yellow) regime in Fig. 2] as
excited (ground) because in this regime the jΨeijei
(jΨgijgi) part is the dominant one in the ground-state wave
function Eq. (8). For this reason, the effective Hamiltonian
can be projected to the jei and jgi state in the perturbative
excited (PE) and perturbative ground (PG) regimes, respec-
tively, which gives the Hamiltonians He

eff and Hg
eff for the

two regimes. The bath components jΨei ∼ A†N−1
e j0i in the

PE regime and jΨgi ∼ A†N
g j0i in the PG regime, where A†

e

and A†
g are collective bosonic bath operators determined by

the secular equation Hs
effA

†
s j0i ¼ Es

1A
†
s j0i (s ¼ e or g).

Although we focus on MEBS, which are ground states of
their respective N-excitation manifolds, there may also
exist excited states that are bound to the impurity (e.g., in
the PG regime) with the state jei being dressed by a
localized bosonic mode.
The bosons form a bound state if the secular equation

have solutions with energy values Es
1 < 0. As for the case

with one excitation, the existence condition can also be

formulated using two functions Fs
NðEÞ that depend on the

integral Eq. (7). If I0 → þ∞ due to infrared divergence, we
have MEBS in both regimes. For the PE regime, the ground
state

jBNi ¼
A†N−1
e j0ijeiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðN − 1Þ!p þ C†

eA
†N−1
e j0ijgiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðN − 1Þ!p ð11Þ

has energy Ee
N ¼ E1 þ ðN − 1ÞEe

1. For the PG regime, the
ground state

jBNi ¼
dgA

†N−1
g j0ijeiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðN − 1Þ!p − A†N

g j0ijgiffiffiffiffiffiffi
N!

p ð12Þ

has energy Eg
N ¼ NEg

1. The full details of the perturbative
analysis are given in Appendix A.
The analysis presented above relies on perturbation

theory, but the bound states survive even if we move to
the nonperturbative (NP) regimes (light and dark blue
regimes in Fig. 2), where the detuning Δ, the coupling
strength Ω, and the bandwidth W do not satisfy the
perturbative conditions used above. In fact, increasing Ω
to be larger than jΔj for all values of Δ or immersing Δ
within the band (i.e., 0 < Δ < W) make the bound states
more localized. This is confirmed in Appendix B using a
quantum field theoretical approach in the subspaces with
excitation number N ¼ 2, 3. In summary, we conclude that
the MEBS exist in all parameter regimes if I0 → þ∞.
For baths with tight-binding and quadratic dispersions,

I0 diverges in one and two dimensions but converges in
three dimensions. This means that SEBS and MEBS exist
in all regimes in one and two dimensions, but they only
emerge if the coupling strength Ω is larger than a critical
value (which depends on the detuning Δ) in three dimen-
sions. Moreover, because Fs

NðEÞ and F1ðEÞ have very
different forms, we may have only SEBS but not MEBS in
certain regimes in three dimensions.

C. Variational Ansatz for multiple-excitation
bound states in all regimes

In the previous section, we show that the existence of the
MEBS can be guaranteed analytically in certain regimes
with very strong or very weak couplingsΩ for all excitation
numbers N. However, it is obviously desirable to have a
way of describing the whole parameter space of Fig. 2,
including those denoted as nonperturbative regimes (in
light and dark blue) where both the strong- and weak-
coupling expansions fail.
Inspired by the perturbative solutions of Eqs. (11) and

(12) as well as the exact solutions for N ¼ 2 and 3, we
introduce the following variational Ansätze for the ground
and excited bath components of jBNi:
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jΨei ¼ α
A†N−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðN − 1Þ!p j0i;

jΨgi ¼
�
β
A†Nffiffiffiffiffiffi
N!

p þ γ
A†N−1B†ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðN − 1Þ!p �

j0i; ð13Þ

where α, β, γ are variational parameters that allow us to
interpolate between the different parameter regimes and A†,
B† ¼ P

kφA;BðkÞa†k are two orthonormal collective modes
of the bath.
By minimizing the energy Eg:s: ¼ hBN jHjBNi of the

variational Ansätze under the normalization condition
jαj2 þ jβj2 þ jγj2 ¼ 1 and the orthonormal constraints
½A; A†� ¼ ½B;B†� ¼ 1 and ½A;B†� ¼ 0, we can determine
the parameters α, β, γ and the mode functions φA;BðkÞ.
These mode functions are superpositions of ηk=ðe1;2 − εkÞ
(e1;2 are two negative variables), and their Fourier trans-
form in coordinate space can reveal the localization proper-
ties of the MEBS. The full details of this process are given
in Appendix C.

IV. ONE-DIMENSIONAL TIGHT-BINDING BATH:
VARIATIONAL AND EXACT RESULTS

In this section, we study a particularly relevant model for
which the bath is a one-dimensional lattice described by
the tight-binding Hamiltonian Hbath ¼ −JPhjmiða†jamþ
H:c:Þ þ 2J

P
ja

†
jaj, where hjmi denotes nearest neighbors.

The central site of the bath is labeled as the zeroth one and
those on its left (right) are labeled by negative (positive)
integers. The coupling between impurity and bath occurs
only on the zeroth site, i.e., ηj ¼ δj0. We compute the
ground states of this model using the DMRG algorithm
[25,26] in the N ¼ 2, 3, 4, 5 subspaces. We use open
boundary conditions as they are more suitable for the
algorithm, but the boundary effect is negligible when the
number of lattice sites is large enough (we have studied
systems with up to 1000 bath sites).
To confirm the validity of our variational Ansätze, we

compare some physical quantities given by variational and
DMRG approaches. In addition to the ground-state energy,
we also study the experimentally measurable localization
lengths of the bath components defined as (s ¼ e or g)

ξs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

jj
2hΨsja†jajjΨsiP
jhΨsja†jajjΨsi

vuut : ð14Þ

We choose three different paths in the parameter space
labeled as (i)–(iii) in Fig. 2, which cover a wide range of
coupling strengths Ω at three different detunings Δ. In
Fig. 3, we compare the modified ground-state energies
~EN ¼ jEN − Θð−ΔÞΔj [where ΘðxÞ is the Heaviside step
function] given by variational (solid lines) and DMRG
(markers) calculations for the N ¼ 3, 4 cases. In Fig. 4, we

compare the localization lengths given by variational (solid
lines) and DMRG (markers) calculations for the N ¼ 2, 3,
4, 5 cases. The perfect agreement in all cases clearly
demonstrates the power of our variational Ansatz.
We can provide a more detailed characterization of Fig. 2

by establishing scaling relations of physical quantities. This
can be done using variational Ansatz and DMRG results,
which leads to the scaling relations presented in Table I.

–1

–2

–3

–4

–1

–2

–3

–4

FIG. 3. Comparison of the bound state energies ~EN given by the
variational Ansätze (solid lines) with infinite bath size and the
DMRG results (markers) in the (a) N ¼ 3 and (b) N ¼ 4
subspaces. The three different curves correspond to the three
different paths depicted in Fig. 2, i.e., choosing a detuning
Δ=J ¼ −0.2, Δ=J ¼ 0, and Δ=J ¼ 0.2.

FIG. 4. Comparison of the localization lengths (a) ξg and (b) ξe
given by the variational Ansätze (solid lines) with infinite bath
size and the DMRG results (markers) with 1000 bath sites at
Δ=J ¼ 0 in the N ¼ 2, 3, 4, 5 subspaces.
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However, we should be careful when trying to extract the
scaling exponents, as they are well defined only in certain
limits. Therefore, Fig. 2 should not be understood as a phase
diagram but rather as an indication of the different scaling
behaviors of the system, which are only well defined in the
corresponding limits. This means that the boundaries
between different regimes are not sharply defined (unlike
the boundary in a quantum phase transition).
To illustrate the different behaviors, we focus the dis-

cussion on the three paths depicted in Fig. 2, as these
represent the experimentally most relevant regimes that
occur when Ω ≪ W. For path (i) with Δ=J ¼ −0.2, the
system changes from the PE regimewith ~EN ∝ Ω2 to theNPI
regime. This change is also manifested in the variational
parameters: we have 1 − jαj ∝ Ω2 in the PE regime (somost
of the weight in the wavefunction comes from jΨei) but jαj,
jβj, jγj of the same order ∼Oð1Þ in the NPI regime. For path
(ii) withΔ=J ¼ 0, wemove only within the NPI regime. For
path (iii) withΔ=J ¼ 0.2, the system changes from the NPII
regime with ~EN ∝ NΩ4 to the NPI regime. ~EN in the NPI
regime exhibits nonanalytical behavior because it scales as a
fractional power of Ω in this regime. The exponent is only
well defined ifΩ ≪ jΔj, which is satisfied by path (ii) where
~EN ∝ Ω4=3, but not by paths (i) and (iii). The MEBS in the
NPII regime can be understood as a Gutzwiller projected
condensate. To see this, we note that 1 − jβj ∝ Ω4, so the
state basically represents N bosons in the A mode. It can be
constructed by first putting all the bosons in the SEBS jB1i
and then projecting out the configurations with more than
one boson in the jei state. Because the scaling relations may
depend on the excitation numberN, the crossovers between
different regimes in the parameter space could also be N
dependent.
To conclude this section, we show that a closer inspec-

tion of the DMRG results provides further insight into the
structure of the MEBS.We interpret the impurity as a lattice
site described by hard-core boson operator ahc and compute
the two-point correlation functions

Gjm ¼ hBN ja†jamjBNi; ð15Þ

where j,m run over all the bath sites as well as the impurity
site. It is found that the eigenvalues of the matrix Gjm have
only two dominant eigenvalues p� in all parameter regimes
and for all values of N (see Fig. 5 for some examples). This

implies that the MEBS jBNi mainly lives in the symmetric
space defined by two orthonormal modes. Without loss of
generality, these two modes can be chosen as A1 ¼ A and
A2 ¼ ahc cos θ þ B sin θ, and the bound state can then be
approximated as

jBNi ¼
XN
n¼0

αn
ðA†

1ÞN−nðA†
2ÞnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðN − nÞ!n!p j0i: ð16Þ

The hard-core nature of the impurity imposes the
constraint that αn ¼ 0 for n > 1, which recovers
the variational Ansätze given in Eq. (13). Indeed, the
two eigenvalues computed from Eq. (13) are
p� ¼ ½N �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 − 4ðN − 1Þð1 − β2Þ2

p
�=2.

V. PREPARATION AND DETECTION OF
MULTIPARTICLE BOUND STATES

We consider a very general model of a single impurity
coupled to a bosonic bath that may be implemented in
a plethora of different systems, ranging from superconduct-
ing circuits [27], atoms near photonic crystals [1,8–
13,15,16], or cold atoms in optical lattices [28,29]. In this
section, we show how to prepare and detect them in two of
these platforms.

A. Optical emitters coupled to photonic reservoirs

The observation of bound states in optical platforms is
challenging because typically the coupling strength is much
smaller than the associated bandwidth (Ω ≪ W) and losses
of the photons (κ) or the excited state of the impurity (Γ),

TABLE I. Scaling analysis of the relevant properties of EBS for
the regimes with Ω ≪ W depicted in Fig. 2.

PE NPI NPII, PG

EN Δ − ½ðΩ2Þ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijΔjðjΔj þ 4JÞp � ∝ Ω4=3 ∝ NΩ4

jαj 1 − d2γΩ2 O(1) dαΩ2

jβj ∝ Ω2 O(1) 1 − dαΩ4

jγj dγΩ O(1) ∝ Ω4

–1

–2

–3

FIG. 5. (a) Eigenvalues of the correlation matrix are shown for
multi-EBS as a function of N for Δ=J ¼ 0 and Ω=J ¼ 0.5.
(b) Scheme of the implementation with state-dependent optical
lattices: two atomic states ai, bj are trapped in a shallow or deep
potential and connected through a two-photon Raman transition.
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which give rise to a finite lifetime of the MEBS. One option
is to use multiphoton scattering states, which was explored
with a single photon in Refs. [18,19,21–23,31]. Another
way of circumventing these limitations is using atomic
detection and postselection at the expense of making the
process probabilistic. The procedure to prepare a given
jBNi is to apply a sequence of π pulses on the impurity and
perform postselection by projecting in the atomic state
Ps ¼ jsihsj, with s ¼ g, e. We start with the impurity in the
ground state and no photons, i.e., jΨ0i ¼ jgi ⊗ j0ki, and
focus on a situation with Δ < 0 and jΔj ≫ Ω. Then, if we
apply a π pulse on the impurity and let it evolve, the atom
will mainly follow jΨ0i → jei ⊗ j0ki → jB1i, where the
contribution of scattering states will be very small because
we are in a region where there are no modes to decay into.
Then, we measure the impurity state Pg, and apply another
π pulse if we detect an excitation; this will induce the
change to PgjB1i → jei ⊗ j1ki. As the state jei ⊗ j1ki is
within the two-excitation subspace, it evolves to jB2i. To
continue building up jBNi, we need to apply the sequence
of Pg measurements and π pulseN − 1 times to arrive at the
desired excitation numberN. Obviously, these sequences of
π pulses and postselections must be faster than the lifetime
determined by Γ, κ such that the MEBS survives at the end
of the process. For this reason, circuit QED [27], though in
the microwave regime, can be a better platform to observe
the MEBS because both photon and qubit lifetimes are
longer than those at optical setups.

B. Cold atoms in state-dependent optical lattices

Because of the limitations of standard quantum optical
setups, one can think of using cold atoms trapped in optical
lattices to simulate this kind of Hamiltonian, as originally
proposed in Refs. [28,29]. This can be done by using state-
dependent optical lattices in which two atomic states expe-
rience very different trapping potentials that can be obtained,
e.g., using alkaline-earth atoms like ytterbium [33,34]. These
lattices can be designed in a way such that the two atomic
states experience a very shallow or deep potential, respec-
tively. The ones in the shallow potential (aj) have large
tunneling amplitude J and play the role of the bosonic bath;
on the contrary, the ones in the deep potentialwill be localized
and serve as the impurity (bj). Moreover, we can tune the on-
site interaction U of the impurity states to ∞ such that it
behaves effectively as a two-level system. The coupling
between the two may be achieved through an off-resonant
Raman transition to a common excited state yielding an
effective number-conserving Hamiltonian. Interestingly, the
coupling Ω and detuning Δ can be controlled independently
of J by the Raman parameters, which allows us to explore the
whole parameter space in Fig. 2.Moreover, using the recently
developed single-atom resolutionmicroscopy and addressing
techniques, we can achieve the single impurity regime and
thus we can simulate the HamiltonianH [28,29]. Oneway of
preparing the jBNi is to start from a situation where the

tunneling J is switched off by increasing potential depth of
the bath atoms and settingΔ to zero. Thenwe loadN atoms in
the bathmodea0 (the one that couples to the impurity) to give
an initial state jΨ0i ¼ ða†N0 =

ffiffiffiffiffiffi
N!

p Þj0ijgi ¼ jNijgi. The pro-
tocol to prepare jBNi consists of switching a strong Raman
field with a π=2 phase, i.e., Ω ¼ ijΩj, for a time tN ¼
3π=ð4 ffiffiffiffi

N
p jΩjÞ to reach the state jΨðtNÞi ¼ ðjN − 1ijei−

jNijgiÞ= ffiffiffi
2

p
.After that,we suddenly change thephaseofΩ to

be real such that jΨðtNÞi, which coincides with jBNi in the
limit of Ω ≫ jΔj; J. Once we have such a state, we can
change the state adiabaticallywithΔ orJ to explore thewhole
parameter space.

VI. CONCLUSIONS

In summary, we unravel the existence of multiple
excitation bound states in a very fundamental model of a
single impurity coupled to a bosonic bath through a
number-conserving interaction. We first show that in
certain regimes the impurity-bath coupling gives rise to
an effective potential that is able to localize the particles
around the impurity. Moreover, we provide the theoretical
tools to characterize the bound states in all the parameter
regimes by introducing a variational wave function that
works for all energy dispersions and spatial dimensions.
We test our variational Ansatz for the case of a one-
dimensional tight-binding model with exact and numerical
calculations up to N ¼ 5 excitations and are able to
distinguish different regimes depending on the scaling
behavior of the energies or localization lengths, including
one with nonanalytical relations. Finally, we present two
state-of-the-art implementations where the preparation and
detection of these bound states is promising.
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APPENDIX A: CONDITIONS FOR THE
EXISTENCE OF MULTIPARTICLE

BOUND STATES

This appendix provides full details about how to derive
the conditions for the existence of MEBS.
In the strong-coupling regime with coupling strength

much larger than the other energy scales (Ω ≫ jΔj,W), the
model is essentially the same as the Jaynes-Cummings
model. The ground state
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jBNi ¼
1ffiffiffiffiffiffiffiffiffi
N JC

p ðjEN jA†N−1
JC jei − ffiffiffiffi

N
p

ΩA†N
JC jgiÞ; ðA1Þ

where EN ¼ ðΔ − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ 4NΩ2

p
Þ=2 is its energy, AJC ¼P

jηjaj is a collective bath mode, and N JC is the
normalization constant. The other couplings to the bath
are weak perturbations that enter to EN as a frequency shift
of smaller order than the leading term.
In the perturbative regimes, the effective Hamiltonian

Eq. (10) can be obtained by applying the Fröhlich trans-
formation with generating function

S ¼ Ωffiffiffiffi
V

p
X
k

�
ηka

†
kσge

Δ − εk
− η�kakσeg

Δ − εk

�
ðA2Þ

on the original Hamiltonian. The transformed Hamiltonian
Heff ¼ e−SHeS is computed to the first order of Ω and
results in Eq. (10). The effective Hamiltonian can be
projected to the jei (jgi) state in the PE (PG) regime to give

Hs
eff ¼ ~Δσee þHbath

−Ω2

2V

X
k0

η�k0ηk

�
1

jΔ− εk0 j þ
1

jΔ− εkj
�
a†kak0 ðA3Þ

(s ¼ e or g).
The projected effective Hamiltonian defines a secular

equation Hs
effA

†
s j0i ¼ Es

1A
†
s j0i. The operator As is a col-

lective bath operator that can be expanded as
P

kφ
s
AðkÞak,

where the mode functions

φs
AðkÞ ¼

Ω2ηk
2ðEs

1 − εkÞ
�
C2 − C1

jΔ − εkj
�

ðA4Þ

and the variables Cs
1 and C

s
2 can be obtained by solving the

self-consistent equation MsðEs
1;ΔÞCs ¼ 0. Ms is a 2 × 2

matrix with elements

Ms
11ðE;ΔÞ ¼ Ms

22ðE;ΔÞ ¼ 1þ w1ðEÞ − w1ðΔÞ
jΔ − Ej ;

Ms
12ðE;ΔÞ ¼ −w1ðEÞ;

Ms
21ðE;ΔÞ ¼ −w1ðEÞ − w1ðΔÞ

ðΔ − EÞ2 − ∂Δw1ðΔÞ
Δ − E

; ðA5Þ

where

wαðEÞ ¼
Ω2

2

Z
ddk
ð2πÞd

εα−1k jηkj2
ðE − εkÞα

ðA6Þ

and C ¼ ðC1; C2ÞT .
The MEBS exist if the equation Fs

NðEÞ ¼ detMsðEsÞ ¼
0 has solutions Es

1 < 0, i.e., they lie outside of the bath
spectrum. Because Fs

NðEÞ is a continuous function and is

negative when E → ∞, there will be at least one solution if
Fs
Nð0Þ < 0. From the explicit expression

Fs
Nð0Þ ¼

�
1 − w1ðΔÞ

jΔj
�
2 −

�
2þ w2ðΔÞ

jΔj
�
Ω2I0
2jΔj < 0; ðA7Þ

we can see that the existence or absence of MEBS depends
on I0. If I0 → þ∞ due to infrared divergence, we have
Fs
Nð0Þ → −∞ and MEBS exist in both regimes.
The bath component of the MEBS in the PE regime is

jΨei ¼
A†N−1
e j0iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðN − 1Þ!p ; ðA8Þ

and the full ground state is

jBNi ¼ eSjΨeijei ¼
A†N−1
e j0ijeiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðN − 1Þ!p þ C†

eA
†N−1
e j0ijgiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðN − 1Þ!p : ðA9Þ

The bath component of the MEBS in the PG regime is

jΨgi ¼
A†N
g j0iffiffiffiffiffiffi
N!

p ; ðA10Þ

and the full ground state is

jBNi ¼ eSjΨgijgi ¼
dgA

†N−1
g j0ijeiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðN − 1Þ!p − A†N

g j0ijgiffiffiffiffiffiffi
N!

p : ðA11Þ

The operator C†
e and the number dg used above are defined

as

C†
e ¼ Ωffiffiffiffi

V
p

X
k

ηka
†
k

Δ − εk
; ðA12Þ

dg ¼
Ω

ffiffiffiffi
N

pffiffiffiffi
V

p
X
k

η�kφ
g
AðkÞ

Δ − εk
: ðA13Þ

Theground-state energy of theMEBS isEe
N¼ ~ΔþðN−1ÞEe

1

in the PE regime and Eg
N ¼ NEg

1 in the PG regime.

APPENDIX B: EXACT RESULTS FOR
N = 2 AND N = 3

This appendix provides full details about how to obtain
the exact results for the MEBS in the N ¼ 2 and 3
subspaces using quantum field theory.
For convenience, we introduce a hard-core boson

described by the annihilation (creation) operator ahc ≡
b0 (a†hc ≡ b†0) and rewrite the Hamiltonian as H ¼ H0þ
Hhc, where H0 is a quadratic term
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H0 ¼ Hbath þ Δb†0b0 þ
Ωffiffiffiffi
V

p
X
k

ηkða†kb0 þ b†0akÞ ðB1Þ

and Hhc represents a hard-core interaction

Hhc ¼
U0

2
b†20 b20; ðB2Þ

with an infinite strength U0. The total particle number N ¼
b†0b0 þ

P
ka

†
kak is still a conserved quantity, so we can

diagonalize the Hamiltonian separately in the subspaces
with different N. For example, the eigenstate for N ¼ 1 has
the form

j1λi ¼
�
uλb

†
0 þ

X
k

fλðkÞa†k
�
j0i: ðB3Þ

The secular equation is a set of coupled equations

Δuλ þ
Ωffiffiffiffi
V

p
X
k

ηkfλðkÞ ¼ E1λuλ;

εkfλðkÞ þ
Ωffiffiffiffi
V

p ηkuλ ¼ E1λfλðkÞ; ðB4Þ

where E1λ is the energy eigenvalue.
For the bound state energy E1∉εk outside the continuum

εk, solving Eq. (B4) gives the wave function

fBðkÞ ¼
Ωffiffiffiffi
V

p ηkuB
E1 − εk

; ðB5Þ

where the normalization factor is

u−2B ¼ 1þ
Z

ddk
ð2πÞd

Ω2η2k
ðE1 − εkÞ2

; ðB6Þ

and the bound state energy satisfies the equation

E1 ¼ Δþ
Z

ddk
ð2πÞd

Ω2η2k
E1 − εk

: ðB7Þ

For a general dispersion relation εk, the spectrum E1λ is
obtained by numerical diagonalization of

H0 ¼

0
BBBBB@

Δ Ωffiffiffi
V

p ηk1
� � � Ωffiffiffi

V
p ηkN

Ωffiffiffi
V

p ηk1
εk1

0 0

� � � 0 � � � 0

Ωffiffiffi
V

p ηkN
0 0 εkN

1
CCCCCA; ðB8Þ

and its eigenvectors determine the parameters uλ and the
wave function fλðkÞ.
To analyze the MEBS, it is convenient to introduce the

Green functions

Gð0Þ
bb ðtÞ≡Gð0Þ

b ðtÞ ¼ −ih0jT b0ðtÞb†0ð0Þj0i;
Gð0Þ

akb
ðtÞ ¼ −ih0jT akðtÞb†0ð0Þj0i; ðB9Þ

where T is the time-ordering operator. The Fourier trans-

forms Gð0Þ
αb ðωÞ ¼

R
dtGð0Þ

αb ðtÞeiωt (α ¼ ak, b0) can be
obtained by integrating out the bath modes as

Gð0Þ
akb

ðωÞ ¼ Ωηkffiffiffiffi
V

p Gð0Þ
b ðωÞ

ω − εk þ i0þ
; ðB10Þ

Gð0Þ
b ðωÞ ¼

�
ω − Δ −

Z
ddk
ð2πÞd

Ω2η2k
ω − εk þ i0þ

�−1
: ðB11Þ

The poles ofGð0Þ
b ðωÞ correspond to the bound state energies

as shown in Eq. (B7).
In terms of the eigenstates and eigenvalues of H0, the

Green function

Gð0Þ
b ðωÞ ¼

X
λ

juλj2
ω − E1λ þ i0þ

ðB12Þ

is constructed using the Lehmann representation.

1. N = 2 subspace

In the N ¼ 2 subspace, the most general eigenstate with
eigenenergy E2λ has the form

j2λi ¼
�
uð2Þλ b†20 þ

X
k

fð2Þ1λ ðkÞa†kb†0

þ
X
k1;k2

fð2Þ2λ ðk1;k2Þa†k1
a†k2

�
j0i: ðB13Þ

We now compute the bound state (λ ¼ B) energy E2, the

coefficient uð2ÞB , and the bath wave functions fð2Þ1B ðkÞ and

fð2Þ2B ðk1;k2Þ using the Green function method. The two-
particle Green functions are defined as

Gα1α2ðtÞ ¼ −ih0jT α1ðtÞα2ðtÞα†2α†1j0i; ðB14Þ

where there are three different possible choices: (i) α1 ¼
α2 ¼ b0, (ii) α1 ¼ b0, α2 ¼ ak, or (iii) α1 ¼ ak2

, α2 ¼ ak1
.

In the Lehmann representation, the Green function

Gα1α2ðωÞ¼
Z

dtGα1α2ðtÞeiωt¼
X
λ

h0jα1α2j2λih2λjα†2α†1j0i
ω−E2λþ i0þ

;

ðB15Þ

whose poles and corresponding residues determine the
bound state energies E2 and wave functions h0jα1α2jB2i
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[uð2ÞB ¼h0jb20jB2i=2, fð2Þ1B ðkÞ¼h0jb0akjB2i and fð2Þ2B ðk1;
k2Þ¼h0jak2

ak1
jB2i=2].

The Dyson expansion of the two-body interaction Hhc
results in the connected part ½Gα1α2ðωÞ�c of the two-body
Green function:

½Gα1α2ðωÞ�c ¼ 2Πα1α2ðωÞT2ðωÞΠ�
α1α2ðωÞ: ðB16Þ

The poles of the T matrix,

T2ðωÞ ¼
1

U−1
0 − ΠbbðωÞ

; ðB17Þ

give the bound state energies, where

ΠbbðωÞ ¼
X
λλ0

juλj2juλ0 j2
ω − E1λ − E1λ0 þ i0þ

ðB18Þ

can be computed from the bubble diagram. In the vicinity
of a pole E2, the T matrix T2ðωÞ ∼ Z2B=ðω − E2 þ i0þÞ
with a residue

Z−1
2B ¼

X
λλ0

juλj2juλ0 j2
ðE2 − E1λ − E1λ0 Þ2

: ðB19Þ

The wave functions can be determind by Πα1α2ðωÞ,
defined as

ΠbakðωÞ ¼
Ωηkffiffiffiffi
V

p
X
λ

juλj2Gð0Þ
b ðω − E1λÞ

ω − εk − E1λ þ i0þ
ðB20Þ

and

Πak2ak1
ðωÞ

¼Ω2

V
ηk1

ηk2

X
λλ0

juλj2juλ0 j2
ðω−εk1

−εk2
þ i0þÞðω−E1λ−E1λ0 þ i0þÞ

×
2ω−εk1

−εk2
−E1λ−E1λ0

ðω−εk1
−E1λþ i0þÞðω−E1λ0 −εk2

þ i0þÞ: ðB21Þ

The variables appearing in the wave functions are

uð2ÞB ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
Z2B=2

p
ΠbbðE2Þ, fð2Þ1B ðkÞ ¼

ffiffiffiffiffiffiffiffiffiffi
2Z2B

p
ΠbakðE2Þ, and

fð2Þ2B ðk1;k2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Z2B=2

p
Πak2ak1

ðE2Þ. The real-space wave
functions obtained via Fourier transforms are

fð2Þ1B ðrjÞ ¼
1ffiffiffiffi
V

p
X
k

fð2Þ1B ðkÞeik·rj ; ðB22Þ

fð2Þ2B ðrj1 ; rj2Þ ¼
1

V

X
k1k2

fð2Þ2B ðk1;k2Þeik1·rj1þik2·rj2 : ðB23Þ

In the hard-core limit U0 → ∞, T−1
2 ðE2Þ ¼ 0 gives

ΠbðE2Þ ¼ 0 and uð2ÞB ¼ 0, which means that there is no
double occupation in the b0 mode.

2. N = 3 subspace

In the N ¼ 3 subspace, the most general eigenstate reads

j3λi ¼
�
uð3Þλ b†30 þ

X
k

fð3Þ1λ ðkÞa†kb†20

þ
X
k1k2

fð3Þ2λ ðk1;k2Þa†k1
a†k2

b†0

þ
X

k1k2k3

fð3Þ3λ ðk1;k2;k3Þa†k1
a†k2

a†k3

�
j0i: ðB24Þ

The three-particle bound state can be studied by the three-
particle Green function

G3ðtÞ ¼ −ihT α3ðtÞα2ðtÞα1ðtÞα†1α†2α†3i; ðB25Þ

where the bound state energy E3, the coefficient uð3ÞB ,

and the wave functions fð3Þ1B ðkÞ, fð3Þ2B ðk1;k2Þ, and

fð3Þ3B ðk1;k2;k3Þ can be obtained by four different choices
of operators in G3ðtÞ: (i) α1 ¼ α2 ¼ α3 ¼ b0, (ii) α1 ¼ ak,
α2 ¼ α3 ¼ b0, (iii) α1 ¼ ak1

, α2 ¼ ak2
, α3 ¼ b0, and

(iv) α1 ¼ ak1
, α2 ¼ ak2

, α3 ¼ ak3
.

In the Lehmann representation, the Green function

G3ðωÞ ¼
Z

dtG3ðtÞeiωt ¼
X
λ

h0jα3α2α1j3λih3λjα†1α†2α†3j0i
ω − E3λ þ i0þ

; ðB26Þ

whose poles and corresponding residues determine the bound state energies E3 and the wave functions h0jα3α2α1jB3i
[uð3ÞB ¼ h0jb30j3λi=6, fð3Þ1B ðkÞ ¼ h0jb20akjB3i=2, fð3Þ2B ðk1; k2Þ ¼ h0jb0ak2

ak1
jB3i=2, and fð3Þ3λ ðk1;k2;k3Þ ¼

h0jak3
ak2

ak1
jB3i=6].

The Dyson expansion gives to the connected part

½G3ðωÞ�c ¼
Z

dω1dω0
1

ð2πÞ2 χ3ðω;ω1ÞT3ðω;ω1;ω0
1Þχ3ðω;ω0

1Þ; ðB27Þ

where
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χ3ðω;ω1Þ ¼ P123

�
Gð0Þ

αi1b
ðω1ÞT2ðω − ω1Þ

Z
dω2

2π
Gð0Þ

αi2b
ðω2ÞGð0Þ

αi3b
ðω − ω1 − ω2Þ

�
ðB28Þ

is determined by the operator P123 which permutes α1;2;3. The three-particle T matrix satisfies the integral equation

T3ðω;ω1;ω0
1Þ ¼ Gð0Þ

b ðω − ω1 − ω0
1Þ þ 2i

Z
dω0

2π
Gð0Þ

b ðω − ω1 − ω0ÞT2ðω − ω0ÞGð0Þ
b ðω0ÞT3ðω;ω0;ω0

1Þ: ðB29Þ

In the vicinity of the pole E3, the three-particle T matrix has the form

T3ðω;ω1;ω0
1Þ ¼

Fðω1ÞFðω0
1Þ

ω − E3 þ i0þ
; ðB30Þ

where FðωÞ is determined by the integral equation

FðωÞ ¼ 2i
Z

dω0

2π
Gð0Þ

b ðE3 − ω − ω0ÞT2ðE3 − ω0ÞGð0Þ
b ðω0ÞFðω0Þ: ðB31Þ

Using the analyticity of FðωÞ and the residue theorem, we find that the integral in Eq. (B31) becomes

FðωÞ ¼ 2
X
λ

juλj2Gð0Þ
b ðE3 − ω − E1λÞT2ðE3 − E1λÞFðE1λÞ: ðB32Þ

For the on-shell frequency ω ¼ E1λ, we obtain the matrix equationX
λ0
Mλλ0FðE1λ0 Þ ¼ 0; ðB33Þ

where

Mλλ0 ¼ 2juλ0 j2Gð0Þ
b ðE3 − E1λ − E1λ0 ÞT2ðE3 − E1λ0 Þ − δλλ0 : ðB34Þ

The bound state energy E3 is obtained by solving the equation detM ¼ 0. The eigenvector FðE1λÞwith zero eigenvalue can
be used to obtain the function FðωÞ via Eq. (B31).

In the hard-core limit U0 → ∞, the wave functions uð3ÞB ¼ fð3Þ1B ðkÞ ¼ 0 vanish, and the residue of G3ðωÞ gives the wave
functions

fð3Þ2B ðk1;k2Þ ¼ −Ω2

V
ηk1

ηk2
P12

�X
λ1λ2λ3

juλ1 j2juλ2 j2juλ3 j2
2ðεk1

− E1λ1Þ
�
T2ðE3 − E1λ2ÞFðE1λ2Þ þ 2T2ðE3 − εk1

ÞFðεk1
Þ

ðE3 − εk1
− εk2

− E1λ2ÞðE3 − εk1
− E1λ2 − E1λ3Þ

−
T2ðE3 − E1λ2ÞFðE1λ2Þ þ 2T2ðE3 − E1λ1ÞFðE1λ1Þ
ðE3 − εk2

− E1λ1 − E1λ2ÞðE3 − E1λ1 − E1λ2 − E1λ3Þ
��

ðB35Þ

and

fð3Þ3B ðk1;k2;k3Þ ¼ − Ω3

6V3=2 ηk1
ηk2

ηk3
P123

�X
λ1λ2λ3

juλ1 j2juλ2 j2juλ3 j2
εk1

− E1λ1

�
T2ðE3 − εk1

ÞFðεk1
Þ

ðE3 − εk1
− εk2

− εk3
ÞðE3 − εk1

− εk2
− E1λ3Þ

×
2E3 − 2εk1

− εk2
− εk3

− E1λ2 − E1λ3

ðE3 − εk1
− εk3

− E1λ2ÞðE3 − εk1
− E1λ2 − E1λ3Þ

−
T2ðE3 − E1λ1ÞFðE1λ1Þ

ðE3 − εk2
− εk3

− E1λ1ÞðE3 − εk2
− E1λ1 − E1λ3Þ

×
2E3 − εk2

− εk3
− 2E1λ1 − E1λ2 − E1λ3

ðE3 − εk3
− E1λ1 − E1λ2ÞðE3 − E1λ1 − E1λ2 − E1λ3Þ

��
; ðB36Þ

where P12 and P13 are permutations for k1, k2 and k1, k2, k3, respectively. The real-space wave functions can be obtained
via Fourier transforms
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fð3Þ2B ðrj1 ; rj2Þ ¼
1

V

X
k1k2

fð3Þ2B ðk1;k2Þeik1·rj1þik2·rj2 ;

fð3Þ3B ðrj1 ; rj2 ; rj3Þ ¼
1

V3=2

X
k1k2k3

fð3Þ3B ðk1;k2;k3Þeik1·rj1þik2·rj2þik3·rj3 : ðB37Þ

APPENDIX C: VARIATIONAL ANSATZ

This appendix provides full details about the optimiza-
tion process of the variational Ansatz.
By a direct computation, the energy of the ground-state

variational Ansatz Eq. (13) is

Eg:s: ¼ hBN jHjBNi ¼ ðN − 1ÞhAA þ vTE0v; ðC1Þ

where E0 is a matrix (see below), hAA is one of its
elements, and v ¼ ðα; β; γÞT satisfies the normalization
condition vTv ¼ 1. We introduce variables hMM0 ¼P

kεkφMðkÞφM0 ðkÞ and IM ¼ P
kηkφMðkÞ=

ffiffiffiffi
V

p
(M;M0 ¼ A, B) to define the matrix

E0 ¼

0
B@

Δ
ffiffiffiffi
N

p
ΩIA ΩIBffiffiffiffi

N
p

ΩIA hAA
ffiffiffiffi
N

p
hAB

ΩIB
ffiffiffiffi
N

p
hAB hBB

1
CA: ðC2Þ

The orthonormal collective modes we introduce in the main
text satisfy the constraints ½A; A†� ¼ ½B;B†� ¼ 1 and
½A;B†� ¼ 0, so we have

X
k

φ2
MðkÞ ¼ 1 and

X
k

φAðkÞφBðkÞ ¼ 0: ðC3Þ

To optimize the ground-state energy under these con-
straints, we introduce Lagrangian multipliers λ, μA, μB,
and μAB to define the function

Fg:s: ¼ Eg:s: − μA
X
k

φ2
AðkÞ − μB

X
k

φ2
BðkÞ

− 2μAB
X
k

φAðkÞφBðkÞ − λðα2 þ β2 þ γ2Þ: ðC4Þ

By taking derivatives with respect to v and φMðkÞ, we
obtain a set of coupled nonlinear Gross-Pitaevski-like
equations:

E0v ¼ λv ðC5Þ

and

HGP

�
φAðkÞ
φBðkÞ

�
þ Ωηkffiffiffiffi

V
p α

� ffiffiffiffi
N

p
β

γ

�
¼ μ

�
φAðkÞ
φBðkÞ

�
; ðC6Þ

where

HGP ¼
� ðN − 1þ β2Þεk βγ

ffiffiffiffi
N

p
εk − μAB

βγ
ffiffiffiffi
N

p
εk − μAB γ2εk

�
: ðC7Þ

The “chemical potentials” μ ¼ μA ¼ μB, and μAB ¼
βγ

ffiffiffiffi
N

p
hAA þ γ2hAB þΩαγIA due to the constraintP

kφAðkÞφBðkÞ ¼ 0. The solutions φMðkÞ to these equa-
tions are

φMðkÞ ¼
1ffiffiffiffi
V

p
X
μ¼1;2

cM;μffiffiffiffiffiffiffiffiffi
N μμ

q ηk
eμ − εk

; ðC8Þ

where we introduce variables cM;μ, eμ, and

N μν ¼
Z

ddk
ð2πÞd

η2k
ðeμ − εkÞðeν − εkÞ

: ðC9Þ

The two coefficients cM;μ are related as cM;2 ¼ tMcM;1. The
constraints given by Eq. (C3) result in the relations

cM;1 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ t2M þ 2 N 12ffiffiffiffiffiffiffiffiffiffiffiffi
N 11N 22

p tM

r ;

tB ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N 11N 22

p
þ tAN 12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N 11N 22

p
tA þN 12

: ðC10Þ

To find optimized variational parameters, we construct
the wave functions φMðkÞ in Eq. (C8) and the matrix E0 in
Eq. (C2) using different sets of e1, e2, and tA. For a given
set of e1, e2, and tA, the ground-state energy is given by
Eg:s: ¼ ðN − 1ÞhAA þ λ0, where λ0 is the lowest eigenvalue
of E0. The optimized e1, e2, and tA are those that give the
lowest Eg:s:. To reveal the properties of the MEBS in
coordinate space, we can Fourier transform the momentum
space mode functions φMðkÞ into real space to obtain
M† ¼ P

jφM;ja
†
j , with

φM;j ¼
X
μ¼1;2

cM;μ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2μ
1þ x2μ

s
xjjjμ ; ðC11Þ

where xμ þ x−1μ ¼ 2 − eμ, and −1= logðxμÞ is the localiza-
tion length.
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