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We present a study of the collisional relaxation of ion velocities in a strongly coupled, ultracold neutral
plasma on short time scales compared to the inverse collision rate. The measured average velocity of a
tagged population of ions is shown to be equivalent to the ion-velocity autocorrelation function. We thus
gain access to fundamental aspects of the single-particle dynamics in strongly coupled plasmas and to the
ion self-diffusion constant under conditions where experimental measurements have been lacking.
Nonexponential decay towards equilibrium of the average velocity heralds non-Markovian dynamics
that are not predicted by traditional descriptions of weakly coupled plasmas. This demonstrates the
utility of ultracold neutral plasmas for studying the effects of strong coupling on collisional processes,
which is of interest for dense laboratory and astrophysical plasmas.
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I. INTRODUCTION

In strongly coupled plasmas [1], the Coulomb interaction
energy between neighboring particles exceeds the kinetic
energy, leading to nonbinary collisions that display tem-
poral correlations between past and future collision events.
Such non-Markovian dynamics invalidates traditional
theory for collision rates [2–4] and transport coefficients
[5,6] used for weakly coupled plasmas and frustrates the
formulation of a tractable kinetic theory. This challenging
fundamental problem is also one of the major limitations to
our ability to accurately model equilibration, transport, and
equations of state of dense laboratory and astrophysical
plasmas [7,8], which impacts the design of inertial-
confinement-fusion experiments [9,10], stellar chronom-
etry based on white dwarf stars [11,12], and models of
planet formation [13]. Molecular dynamics (MD) simu-
lations have been the principal recourse for obtaining a
microscopic understanding of short-time collision dynam-
ics in this regime [14–18], but direct comparison of results
with experiment has not been possible.
In the experiments described here, we study the effects

of strong coupling on collisional processes by measuring
the velocity autocorrelation function (VAF) for charges in a
strongly coupled plasma. The VAF, a central quantity in
the statistical physics of many-body systems, encodes the
influence of correlated collision dynamics and system
memory on individual particle trajectories [19], and it is
defined as

ZðtÞ ¼ 1

3
hvkðtÞ · vkð0Þi: ð1Þ

Here, vk is the velocity of particle k, and brackets indicate
an equilibrium, canonical-ensemble average. Remarkably,
we obtain this individual-particle quantity from measure-
ment of the bulk relaxation of the average velocity of a
tagged subpopulation of particles in an equilibrium plasma.
This contrasts with measurements of macroscopic-particle
VAFs based on statistical sampling of individual trajecto-
ries, which is commonly used in studies of dusty-plasma
kinetics [20,21] and Brownian motion [22–24].
The VAF also provides information on transport

processes since its time integral yields the self-diffusion
coefficient through the Green-Kubo relation

D ¼
Z

∞

0

ZðtÞdt;

which describes the long-time mean-square displacement
of a given particle through D ¼ limt→∞hjrðtÞ − rð0Þj2i=6t
[25]. Our results provide the first experimental measure-
ment of the VAF and of self-diffusion in a three-
dimensional strongly coupled plasma. These results are
found to be consistent with MD simulations to within the
experimental uncertainty [5,6].
Measurements are performed on ions in an ultracold

neutral plasma (UCNP), which is formed by photoionizing
a laser-cooled atomic gas [26,27]. Shortly after plasma
creation, ions equilibrate in the strongly coupled regime
with Coulomb coupling parameter,

Γi ¼
e2

4πε0kBTi

�
4πn
3

�
1=3

; ð2Þ
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as large as ∼4. Here, Ti is the ion temperature and n is the
density. Electrons in the plasma provide a neutralizing
background and static screening on the ionic time scale
with a Debye screening length λ. This makes UCNPs a
nearly ideal realization of a Yukawa one-component plasma
(OCP) [28], a paradigm model of plasma and statistical
physics in which particles interact through a pairwise
Coulomb potential screened by a factor expð−r=λÞ.
Ultracold plasmas are quiescent, near local equilibrium,
and “clean” in the sense they are composed of a single
ion species and free of strong background fields. Strong
coupling is obtained at relatively low density, which
slows the dynamics and makes short-time-scale processes
(compared to the inverse collision rate) experimentally
accessible.
Powerful diagnostics exist for dense laboratory plasmas.

However, their interpretation is complicated by the tran-
sient and often nonequilibrium nature of the plasmas, and
they do not provide model-independent information on the
effects of particle correlations at short time scales. These
include, for example, measurement of the dynamic struc-
ture factor with x-ray Thomson scattering [29–31] and
measurement of electrical conductivity using a variety of
techniques [29,32–35]. Comprehensive studies of self-
diffusivity [20,21,36–38] exist for strongly coupled dusty
plasmas, but these systems are typically two dimensional
and, therefore, do not directly illuminate the kinetics of
bulk, three-dimensional plasmas.

II. METHODS

We perform experiments on ultracold neutral plasmas
[27], which are created by first laser cooling 88Sr atoms in a
magneto-optical trap [39]. Atoms are then photoionized
with one photon from a narrow-band laser resonant with the
principal 1S0 − 1P1 transition at 461 nm and another
photon from a tunable 10-ns, pulsed dye laser near
413 nm. The electron temperature (Te) in the plasma is
determined by the excess photon energy above the ioniza-
tion threshold, which can be tuned to set Te ¼ 1–1000 K.
Ions initially have very little kinetic energy, but they
possess an excess of Coulomb potential energy, and they
equilibrate on a microsecond time scale to a temperature
Ti ¼ 0.5–2.5 K, determined primarily by the plasma
density [40,41]. The ion equilibration process is called
disorder-induced heating (DIH).
Disorder-induced heating limits the ions to Γi ≈ 2–4. To

obtain measurements on more weakly coupled systems
(Γi < 1), the plasma is heated with ion acoustic waves
[42,43]. Waves are excited by placing a grating (10 cycles/
mm) in the path of the ionization beam, which is then
imaged onto the magneto-optical trap for greatest contrast
to create a plasma with a striped density modulation.
After sufficiently long time, the waves completely damp,
heating the plasma and reducing Γi. Electrons provide a
uniform screening background for the ions, with screening

parameter κ≡ a=λ ¼ 0.1–0.58 in these experiments, for
Wigner-Seitz radius a ¼ ð3=4πnÞ1=3.
The plasma density distribution is Gaussian in shape,

n ¼ n0 exp½−r2=2σðtÞ�, with initial size σð0Þ ¼ 1–2 mm.
Because of electron pressure forces, the plasma
expands according to σ2ðtÞ ¼ σ2ð0Þð1þ t2=τ2expÞ, where
τexp ¼ 10–50 μs is the expansion time [44].
An optical pump-probe technique [4,45] is used to

measure hΔvxðtÞiþ ≡ hvxðtÞiþ − hvxðtÞitotal, the average
velocity of a “spin-tagged” subpopulation of ions (labeled
“þ”) relative to the local bulk velocity of all the ions
(hvxðtÞitotal). Appendix A provides a proof that the nor-
malized VAFΨðtÞ≡ ZðtÞ=Zð0Þ is equivalent to the observ-
able hΔvxðtÞiþ=hΔvxð0Þiþ as long as the total system is
near thermal equilibrium and if terms beyond second order
are negligible in a Hermite-Gauss expansion of the initial
x-velocity distribution function for the subgroup fx;þ. As
shown below, our experiment satisfies these conditions,
which provides a new technique for measuring the VAF.
The evolution of hΔvxðtÞiþ is measured by first

using optical pumping to create electron-spin-tagged ion
subpopulations with nonzero average velocity (Fig. 1).
Pumping is accomplished by two counterpropagating,
circularly polarized laser beams each detuned by the same
small amount, −Δp, from the 2S1=2 − 2P1=2 transition at
421.7 nm. Taking advantage of the unpaired electron in the
2S1=2 ground state, ions are pumped out of the þ1=2 spin

FIG. 1. (a) Optical pumping and LIF spectroscopy. Ions are
optically pumped from the þ1=2 to −1=2 electronic spin state
around vx ¼ −Δp=k, and from the−1=2 toþ1=2 spin state around
vx ¼ þΔp=k with two counterpropagating, circularly polarized
laser beams detuned by −Δp rad=s from the 2S1=2−2P1=2 tran-
sition of the strontium ion (421.7 nm). The velocity profiles of the
individual spin populations are measured with LIF using a tunable
circularly polarized probe beam of variable detuning Δpr.
(b) Idealized illustration of a pumped velocity distribution for
þ1=2 ions resulting from optical pumping (red curve), along
with an unperturbed Gaussian thermal distribution (blue curve).
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state and into the −1=2 state around the negative x velocity
vx ¼ −Δp=k, while ions are pumped from −1=2 to þ1=2
spin around the positive velocity þΔp=k (the quantization
axis is taken to be along the axis of the pump beams,
defined as x̂). This creates subpopulations of þ1=2 and
−1=2 spin ions having velocity distributions skewed in
opposite directions, while the entire plasma itself remains
in equilibrium. The pump detuning, Δp=2π ¼ 30 MHz,
is resonant for ions with jvxj ¼ 12.6 m=s, which is on
the order of the thermal velocity, vth ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBTi=Mi

p ¼
13.7 m=s for Ti ¼ 2 K.
We probe the ion distribution with spatially resolved

laser-induced fluorescence (LIF) spectroscopy [44,46]
(Fig. 1). A LIF probe beam tuned near the 2S1=2 − 2P1=2

transition of the 88Sr ion propagates along the x axis and
excites fluorescence that is imaged onto an intensified CCD
camera with 1× magnification (12.5 μm per pixel), from
which the plasma density and x-velocity distribution are
extracted. By using a circularly polarized LIF probe beam,
propagating nearly along the pump beam axis, we selec-
tively probe only the þ1=2 ions.
Pumping is applied several plasma periods (2π=ωp)

after ionization to allow the plasma to approach equili-
brium after the disorder-induced heating phase [27,40].
(ωp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ne2=ϵ0Mi

p
∼ 107 s−1 is the ion plasma oscillation

frequency.) Electro-optic-modulator pulse pickers are used
to achieve 10-ns time resolution for application of the pump
and probe beams. The optical pumping time is 200 ns, and
the pump intensity is 200 mW=cm2 (saturation parameter
s0 ¼ 3.5). LIF data are taken at least 35 ns after the turn-off
of the pump to avoid contamination of the signal with light
from the decay of atoms promoted to the 2P1=2 state during
the pumping process. The origin of time is taken as the
middle of the 235-ns preparation time. The pumping and
imaging transition is not closed, and about 1=15 of the
excitations result in an ion decaying to a metastable 2D3=2

state that no longer interacts with the lasers. To ensure that
Larmor precession of the prepared atomic states does not
contaminate the data, a 4.5-G magnetic field is applied
along the pump-probe beam axis.
The LIF spectra (Fig. 2) SðνÞ are fit to a convolution

of a Lorentzian function LðνÞ ¼ γL=fπ½ðγLÞ2 þ 2ðνÞ2�g of
frequency ν (Hz) with the one-dimensional ion-velocity
distribution along the laser axis, fx;þðvxÞ,

SðνÞ ¼
Z þ∞

−∞
ð1=λÞLðν − s=λÞfx;þðsÞds; ð3Þ

where λ is the laser wavelength and γL is the width of
Lorentzian spectral broadening. For this system,
γL ¼ γl þ γn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s0

p
, where γl is the laser linewidth

(5.5 MHz) and γn is the natural linewidth (20.2 MHz).
The width is power broadened by the laser saturation
parameter s0. The distribution fx;þ is modeled with a
Hermite-Gauss expansion,

fx;þðvxÞ ¼
1

σv
ffiffiffiffiffiffi
2π

p exp

�
− ½vx − hvxðtÞitotal�2

2σ2v

�

×
XN
n¼0

Cn

ð2nn! ffiffiffi
π

p Þ1=2Hn

�
vx − hvxðtÞitotal

σv

�
; ð4Þ

where σv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBTi=Mi

p
, Hn are Hermite polynomials,

and the parameters Cn are expansion coefficients to be
determined by a fit to the data. For the analysis, N ¼ 5 is
chosen because the amplitudes of orders 4 and higher are
consistent with random noise.
The bulk velocity of the plasma hvxðtÞitotal arises because

of the plasma expansion. To separate expansion from
velocity perturbation due to optical pumping and ther-
mal-velocity spread, the plasma is divided into regions that
are analyzed independently [46]. Ti and hvxðtÞitotal for each
region are determined from analysis of LIF data from an
unpumped plasma. LIF data from an identical plasma

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 2. (a)–(c) Time evolution of 2S1=2 − 2P1=2 LIF spectra,
pumped (red circles) and unpumped (green squares), for spin
þ1=2 ions in a plasma with κ̄ ¼ 0.55 and Γ̄i ¼ 3.0. (Bars denote
time-averaged values; see Appendix B.) Spectra are fit (red and
green lines) to a fifth-order Hermite-Gauss expansion of the
velocity distribution convolved with the Lorentzian contribution
from the laser and natural linewidths. (d)–(f) Full velocity
distributions determined from the fits of pumped data to Eqs. (3)
and (4), along with constituent Hermite terms n ¼ 0–5. Most of
the velocity distribution is contained in the first few terms. Terms
of order larger than zero decay in time as the distribution relaxes
to a Maxwellian.
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except with optical pumping are then fit to Eqs. (3) and (4)
with only the expansion coefficients Cn as fit parameters in
order to determine hvxðtÞiþ, the average velocity forþ ions
including expansion and the effects of pumping. From
the pumped and unpumped data, we find the difference
hΔvxðtÞiþ for each of the regions, which are averaged
together to arrive at final values, such as in Figs. 3 and 4.
A detailed example of this analysis is provided in
Appendix C.
Because of the plasma expansion, the density and thus

the plasma frequency ωp decrease with time. To account for
this, in Figs. 3(b), 3(d), and 4 we show the time evolution
of the averaged velocity as a function of the scaled time
ts ¼

R
t
0 ωpðt0Þdt0, where the evolution of ωpðtÞ is described

assuming self-similar expansion of the Gaussian distribu-
tion [44]. All quoted plasma parameters indicated by a
symbol with a bar above it, such as κ̄ and Γ̄i, are time
averages over the period of the measurement, as described
in Appendix B. The density typically varies by a factor
of 2 during the measurement. The normalization factor
hΔvxð0Þiþ is determined from the fit of the data using a
memory-function formalism described below.

III. RESULTS AND DISCUSSION

Sample LIF spectra at various times after optical pumping
are shown in Figs. 2(a)–2(c) for a plasma with κ̄ ¼ 0.55

and Γ̄i ¼ 3.0. Figures 2(d)–2(f) show the corresponding
ion-velocity distributions and individual Hermite-Gauss com-
ponents of the pumped velocity distributions extracted from
fits to the raw spectra. At early times, there is significant
amplitude in the n ¼ 1 term, corresponding to the skew in the
velocity distribution. This decays away as fx;þ approaches a
Maxwellian centered around hvxðtÞitotal. Higher-order terms
are small at all times, satisfying an important condition for the
proof that ΨðtÞ ≈ hΔvxðtÞiþ=hΔvxð0Þiþ.
In the frame comoving with hvxðtÞitotal in a given region,

the average velocity of þ1=2 ions a time t after optical
pumping is hΔvxðtÞiþ ¼ R

fx;þðvxÞðvx − hvxitotalÞdvx=R
fx;þðvxÞdvx. Figures 3(a) and 3(b) show sample data

for two plasmas of different densities but with nearly the
same values of κ and Γi (one with κ̄ ¼ 0.55 and Γ̄i ¼ 3.0,
the other with κ̄ ¼ 0.57 and Γ̄i ¼ 3.2). In Fig. 3(a),
data are plotted versus time, while Fig. 3(b) plots
hΔvxðtÞiþ=hΔvxð0Þiþ versus time scaled by ω−1

p , appro-
priately accounting for the time-changing value of ωp.
The correspondence between the two data sets apparent in
Fig. 3(b) demonstrates the existence of a universal time
scale for the dynamics [28]. Corresponding data for
κ̄ ¼ 0.59, Γ̄i ¼ 0.7 are shown in Figs. 3(c) and 3(d).

A. Observation of non-Markovian dynamics

Data for hΔvxðtÞiþ=hΔvxð0Þiþ show nonexponential
decay of the average velocity up to times given by

(a) (b)

(c) (d)

FIG. 3. Relaxation of the average velocity of spin þ1=2 ions
in an optically pumped plasma. Lines indicate memory-function
and exponential fits to early-time data, as well as a t−3=2 fit to the
late-time tail. (a) hΔvxðtÞiþ=hΔvxð0Þiþ plotted versus time for
two strongly coupled plasmas. (b) Data from (a) versus time
scaled to the time integral of ωp. This plot shows the universal
scaling of hΔvxðtÞiþ=hΔvxð0Þiþ with ωp for plasmas of different
densities but with approximately the same Γ̄i and κ̄. Panels (c) and
(d) are the same plots as (a) and (b) but for a more weakly coupled
plasma.

(a) (b)

(c) (d)

FIG. 4. Early-time behavior of hΔvxðtÞiþ=hΔvxð0Þiþ. Lines
indicate memory-function and exponential fits. Data and fits for
plasmas with (a) κ̄ ¼ 0.55 and Γ̄i ¼ 3.0 (T̄e ¼ 19K), (b) κ̄ ¼ 0.57
and Γ̄i ¼ 3.2 (T̄e ¼ 26K), (c) κ̄ ¼ 0.24 and Γ̄i ¼ 2.1
(T̄e ¼ 88K), and (d) κ̄ ¼ 0.59 and Γ̄i ¼ 0.7 (T̄e ¼ 15K).
Deviation from exponential decay is evident in more strongly
coupled plasmas.
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R
t
0 ωpdt0 ∼ 1, which is a hallmark of non-Markovian
dynamics reflecting the strong coupling of the ions. This
is most clearly shown in Fig. 4, which is an expanded view
of the early-time data from velocity relaxation curves. The
early-time behavior of ΨðtÞ ≈ hΔvxðtÞiþ=hΔvxð0Þiþ can
be described using a memory-function formalism that treats
the effects of collisional correlations at the microscopic
level [15,19,47,48]. It can be derived from a generalized
Langevin equation describing the motion of a single test
particle experiencing memory effects and fluctuating
forces, which is familiar from treatments of Brownian
motion [19,47]. The evolution of the VAF is found to be

_ZðtÞ ¼ −
Z

t

0

Kðt − t0ÞZðt0Þdt0: ð5Þ

Here, Kðt − t0Þ is the memory function describing the
influence at time t from the state of the system at t0.
A general, closed-form expression for Kðt − t0Þ is

lacking, but there are expressions derived from simplifying
assumptions that agree well with molecular dynamics
simulations for simple fluids [19,49] and Yukawa potentials
when Γi > 20 [14,50]. Some formulas introduce a time
constant τ that may be interpreted as the correlation time for
fluctuating forces [15,19,47]. If one assumes that collisions
are isolated instantaneous events, τ → 0 and the memory
function becomes a delta function. This is the Markovian
limit in which the evolution of a system is entirely
determined by its present state and ΨðtÞ has purely
exponential dependence. Data from a more weakly coupled
sample [Fig. 4(d), Γ̄i ¼ 0.7] show no discernible rollover
in ΨðtÞ at short times.
An often-used approximation for Kðt − t0Þ for the non-

Markovian regime, valid for short times and moderately
strong coupling, is the Gaussian memory function
[15,19,47],

KGðt − t0Þ ¼ 2γcffiffiffiffiffiffiffiffiffi
2πτ2

p exp
�
− ðt − t0Þ2

2τ2

�
; ð6Þ

which satisfies the conditions that memory effects vanish
at long time and that it agrees with a Taylor expansion
of Kðt − t0Þ to second order around t ¼ t0 relating τ to
frequency moments of the Fourier transform of the VAF
[19]. For the Yukawa OCP, MD simulations have shown
that Eq. (6) accurately reproduces the ion VAF for Γi < 10
and ωpt < π, and the parameter γc can be related to a
well-defined collision rate [4].
Figures 3 and 4 show fits of the data in the scaled

time range 0 <
R
t
0 ωpdt0 < 4 to Eq. (5) with a Gaussian

memory function, along with exponential fits of data with
0.8 <

R
t
0 ωpdt0 < 4.5. At early times (

R
t
0 ωpdt0 < 0.5), the

memory-kernel fit captures the rollover, which is indicative
of non-Markovian collisional dynamics. The values of τ
we extract from the fit are on the order predicted by MD

simulations of a classic OCP [15], although improved
experimental accuracy is required before a precise com-
parison can be made.

B. Ion VAF and self-diffusion coefficients

Using hΔvxðtÞiþ=hΔvxð0Þiþ as an approximation for the
normalized ion VAF, the self-diffusion coefficient D may
be calculated from our measurements. As is normally the
case with calculations of this type, proper treatment of the
upper limit of integration in the Green-Kubo formula is
critical for obtaining accurate results. The behavior of the
long-time tail of the VAF for a Yukawa system has not been
explored in detail for the regime of our experiment, and
this is an important area for future study. For concreteness,
we assume a t−3=2 dependence, which is well established
as t → ∞ for neutral simple fluids [19] and is generally
accepted as the slowest possible decay [51]. We fit
the last few data points [beyond the time tcut, whereR tcut
0 ωpðt0Þdt0 ¼ 3π] to a bt−3=2s curve, where b is the fit
parameter and ts ¼

R
t
0 ωpðt0Þdt0 is the scaled time. The

dimensionless self-diffusion coefficient, D� ≡D=a2ωp, is
thus calculated as

D� ≈
1

3Γ̄i

Z
ts;N

0

ZðtsÞdts þ
2b
3Γ̄i

t−1=2s;N ; ð7Þ

where the first term is calculated numerically from the
data by linear interpolation and the trapezoidal rule. The
time of the last data point is tN , and ts;N ¼ R tN

0 ωpðt0Þdt0 in
scaled units. Extracted values forD�, along with theoretical
curves for κ ¼ 0 and κ ¼ 0.6 determined from a fit to
molecular dynamics simulations [5,6], are shown in Fig. 5.
For comparison, Fig. 5 also shows D� calculated from
the traditional Landau-Spitzer approach and from two
Chapman-Enskog calculations. Of the latter, one uses a
screened Coulomb interaction that includes electron and
ion screening [52,53]. The other uses a hypernetted chain
effective potential and a modified-Enskog correction
calculated in Ref. [54] (EPT-HNC/Enskog).
The error bars for D� include statistical and systematic

contributions we describe in Appendix B. The contribution
from the unmeasured long-time tail of ΨðtÞ adds the
dominant uncertainty. The lower error bar for D� assumes
no contribution beyond our measured points, while the
upper error bar reflects a tail contribution twice as large as
our best estimate. This is conservative given that the VAF is
exponential in the weakly coupled limit. There are signifi-
cant experimental improvements that can be made in the
measurement and important systematic effects that must be
investigated. The latter are scientifically interesting in their
own right, such as the time scale for the approach to
equilibrium of velocity correlations after plasma creation
and the effect of plasma expansion on the microscopic
dynamics. Any complications caused by these systematics
can be greatly reduced by performing measurements
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on a larger plasma for which the expansion time scale is
much greater than the characteristic collisional time scale
(ωpτexp ≫ 1).
Other sources of uncertainty include variation of density

across the analysis regions, the spread in bulk plasma
velocity across and within regions, the time-evolving
density, and the uncertainty in the density calibration.
These uncertainties are reflected in the horizontal error
bars in Fig. 5 and can be significantly reduced in future
experiments.

IV. CONCLUSIONS

Utilizing a spin-tagging technique to perturb and then
measure the average velocity hvxðtÞiþ of a subpopulation
of ions in an ultracold neutral plasma, and taking advantage
of an identification of the time evolution of this quantity
with the normalized ion VAF ½ΨðtÞ�, we experimentally
measure the VAF in a strongly coupled plasma. From this,
we calculate the ion self-diffusion coefficient D, which
provides an experimental benchmark that has been lacking
for molecular dynamics simulations of strongly coupled
Coulomb systems in three dimensions. The data also
display a nonexponential decay of ΨðtÞ at early times,
which has not previously been observed experimentally in a
bulk plasma and is indicative of non-Markovian collisional
dynamics. This behavior is well described by a memory-
function formalism.

Overall, these measurements experimentally validate
foundational concepts describing how ion velocity corre-
lations at the microscopic level determine the dynamics
of strongly coupled systems at the macroscopic level,
which cannot be adequately described by simple analytical
methods. Because ultracold neutral plasmas offer a clean
realization of the commonly used Yukawa OCP model,
these results are relevant for fundamental kinetic theory and
other plasmas for which effects of strong coupling are
important.
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APPENDIX A: hΔvxðtÞiþ=hΔvxð0Þiþ AS
AN APPROXIMATION TO Ψ ðtÞ

We show that the quantity hΔvxðtÞiþ=hΔvxð0Þiþ we
measure in these experiments corresponds to the normal-
ized VAF ½ΨðtÞ ¼ ZðtÞ=Zð0Þ� if the initial velocity dis-
tribution forþ1=2 ions (fþ) is Maxwellian in vy and vz and
well described by a second-order Hermite-Gauss expansion
in vx, and the optical pumping prepares the subsystem of
þ1=2 ions in a nonequilibrium state close to thermody-
namic equilibrium.
To prove this, we transform into the frame comoving

with any bulk hydrodynamic velocity of the ensemble,
making hvxðtÞitotal ¼ 0, which does not invalidate any steps
in the proof but makes hΔvxðtÞiþ ¼ hvxðtÞiþ. For simplic-
ity, we assume that the plasma is spatially homogeneous
in a volume V, although the following arguments can be
readily extended to account for nonuniform distributions.
Finally, we assume that the optical pumping occurs
instantaneously at some initial time t ¼ 0.
Let us consider a specified þ1=2 ion labeled “s” with

position rsðtÞ and velocity vsðtÞ at time t; for a statistical
description of the dynamics, it is useful to define the
microscopic phase space density as Nsðr; v; tÞ ¼
δ(r − rsðtÞ)δ(v − vsðtÞ) and its statistical average
fsðr; v; tÞ. Before optical pumping, for t < 0, the system
is in thermal equilibrium and fsðr; v; tÞ ¼ hNðr; v; tÞi ¼
fMðvÞ=V, where fMðvÞ is the Maxwell-Boltzmann velocity
distribution. After pumping, the subsystem is out of thermal
equilibrium:

fsðr; v; tÞ ¼ fMðvÞ=V þ δfsðr; v; tÞ: ðA1Þ

We assume jδfs=ðfM=VÞj ≪ 1, so that δfs satisfies

0.2 0.4 0.6 0.8

FIG. 5. Plot of the normalized self-diffusion coefficient D�
[Eq. 7)] calculated for our data. The solid blue and solid red lines
represent results from MD simulations for κ ¼ 0 and κ ¼ 0.6,
respectively [5,6]. The black dashed line represents the Landau-
Spitzer (LS) theory for weakly coupled plasmas, which diverges
in the regime of strong coupling. The orange and the purple
dashed lines use screened Coulomb and hypernetted chain
interactions, respectively, as described in the text.
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δfsðr; v; tÞ ¼
Z

dr0dv0Rsðr − r0; v; v0; tÞδfsðr0; v0; 0Þ;

ðA2Þ

where Rsðr − r0; v; v0; tÞ is the propagator, or retarded
Green’s function, of the equation that governs the temporal
evolution of δfs, which is obtained by linearizing the
exact evolution equation satisfied by fs. Remarkably,
the propagator Rs, which describes the nonequilibrium
dynamics of the system, is related simply to the
equilibrium time-correlation function Csðr − r0; v; v0; tÞ ¼
hNsðr; v; tÞNsðr0; v0; tÞi as follows:

Csðr; v; v0; tÞ ¼
Z

dr0
Z

dv00Rsðr − r0; v; v00; tÞ

× Csðr0; v00; v0; 0Þ
¼ Rsðr; v; v0; tÞfMðv0Þ=V; ðA3Þ

where, in the last equality, we use the initial value
Csðr; v; v0; 0Þ ¼ δðrÞδðv − v0ÞfMðvÞ=V. This relation is
an expression of the fluctuation-dissipation theorem [55].
From Eq. (A2), the average particle velocity along the x

direction determined in our experiment is

hvxðtÞiþ ¼
Z

drdvvxδfsðr; v; tÞ

¼
Z

dv
Z

dv0vxR̄sðv; v0; tÞδf̄sðv0; 0Þ;

where R̄sðv; v0; tÞ ¼
R
drRsðr; v; v0; tÞ and δf̄sðv; 0Þ ¼R

drδfsðr; v; 0Þ. If, as found experimentally (see Fig. 2),
δf̄s is initially well described by a second-order Hermite-
Gauss expansion in vx, then

hvxðtÞiþ ¼
Z

dv
Z

dv0vx½c0 þ c1v0x þ c2ðv0xÞ2�

× R̄sðv; v0; tÞfMðv0Þ=V

¼
Z

dv
Z

dv0vx½c0 þ c1v0x þ c2ðv0xÞ2�

× C̄sðv; v0; tÞ;

where we use the fluctuation-dissipation theorem Eq. (A3)
to obtain the second equality. The zeroth- and second-order
terms vanish since C̄sðv; v0; tÞ ¼ C̄sð−v;−v0; tÞ, and the
previous result simplifies to

hvxðtÞiþ ¼ c1

Z
dv

Z
dv0vxv0xC̄sðv; v0; tÞ

¼ c1hvx;sðtÞvx;sð0Þi ¼ c1ZðtÞ:

Therefore, we obtain the desired result:

hvxðtÞiþ
hvxð0Þiþ

¼ ZðtÞ
Zð0Þ ¼ ΨðtÞ: ðA4Þ

APPENDIX B: VARIATION AND
UNCERTAINTIES OF PLASMA PARAMETERS

Because the plasmas in these experiments undergo
expansion during the measurements, the values of various
plasma parameters quoted for a given VAF measurement
are time-averaged values given by a trapezoidal approxi-
mation to Θ̄ ¼ ½R tf

0 Θðt0Þdt0�=tf, where tf is the total time of
measurement and ΘðtÞ represents TiðtÞ, niðtÞ, κðtÞ, ωpðtÞ,
or ΓiðtÞ.
We now discuss the effects of expansion on the values of

the various plasma parameters, as well as the methods used
to incorporate these systematic variations into the quoted
uncertainties. UCNPs are created by ionizing neutral atoms
in a cloud with a 3D Gaussian profile. Immediately after
ionization, Ti equals the temperature of the trapped atoms
(around 10 mK), but on the time scale of the inverse plasma
frequency, the ions heat to a few degrees kelvin due to
disorder-induced heating. Measurements of the velocity
autocorrelation function and the self-diffusion constant are
performed after the DIH is complete and the plasma is near
local thermal equilibrium. After DIH, the ion temperature
still changes due to electron-ion heating and cooling from
expansion into the vacuum [56], but this is a slow evolution
compared to the experimental time scale.
After ionization, the plasma expands due to electron

pressure [44]. The expansion of the plasma cloud is self-
similar and well described by σðtÞ2 ¼ σð0Þ2ð1þ t2=τ2expÞ,
where σðtÞ is the Gaussian width parameter at time t after
ionization and τexp is the expansion time scale defined by

τexp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
miσð0Þ2=kB½Teð0Þ þ Tið0Þ�

p
, where mi is the ion

mass, kB is Boltzmann’s constant, Teð0Þ is the initial
electron temperature, and Tið0Þ is the ion temperature
after DIH. Because of this self-similar expansion, an
infinitesimal spatial region of the plasma that starts
at a given normalized radial position ~rð0Þ ¼ η remains
centered at ~r ¼ η throughout the expansion, where
~rðtÞ ¼ rðtÞ=σðtÞ. To track a well-defined population of
ions in the plasma, the analysis regions move with the
plasma expansion at a fixed ~r, while also increasing in size
at the same rate as σðtÞ.
The density is determined from the amplitude of the LIF

spectrum [46], with initial calibration given by the DIH
curve as described in Ref. [28]. The density at a position
of constant ~r changes by as much as a factor of 2 during
the course of a measurement, butωp and Γi vary as n1=2 and
n1=3, respectively, leading to a much smaller change in
these quantities.
The gradient of velocity outward from the center of the

plasma broadens the LIF spectrum in proportion to the
length of the analysis region along the direction of
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propagation of the LIF laser, which complicates the
determination of plasma temperature. Small regions are
used (corresponding to 50 μm along the k vector of the
LIF beam), so that the velocity change over a region is less
than 10% of the thermal velocity at the very latest times.
During most of the measurement, it is significantly less.
The effects of expansion are illustrated for a plasma with

κ̄ ¼ 0.24 and Γ̄i ¼ 2.1 in Fig. 6. This plasma has one of the
fastest expansions in the data set, and represents a “worst
case” for the complications introduced by plasma expan-
sion. In Fig. 6, the averages of Ti and ni for all the analysis
regions are shown with vertical error bars representing the
standard deviation. ωp and Γi are calculated from Ti and ni
for each region and then averaged. Data are fit to smooth
functions in time, which are used to calculate ωpðtÞ in the
expressions for scaled times in Figs. 2 and 3, and to
determine the values of time-averaged Γ̄i used to plot the
self-diffusion coefficient data in Fig. 5. The smooth fit to Ti
is a second-order polynomial, while the fits to the remain-
ing quantities are made using the plasma expansion
formulas [44]. The initial electron temperature Teð0Þ is
determined by the detuning of the photoionization laser
above threshold [27], and the evolution TeðtÞ is assumed to
follow predictions for a self-similar plasma expansion [44].
The spread in the value of Γi during a single measure-

ment of the self-diffusion constant, as shown in Fig. 6, is
taken as the systematic uncertainty of Γ̄i in Fig. 5, and is
reflected in the error bars. Statistical uncertainties are also

reflected in the error bars, but they are a minor contribution.
The spread in ωp values is also taken as the systematic
uncertainty of scaled time ts, which propagates into
the calculation of the self-diffusion constant through the
Green-Kubo integral of hΔvxðtÞiþ=hΔvxð0Þiþ over the
scaled time. Overall, the estimate of the total uncertainties
in Γ̄i and D� is a conservative one, incorporating statistical
uncertainty, systematic uncertainty arising from incomplete
knowledge of the form of the long-time tail of the VAF, and
“uncertainty” introduced by the range of values the plasma
parameters take over the course of the measurement.

APPENDIX C: SPECTRA FOR INDIVIDUAL
REGIONS AND VARIATION ACROSS

THE PLASMA

In Fig. 7(a), spectra from individual analysis regions are
shown for the plasma described in Fig. 6. The unpumped
spectra exhibit a shift of the center frequency from zero that
increases with time and distance from the plasma center
(region 0), reflecting the plasma expansion. By fitting the
unpumped spectra to a Gaussian distribution convolved
with the laser and natural linewidth broadening (assumed
to be a Lorentzian function), the center frequency and
Gaussian width are extracted. The center frequency deter-
mines the bulk expansion velocity ~vx for each region. The
width determines the ion temperature Ti. Ti and ~vx are
set as constants in fits of the corresponding pumped

(a) (b)

(c) (d)

(e) (f)

FIG. 6. Typical evolution of (a) Ti, (b) ni, (c) ωp, (d) Γi, (e) κ, and (f) Te versus scaled time with smooth fits.
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distributions to the fifth-order Hermite expansion [Eq. (5)]
convolved with the Lorentzian broadening. As Fig. 7(a)
shows, the fit to the raw data captures the “skewing” of
pumped distributions well. The convolution of the distri-
bution with the Lorentzian broadening preserves the first
moment of the distributions, so this broadening should not
affect the value of the average velocity.
In Fig. 7(b), the underlying velocity distributions

from the fits to each raw spectrum in Fig. 7(a) are shown,
along with each term of the Hermite expansion. Together,
Figs. 7(a) and 7(b) demonstrate that the first-order Hermite
term dominates over the higher-order odd terms at early
times across all the regions, which is a requirement for

hΔvxðtÞiþ=hΔvxð0Þiþ to be identified as the normalized
velocity autocorrelation function.
To disentangle the effects of plasma expansion from

thermal ion motion in the LIF spectra, it is important to
use regions that are relatively small along the direction of
propagation of the LIF laser beam. Seven small, overlapping
regions are analyzed individually. The regions have widths
0.1σ along the direction of propagation of the LIF laser and
span from −0.2σx to þ0.2σx along the same direction.
The values of hΔvxðtÞiþ for each of the seven regions are

averaged together to get one time evolution of hΔvxðtÞiþ
for the plasma. A typical result is shown in Fig. 8 for the
plasma described in Fig. 6. Black points are the average of

region -3 region -2 region -1 region 0 region 1 region 2 region 3

region -3 region -2 region -1 region 0 region 1 region 2 region 3

ar
b.

 u
ni

ts
ar

b.
 u

ni
ts

ar
b.

 u
ni

ts
ar

b.
 u

ni
ts

ar
b.

 u
ni

ts
ar

b.
 u

ni
ts

ar
b.

 u
ni

ts
ar

b.
 u

ni
ts

ar
b.

 u
ni

ts
ar

b.
 u

ni
ts

ar
b.

 u
ni

ts
ar

b.
 u

ni
ts

FIG. 7. (a) Pumped and unpumped LIF spectra from regions of width 0.1σx across the plasma cloud spanning x ¼ �0.2σx for the
plasma described in Fig. 6. (b) Pumped and unpumped velocity distributions determined from the spectra shown in (a).
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all regions at each time. The error bars are the statistical,
one-standard-deviation uncertainties of the mean values,
which we use in the main article to calculate the uncer-
tainties in hΔvxðtÞiþ=hΔvxð0Þiþ. The fits to the exponen-
tial function (using data in the range 0.8 < ωpt < 4) and to
the memory kernel (using data in the range 0 < ωpt < 4)
are also shown for reference.
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