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Coherent scattering of light from ultracold atoms involves an exchange of energy and momentum
introducing a wealth of nonlinear dynamical phenomena. As a prominent example, particles can
spontaneously form stationary periodic configurations that simultaneously maximize the light scattering
and minimize the atomic potential energy in the emerging optical lattice. Such self-ordering effects
resulting in periodic lattices via bimodal symmetry breaking have been experimentally observed with cold
gases and Bose-Einstein condensates (BECs) inside an optical resonator. Here, we study a new regime of
periodic pattern formation for an atomic BEC in free space, driven by far off-resonant counterpropagating
and noninterfering lasers of orthogonal polarization. In contrast to previous works, no spatial light modes
are preselected by any boundary conditions and the transition from homogeneous to periodic order amounts
to a crystallization of both light and ultracold atoms breaking a continuous translational symmetry. In the
crystallized state the BEC acquires a phase similar to a supersolid with an emergent intrinsic length scale
whereas the light field forms an optical lattice allowing phononic excitations via collective backscattering,
which are gapped due to the infinte-range interactions. The system we study constitutes a novel
configuration allowing the simulation of synthetic solid-state systems with ultracold atoms including
long-range phonon dynamics.

DOI: 10.1103/PhysRevX.6.021026 Subject Areas: Atomic and Molecular Physics,
Condensed Matter Physics,
Quantum Physics

I. INTRODUCTION

For a gas of pointlike particles off-resonantly illuminated
by coherent light, the individual dipoles oscillate in phase,
each emitting radiation in a characteristic pattern. When
several particles contribute to the scattering, the corre-
sponding amplitudes interfere, which leads to a strongly
angle-dependent scattering distribution [1–3]. In addition,
if the motional degree of freedom is relevant on the
considered time scales, any high-field-seeking particle will
be drawn towards the corresponding local light field
maxima, where in turn light scattering is enhanced. This
directional energy and momentum transfer between the gas
and the field leads to an instability resulting in density
fluctuations and potentially also in the formation of an
ordered pattern. While for a room temperature gas this
typically occurs only at very high pump powers [4–6], it
can become important for very strong scatterers such as
larger nano- or microparticles [7–13]. The stringent thresh-
old conditions can be relaxed by laser cooling the gas to
temperatures well below the mK range as well as by
recycling the scattered light in optical resonators. In this

case, much weaker forces and thus lower light power are
needed to create a substantial backaction effect of the
scattered light onto the particles. This backaction was
predicted to lead to rotonlike instabilities and spatial
bunching even at moderate pump powers, as observed in
several configurations [14–25].
A relevant question is thus whether these instabilities can

in some cases lead to the formation of a stable crystalline
phase in the steady state of such driven, dissipative systems.
The first and simplest instance of such crystals is the
self-ordered phase of transversally driven atoms in optical
resonators [26–29], with the corresponding transition
observable also as a quantum phase transition at zero
temperature [30,31]. It has been shown recently that a
similar phase is also realizable in longitudinally pumped
ring cavities [32].
While this self-ordered phase shows some aspects shared

by standard crystals such as a rotonlike mode [33], other
characteristic features like the breaking of a continuous
translational symmetry and a crystal spacing which is not
externally fixed are both missing, since the resonator
mirrors select a single electromagnetic mode. In order to
include such features, one necessarily needs to couple
the particles to several electromagnetic modes, ideally a
continuum. This is the case in one-dimensional tapered
optical nanofibers [34,35] or confocal cavities [36], where
transversally driven atoms are predicted to spontaneously
break the continuous symmetry into a crystal phase.
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The existence of a continuum of electromagnetic modes
opens up the possibility for photons to crystallize, as it was
studied with light propagating under electromagnetically
induced transparency conditions through a nonlinear
medium [37,38].
In this work, we propose and characterize a novel

crystalline phase of light and ultracold atoms. We consider
a mirror symmetric and translation invariant setup as it is
depicted in Fig. 1. It involves an elongated Bose-Einstein
condensate (BEC) longitudinally illuminated by two
counterpropagating Gaussian beams far detuned from
any atomic resonance. The beams have either orthogonal
polarization or a sufficiently large frequency difference to
suppress any interference effects. Above a finite driving
intensity, both atoms and light break a continuous trans-
lational symmetry leading to pattern formation with an
intrinsically defined lattice spacing determined by the
polarizability and density of the gas. The resulting state
corresponds to a supersolid BEC trapped in an emerging
optical lattice, the latter showing collective phononic
excitations. The appearance of an emergent length scale
in combination with lattice phonons—i.e., the appearance
of a crystal of light—is a crucial difference from configu-
rations where the drive is transverse to the direction in
which the system organizes [34–36].
A useful property of the chosen geometry is that ample

information about the coupled system dynamics can be
retrieved from the reflected light fields in a completely
noninvasive manner. The present study opens a new direc-
tion in (ultra)cold atom-lattice physics, naturally including
long-range phonon-type interactions and real-time nonde-
structive monitoring.

II. MODEL

We consider a trapped atomic BEC interacting with the
electromagnetic (EM) field driven by two far off-resonant,
counterpropagating, orthogonally polarized laser beams,
as depicted in Fig. 1. In the dispersive regime considered
below, the EM field provides an optical potential for the
BEC [see Eq. (1)], while the BEC significantly modifies
the refractive index [see Eq. (3)]; thus, both field and matter
are dynamical quantities.
The BEC is treated within the Gross-Pitaevskii (GP)

mean-field approximation [39], whereby the condensate
wave function satisfies the equation

iℏ
∂
∂tψðx; tÞ ¼

�−ℏ2

2m
∂2

∂x2 þ VðxÞ
�
ψðx; tÞ

þ gcN
A

jψðx; tÞj2ψðx; tÞ; ð1Þ

where m denotes the particle’s mass, gc is the effective
s-wave atom-atom interaction strength, and N is the atom
number. For computational simplicity, we assume the BEC
to be confined by an extra transverse trapping potential
V trapðx; y; zÞ such that the dynamics along the y and z axis
is negligible. Therefore, the BEC wave function ψ is
assumed to be in the ground state of the transverse trap
with characteristic size dy ¼ dz ¼

ffiffiffiffi
A

p
, where A denotes

the BEC cross section. Such a quasi-one-dimensional
treatment is eligible if the BEC’s chemical potential μ
is much smaller than the characteristic transverse trap
frequency: μ ≪ ℏωy;z. The wave function satisfies the
normalization condition:

R
dxjψðx; tÞj2 ¼ 1.

The total optical potential for the BEC has two con-
tributions:

VðxÞ ¼ V trapðxÞ þ VoptðxÞ; ð2Þ

representing the static trapping potential V trap and the
longitudinal (along x) optical potential Vopt determined by
the dynamical part of the injected and scattered EM field
[see Eq. (5)]. The latter consists of two far off-resonant
fields with orthogonal polarizations driven from the
left (L) and right (R) side of the BEC, as depicted in
Fig. 1. The two polarization components of the field
satisfy the Helmholtz Eq. (3).
The atoms inside the BEC are described as linearly

polarizable particles with a scalar polarizability α where
the imaginary part is negligibly small; i.e., spontaneous
emission of the atoms is neglected. This corresponds to the
assumption that the driving laser frequency ωl is suffi-
ciently far detuned form any atomic resonance to prevent
substantial internal excitation. This avoids spontaneous
emission and thus mixing of the two counterpropagating
EM components via Raman scattering, as it is used
for near-resonant polarization gradient cooling, may be
neglected.

FIG. 1. Schematic representation of the considered setup.
An elongated BEC interacting with two counterpropagating,
noninterfering laser beams of orthogonal polarization. The two
beams are far detuned from any atomic resonance in order to
avoid mixing between the two polarizations. Both polarizations
are assumed to be equivalent with respect to the considered
atomic transition, the latter thus involving a spherically (or at least
cylindrically) symmetric ground state. Alternatively to the use of
two different polarizations, sufficiently different frequencies of
the two counterpropagating lasers can be chosen.
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While for spin-polarized atoms the polarizability is
field direction dependent in general, we assume the same
polarizability for both polarizations orthogonal to the laser
axis being the quantization axis. This corresponds to
transitions from a spherically (or at least cylindrically)
symmetric atomic ground state. The impinging laser
fields from the left and right are approximated by plane
waves so that we can write the EM field components as
EL;Rðx; tÞ ¼ ½EL;RðxÞeiωlt þ c:c:�eL;R, with the orthogon-
ality condition eL · eR ¼ 0. As the light transit time through
the sample is negligible compared to all other time scales,
the propagation delay of the EM field is adiabatically
eliminated and the two field envelopes (L for the field from
left and R for the field from right) satisfy the Helmholtz
equations

∂2

∂x2 EL;RðxÞ þ k20½1þ χðxÞ�EL;RðxÞ ¼ 0; ð3Þ

with the wave number k0 of the incoming beams and the
susceptibility χðxÞ of the BEC. This susceptibility depends
on the condensate’s density and is given by

χðxÞ ¼ αN
ϵ0A

jψðxÞj2; ð4Þ

where ψðx; tÞ is the solution of Eq. (1). The directionality of
the field propagation in the Helmholtz equations [Eq. (3)] is
defined by the boundary conditions, according to which the
L component has a finite imposed amplitude on the left end
of the system and the R component has such on the right
end (see also Appendix B).
As soon as one knows the spatial distribution of the

electric fields, one can calculate the optical potential for the
atoms via

VoptðxÞ ¼ − α

A
½jELðxÞj2 þ jERðxÞj2�: ð5Þ

Inserting the optical potential Eq. (5) into Eq. (1) leaves us
with the set of three coupled differential equations: the GP
Eq. (1) and the two Helmholtz equations [Eq (3)], describ-
ing the nonlinear dynamics of our system. The degree of
nonlinearity resulting from the atom-light coupling is
quantified by the dimensionless constant ζ defined as

ζ ≔
αN

ε0λ0A
¼ α

ϵ0
n
L
λ0

; ð6Þ

where n ¼ N=AL is the three-dimensional density of the
homogeneous BEC with L its characteristic extension
along x. Because of the adiabatic approximation involved
in the Helmholtz equation, the EM fields depend only
parametrically on time through the dynamical refractive
index set by the BEC density.

Because of the orthogonality of the two chosen polar-
izations there is no interference between the two counter-
propagating components of the EM fields. Therefore, the
optical potential [Eq. (5)] depends only on the absolute value
squared of the fields. This important feature guarantees the
translation invariance of the setup along the x direction
nevertheless maintaining a mirror symmetric setup. Indeed,
since we are driving with plane-wave lasers, as long as the
BEC density is homogeneous, the EM fields EL;RðxÞ in
Eq. (3) are also planewaves, leading to a translation invariant
optical potential Eq. (5). This invariance with respect to
continuous translations is spontaneously broken above a
finite driving intensity, as we discuss in Sec. III. In the
resulting crystalline phase, the lattice constant is intrinsically
established, as we discuss in Sec. IV. This is due to the
fact that no specific modes are selected and the fields can
counterpropagate independently.

III. DYNAMICAL INSTABILITY TOWARDS
CRYSTALLIZATION

As already mentioned above, due to the orthogonality of
the polarizations of the two injected counterpropagating laser
fields, the particles do not feel any longitudinal optical
forces. Naively, one could thus expect the BEC to remain
unperturbed independently of the pump intensity. In this
section, we show that this is actually not the case, as above a
particular threshold driving strength small density fluctua-
tions lead to backscattering of light, which in turn amplifies
these fluctuations. This leads to an instability towards
crystallization in the longitudinal direction. The latter can
be described by considering the collective excitation spec-
trum of the system for a spatially homogeneous density
distribution of the BEC, ψ0ðx; tÞ ¼ 1=

ffiffiffiffi
L

p
, with the corre-

sponding propagating field solution of Eq. (3). These are

plane waves of the form Eð0Þ
L;R ¼ C expð�ikeffxÞ, with the

modified wave number

keff ¼
2π

λ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ζλ0jψ0j2

q
¼ 2π

λ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α

ϵ0
n

r
; ð7Þ

where C is a real number fixed by the driving strength.
The spectrum is obtained by linearizing the coupled

equations [Eqs. (1) and (3)] with the ansatz ψ ¼
ðψ0 þ δψÞe−iμt and EL;R ¼ Eð0Þ

L;R þ δEL;R. Here, δψ and
δE are small deviations from the stationary solutions ψ0 or

Eð0Þ
L;R and μ is the BEC chemical potential (see Appendix A

for details). This yields

ℏ2ω2
q ¼

ℏ2q2

2m

�
ℏ2q2

2m
þ 2gn −

64π2Aζ2

cNL
1

q2 − 4k2eff
IL;R
�
:

ð8Þ
Here, IL;R denotes the intensity (in W=m2) of the incoming
light, which we have chosen to be equal from the left
and right.
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The above analytical expression Eq. (8) is very useful to
understand some essential features of the atom-light inter-
action in the present setup and, in particular, the nature of
the crystallization transition. Apart from the last term, we
recognize the known form of the Bogoliubov spectrum of
interacting BECs [39], with the linear-in-q behavior corre-
sponding to phononic excitations at low q. The last term, on
the other hand, is the only one resulting from the atom-light
interactions. The first thing to note is that its denominator
vanishes at q ¼ �2keff , which tells us immediately that the
modified wave number Eq. (7) sets the favored momentum
for the appearance of the instability. However, the vanishing
of the denominator is compensated by the diverging BEC
length L, at every finite atom number N (note that ζ ∼ N).
The limit L → ∞ of Eq. (8) actually has to be taken, since
the stationary plane-wave solution Eð0Þ

L;R ∼ expð�ikeffxÞ
about which we linearize only makes sense for a homo-
geneous and infinite atomic medium, so that the edges may
be neglected. This indeed allows us to neglect the reflection
of the incident wave by the change in refractive index at the
BEC edges. Such finite-size effects, included in the numeri-
cal solutions we describe in Sec. IV, become irrelevant for
large systems, as we demonstrate below.
One way to obtain the proper result for Eq. (8) in the

limit L → ∞ is to consider that for any finite L the allowed
momenta q take only quantized values as multiples of
2π=L. Before taking the limit L → ∞ it is instructive to
compute the spectrum Eq. (8) for fixed finite L, as we show
in Fig. 2 for different values of IL;R. One recognizes a gap
opening at q ¼ 2keff for any finite IL;R, i.e., any finite
driving strength. The spectrum develops a minimum at the
finite momentum q ¼ 2keff þ ð2πÞ=L, which corresponds
to a roton minimum in the language commonly adopted for
standard crystal formation [40]. It constitutes a generali-
zation to continuous-symmetry breaking of the rotonlike
instability observed with a BEC in an optical cavity [33]. In
a similar manner as in standard crystals, the crystallization
threshold can be calculated by finding the drive intensity at
which the roton energy approaches zero. This leads to the
threshold condition ω2keffþð2πÞ=L ¼ 0. We are now in the

position to take the limit L → ∞. In doing this, we note that
we have to keep the atom numberN constant in order to get
a finite critical drive strength. Otherwise, if we perform
the standard thermodynamic limitN=L ¼ const, the energy
of the system diverges and the crystallization threshold
vanishes. This divergence is an artifact of our model in
which the light-mediated atom-atom interaction is of
infinite range since the EM field is adiabatically adapting
to the BEC configuration. The inclusion of the dynamics of
the EM field (retardation effects) would introduce a finite
range and thus eliminate the divergence in the energy. Still,
the resulting range is expected to be larger than the typical
BEC size L so that our calculation should be valid for any
realistic system size. Taking the L → ∞ limit we thus get
the critical driving intensity

IL;Rc ¼ cErecN
λ0A

1

ζ2
¼ cErec

ε20
α2

1

n
λ0
L
; ð9Þ

where we introduce the recoil energy, Erec ≔ ℏωrec ¼
ℏ2k20=ð2mÞ.
Note that in the L → ∞ limit with constant N the BEC

becomes more and more dilute, which renders the direct
atom-atom coupling ∼gc eventually irrelevant. In Fig. 3, the
analytical expression Eq. (9) is compared with numerically
estimated thresholds for large system sizes (see Sec. IV). We
find full agreement between the linear instability threshold
and the numerical threshold found by studying the imaginary
time evolution of Eqs. (1) and (3). This numerical approach
to finite-sized systems is described next.

IV. CRYSTAL OF LIGHT AND ATOMS

After showing that the homogeneous system is unstable
above a certain driving intensity, we show that a stable
crystalline phase is reached and study its properties by
numerically solving the coupled GP [Eq. (1)] and
Helmholtz [Eq. (3)] equations. We perform an imaginary

FIG. 2. Excitation spectrum Eqs. (8)] in the homogeneous phase
for different field intensities: IL;R ¼ 2.0 (red), IL;R ¼ 20.0 (green),
and IL;R ¼ 60.0 (blue) (ζ ¼ 0.1, L ¼ 100λ0, gcN=Aλ0 ¼ Erec).

FIG. 3. ζ dependence of the critical intensity. The solid blue
line depicts the analytical result defined by Eq. (9), whereas the
red dots depict numerical threshold estimations for large system
sizes (L ¼ 120λ0) (ζ ¼ 0.1, gcN=Aλ0 ¼ Erec).
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time evolution of the system Eqs. (1)–(3), i.e., replace
t → iτ, which yields the ground state of the system for long
enough evolution times. For a detailed description of the
numerical methods, see Appendix B.
To determine the crystal transition point as a function of

driving intensity, we compute the total reflectivity of the
BEC with respect to the intensity of either one of the
incident beams, which we again take to be equal. For large
enough system sizes, a clear threshold behavior is visible at
a critical driving intensity, whereby the reflectivity grows
from essentially zero with almost infinite slope, cf. Fig. 4.
The hereby found critical intensity is in perfect agreement
with the analytical result(see Fig. 3). As we mention in the
previous section, finite-size effects manifest due to the
presence of the edges of the BEC. In the calculations
described in this section and in Sec. VI, there is no further
trapping potential along x and the BEC is confined within a
box of size L, so that the BEC has sharp edges for the light
impinging at x ¼ 0 and x ¼ L (see Appendix B for more
details). In Sec. VII, we add an harmonic trap along x and
show that the qualitative behavior is the same as that
described here. The BEC edges create a quick increase of
the refractive index, which induces a small amount of
reflection of the incoming beam. As apparent from Fig. 4,
this reflection is irrelevant for large system sizes compared
to the reflection present in the crystalline phase.
The large light reflection above threshold is due to the

appearance of a large spatial modulation of the BEC,
forming the density grating shown in Fig. 5(a). This
corresponds to a continuous-symmetry breaking at the
threshold leading to a crystalline phase, which for the
phase-coherent BEC implies supersolid order. Each peak in
the density grating reflects the incoming light, resulting in a
damped modulation of the intensity of each polarization
component across the condensate, as shown in Fig. 5(b).
While the modulation of each component’s intensity IL;R is
damped across the system, the modulation of the total
intensity Itot ¼ IL þ IR is not damped, resulting in a
periodic optical-lattice potential for the BEC, which
matches its density grating.
An important feature of the optical lattice emerging in

the crystalline phase is the intrinsic character of the lattice

spacing, which is not fixed externally but rather set by
the BEC density and atom polarizability. This is a clear
difference with respect to the self-ordering in optical
resonators, where the spacing is externally fixed by the
cavity mirrors [26], and also to the case of self-ordering of
transversally driven atoms coupled to the continuum of
modes of optical fibers, where the spacing is fixed by the
driving frequency and fiber dispersion [34,35]. As we
anticipate in Sec. III, the appearance of the rotonlike
instability at the characteristic momentum 2keff leads to
the following prediction for the emergent lattice spacing:

d ¼ π

keff
¼ λ0

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ζλ0

L

q ¼ λ0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α

ϵ0
n

q : ð10Þ

The emergent spacing is always smaller than the one in
vacuum λ0=2. This feature can be qualitatively reproduced
also within a toy model, where the medium is approximated
by a set of beam splitters [41]. This typically small but
nonetheless crucial effect is also present when using
counterpropagating beams with equal polarization and is
essential for atom trapping in optical lattices [42]. If the
atoms were indeed trapped with the vacuum spacing λ0=2,
the EM field would be perfectly reflected and no standing

FIG. 4. Dependence of the reflection coefficient of the BEC on
the incoming field amplitudes for different atom-field couplings
ζ ¼ 0.1 (dashed red line) and ζ ¼ 0.2 (solid blue line). The
remaining parameters are the same as in Fig. 2.

FIG. 5. (a) Crystal ground state for ζ ¼ 0.1, Il ¼ Ir ¼ 200 and
(b) corresponding intensity distribution for the field from left
(green line) and right (red line). The solid blue line depicts the
sum of both intensities. A zoom into the yellow shaded region can
be found in Fig. 8. The remaining parameters are gcN=Aλ0 ¼ Erec
and L ¼ 10λ0.
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wave could actually be formed and thus no trapping would
be possible. It is only through the slight renormalization
d < λ0=2 that perfect reflection is avoided. What our
scheme with orthogonally polarized counterpropagating
beams allows is to make the small renormalization of d
coincide with the appearance of a large density modulation
out of a homogeneous phase, i.e., a crystallization.
The existence of an intrinsic lattice spacing in the

crystalline phase implies, as well, the presence of phononic
excitations of the lattice, as we discuss in the next section.

V. EXCITATIONS OF THE CRYSTAL: PHONONS

Further insight into the properties of the atom-light
crystal is provided by analyzing its excitation spectrum.
As done in Sec. III, we linearize the coupled system
of Eqs. (1) and (3). However, now the perturbation is
performed around the symmetry-broken stationary solu-
tion. The result is presented in Fig. 6 for a driving intensity
slightly above threshold. Details of the calculation are
given in Appendix A. Since translation invariance is
broken, the matrices describing the linear system are not
diagonal in momentum space requiring a discretization
of the position (momentum) continuum. Moreover, while
the total light intensity and atom density are periodic, the
intensity of each polarization component is not, due to
accumulated reflection along the density grating, introduc-
ing the decaying envelope shown in Fig. 5(b). This prevents

the use of the quasimomentum to label the excitation
modes.
In Fig. 6, we label the eigenvalues based on their

dominant momentum component qmax, extracted from
the corresponding eigenvector. This allows us to split the
spectrum into three regions separated by gaps at qmax ¼ keff
and qmax ¼ 2keff .
The gap at qmax ¼ keff opens up for IL;R > IL;Rc due to

the appearance of an optical lattice potential for the atoms
with a π=keff periodicity. It separates the two bands which,
slightly above threshold, are characterized by eigenvectors
with a clearly dominant momentum component (see left
and middle insets in Fig. 6).
On the other hand, the gap at 2keff is the same one

appearing in the homogeneous phase (see Fig. 2). As we
discuss in Sec. III, at the critical drive intensity IL;Rc the
gap is such that the energy of the mode with momentum
q ¼ 2keff þ 2π=L (momentum is still a good quantum
number for IL;R ≤ IL;Rc ) vanishes. Out of this zero-energy
mode at 2keff (not resolved with the discretization of
Fig. 6), and beyond the critical point IL;R > IL;Rc , the
lattice-phonon branch develops for qmax > 2keff. The
momentum distribution of the lattice-phonon eigenvectors
is characterized by the splitting of the single peak at 2keff
into two neighboring peaks (see rightmost inset of Fig. 6).
The phonon wavelength is set by the distance between the
two nearby maxima appearing in the momentum distribu-
tion. This generates the slow beating in coordinate space.

FIG. 6. Excitation spectrum of the atom-light crystal. The blue points are the eigenvalues of the GP and Helmholtz equations
linearized about the crystalline stationary state (see Appendix A). The numerical diagonalization is performed with a momentum-space
discretization dq ¼ 2π=L. The parameters are the same as in Fig. 2 except for L ¼ 50 and a fixed drive intensity IL;R ¼ 50 (slightly
above threshold). qmax is the momentum corresponding to the largest component of the eigenvector of each eigenvalue. The insets show
examples of eigenvectors (unormalized probability in momentum space) for three different eigenvalues representative of each region
of the spectrum, from left to right: λ0qmax ¼ 1.38 < λ0keff , λ0keff < λ0qmax ¼ 11.9 < 2λ0keff , and λ0qmax ¼ 12.7 > 2λ0keff . The latter
region corresponds to lattice phonons, characterized by two symmetric pairs of peaks about a finite momentum. This phononic branch
qmax > 2keff has a gap Δph. Its analytical estimate in Eq. (11) yields Δph ≃ 2

ffiffiffi
2

p
Erec, in reasonable agreement with the numerical data.

S. OSTERMANN, F. PIAZZA, and H. RITSCH PHYS. REV. X 6, 021026 (2016)

021026-6



With a finite system size L, the longest wavelength is of the
order of L.
Moreover, the lattice-phonon branch is gapped, in the

sense that its lowest energy mode at qmax slightly above
2keff has a finite energy, as visible in Fig. 6. More
importantly, this gap remains finite in the thermodynamic
limit L → ∞. We can estimate the size of the lattice-
phonon gap close to threshold by using Eq. (8) and
computing the energy of the mode next to the zero-energy
mode. This yields

Δ2
ph ≃ 4

ℏ2k2eff
2m

�
2
ℏ2k2eff
2m

þ gn
�
; ð11Þ

which takes the value Δ2
ph ≃ 8E2

rec in the thermodynamic
limit L → ∞ with N ¼ const. As we discuss in Sec. III, in
this limit IL;Rc remains finite while n → 0 and keff → k0.
Another choice of thermodynamic limit is possible:
L, N → ∞ with n ¼ const, where IL;Rc → 0 and the gap
is still given by Eq. (11). The existence of an energy gap for
lattice phonons is due to the long-range nature of the
interactions, as it can be already predicted within a classical
model of interacting pointlike particles [43]. From a more
general field-theoretical perspective, some of the gapless
Goldstone modes expected from the continuous-symmetry
breaking can indeed disappear (i.e., become gapped) due
to the long range of the interactions, as it, for instance,
happens to the longitudinal phonons of a three-dimensional
Wigner crystal [44]. As long as retardation effects can
be neglected, our interactions will be infinite-ranged, the
lattice phonons gapped, and thus quantum or thermal
fluctuations will not destroy crystalline order even in truly
one dimension [45].
The existence of lattice phonons among the collective

excitations is confirmed by numerical simulations of the
real-time dynamics of the system, as we describe in the next
section.

VI. CRYSTALLISATION DYNAMICS
AFTER A QUENCH

In this section, we investigate the real-time dynamics of
the system by directly solving Eqs. (1) and (3). This allows
us to analyse the crystallization dynamics after a sudden
turn-on (quench) of the pump laser strength from zero to a
value above threshold at t ¼ 0. The corresponding time
evolution of the BEC reflectivity, kinetic energy, as well
as the evolution of the BEC density and total light intensity
are shown in Figs. 7 and 9.
As is apparent from the behavior of the reflectivity and

kinetic energy EkinðtÞ ¼
R
dxℏ2j∂xψ j2=2m, the crystalline

order is reached after a few inverse recoil frequencies, after
which both quantities perform oscillations about a finite
value. These residual oscillations are triggered by the
energy gained by the system upon forming the density
grating together with the optical lattice. The reason that this

effect takes on a prominent role in the studied case is found
by looking at Fig. 8, which shows the zoom into two peaks
of the intensity distribution of the crystal. One recognizes
that the maxima of the intensity distributions of the two
fields coming from the left and right (blue dots in Fig. 8) do
not coincide with the maximum of the total intensity
distribution (black dot in Fig. 8) at which the atoms are
trapped. Therefore, the trapped atoms feel a strong field
gradient for each single component because they do not sit
at the maxima of the two counterpropagating fields, as

FIG. 7. (a) Real-time evolution of the kinetic energy for
ζ ¼ 0.1, Il ¼ Ir ¼ 100, gcN ¼ 1. (b) Real-time evolution of
the reflection coefficient for the same parameters as in (a).
The solid black line shows the mean value of the corresponding
functions.

FIG. 8. Zoom into the yellow shaded region of Fig. 5. The blue
dots mark the maxima of the field from left (green line) and right
(red line), whereas the black dot marks the maximum of the total
field intensity (blue line). The red dot shows the actual position of
the particles.
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would be, for example, the case in optical lattices. This
leads to a large coupling between the two counterpropagat-
ing fields and the atoms, leading to strong long-range
interactions inducing collective excitations.
The corresponding dynamics of the BEC density and the

total light intensity are shown in Fig. 9. As one can see from
the solid lines marking the evolution of the intensity
maxima, they start at a lattice spacing of λ0=2 and move

closer together in time, reaching the emergent spacing d. In
addition, we see the presence of residual oscillations about
the crystalline order. In particular, the light intensity shows
both compression modes, modulating the amplitude of
the optical lattice in time, and phonons, modulating the
spacing. The latter are clearly visible from the dynamics
of the intensity maxima shown in Fig. 10. Since we are
neglecting retardation of the fields, the energy can be
redistributed among the collective degrees of freedom but
not dissipated. Initially, for ωrect ∼ 1, mostly compression
modes are excited. Subsequently, part of the energy stored
in the compression modes is transferred to lattice phonons
for ωrect≳ 5. In Fig. 10, we see a single-frequency
oscillation of the intensity maxima, the latter moving
almost in phase. This indeed corresponds to a low-wave-
length lattice phonon, which becomes occupied for long
enough times. As we discuss in Sec. V, the longest
wavelength is of the order of the system size L, consistent
with the almost in-phase oscillations of Fig. 10.
As we discussed in the previous section, lattice phonons

have a finite gap. They can efficiently be excited in a
quench experiment provided the energy available for
collective excitations is large enough compared to Δph
[see Eq. (11)].

VII. EXPERIMENTAL IMPLEMENTATION
WITH ULTRACOLD BOSONS

BECs with high densities and a controlled shape trapped
in optical dipole traps are currently available in many
laboratories. In principle, the setups normally employed are
already very close to the one needed to study the crystal-
lization effects presented in this work. In the following, we
discuss the conditions needed to study our model in
realistic experimental conditions, as well as the required
parameter regime for observing the crystallization. Let us
remark that the basic physics underlying the crystallization
transition discussed here does not rely on the atoms being
Bose condensed. This phenomenon could, in principle,
also be observed with thermal clouds or fermionic gases.

FIG. 9. Real-time dynamics of the (a) BEC density distribution
and (b) the total light intensity for the same parameters as in
Fig. 5. The solid black lines in (b) show the time evolution of the
intensity maxima.

FIG. 10. Real-time evolution of the maxima of the intensity distribution as it is shown in Fig. 9. To simplify the comparison between
the single curves, the maxima positions are shifted so that they all start at x ¼ 0. Panel (a) shows the total time evolution where one can
clearly recognize collective phononlike excitations of the lattice after ωrect≳ 5. Panel (b) shows the zoom into the yellow marked area in
(a) in order to demonstrate the slight dephasing between the oscillations of the maxima. All parameters are chosen as in Fig. 5.
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Apart from the fundamentally very interesting feature of
supersolidity, the practical advantage of a BEC with respect
to a thermal cloud resides in its high density and low
temperature, both decreasing the required laser power. On
the other hand, for degenerate Fermi gases, one could
expect a strong dependence on the ratio between Fermi
momentum and lattice constant [46–49].
We start by noting that using single-beam optical traps

can also lead to heating instabilities but never generate a
stationary lattice [17]. Similarly, operating very close to an
atomic resonance has been shown to generate instabilities
and a short-time formation of an optical lattice structure via
so-called end-fire modes [16]. As this requires significant
atomic excitation, it involves fast transverse acceleration
with heating and destruction of the BEC. This is prevented
in our model by an improved geometry and much larger
atom-field detuning.
Our model Eqs. (1)–(3) is essentially 1D, which relies on

the assumption that both the atoms and the light move and
propagate essentially unidirectionally along x. In practice
this can be implemented by using a transverse trapping of
the atoms tight enough to freeze out the dynamics along y,
z. With harmonic trapping potentials this amounts to the
requirement that ωho

y;z is sufficiently larger than the BEC
chemical potential μ. Here, we still describe the one-
dimensional BEC using the GP equation, which requires
the atom density to be large enough to be in the mean-field
regime [39]. The enforcement of unidirectional propagation
of light is more demanding since an appreciable amount of
diffraction out of the BEC axis would be present inducing
propagation also perpendicular to x. Apart from the use of
hollow-core optical fibers around the BEC [50], one option
available in many laboratories today is using a two-
dimensional array of tubes with spacing comparable with
the wavelength of the light. This arrangement would
generically produce destructive interference between the
transverse field components diffracted from different tubes,
so that if the latter are long enough, only the forward
propagation along the tube axis would remain. In this
configuration, each tube will act equally while the field
propagates inside a medium with a refractive index given
by the sum of the contributions from each tube. Indeed,
since all tubes share the same backreflected field, there is a
natural synchronization of the different tube lattices.
In any experimental realization a trap to confine the BEC

along x will also be present. In addition, the two laser
intensities might differ to some extent due to experimental
inaccuracies. As an exemplary case, we study the crystal-
lization as in Sec. IV but add an harmonic trapping potential
VextðxÞ ¼ ðEtrap=2Þx2=λ20 and choose different pump inten-
sities Il ≠ Ir. It can be seen from Fig. 11 that the qualitative
features of the crystalline phase remain the same as in the
homogeneous case. The only difference is the parabolic
envelope for the density as well as for the light intensity
distribution and the shift of the distribution towards the

direction of the higher intensity. The threshold behavior
remains similar to the one we present in Fig. 4 with the
only difference being an increase of the threshold intensity.
A useful feature of the considered configuration is that the
crystallization process can be observed in real time by
looking at the amount of reflected light, since the transmitted
part of the counterpropagating beam can be separated from
the reflected part having orthogonal polarization.
In order to choose the most suitable atomic transition,

pump detuning, and power, as well as BEC parameters like
density and extension, one must consider the following
constraints: we need to have (i) a low enough critical
driving strength Eq. (9), which depends on the detuning Δa
and spontaneous emission γ through the real part of
polarizability Reα ∼ γ=Δa, reading

IL;Rc ∼ Erec
Δ2

a

γ2
λ0
nA

; ð12Þ

and at the same time (ii) a low enough BEC heating rate,
which at the critical power reads

Γheat ∼ IL;Rc
γ2

Δ2
a
∼ Erec

λ0
nA

; ð13Þ

FIG. 11. (a) Crystal ground state and (b) corresponding in-
tensity distribution for the field from left (green line) and right
(red line) for the same parameters as in Fig. 5 with an additional
external potential VextðxÞ ¼ ðEtrap=2Þx2=λ20 with Etrap ¼ 1.0Erec
and for different pump intensities from left and right Il ¼ 200 and
Ir ¼ 150. The solid blue line depicts the sum of both intensities.

SPONTANEOUS CRYSTALLIZATION OF LIGHT AND … PHYS. REV. X 6, 021026 (2016)

021026-9



with nA ¼ N=A being the surface density of the medium
with respect to the light propagation. From Eqs. (12) and
(13) one sees that the crystallization is more easily achieved
before the BEC is heated up if we increase the BEC surface
density nA. There is no favorable scaling either with
detuning Δa or with the linewidth γ, since both heating
rate Eq. (13) and critical power Eq. (12) scale with γ2=Δ2

a.
For commonly employed transitions like the Rb or Cs D
lines, the required laser power is easily achieved, but the
heating rate can become a problem at too low densities due
to the required laser powers and detunings. For instance,
taking N ¼ 106 atoms confined over a transverse cross
section A ∼ 5 × 5 μm2 and λ0 ∼ μm, we estimate a required
power Ic ∼W=cm2 with a heating rate Γheat ∼ 10 Hz for
the rubidium 780-nm line with a detuning Δa ¼ 100 GHz
as well as for the cesium D2 line with a detuning
Δa ¼ 20 GHz. Such a heating rate still allows us to
observe the crystal formation since, as we see in Fig. 9,
this process takes place on the inverse recoil time scale,
which is of the order of milliseconds.

VIII. CONCLUSIONS AND OUTLOOK

We predict that in suitable geometries roton instabilities
originating from nonlinear free-space atom-light inter-
actions can be tailored to generate stationary crystalline
states. They involve an optical lattice showing an emergent
spacing and phononic excitations, trapping the atoms at the
intensity maxima.
The required translation invariant, mirror symmetric geom-

etry can be realized using two orthogonal polarization degrees
of freedom or frequency shifted counterpropagating beams.
We estimate that the dynamics we study in this work should
be accessible in already existing experimental setups on large
quasi-1D Bose-Einstein condensates. Actually, in comparison
with standard crossed beam dipole traps, one simply has to
adapt and control the polarizations of the trapping lasers and
choose suitable detunings. The ordering process should be
easily observable not only by measuring the atomic distri-
butions but directly by looking at the reflected light from the
condensate. This nondestructive measurement allows for a
real-time monitoring of the dynamics.
Our results open up an intriguing new direction in

quantum simulations with ultracold atoms in optical
lattices, where the latter are enriched by the presence of
collective phononic excitations resulting from the sponta-
neous crystallization of light. In this spirit, the application
of our approach to two dimensions and the inclusions of
retardation effects as well as quantum fluctuations con-
stitute the natural extension of this study.
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APPENDIX A: CALCULATION OF THE
EXCITATION SPECTRA

Here, we describe in detail how the linearization of
the Helmholtz and the GP equation leads to the collective
excitation spectra below [see Eq. (8)] and above the
threshold [see Fig. 6].
It is convenient to slightly rewrite the equations pre-

sented in Sec. II. Therefore, we define the relevant
parameters of the system and useful units. We introduce
the recoil energy Erec ≔ ℏωrec ¼ ℏ2k20=ð2mÞ relative to
the wave number k0 ¼ 2π=λ0 of the incoming lasers in
vacuum. The dimensionless time is defined through the
recoil frequency: ~t ≔ ωrect. The dimensionless space var-
iable is given in units of the incoming laser wavelength
~x ≔ x=λ0. We also rescale the fields to have units of energy
~EL;R ≔

ffiffiffi
α

p
EL;R=

ffiffiffiffi
A

p
, and the atom-atom s-wave coupling

to have units of energy times length ~gc ≔ gc=A. The GP
equation [Eq. (1)] then reads

i
∂
∂~t ~ψð~x; ~tÞ ¼ − 1

ð2πÞ2
∂2

∂ ~x2 ~ψð~x; ~tÞ

þ Vext

Erec
~ψð~x; ~tÞ − 1

Erec
½j ~ELð~xÞj2

þ j ~ERð~xÞj2� ~ψð~x; ~tÞ þ
~gcN
Erec

j ~ψð~x; ~tÞj2 ~ψð~x; ~tÞ;

ðA1Þ
and the Helmholtz equations [Eq. (3)] become

∂2

∂ ~x2 ~EL;Rð~xÞ þ ð2πÞ2½1þ ζj ~ψð~x; tÞj2� ~EL;Rð~xÞ ¼ 0: ðA2Þ

Let us first consider the linearization of the Helmholtz
equation [Eq. (A2)]. Inserting the ansatz already presented
in Sec. III, namely, ψ ¼ ðψ0 þ δψÞe−iμt and EL;R ¼
Eð0Þ
L;R þ δEL;R, into Eq. (A2) and neglecting terms of second

order leads to

∂xxE
ð0Þ
L;Rþð2πÞ2½1þ ζjψ0j2�Eð0Þ

L;R ðA3Þ

þ∂xxδEL;Rþð2πÞ2½1þ ζjψ0j2�δEL;R ðA4Þ

þð2πÞ2ζ½ψ0δψ
� þ δψψ�

0�Eð0Þ
L;R ¼ 0: ðA5Þ

The first line [Eq. (A3)] corresponds to the Helmholtz

equation for the steady state Eð0Þ
L;R and, therefore, it is equal

to zero. The second line [Eq. (A4)] is the Helmholtz
equation for the field perturbation, whereas the third line
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[Eq. (A5)] describes the linear coupling between the field
and the BEC.
This equation can be rewritten in the following form:

ðM þ K2
effÞ · δEL;R ¼ −ð2πÞ2ζEð0Þ

L;R · ðΨ0 · δψ� þ H:c:Þ;
ðA6Þ

where we define the matrices

Mðx; x0Þ ≔ ∂xxδðx − x0Þ; ðA7Þ

K2
effðx; x0Þ ≔ ð2πÞ2½1þ ζn0ðxÞ�δðx − x0Þ; ðA8Þ

Eð0Þ
L;Rðx; x0Þ ≔ Eð0Þ

L;Rδðx − x0Þ; ðA9Þ

Ψ0ðx; x0Þ ≔ ψ0δðx − x0Þ; ðA10Þ

and the scalar product

M · f ¼
Z

dx0Mðx; x0Þfðx0Þ: ðA11Þ

The formal solution of the linearized Helmholtz equation
[Eq. (A6)] is

δEL;R ¼ −ð2πÞ2ζðM þ K2
effÞ−1 · Eð0Þ

L;R · ðΨ0 · ψ� þ H:c:Þ:
ðA12Þ

The linearization of the Gross-Pitaevski equation
[Eq. (A1)] follows a similar procedure as presented above.
Performing the same ansatz and neglecting the second-
order terms leads to

i∂tδψ þ μδψ ¼ −
1

ð2πÞ2 ∂xxδψ − 1

Erec
½ψ0ðEð0Þ�

L δEL þ Eð0Þ�
R δER þ c:c:Þ þ δψðjEð0Þ

L j2 þ jEð0Þ
R j2Þ�

þ gcN
Erec

½jψ0j2δψ þ ψ0ðψ�
0δψ þ ψ0δψ

�Þ� − ψ0μ

− 1

ð2πÞ2 ∂xxψ0 − 1

Erec
ψ0ðjEð0Þ

L j2 þ jEð0Þ
R j2Þ þ gcN

Erec
jψ0j2ψ0: ðA13Þ

The last line of Eq. (A13) corresponds to the stationary GP
equation and, therefore, it vanishes, as it defines how the
chemical potential is related to the field amplitude and the
particle-particle interaction gc, namely via

μ ¼ gcN
LErec

− 2jEð0Þ
L;Rj2

Erec
: ðA14Þ

Inserting the formal solution Eq. (A12) into the linearized
GP equation [Eq. (A13)] and performing a Fourier
transform via fðxÞ ¼ 1ffiffiffi

L
p
P

ke
ikxfðkÞ and Mðx; x0Þ ¼

1
L

P
k;k0e

ikxeik
0x0Mðk; k0Þ gives

i∂t1ψ ¼ ð−μ1þ T þ AL þ ~AL þ AR þ ~AR þ Itot þ 2ν0Þψ
þ ðAL þ ~AL þAR þ ~AR þ ν0ÞPψ�; ðA15Þ

where 1 denotes the identity matrix and P is the parity
operator, i.e., PψðkÞ ¼ ψð−kÞ. We define the following
matrices:

Tðk; k0Þ ≔ k2

ð2πÞ2 δðk − k0Þ; ðA16Þ

I totðk; k0Þ ≔ − 1

Erec

ffiffiffiffi
L

p Itotðk − k0Þ; ðA17Þ

ν0ðk; k0Þ ≔
gcN

Erec

ffiffiffiffi
L

p n0ðk − k0Þ; ðA18Þ

AL;Rðk; k0Þ ≔ ðA19Þ

ζπ2

ErecL

X
k1;k2

V†
L;Rðk; k1ÞQ−1ðk1; k2ÞVL;Rðk2; k0Þ; ðA20Þ

~AL;Rðk; k0Þ ≔ ðA21Þ

ζπ2

ErecL

X
k1;k2

VL;Rðk; k1ÞQ−1ðk1; k2ÞV†
L;Rðk2; k0Þ; ðA22Þ

where ItotðkÞ and n0ðkÞ are the Fourier transforms of
the total intensity distribution and the BEC density.

We also define the additional matrices VL;Rðk; k0Þ ≔P
k00ψ

�
0ðk00ÞEð0Þ

L;Rðk00 þ k − k0Þ and Qðk; k0Þ ≔ −k2δðk−
k0Þ þ 1=

ffiffiffiffi
L

p
k2effðk − k0Þ, where k2effðkÞ is the Fourier trans-

form of ð2πÞ2½1þ ζn0ðxÞ�. In the following, we call the
sum of the A matrices Aðk; k0Þ ≔ ALðk; k0Þ þ ~ALðk; k0Þþ
ARðk; k0Þ þ ~ARðk; k0Þ.
Let us now define the spinor ΨðqÞ ≔ (ψðqÞ;ψ�ðqÞ)T,

where ψðqÞ defines a single momentum component of ψ
from Eq. (A15). This definition allows us to write the GP
equation in the form i∂tΨðqÞ ¼Pq0Rðq; q0ÞΨðq0Þ, where
the matrix R is defined as follows:
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Rðq;q0Þ ¼
 −μδðq−q0Þþ q2

ð2πÞ2 δðq−q0ÞI totðq−q0ÞþAðq;q0Þ ν0ðq;q0ÞþAðq;q0Þ
−ν0ðq;q0Þ−Að−q;−q0Þ −½−μδðq−q0Þþ q2

ð2πÞ2 δðq−q0ÞI totðq−q0ÞþAðq;q0Þ�

!
:

ðA23Þ

This equation now enables us to calculate the excitation
spectrum of the considered system for any arbitrary
intensity and BEC density distribution by calculating the
eigenvalues of the matrix R.

1. Collective spectrum in the homogeneous phase

If we now use the ansatz already presented in Sec. III,

namely, ψ0ðx; tÞ ¼ 1=
ffiffiffiffi
L

p
and Eð0Þ

L;R ¼ C expð�ikeffxÞ, we
can calculate the excitation spectrum below threshold.

This ansatz implies ItotðxÞ ¼ jEð0Þ
R j2 þ jEð0Þ

L j2 ¼ 2jCj2
and n0ðxÞ ¼ 1=L, which results in

I totðkÞ ¼ − 8jCj2
Erec

δðkÞ; ðA24Þ

ν0ðkÞ ¼
gcN
ErecL

δðkÞ: ðA25Þ

In addition, the matrices Q and V amount to

QðkÞ ¼ ðk2eff − k2ÞδðkÞ; ðA26Þ

VLðkÞ ¼ C
ffiffiffiffi
L

p
δðkþ keffÞ; ðA27Þ

resulting in

AL;Rðq; q0Þ ¼ − ζ

Erec

jCj2ð2πÞ2
L

1

q2 ∓ 2keffq
δðq − q0Þ:

ðA28Þ

Note that in this special case, ~AL;R ¼ AL;R. If one now
calculates the matrix R via Eq. (A23) and solves
det½Rðq − q0Þ − ω1� ¼ 0, one gets

ω2 − q2

ð2πÞ2
�
q2

2m
þ 2

gcN
ErecL

− 8ζ

Erec

jCj2ð2πÞ2
L

1

q2 − 4k2eff

�
¼ 0:

ðA29Þ

Transforming this equation back into the original units
leads to the excitation spectrum [Eq. (8)] presented in
Sec. III.

2. Collective spectrum above threshold

Let us now move on to the calculation of the collective
excitation spectrum above threshold as it is presented in
Sec. V. In this case, an analytical answer like the one

presented in the previous section is not possible, since
the translation invariance is broken so that the matrices
describing the linear system are not diagonal in momentum
space. Therefore, a numerical approach is required, involv-
ing, in general, the discretization of the position (momentum)
continuum.
The matrices defined in Eqs. (A16)–(A22) can be

calculated by numerically finding the Fourier transforms
of the stationary states found via complex time evolution in
Sec. IV. The resulting total matrix R can then be diagon-
alized numerically.
A further difficulty arising in our setup is that in the

stationary crystalline solution, the total light intensity and
atom density are periodic, whereas the intensity of each
polarization component is not. This originates from the
repeated reflection from the density grating, introducing
the decaying envelope shown in Fig. (5b) of the main text.
This prevents the use of the quasimomentum to label the
excitation modes. Therefore, we use the momentum cor-
responding to the largest component of the eigenvector in
order to order the eigenvalues in Fig. 6.

APPENDIX B: NUMERICAL METHODS

Themodel described inSec. II constitutes a coupled system
of equations [Eqs. (1) and (3)]. In this appendix, we briefly
discuss the numerical methods we use to simulate the time
evolution of the studied system as it is used in Secs. IV–VII.
The algorithm consists of two parts. First, we need to

solve the Helmholtz equation [Eq. (3)] for a given space-
dependent susceptibility Eq. (4). This corresponds to an
initial value problem with the boundary conditions

Eðx ¼ −L=2Þ ¼ AL þ BL; ðB1Þ

∂xEðx ¼ −L=2Þ ¼ ik0ðAL − BLÞ: ðB2Þ

Here, AL and BL define the incoming (AL) and outgoing
(BL) field amplitudes at the left side of the BEC. They are
related to the amplitudes on the right side via

BL ¼ RAL þ TDR; ðB3Þ

CR ¼ TAl þ RDR; ðB4Þ

with the system’s reflection and transmission coefficients R
and T. Of course, these reflection and transmission coef-
ficients depend on the system’s susceptibility. They can
easily be estimated by solving the Helmholtz (HH) equation
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for an arbitrary initial condition [Eqs. (B1) and (B2)], leading
to well-defined fields at the boundaries allowing for an
estimation of the right-hand amplitudesCR andDR. Hence,R
andT can be calculated viaEqs. (B3) and (B4).As soon aswe
know the initial conditions we can find the solution of the
Helmholtz equation via spatial integration performed by a
fourth-order Runge-Kutta solver.
The solution of the HH equation is then used to calculate

the optical potential [Eqs. (5)]. The time evolution of the
GP equation with the newly found potential is then
calculated by using a split step method. Note that the
HH equation has to be solved within each time step,
resulting in a modified potential for the next time step in
the GP equation. The time evolution is finished as soon as
the system is found in a stationary state.
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