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We show that two-dimensional periodically driven quantum systems with spatial disorder admit a unique
topological phase, which we call the anomalous Floquet-Anderson insulator (AFAI). The AFAI is
characterized by a quasienergy spectrum featuring chiral edge modes coexisting with a fully localized bulk.
Such a spectrum is impossible for a time-independent, local Hamiltonian. These unique characteristics
of the AFAI give rise to a new topologically protected nonequilibrium transport phenomenon: quantized,
yet nonadiabatic, charge pumping. We identify the topological invariants that distinguish the AFAI from a
trivial, fully localized phase, and show that the two phases are separated by a phase transition.
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I. INTRODUCTION

Time-dependent driving opens many new routes for
realizing and studying topological phenomena in many-
body quantum systems. For periodic driving, Floquet
theory provides a powerful framework for analyzing
quantum dynamics. In particular, periodically driven crys-
talline systems can be characterized in terms of Floquet-
Bloch band structures, analogous to the band structures of
nondriven systems. Recently, an intense wave of activity
has developed around exploring the possibilities of using
periodic driving to realize “Floquet topological insulators,”
i.e., driven system analogues of topological insulators
[1–22] in a variety of solid-state [23], atomic, and optical
contexts [24,25].
In addition to the phenomena above, driven systems may

also host unique types of robust topological phenomena,
without analogues in static systems [3,26–32]. A prominent
example is Thouless’s quantized adiabatic pump [33]:
a gapped one-dimensional system transmits a precisely
quantized charge when subjected to a periodic modulation,
in the adiabatic limit of slow driving. More recently, a new
example was discovered: a two-dimensional driven system
can support chiral edge states even if all of its bulk Floquet
bands have zero Chern numbers [3,27]. This situation
stands in sharp contrast to that of static two-dimensional
systems, where the existence of chiral edge states is

intimately tied to the topological structure of the system’s
bulk bands, as captured by their Chern numbers [34]. A
system exhibiting this anomalous behavior was recently
realized using microwave photonic networks [35,36].
In this work, we show that the unique topological

characteristics of periodically driven systems can lead to
qualitatively new phenomena when spatial disorder is
introduced. First, it is possible for robust chiral edge states
to exist in a two-dimensional driven system where all bulk
states are Anderson localized; we refer to such a system
as an anomalous Floquet-Anderson insulator (AFAI).
This situation cannot occur in the absence of driving,
where the existence of chiral edge states necessarily implies
that there must be delocalized bulk states at some energies
[37]. Crucially, in an AFAI this relation is circumvented

FIG. 1. The anomalous Floquet-Anderson insulator (AFAI), in
a disordered two-dimensional periodically driven system with
time-dependent Hamiltonian HðtÞ. In the AFAI phase all bulk
states are localized, yet the system hosts chiral propagating edge
states at all quasienergies. The nontrivial topology of the phase is
characterized by a nonzero value of the winding number defined
in Eq. (8).
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by the periodicity of quasienergy: the edge states persist
through all quasienergies, completely wrapping around the
quasienergy Brillouin zone. Moreover, the combination
of these novel chiral edge states and a fully localized
bulk gives rise to an intriguing nonequilbrium topological
transport phenomenon: quantized nonadiabatic charge
pumping.
This paper is organized as follows. In Sec. II, we present

a heuristic physical picture of the AFAI phase and give
an overview its properties. Section III analyzes a simple
solvable model that serves as a proof of principle for the
AFAI phase. In Sec. IV, we discuss the topological invariant
characterizing the AFAI and show that the AFAI exhibits
edge modes at every quasienergy. In Sec. V, we show how
the edge mode structure leads to quantized charge pump-
ing. In Sec. VI, we conduct a numerical study of a wider
class of models exhibiting the AFAI phase. We numerically
demonstrate the properties discussed in Secs. IV and V. At
strong disorder, we find a topological transition between
the AFAI and a “trivial” Floquet insulator where all states
are localized (including at the edges).

II. PHYSICAL PICTURE AND SUMMARY
OF THE MAIN RESULTS

To begin, in this section we summarize the main results
of this work. In particular, we describe the unique spectral
characteristics of the AFAI and the novel nonadiabatic
quantized pumping phenomenon that it hosts. Our aim in
this section is to provide a heuristic-level picture of our
findings; detailed derivations and further discussion follow
in Secs. IV–VI.
The AFAI is a unique phase occurring in disordered,

periodically driven two-dimensional systems. The system
evolves according to a time-periodic Hamiltonian,
HðtÞ ¼ Hðtþ TÞ, where T is the driving period. For
describing the long-time behavior of such systems it
is useful to study the stroboscopic “Floquet” evolution

operator UðTÞ ¼ T e−i
R

T

0
dtHðtÞ. The eigenvalues of UðTÞ

are phases, e−iεT , where the quasienergy ε is defined in a
periodic Floquet-Brillouin zone with period Ω ¼ 2π=T.
In two spatial dimensions, disordered, periodically

driven systems may exhibit a variety of phases. Some of
these phases have direct analogies in nondriven systems.
In cases where such analogies exist, all features of the
driven system can be derived from an associated time-
independent “effective Hamiltonian” Heff , defined such
that UðTÞ ¼ e−iTHeff . Topological characteristics, such as
the presence or absence of chiral edge states at sample
boundaries, are, in particular, captured in those cases by the
effective Hamiltonian and its associated Chern numbers,
just as for nondriven systems (recall that Chern numbers
provide a full topological characterization of noninteracting
static systems without symmetries). As a result, many
phenomena exhibited by static systems can be mimicked by

periodically driven systems; examples include the direct
correspondence between chiral edge states and bulk Chern
numbers described above, as well as disorder-induced
topological transitions, as exhibited by the “topological
Anderson insulator” [38] and its Floquet counterpart [11].
The AFAI phase we introduce in this work is a phase of a

disordered periodically driven systems whose character-
istics are qualitatively distinct from those achievable in
the absence of driving. Its defining property is that all its
bulk Floquet states are localized by the disorder; never-
theless, its edges support chiral edge states. This unusual
situation has a number of intriguing physical consequences,
as we describe below.
In the absence of driving, chiral edge states must be

accompanied by delocalized states in the bulk of the system.
This can be seen by considering a system in an annular
geometry and tracking how its spectrum evolves as magnetic
flux is threaded through the hole of the annulus. Once a full
flux quantum is inserted, the Hamiltonian is equivalent to the
original one and therefore its spectrum must be unchanged
compared to the original one. Tracing the evolution of a
given state as the flux is inserted, there are two options once
a full flux quantum is reached: (1) the state returns to its
original energy or (2) the state “flows” to a new energy [39].
The edge states evolve according to option (2). The only way
for this spectral flow to terminate is if a delocalized bulk state
is reached, connecting the upward- and downward-flowing
families of states on opposite edges. Thus, we see that chiral
edge states cannot exist without delocalized bulk states, as
otherwise the spectral flow would have to continue up and
down to infinite energies.
The above argument fails when considering a periodically

driven system, where the quasienergy spectrum is periodic
with a period Ω ¼ 2π=T. In this case, the flow of the edge
states need not terminate in a delocalized bulk state. Instead,
the flow of the edge states can “wrap” around the quasie-
nergy zone. In this light, it appears that it may be possible to
find a system that exhibits chiral edge states and at the same
time has all of the bulk states localized. If this unique
situation can indeed be realized, it would furthermore imply
that the chiral edge states must be present at every quasie-
nergy. Can these intriguing properties be realized in a two-
dimensional, disordered, periodically driven system? The
current work is the first to address this question.
To prove the existence of this anomalous Floquet-

Anderson insulator phase, in Sec. III we start with a simple
exactly solvable periodically driven system, whose Floquet
spectrum and eigenstates can be obtained explicitly. We
then study its behavior in the presence of weak perturba-
tions that break the solvability, and show that the AFAI
phase is robust over a finite extent in parameter space. The
nontrivial character of this phase is captured by an integer-
valued bulk topological invariant W that characterizes
the Floquet operator of a system on a torus with threaded
fluxes (Sec. IVA). The value of the bulk invariant gives
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the number of chiral edge states that would appear in a
geometry with boundaries. In Sec. IV B, we show that the
edge state spectrum itself can be directly characterized in
terms of a different winding number invariant, defined for a
system in a cylindrical geometry.
Our analysis is complemented by numerical simulations,

which explore both the weak and strong disorder regimes.
As the disorder strength is increased, we find that the
system undergoes a phase transition to a trivial Anderson
insulator; see Sec. VI B.
The above properties describe the single-particle char-

acteristics of the AFAI and lead to its defining characteristic
as a many-body system: robust quantized charge pumping
that persists in a nonadiabatic driving regime. This behavior
is in contrast to that of the one-dimensional “Thouless
pump,” where the pumped charge is quantized only in the
limit of infinitely slow driving [33]. The setup that realizes
nonadiabatic quantized pumping is illustrated in Fig. 1. We
consider a strip of AFAI in which all of the states close to
one edge are populated with fermions. In this situation, the
total current flowing through the strip is quantized as an
integer times the inverse driving period, hIi ¼ eW=T. Here,
W is the bulk topological invariant discussed above, and hIi
is the current averaged over many driving periods. The
quantized charge pumping is a direct result of the edge
structure defined above: when the fermion occupation
is of the form shown in Fig. 1, the edge states on one
side are completely filled, while the localization of the
bulk states prevents current from flowing in the direction
perpendicular to the edge. In Sec. V, we derive the relation
between the quantization of the charge current and the bulk
topological invariant and discuss temporal fluctuations
about the quantized value.
Putting together all of the characteristics described

above, we may thus define the AFAI as a disordered,
periodically driven system in which all the bulk Floquet
eigenstates are localized, and (i) the quasienergy indepen-
dent winding number W is nonzero, (ii) chiral edge modes
propagate along sample boundaries at all quasienergies,
and (iii) a quantized current is pumped whenever all states
along one edge are filled with fermions. As we show below,
the properties (i)–(iii) all follow from each other.

III. EXPLICIT DEMONSTRATION OF THE
ANOMALOUS FLOQUET-ANDERSON PHASE

In this section, we study a simple model that allows us to
explicitly demonstrate the existence and robustness of
the AFAI phase. We start from an exactly solvable model
for a periodically driven disordered system, which exhibits
localized bulk bands with zero Chern numbers and chiral
edge states at all quasienergies. We then argue that these
properties are robust to generic small perturbations (which
break the solvability): upon adding perturbations, the bulk
states remain localized and the chiral edge states persist.
The model thus proves the existence of a phase of

periodically driven systems in which chiral (Floquet) edge
states may coexist with a fully localized bulk. This is the
AFAI phase. In the next section, we discuss the robustness
of the phase and the edge and bulk topological invariants
that characterize its universality.
As a starting point, we consider a clean (nondisordered)

system on a square lattice, introduced in Ref. [27]. The time-
periodic, piecewise-constant Hamiltonian is of the form
HcleanðtÞ ¼ Hn, for ½ðn−1ÞT=5�≤ t < ðnT=5Þ, n ¼ 1;…; 5.
The square lattice is divided into two sublattices, A and B
(shown as filled and empty circles in Fig. 2). During each
of the first four segments of the driving, n ¼ 1;…; 4,
hopping matrix elements of strength J between the A and
B sublattices are turned on and off in a cyclic, clockwise
fashion, as shown in Fig. 2(a): during segment n ¼ 1, 2, 3,
or 4, each site in the A sublattice is connected by hopping
to the site above, to the right, below, or to the left of it,
respectively. In the fifth segment of the period, all of the
hoppings are set to zero, and an on-site potential δA;B is
applied on the A and B sublattice sites, respectively.
We choose the hopping strength J such that

½ðJTÞ=5� ¼ ðπ=2Þ. For this value of J, during each hopping

(a)

(b) (c)

FIG. 2. Simple explicit model for achieving the anomalous
Floquet-Anderson phase. (a) The Hamiltonian is piecewise
constant, defined in five equal length segments of duration
T=5. During steps 1–4, nearest-neighbor hopping is applied
along the colored bonds as shown. The hopping strength J is
chosen such that a particle hops between adjacent sites with
probability one during each step. In the fifth step, all hopping is
turned off and a random disorder potential is applied (the same
potential is used for all subsequent driving cycles). (b) Over one
driving period, a particle initialized on any site in the bulk returns
precisely to its original position (blue arrow). Along the upper
edge, a particle initialized on site ðx; 0Þ of the A sublattice shifts
two sites to the right (red straight arrow) and acquires a phase
e−i½π=2þVðxþ2;0ÞT=5�. (c) With disorder, the quasienergy spectrum
consists of two nonoverlapping bands of width 2δV, centered
at ε ¼ �π=2T.
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segment of the driving period a particle that starts on one of
the sites hops to the neighboring site with unit probability.
The on-site potential, applied only while all hopping matrix
elements are turned off, is chosen to be δA;B ¼ �ðπ=2TÞ.
With the parameter values chosen above, it is easy to find

the Floquet eigenstates and quasienergies of the time-
dependent Hamiltonian HcleanðtÞ. The bulk spectrum con-
sists of two flat Floquet bands with quasienergies�ðπ=2TÞ,
with the corresponding Floquet eigenstates localized on
either the A or B sublattice. Over each driving period, a
particle initially localized on either an A or a B site in the
bulk encircles a single plaquette and returns to its original
position; see blue arrow in Fig. 2(b). In a cylindrical
geometry, motion along the edge is also easily visualized:
particles on the first row of sites in the A (B) sublattice
along the upper (lower) edge shift one unit cell to the right
(left), as shown by the red arrow on the upper edge in
Fig. 2(b). The corresponding eigenstates are, therefore,
plane waves, localized on the first row of sites in the A (B)
sublattice along the upper (lower) edge. The two edges
therefore host linearly dispersing chiral modes in the
quasienergy gaps between the two bulk bands.
We now introduce a specific form of a time-dependent

disorder potential VðtÞ, which still allows for an exact
solution. The full time-dependent Hamiltonian is given
by H0ðtÞ ¼ HcleanðtÞ þ VðtÞ. During the fifth segment of
the driving period, we let VðtÞ ¼ P

rVrc
†
rcr, where Vr is

drawn from a smooth distribution with support in the range
½−δV; δV�, and cr is the annihilation operator at the integer-
valued lattice position r ¼ ðx; yÞ. During segments 1–4,
VðtÞ ¼ 0. We choose δV < ðπ=2TÞ, ensuring that the gap
between bands remains open.
By following the evolution of a state that is localized on a

single bulk site r at time t ¼ 0, one can easily verify that
this state is a Floquet eigenstate, whose quasienergy is
�ðπ=2TÞ þ Vr [here, þ1 (−1) refers to an initial site in
the A (B) sublattice]. With periodic boundary conditions,
the Floquet spectrum consists of two bands, with quasie-
nergies in the ranges ½�ðπ=2TÞ − δV;�ðπ=2TÞ þ δV�; see
Fig. 2(c).
In a cylindrical geometry, one can similarly follow the

evolution of a state that is initially localized on a site at
the edge, as discussed above and in Fig. 2(b). A particle
initialized at site r ¼ ðx; 0Þ on the A sublattice on the upper
edge is translated by two sites to the right, and then picks up
a phase e−i½π=2þVðxþ2;0ÞT=5�. The Floquet eigenstates localized
at the edge are no longer perfect plane waves, but they do
remain extended with support entirely on the first row of
sites along the edge.
To explicitly construct the edge eigenstates, note that the

shift operation [denoted S in Fig. 2(b)] followed by the
application of a local phase gives

ψxþ2ðTÞ ¼ ψxð0Þe−i½π=2þVðxþ2;0ÞT=5�; ð1Þ

where ψxðtÞ is the wave function of an edge eigenstate at
ðx; 0Þ. The eigenvalue relation further yields ψxþ2ðTÞ ¼
ψxþ2ð0Þe−iεT . Taking the ansatz ψx ¼ eiðkxþδϕxÞ yields
ε ¼ k=T and δϕxþ2 ¼ δϕx − ðπ=2Þ − Vðxþ2;0ÞT=5. This
recurrence relation for the phases is trivially solved by
iteration for a system in the geometry of an infinite strip,
for any value of k. For a finite cylinder with 2N sites
around the perimeter, the edge state closes on itself
and yields an additional nontrivial condition:
δϕ1 ¼ 2kN þ δϕ2N − ðπ=2Þ − Vð1;0ÞT=5. Satisfying this
constraint imposes a quantization condition on the allowed
values of k. In the thermodynamic limit, all values
0 ≤ k < 2π become allowed and we explicitly see that
chiral edge states persist at all quasienergies, in the
presence of a fully localized bulk. By the definition pre-
sented in Sec. II, the HamiltonianH0ðtÞ ¼ HcleanðtÞ þ VðtÞ
thus realizes the AFAI phase.
Clearly, the above model utilizes a very specific form

of the periodic driving and of the added disorder.
Nevertheless, we argue that the AFAI is a robust phase
that does not require fine-tuning. To demonstrate the
robustness of the phase, we now consider a generic local
perturbation of H0ðtÞ that preserves the periodicity in time,
HλðtÞ ¼ H0ðtÞ þ λDðtÞ, and show that the AFAI phase
survives up to a finite value of λ.
The perturbation DðtÞ is assumed to be periodic in time

and short ranged in real space, such that the matrix
elements of DðtÞ vanish beyond the rth neighbor on the
square lattice. For δV ¼ 0 (no disorder) and λ ≠ 0, the bulk
eigenstates of UðTÞ are generically dispersive and delo-
calized. However, we argue that for δV > 0 and for a
sufficiently small λ, all of the bulk Floquet states remain
localized. To see this, we derive a time-independent
effective Hamiltonian Heff

λ for the Floquet problem (on
the torus), with δV ≠ 0, λ ≠ 0:

e−iH
eff
λ T ¼ T e−i

R
T

0
dt½H0ðtÞþλDðtÞ�; ð2Þ

whereT denotes time ordering.We furtherwrite the effective
Hamiltonian asHeff

λ ¼ Heff
ð0Þ þDeff , whereHeff

ð0Þ corresponds
to the unperturbed (λ ¼ 0) effective Hamiltonian, defined
such that its eigenstates lie in the range ½−ðπ=TÞ; ðπ=TÞÞ.
Here, we are considering a system with periodic boundary
conditions; we comment on the edge states later.
The key point, which we show below, is that for

sufficiently small δV and λ, the hopping matrix elements
of the effective static Hamiltonian Heff

ð0Þ þDeff decay
exponentially with distance. If, in addition, λ ≪ δV=Ω,
then all of the Floquet eigenstates remain localized [40].
To find the effective Hamiltonian for λ ≠ 0 we need to

solve for Deff. The unperturbed effective Hamiltonian is of
the form

Heff
ð0Þ ¼

X
r

�ð−1Þηrπ
2T

þ Vr

�
c†rcr; ð3Þ
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where ηr ¼ 0 (1) for j on the A (B) sublattice. We express
Deff as a power series in λ:

Deff ¼ λDð1Þ
eff þ λ2Dð2Þ

eff þ λ3Dð3Þ
eff þ � � � : ð4Þ

To findDðmÞ
eff , we expand both sides of Eq. (2) in powers of λ

and compare them order by order. The details of the
calculation are given in Appendix A. The results can be
summarized by considering the explicit representation of

the operators DðnÞ
eff as a tight-binding Hamiltonian:

DðnÞ
eff ¼

X
r;r0

ΔðnÞ
r;r0c

†
rcr0 : ð5Þ

Using the explicit form forHeff
ð0Þ given in Eq. (3), we find for

the lowest-order term

Δð1Þ
r;r0 ¼

iEr;r0

eiEr;r0T − 1

�Z
T

0

dtDðtÞ
�
r;r0

; ð6Þ

with DðtÞ ¼ U0ðt; 0Þ†DðtÞU0ðt; 0Þ, where U0ðt; 0Þ is the
λ ¼ 0 evolution operator, and Er;r0 ¼ Vr − Vr0 þ
f½ð−1Þηr − ð−1Þηr0 �π=ð2TÞg is the zeroth-order quasienergy
difference between the states localized at sites r and r0.
As long as Er;r0T is smaller than 2π for every pair of

sites, which is the case for δV < ½π=ð2TÞ�, the factor
½ðiEr;r0 Þ=ðeiEr;r0T − 1Þ� in Eq. (6) is bounded. Similarly,

the matrix elements ΔðnÞ
r;r0 are all nonsingular (see

Appendix A). Under these conditions, we expect the
expansion in powers of λ to converge. In Appendix A,
we argue that for sufficiently small λ, the matrix elements of
Heff

λ decay exponentially with distance. Therefore,Heff
λ has

the form of a tight-binding model with random on-site
potentials and weak, short-range hopping. In this context,
we expect all states to remain localized up to a critical
strength of λ.
Since all of the bulk states remain localized as λ is turned

on, the chiral edge states that exist for λ ¼ 0 cannot
disappear; the only way to remove them is by closing
the mobility gap in the bulk, allowing the two counter-
propagating states at the two opposite edges to backscatter
into each other. Hence, we expect the chiral edge states to
persist up to a critical value of λ where the bulk mobility
gap closes.
In this section, we used a simple explicit model to

demonstrate the existence of the AFAI, proving by example
that chiral edge states may exist in a periodically driven
system in which all bulk states are localized. Next, we show
that this behavior, in fact, has a topological origin, and is
thus much more general than the example used for this
existence proof.

IV. TOPOLOGICAL INVARIANTS OF THE AFAI

In this section, we derive “bulk” and “edge” topological
invariants that characterize the robust features of the AFAI

spectrum for systems in periodic and open geometries,
respectively. As we show, the bulk invariant, computed
for an AFAI on a torus, gives the net number of chiral
edge modes when the system is opened to a cylindrical
geometry.

A. Bulk invariant

We now consider a generic disordered two-
dimensional system with a time-periodic Hamiltonian
HðtÞ ¼ Hðtþ TÞ. No special form of disorder is assumed.
As an additional ingredient, we also consider constant
(time-independent) fluxes, Θ ¼ ðθx; θyÞ, which are
threaded through the torus [41]. This yields a family of
time-dependent Hamiltonians HðΘ; tÞ, and their associated

evolution operators, UðΘ; tÞ ¼ T e−i
R

t

0
HðΘ;t0Þdt0 .

As a first step in constructing the bulk topological
invariant, we define an associated, “deformed” time-
periodic evolution operator for the system on a torus:

UεðΘ; tÞ ¼ UðΘ; tÞ exp½iHeff
ε ðΘÞt�; ð7Þ

with Heff
ε ðΘÞ ¼ ði=TÞ logUðΘ; TÞ. Note that, by construc-

tion, UεðΘ; TÞ ¼ 1. The explicit dependence on ε in the
above definitions comes from the necessary choice of a bran-
ch cut for log; we use a definition such that −i log eiχ ¼ χ
if χ ∈ ½0; εTÞ and −i log eiχ ¼ χ − 2π if χ ∈ ½εT; 2πÞ.
With these definitions at hand, we can define the

“winding number” [42]:

Wε ¼
Z

T

0

dt
Z

d2Θ
8π2

TrðU†
ε∂tUε½U†

ε∂θxUε;U
†
ε∂θyUε�Þ: ð8Þ

In Eq. (8), we use the shorthand Uε ≡ UεðΘ; tÞ, and Wε

is an integer, which can, in principle, depend on the
quasienergy ε. Note that in order forWε to be well defined,
the quasienergy ε has to remain in a spectral gap ofUðΘ; TÞ
for every value of the threaded fluxes Θ (otherwise, the
operator Uε is discontinuous as a function of Θ). For a large
enough disordered system, almost all values of ε satisfy this
requirement, since upon changing fluxes θx and θy, the
quasienergies of the localized bulk states change only by an
amount proportional to e−L=ξ, where ξ is the localization
length and L is the linear system size. In contrast, the
average level spacing is proportional to 1=L2.
When all of the eigenstates of UðΘ; TÞ are localized, the

invariantWε is, in fact, independent of ε. This follows from
the relation between the winding numberWε and the Chern
numbers characterizing the eigenstates of UðΘ; TÞ [27],

Wε1 −Wε2 ¼ Cε1;ε2 : ð9Þ
In the above, Cε1;ε2 is the total Chern number of the
eigenstates with quasienergies between ε1 and ε2:

Cε1;ε2 ¼
Z

d2Θ
4π

TrfPðε1;ε2Þ
Θ ½∂θxP

ðε1;ε2Þ
Θ ; ∂θyP

ðε1;ε2Þ
Θ �g; ð10Þ
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where Pðε1;ε2Þ
Θ is a projector onto the eigenstates of UðΘ; TÞ

with quasienergies between ε1 and ε2. If all of the bulk
eigenstates are localized, Cε1;ε2 ¼ 0 [43]. Therefore, in this
case, by Eq. (9),Wε1 ¼ Wε2 for every pair of quasienergies.
Then, we can drop the subscript ε, and refer to the winding
number simply as W.

B. Edge invariant and chiral edge states

We now concentrate on the edge structure of the AFAI,
considering a system in a cylindrical geometry. To reach the
AFAI phase, we envision a generalization of the model in
Sec. III in which disorder is added to a (translationally
invariant) Floquet-Bloch system, for which all the Chern
numbers of UðTÞ vanish but with one chiral edge state on
each edge running through each of the bulk gaps of the
quasienergy spectrum. The setup and spectrum are shown
schematically in Figs. 3(a) and 3(b).

In the clean limit, there are chiral edge states in any bulk
quasienergy gap with a nonzero winding number [27].
Clearly, these edge states cannot localize when weak
disorder is added. Moreover, intuitively, if all of the bulk
states are localized, the chiral edge states must persist even
within the spectral region of the bulk states. To see this,
consider inserting a flux quantum through the hole of the
cylinder. As a function of the applied flux, the chiral edge
states exhibit a nontrivial “spectral flow”: even though the
spectrum as a whole is periodic as a function of flux, every
state evolves into the next state in the spectrum [Fig. 3(d)].
The spectral flow cannot terminate in the bulk bands since
all the bulk states are localized and are, hence, insensitive to
the flux. Thus, there must exist a delocalized, chiral edge
state at every quasienergy to “carry” the spectral flow.
To make this argument more precise, we define a

topological invariant that directly characterizes the spectral
flow of the edge states. To construct the edge topological
invariant, we consider a cylinder that extends from y ¼ 0 to
y ¼ Ly, with a flux θx inserted through the hole of the
cylinder. We use tildes to denote operators for the system
on the cylinder, in particular, including the Hamiltonian
~Hðθx; tÞ and evolution operator ~Uðθx; tÞ.
We now isolate the topological features of the edge states

by deforming the evolution operator in the regions away
from the edges, such that the evolution in the bulk takes a
simple universal form, while the evolution near the edges
is unaffected. In particular, we change the Hamiltonian
~Hðθx; tÞ away from the edges such that all of the Floquet
eigenstates localized at least a distance l0 from the edges
have quasienergy ε ¼ 0. (Here, l0 is taken to be larger than
the original bulk localization length.) The resulting evolu-
tion operator, which we denote by ~Uεðθx; tÞ, interpolates
smoothly between ~Uðθx; tÞ in the vicinity of the edge
and UεðΘ; tÞ of Eq. (7) in the bulk. Note that in the latter
the value of θy can be chosen arbitrarily [44]. We give an
explicit formulation of such a deformation procedure in
Appendix B. Importantly, this deformation can be per-
formed such that the bulk Floquet states remain localized
throughout the entire deformation process.
The deformed Floquet operator ~Uðθx; TÞ takes the block-

diagonal form

~Uεðθx; TÞ ¼

0
B@

~Uε;1ðθx; TÞ 0 0

0 1 0

0 0 ~Uε;2ðθx; TÞ

1
CA: ð11Þ

The sub-blocks ~Uε;1ðθy; TÞ and ~Uε;2ðθx; TÞ correspond to
sites with 0 ≤ y ≤ l0 and Ly − l0 ≤ y ≤ Ly, respectively;
the unity block acts on sites with l0 < y < Ly − l0. The
precise value of l0 is not important, as long as it is much
larger than the bulk localization length of the original
evolution operator, ~Uðθx; TÞ.

(a) (b)

(c) (d)

FIG. 3. Edge states and spectral flow in the AFAI. (a) The
parent phase of the AFAI is a clean system without disorder,
where all Floquet bands have Chern number zero but the winding
number (2) is nonzero in all gaps. In a cylinder geometry, chiral
edge states propagate along the upper and lower boundaries, only
at quasienergies within the bulk gaps. (b) The corresponding
spectrum, shown as a function of the conserved circumferential
crystal momentum component. (c) When disorder is added, all
bulk states become localized while the chiral edge modes on the
cylinder persist. When all states are filled near one end of the
cylinder, a quantized current flows along the edge. (d) With
disorder, crystal momentum is no longer a good quantum number.
However, the spectrum of states localized near the upper edge,
displayed as a function of the flux θx threaded through the
cylinder, clearly displays a nontrivial spectral flow. The spectral
flow fully winds around the quasienergy zone, accounting for the
quantized pumping in the AFAI phase.
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The integer-valued “edge winding number” that charac-
terizes the spectral flow of the AFAI is defined as

nedge ¼
Z

2π

0

dθx
2π

Tr½ ~U1ðTÞ†∂θx
~U1ðTÞ�

¼
X
j

T
2π

Z
2π

0

dθx
∂εj
∂θx ; ð12Þ

where in the first line of Eq. (12), and below, we use
the shorthand ~UjðTÞ≡ ~Uj;εðθx; TÞ. In the second line
of Eq. (12), the sum runs over all the eigenstates of
~U1ðTÞ, and εj are their corresponding quasienergy values.
The edgewinding number [Eq. (12)] counts howmany times
the spectrum of ~U1ðTÞ “wraps” around the quasienergy
zone ε ∈ ½0; 2π=TÞ as θx varies from 0 to 2π. A schematic
example of a spectrum with a nonzero winding number
is shown in Fig. 3(d) [39]. Note that the total winding
number of the system,

R
2π
0 ½ðdθxÞ=ð2πÞ�Tr½ ~UεðTÞ†∂θx

~UεðTÞ�,
must vanish [3]. Hence, the winding numbers of ~U1ðTÞ and
~U2ðTÞ must sum to zero.
A nonzero nedge necessarily implies that there are delo-

calized states along the edge; if all states were localized, their
quasienergies would be almost insensitive to θx, and, hence,
nedge would be zero. Note also that, since in the AFAI all the
bulk states are localized, changing l0 would not change
nedge; this amounts to adding a few localized states to the

spectrum of ~U1ðTÞ, and cannot change its winding number.

V. QUANTIZED CHARGE PUMPING

We now describe the quantized nonadiabatic pumping
phenomenon that characterizes the AFAI phase. Consider
an AFAI placed in a cylindrical geometry, as in Fig. 3(c).
Fermions are loaded into the system such that in the initial
state all the lattice sites are filled up to a distance of l ≫ ξ
from one edge of the cylinder, and all the other sites are
empty. Here, ξ is the localization length characterizing
states far from the edges of the system. Below, we show that
in the thermodynamic limit the current across a vertical cut
through the cylinder, averaged over many driving periods,
is equal to nedge, Eq. (12), divided by the driving period T.
In Appendix C 2, we furthermore show that the long-time
average of the pumped charge per driving period is also
given by the bulk topological invariantW, which we define
in Sec. IVA. The exact form in which we terminate the
filled region will not matter, as long as all the sites near one
edge are filled and all the sites near the other edge are
empty. The system thus serves as a quantized charge pump,
but unlike the quantized pump introduced by Thouless
[33], there is no requirement for adiabaticity.

A. Setup

To set up the calculation of the charge pumping in the
AFAI, we choose coordinates such that x is the direction

along the edges of the cylinder and y is the transverse
direction. We denote the initial many-body (Slater deter-
minant) state, in which all sites up to a distance of l from
the edge are filled, by jΨð0Þi. Then, the charge pumped
across the line x ¼ x0 between t ¼ 0 and t ¼ τ is given by

hQiτ ¼
Z

τ

0

dthΨðtÞj ∂ ~Hðθx; tÞ
∂θx jΨðtÞi: ð13Þ

Here, θx is the flux through the cylinder and ~Hðθx; tÞ is the
corresponding Hamiltonian. For concreteness, we specify a
gauge in Eq. (13), such that on the lattice every hopping
matrix element that crosses the line x ¼ x0 has a phase of
eiθx . With this choice, the current operator across the line
x ¼ x0 is given by f½∂ ~Hðθx; tÞ�=ð∂θxÞg.
We are interested in the average pumped charge over N

periods. Below, we show that in the limit of large N,

hQiNT

N
¼ Q∞ þO

�
1

N

�
; ð14Þ

where Q∞ is quantized, Q∞ ¼ W ¼ nedge [45]. Note that if
the system is initialized in a Slater determinant of Floquet
eigenstates, then the Oð1=NÞ term in Eq. (14) is absent,
since then the pumped charge per period is the same in all
periods: hQiT ¼ Q∞.
In order to compute the charge pumped per period,

it is useful to express jΨðtÞi as a superposition of
Slater determinants of Floquet eigenstates. As we show
in Appendix C 1, when averaging the pumped charge over
N periods, the contribution of the off-diagonal terms
between different Floquet eigenstates decays at least as
fast as 1=N. The diagonal terms yield a contribution that
depends on the evolution over a single period, giving

Q∞ ¼
X
j

nj

Z
T

0

dthψ jðtÞj
∂ ~Hðθx; tÞ

∂θx jψ jðtÞi: ð15Þ

In the above, jψ jðtÞi are the single-particle Floquet states,
which evolve in time as jψ jðtÞi ¼ e−iεtjϕjðtÞi [where jϕjðtÞi
is periodic in time], and nj are the Floquet state occupation
numbers in the initial state, nj ¼ hΨð0Þjψ†

jψ jjΨð0Þi, where
ψ†
j is the creation operator corresponding to jψ jð0Þi.
Straightforward manipulations yield Q∞ ¼

T
P

jnj∂εj=∂θx. At this point, the average current per
period depends on θx. In the thermodynamic limit, we
expect this dependence to disappear. As in the case of the
quantization of the Hall conductance [46], we average over
θx [47]. We therefore get

Q∞ ¼ T
2π

X
j

Z
2π

0

dθxnj
∂εj
∂θx : ð16Þ

Equation (16) relates the average current in a period to
the spectral flow of the Floquet spectrum as the flux θx is
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threaded. It is reminiscent of the expression for the edge
topological invariant nedge, Eq. (12), defined in terms of

the “deformed” evolution operator ~UεðTÞ. For the exactly
solvable model presented in Sec. III, it is straightforward to
check that the current [Eq. (16)] is indeed quantized.
In that model, all bulk states have ∂εj=∂θx ¼ 0, whereas
for all the extended states along the upper edge,
∂εj=∂θx ¼ 2π=NT, where N is the number of unit cells
along the perimeter of the cylinder. Hence, upon summing
over all states localized near one edge of the cylinder, we
get that Q∞ ¼ 1, independently of how precisely the filled
region is terminated (as long as all the extended states along
the edge are occupied).
Below, we give a heuristic argument that, more generally,

in the AFAI phase Q∞ ¼ nedge, up to corrections that are
exponentially small in l. A more rigorous (but technically
cumbersome) derivation of the relation between the
pumped charge and the bulk invariant is presented in
Appendix C. Numerical evidence for the quantization of
the pumped charge is shown in Sec. VI.

B. Argument for Q∞ ¼ nedge
Our strategy in analyzing the pumped charge is to

deform the evolution operator into the “ideal” form,
~UεðTÞ of Eq. (11), for which the pumped charge is exactly
quantized, and to put bounds on the correction to the
pumped charge due to the deformation. We define the
deformation process according to Appendix B, with l0,
thewidth of the strip beyondwhich the quasienergy spectrum
becomes flat, chosen such that l ∼ l0. Clearly, for the
deformed evolution operator, nj ¼ 1 for every eigenstate

of ~U1. Therefore, the deformed evolution operator has an
exactly quantized pumped charge, equal to nedge.
Now, consider the pumped charge of the original (unde-

formed) evolution. We can roughly divide the Floquet states
that contribute to Eq. (16) into three categories.
(1) States that are localized far from occupied region,

y ≫ l. For these states, nj is exponentially small,
and hence their contribution to Q∞ is negligible.

(2) States that are localized near the edge, y ≪ l. These
states have nj ≈ 1. Their wave functions and qua-
sienergies, and hence their contribution to Q∞, are
essentially unaffected by the deformation process.

(3) States that are localized near the boundary between
occupied and unoccupied sites, y ∼ l. For such
states, nj is neither close to 0 nor to 1; however,
these states are localized in the x direction (as are
all the bulk states in the AFAI). Therefore, ∂εj=∂θx
of these states is exponentially small, and they
contribute negligibly to Q∞.

As θx varies, there are avoided crossings in the spectrum,
in which the character of the eigenstates changes. For
example, an eigenstate localized around y1 ≪ l may
undergo an avoided crossing with an eigenstate localized

around y2 ∼ l. When θx is tuned to such degeneracy points,
the two eigenstates hybridize strongly and do not fall into
either of the categories discussed above. Such resonances
affect both ∂εj=∂θx and the occupations nj of the resonant
states. However, since the eigenstates that cross are
localized in distant spatial areas, the matrix element that
couples them is exponentially small. Therefore, significant
hybridization requires their energies to be tuned into
resonance with exponential accuracy, limiting the regions
of deviation to exponentially small ranges of θx, of order
e−l=ξ. The number of such resonances increases only
polynomially with the size of the system, and, therefore,
for Ly ≫ l ≫ ξ and Lx ∝ Ly, their effect on Q∞ is
exponentially small.
We conclude that, in the thermodynamic limit, all of the

contributions to Q∞ in Eq. (16) that are not exponentially
suppressed are also exponentially insensitive to the defor-
mation process. Therefore, Q∞ ¼ nedge.

VI. NUMERICAL RESULTS

Numerical simulations substantiate the conclusions of
Secs. III–V. First, we briefly summarize our main findings,
and then we describe the simulations and results in more
detail in the sections below. For the simulations, we use a
variant of the model discussed in Sec. III, defined on a
square lattice:

~HðtÞ ¼ HcleanðtÞ þ λDþ
X
r

Vrc
†
rcr; ð17Þ

where HcleanðtÞ is the time-dependent, piecewise-constant
Hamiltonian described in Sec. III [see Fig. 2(a)]. We define
D ¼ 1

2T

P
rð−1Þηrc†rcr, and take Vr to be uniformly dis-

tributed in the interval ½−δV; δV�. Using numerics, we are
now able to study the more generic case in which the
sublattice potential (denoted here by D), as well as
the disorder potential are time-independent (in contrast
to the model studied in Sec. III). The parameters of the
model are chosen to be λ ¼ π and δAB ¼ 0.
In the clean case (δV ¼ 0), the system exhibits an

anomalous Floquet-Bloch band structure: the Chern num-
bers of all the bulk bands are zero, but the winding number
Wε ¼ 1 for any value of ε within each of the band gaps
[27]. Such a band structure is depicted in Fig. 3(b). When
the disorder potential is turned on, however, the system
enters the AFAI phase. Below, we show numerically that
the bulk states become localized and coexist with edge
states, which occur in all quasienergies. Furthermore, when
the system is initialized with fermions filling all of the sites
in the vicinity of one edge, while the rest remain empty, as
in Sec. V, the disordered system exhibits quantized amount
of charge pumped per period, when averaged over long
times. Finally, we examine the behavior of the system as the
strength of the disorder potential is increased. We find that
when the disorder strength reaches a certain critical value,
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the system undergoes a topological phase transition where
the winding number changes from 1 to 0. For stronger
disorder, a “trivial” phase (where all bulk states are
localized and there are no chiral edge states) is stabilized.

A. Localization, edge modes, and quantized charge
pumping in the AFAI

The localization properties of the bulk Floquet eigenstates
of Eq. (17) can be extracted from the statistics of the spacings
between the quasienergy levels. For localized states, the
distribution of the level spacing is expected to have a
Poissonian form. In contrast, extended states exhibit level
repulsion and obey Wigner-Dyson statistics [48]. To dis-
tinguish between these distributions, it is convenient to
use the ratio between the spacings of adjacent quasienergy
levels [49–51]. Choosing the quasienergy zone to be bet-
ween −π=T and π=T (i.e., choosing −i log eiεT ¼ εT for
−π=T ≤ ε < π=T), we label quasienergies in ascending
order. We then define the level-spacing ratio (LSR) as
r¼minfδn;δnþ1g=maxfδn;δnþ1g, where δn ¼ εn − εn−1.
This ratio, r ≤ 1, converges to different values for extended
and localized states, depending on the symmetries of the
system. For localized states, rloc ≈ 0.39 [49], while for
extended states, rext ≈ 0.6 [51]. The latter value is obtained
when one assumes that the quasienergies are distributed
according to the circular unitary ensemble [51], and, in the
thermodynamic limit, coincides with the value obtained by
the more familiar Gaussian unitary ensemble (GUE).
Since the Floquet problem does not possess any generic

symmetries such as time-reversal, particle-hole, or chiral
symmetry, we expect its localization properties to be
similar to those of the unitary class [52–54]. In analogy
with the situation in static Hamiltonians in the unitary class
[55], we expect that arbitrarily weak disorder is sufficient
to localize all Floquet states (on the torus). However, for
weak disorder, the characteristic localization length ξ can
be extremely long, and easily exceeds the system sizes
accessible in our numerical simulations. Therefore, the
level-spacing ratio is expected to show a gradual crossover
from having the characteristic of delocalized states,
rext ≈ 0.6, when ξ ≫ L, to the value that indicates localized
behavior, rext ≈ 0.39, when ξ ≪ L.
This behavior is demonstrated in Figs. 4(a)(i)–4(a)(iii),

where we plot the disorder-averaged level-spacing ratio r
and the density of Floquet states as a function of the
quasienergy for different disorder strengths. For weak
disorder, δVT ¼ 0.5, Fig. 4(a)(i) shows that the level
spacing ratio is r ≈ 0.6 in any spectral region where
Floquet states exist. On the other hand, Fig. 4(a)(iii) shows
that, already for δVT ¼ 4, the level-spacing ratio
approaches r ≈ 0.39 at all quasienergies, as expected from
localized states.
Note that, as the disorder strength increases, the level-

spacing ratio decreases uniformly throughout the spectrum
[Figs. 4(a)(i)–4(a)(iii); the same behavior is seen at weaker

values of the disorder (not shown)]. There is no quasie-
nergy in which the LSR remains close to 0.6, correspond-
ing delocalized Floquet eigenstates. This is consistent with
the expectation that the bulk Floquet states become
localized even for weak disorder, and the localization
length becomes shorter as the disorder strength increases.
The behavior of the LSR as a function of system size,
Fig. 4(b), also shows behavior consistent with the above
expectation. In contrast, if the bulk bands of the clean
systems carried nonzero Chern numbers, delocalized states
would persist in the bands up to a critical strength of the
disorder, at which point they would merge and annihilate.
In the AFAI phase all the bulk states are localized, but the

edge hosts chiral modes at any quasienergy (cf. Sec. IV). To
test this, we simulate the time evolution of wave packets
initialized either in the bulk or near the edge of the system.
We consider the system in a rectangular geometry. The
initial state, jψ0i, is localized to a single site, r0 ¼ ðx0; y0Þ.
To obtain information on quasienergy resolved propaga-
tion, we investigate the disorder-averaged transmission

probability, jGNðr; r0; εÞj2, which is a function of both
quasienergy ε and the total time of evolution Tf ¼ NT.
Here, the bar denotes disorder averaging. The transmission

(a)

(b)

FIG. 4. Localization of Floquet states in the AFAI as a function
of disorder strength, computed for the model presented in
Eq. (17). We use λ ¼ π and an L × L system with periodic
boundary conditions. (a) Quasienergy density of Floquet states
per unit area (DOS) and level-spacing ratio (LSR), for three
values of disorder strength, as indicated by the markers on the
axis of (b). For all cases we take L ¼ 70. (b) Finite-size scaling of
the localization transition. Level statistics in the delocalized
regime are described by the Gaussian unitary ensemble
(GUE), characterized by an average level-spacing ratio
rext ≈ 0.60; in the localized regime, Poissonian level statistics
give rloc ≈ 0.39. These characteristic values are indicated by
dashed lines.
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amplitude in each disorder realization, GN , is obtained
by a partial Fourier transform of the real-time amplitude,
~Gðr; r0; tÞ ¼ hrjUðtÞjψ0i, and is given by

GNðr; r0; εÞ ¼
1

N

XN
n¼0

~G ðr; r0; t ¼ nTÞeiεnT: ð18Þ

The real-time transmission amplitude ~GðtÞ is computed
numerically by a split operator decomposition. Figures 5(a)

and 5(b) show jGN j2 at different quasienergies, for initial
states on the edge and in the bulk, respectively. The
simulations are done for a disorder strength VT ¼ 4. At
this disorder strength, the analysis of the level-spacing
statistics shown in Fig. 4(a) indicates that all the bulk

Floquet bands are localized with a localization length
smaller than the system size. Figure 5(a) shows the value

of jGN j2 when the wave packet is initialized at the edge
of the system, r0 ¼ ð96; 18Þ. The wave packet propagates
chirally along the edge. The figure exemplifies that the edge
modes are robust in the presence of disorder, and are
present at all quasienergies. Importantly, edge states are
also observed at quasienergies where the bulk density of
states is appreciable, indicating that the chiral edge states
coexist with localized bulk states [the density of states in
the bulk is shown in Fig. 4(a)].
In contrast, Fig. 5(b) shows jGN j2 for a wave packet

initialized in the middle of the system. The wave packet
remains localized at all quasienergies, as expected if all
bulk Floquet eigenstates are localized. This confirms that
the model we study numerically indeed exhibits the basic
properties of the AFAI phase: fully localized Floquet bulk
states, coexisting with chiral edge states that exist at every
quasienergy.
Next, we numerically demonstrate the quantized charge

pumping property of the AFAI. Using the model described
above, we numerically compute the value of Q̄∞ given
by Eq. (15) for a single value of the flux, θx ¼ 0. When
computing Q̄∞, we average the charge pumped across all
the lines running parallel to the y direction of the cylinder
(see Fig. 3), as well as over 100 disorder realizations. In
Fig. 6(a), we show the cumulative average of the pumped
charge per cycle in the limit of long times, Q̄∞
[cf. Eq. (15)], as a function of disorder strength. At weak
disorder, when the localization length is smaller than the
system size, Q̄∞ is clearly not quantized. However, for
disorder strength δVT ≳ 5, the value of Q̄∞ quickly tends
towards unity. This agrees with the results presented in
Fig. 4(a)(iii), which indicate that at this disorder strength
the localization length is substantially smaller than L ¼ 70.
Finite-size scaling demonstrating that Q̄∞ indeed asymp-
totes to unity in the thermodynamic limit is presented in the
inset of Fig. 6(a).
The value of the cumulative average of the pumped

charge over N periods, hQiNT=N [cf. Eq. (13)] is plotted
versus N in Fig. 6(b), demonstrating its approach to Q̄∞
for large values of N (i.e., at long times). As in Fig. 6(a),
we average over all the lines running parallel to the y
direction, and over 100 disorder realizations. We examine
the asymptotic behavior of hQiNT and find a power-law
behavior of the form hQiNT ¼ Q̄∞ þ cN−υ with υ ¼ 1.72,
shown in the inset of Fig. 6(b). Note that for a single
disorder realization and a single vertical cut, hQiNT is
expected to exhibit an oscillatory behavior with an
envelope that decays as 1=N; see Appendix C 1. This
expectation is indeed confirmed by our numerical simu-
lations, as we show in Appendix D. In contrast, Fig. 6(b)
shows a power-law behavior with a power larger than 1 and
no oscillations; this is clearly the result of averaging over

(a)

(b)

FIG. 5. Wave packet dynamics in the AFAI. Using the same
model as in Fig. 4, we plot the amplitude of the transmission
probability, hjGNðr; r0; εÞj2i, cf. Eq. (18), obtained after a time
evolution of Tfin ¼ 300T and averaged over disorder realizations.
We simulate a strip of size 20 × 100 with open boundary
conditions and plot hjGN j2i for several quasienergies,
ϵ=Ω ¼ 0, 1=16, 1=8, 1=4. Panel (a) shows hjGN j2i when the
initial wave packet is chosen at the edge r0 ¼ ð96; 18Þ. It
indicates the presence of a robust edge mode at all the given
quasienergies. Panel (b) shows the probability when the initial
wave packet is chosen in the bulk, r ¼ ð50; 10Þ. This indicates
that the bulk Floquet states are localized. These simulations are
carried out with a time step of dt ¼ T=100.
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the frequencies appearing in hQiNT=N for each disorder
realization and vertical cut. The above results numerically
confirm the discussion in Sec. V and conclude our
numerical analysis of the AFAI phase.

B. Strong disorder transition

For sufficiently strong disorder, we expect the AFAI
to give way to a topologically trivial localized phase in
which the winding number vanishes. We now analyze the
transition between the AFAI and this “trivial” phase. As
explained above, the winding number Wε can change only
if a delocalized state crosses through the quasienergy ε as
disorder is added. In the AFAI phase, all of the bulk states
are already localized. How does the transition between the
two phases occur?
Clearly, at the transition, delocalized states must appear

in the quasienergy spectrum. As disorder is increased, the
delocalized states must sweep the full quasienergy zone,
changing the topological invariant Wε as they do so.
The transition from the AFAI phase to the trivial phase
can therefore occur through a range of disorder strength
δV−

c < δV < δVþ
c , where δV−

c is the disorder strength at
which the first delocalized state appears, and δVþ

c is the
disorder strength at which all Floquet states are again
localized, and Wε ¼ 0 for all ε. Below, we support this
scenario using numerical simulations, and furthermore
provide evidence suggesting that the transition is of the
quantum Hall universality class.
We study the same model used in Sec. VI A and examine

the level-spacing ratio r as a function of disorder strength
and quasienergy. For this model, our simulations indicate
δV−

c ≈ δVþ
c , within our resolution (limited by the system

size). In Fig. 7(a), we plot r, averaged over disorder
realizations and all quasienergies. We see that at disorder
strength δVcT ≈ 40 the level spacing ratio reaches r ≈ 0.6,
indicating delocalization. On either side of this point, r
approaches 0.39 as the system size increases, which
indicates localization. The peak in the value of r as a
function of disorder gets sharper for larger system size,
which is a signature of a critical point of this transition. In
Fig. 7(b), we show that at disorder strength δVc the LSR is
independent of the quasienergy with r ≈ 0.6 (for disorder
strengths close to Vc, we also find that the LSR is
independent of the quasienergy, but with r < 0.6). This
indicates that all of the Floquet states have a delocalized
character at this disorder strength, which leads us to
conclude that δVc ¼ δV−

c ≈ δVþ
c .

At the critical point, δV ¼ δVc, we expect the wave
functions to have a fractal character [56]. This behavior is
manifested in the distribution of the inverse participation
ratio (IPR), P2 ¼

P
rjψðrÞj4. We study the distribution of

the IPR, PðlogP2Þ, among all the Floquet eigenstates and
averaged over disorder realizations. Figure 7(c) shows the

(a) (b)

FIG. 6. Quantized charge pumping in the AFAI. (a) Cumulative
average of the pumped charge per cycle in the limit of long times,
Q̄∞ [cf. Eq. (15)], as a function of disorder strength. For δVT ≳ 5,
the localization length is sufficiently smaller than the system size,
and Q̄∞ approaches unity. The inset shows the finite-size scaling
of Q̄∞ for δVT ¼ 8. (b) Cumulative average of the pumped
charge for N periods, hQiNT=N, as a function of N. The disorder
strength we use is δVT ¼ 8. The approach to the quantized value
can be fit to a power law ðNTÞ−υ with υ ¼ 1.72; see the log-log
plot shown in the inset. In both panels, we average the charge
pumped across all the lines running parallel to the y direction of
the cylinder (see Fig. 3) and over 100 disorder realizations. The
system size is Lx × Ly ¼ 50 × 50.

(a) (b)

(c) (d)

FIG. 7. Transition from the AFAI into a trivial phase at strong
disorder. (a) Average level-spacing ratio as a function of disorder
strength. On increasing disorder strength, a transition is observed
between two localized phases with delocalized levels at
δVT ≈ 40. Here, the level-spacing ratio is averaged over all
quasienergies. (b) Level-spacing ratio as a function of quasie-
nergy and its comparison with the DOS, indicating that the entire
Floquet band is delocalized. (c) Effect of finite size on the
distribution of the participation ratio P2 at a given disorder
strength, δVT ¼ 40. The system sizes we use for the simulations
are Lx × Ly ¼ 40 × 40, 70 × 70, 100 × 100. The shape of the
curve does not change, indicating a critical phase. (d) Scaling
collapse of the three curves with D2 ¼ 1.3. For the critical phase
it is expected that hP2i ∼ L−D2 . This is confirmed in the inset
which shows the finite size dependence of the average partici-
pation ratio hP2i. The fractal dimension D2 is extracted from the
slope of the linear fit.
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distribution for different system sizes. We note that the
shapes of the distributions for different sizes are similar, a
signature of criticality. In two dimensions, the average
value of the IPR at a critical point is expected to scale like
hP2i ∼ L−D2 , with D2 < 2 [56]. Figure 7(d) shows the
scaling collapse of all the distributions. From the collapse,
we find the fractal dimension, D2 ¼ 1.3. The inset in this
figure also shows a linear scaling loghP2i ∼ −D2 logL.
The critical exponent D2 we find in our numerical
simulations is close to the value found for the universality
class of quantum Hall plateau transitions [56,57],D2 ≈ 1.4,
indicating that the transition from the AFAI to the trivial
phase may belong to this universality class. This is natural
to expect, since, like the quantum Hall transition, in
the transition out of the AFAI phase a delocalized state
with a nonzero Chern number must “sweep” through every
quasienergy to erase the chiral edge states. We expect that
the AFAI transition can be described in terms of quantum
percolation in a disordered network model, similar to the
Chalker-Coddington model for the plateau transitions [58].
We leave such investigations for future work.

VII. DISCUSSION

In this paper, we demonstrate the existence of a new
nonequilibrium phase of matter: the anomalous Floquet-
Anderson insulator. The phase emerges in the presence of
time-periodic driving and disorder in a two-dimensional
system, and features a unique combination of chiral edge
states and a fully localized bulk. Such a situation cannot
occur in nondriven systems, where the presence of chiral
edge states necessarily implies the existence of delocalized
bulk states where the chiral branches of the spectrum
can terminate. In a driven system, the periodicity of the
quasienergy spectrum alleviates this constraint, allowing
chiral states to “wrap around” the quasienergy zone and
close on themselves.
One of the key physical manifestations of the AFAI is a

new type of nonadiabatic quantized pumping, which occurs
when all states near one edge of the system are filled. It is
interesting to compare this phenomenon with Thouless’s
quantized adiabatic pumping, described in Ref. [33].
The complementary relationship between pumping in

the AFAI and the Thouless case is best revealed by first
viewing the Thouless pump from the point of view of its
Floquet spectrum. In Thouless’s one-dimensional pump, a
periodic potential is deformed adiabatically such that in
each time cycle a quantized amount of charge is pumped
through the system. In the adiabatic limit, the quasienergy
spectrum of the pump exhibits one pair of counterpropa-
gating one-dimensional chiral Floquet-Bloch bands, which
wrap around the quasienergy Brillouin [see Fig. 8(a)]. The
(nonzero) quasienergy winding number of each band gives
the associated quantized pumped charge [3]. Importantly,
for any finite cycle time the two counterpropagating states

hybridize and destroy the perfect quantization of the charge
pumped per cycle [Fig. 8(b)].
In a strip geometry, the AFAI can be viewed as a quasi-

one-dimensional system. As discussed in Sec. IV, the
system hosts chiral edge states that run in opposite directions
on opposite edges. Furthermore, as shown by the spectral
flow (see Fig. 3), these counterpropagating chiral modes
cover the entire quasienergy zone, analogous to the counter-
propagating modes of the Thouless pump [Fig. 8(a)].
Crucially, however, the counterpropagating modes of the
AFAI are spatially separated and, therefore, their coupling
is exponentially suppressed: no adiabaticity restriction is
needed to protect quantization. Thus, quantized pumping at
finite frequency can be achieved in the AFAI phase.
How is the AFAI manifested in experiments? First, the

localized bulk and chiral propagating edge states could be
directly imaged, for example, in cold atomic or optical
setups. More naturally for a solid-state electronic system,
the pumping current could be monitored in a two-terminal
setup. Unlike the case of an adiabatic pump, where a
quantized charge is pumped at zero source-drain bias, to
observe quantized charge pumping in the AFAI the chiral
propagating states of one edge of the systemwouldneed to be
completely filled at one end of the sample and emptied at the
opposite end. We speculate that this can be achieved using a
large source-drain bias. A detailed analysis of such non-
equilibrium transport in a two- ormultiterminal setup, aswell
as an investigation of promising candidate systems, are
important directions for future study. While the model we
present in Sec. III can be implemented directly in a variety of
systems, including all-optical, microwave resonator systems
and even cold-atomic systems, we expect the AFAI to be
realized using other classes of models, such as those based
on standard band structures with a weak uniform drive.
The implications of our results go beyond those specific

to the class of systems we study in this paper. As a direct
generalization of our results, one can consider constructing
anomalous Floquet insulators in different dimensions

(a) (b)

FIG. 8. Floquet spectrum for Thouless’s quantized adiabatic
charge pump. (a) Quantized adiabatic pumping in a 1D system is
manifested in chiral Floquet bands that wind around the quasie-
nergy Brillouin zone (right and left movers are shown in green
and orange, respectively). (b) Outside of the adiabatic limit,
ω > 0, counterpropagating states hybridize, and all Floquet
bands obtain trivial winding numbers; quantized pumping is
destroyed.
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and symmetry classes. Floquet-Bloch band structures that
generalize those of Ref. [27] can serve as a starting point for
constructing such anomalous periodically driven systems.
Going beyond the single-particle level, an important chal-
lenge is to understand how the properties of theAFAI change
in the presence of interactions. An exciting possibility is to
obtain a topologically nontrivial steady state for an interact-
ing, periodically driven system [15–17,19,20]. The common
wisdom dictates that a periodically driven system with
dispersive modes is doomed to evolve into a highly random
state that is essentially an infinite temperature state as far as
any finite-order correlation functions are concerned [51,59–
63].Our results on the single-particle level demonstrate that it
is possible to obtain a topological Floquet spectrum with no
delocalized states away from the edges of the system. It is
therefore possible that such periodically driven systems can
serve as a good starting point for constructing topologically
nontrivial steady states for interacting, disorder (many-body
localized) periodically driven systems [64]. What types of
topological steady states can be obtained by this method, and
what are their observable signatures, will be interesting
subjects for future work.
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APPENDIX A: PERTURBATIVE DERIVATION
OF THE EFFECTIVE HAMILTONIAN

Here, we outline the details of the derivation we use to
demonstrate the perturbative stability of the AFAI phase.
We first examine the effective static Hamiltonian defined in
Eq. (2), expressed as a power series in λ. We insert Eq. (4)
into Eq. (2) and expand both sides in powers of λ. For the

left-hand side, we obtain

e−iTðH
0
effþDeffÞ

¼ U0
T

�
1 − i

Z
T

0

dtðλDð1Þ
eff ðtÞ þ λ2Dð2Þ

eff ðtÞ þ � � �Þ

−
Z

T

0

dt
Z

t

0

dt0ðλDð1Þ
eff ðtÞ þ � � �ÞðλDð1Þ

eff ðt0Þ þ � � �Þ þ � � �
�
;

ðA1Þ

where U0
t ¼ e−itH

0
eff and DðnÞ

eff ðtÞ ¼ ðU0
t Þ†DðnÞ

effU
0
t . Note that

the eigenvalues of H0
eff are only defined modulo 2πkj=T

(where kj is an integer). The form ofDðnÞ
eff ðtÞ depends on the

choice of kj, while the evolution operator does not. To fix this
ambiguity, we choose Ej to lie in the range ½−π=T; π=TÞ.
The right-hand side of Eq. (2), expanded in powers of λ,

reads

UðTÞ ¼ U0ðT; 0Þ
�
1 − iλ

Z
T

0

dtDðtÞ

− λ2
Z

T

0

dt
Z

t

0

dt0DðtÞDðt0Þ þ � � �
�
; ðA2Þ

where U0ðt; t0Þ ¼ T exp ½−i R t
t0 dsH0ðsÞ� and DðtÞ ¼

U0ð0; tÞDðtÞU0ðt; 0Þ.
Equating Eqs. (A1) and (A2), and using

e−iTH
0
eff ¼ U0ðT; 0Þ, we find that

Z
T

0

dtDð1Þ
eff ðtÞ ¼

Z
T

0

dtDðtÞ; ðA3Þ

and, likewise,

Z
T

0

dtDð2Þ
eff ðtÞ ¼ −i

Z
T

0

dt
Z

t

0

dt0DðtÞDðt0Þ

þ i
Z

T

0

dt
Z

t

0

dt0Dð1Þ
eff ðtÞDð1Þ

eff ðt0Þ; ðA4Þ

and so forth.
To find DðnÞ

eff explicitly, we express them in the tight-
binding form of Eq. (5); inserting this form into Eqs. (A3)
and (A4), and using the fact that H0

eff contains only on-site
potentials and no intersite hopping, we arrive at

Z
T

0

dtDðnÞ
eff ðtÞ ¼

Z
T

0

dt
X
r;r0

eiEr;r0 tΔðnÞ
r;r0c

†
rcr0

¼
X
r;r0

eiEr;r0T − 1

iEr;r0
ΔðnÞ

r;r0c
†
rcr0 : ðA5Þ

Equating this expression for n ¼ 1 to the right-hand side of
Eq. (A3) gives Eq. (6). From Eq. (A5) we see that, as long

as Er;r0T < 2π for every pair of sites, ΔðnÞ
r;r0 is nonsingular.
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As Er;r0T → 2π, ΔðnÞ
r;r0 may diverge for all n, and the

expansion in λ fails. This reflects the fact that, in general,
a Floquet operator whose eigenvalues are spread through-
out the quasienergy zone cannot be generated by a static,
local Hamiltonian.
From the form of the right-hand side of Eq. (A3), we can

analyze the maximum range of the hopping matrix ele-
ments in Dð1Þ

eff . We denote the maximum range of the
hopping matrix elements in DðtÞ by r, where r ¼ 1
corresponds to a nearest-neighbor hop, r ¼ 2 to second
neighbors, and so on. Since the matrix elements of the
unperturbed evolution operator U0ðt; 0Þ vanish beyond
second-neighbor sites on the square lattice, we find that

Dð1Þ
eff contains matrix elements whose range is at most rþ 4.

Similarly, from Eq. (A4), Δð2Þ
r;r0 vanishes beyond the

2rþ 6th neighbor, and, more generally, ΔðnÞ
r;r0 vanishes

beyond range nðrþ 2Þ þ 2. Hence, the matrix elements
of Deff at range nðrþ 2Þ þ 2 contain the exponentially
small factor λn.

APPENDIX B: CONSTRUCTION OF THE
DEFORMED EVOLUTION OPERATOR

ON THE CYLINDER

In this appendix, we construct the deformed evolution
operator on the cylinder, ~UεðtÞ of Eq. (11). For brevity, we
suppress the appearance of the variable θx throughout this
appendix. The deformation is designed such that at t ¼ T it
interpolates smoothly between ~UðTÞ (corresponding to the
cylinder) in the vicinity of the edges of the cylinder and 1 in
the bulk of the cylinder. We first define the family of
operators F ðsÞ ¼ P

rαðy; sÞjrihrj, where

αðy; sÞ ¼

8>>>>>>>><
>>>>>>>>:

0 y ≤ l1

s ðy−l1Þ
ðl2−l1Þ l1 ≤ y ≤ l2

s l2 < y < Ly − l2

s ðLy−l1−yÞ
ðl2−l1Þ Ly − l2 ≤ y ≤ Ly − l1

0 y ≥ Ly − l1:

ðB1Þ

Here, we choose ξ ≪ l1 ≪ l2 ≪ l0, where ξ is the bulk
localization length. Analogously to Eq. (7), the family of
deformed evolution operators is defined as

~Uεðt; sÞ ¼ ~UðtÞ exp½itF ðsÞHeff
ε F ðsÞ�: ðB2Þ

Here, Heff
ε is defined as in Eq. (7), i.e.,

Heff
ε ¼ ði=TÞ logUðTÞ, where UðTÞ is the evolution oper-

ator for a full period on the torus, and ε specifies the
location of the branch cut of the log in the definition ofHeff

ε

[see discussion below Eq. (7)]. The deformed evolution
operator corresponds to ~UεðtÞ≡ ~Uεðt; s ¼ 1Þ.

Importantly, all the bulk Floquet states of ~UεðT; sÞ
remain localized throughout the deformation process.
This is because, for a sufficiently large l2, the bulk
Floquet states barely change as s varies; only the quasie-
nergies change. The resulting evolution operator, ~UεðtÞ,
depends on the choice of ε; however, the evolution operator
near the edge is essentially independent of ε. Therefore, the
edge invariant, Eq. (12), does not depend on ε.
Note that, strictly speaking, ~UεðtÞ of Eq. (B2) is not

precisely of the block-diagonal form of Eq. (11). It
still has exponentially small but nonzero matrix elements
connecting the different blocks. However, a second defor-
mation can take ~UεðTÞ to the form appearing in Eq. (11).

APPENDIX C: QUANTIZED CHARGE PUMPING
AND THE WINDING NUMBER

In this appendix, we show that for the AFAI a nonzero
value for the winding numberWε implies quantized charge
pumping. As in Sec. V, we take an initial state with all sites
filled in a strip of width l near one edge of the AFAI [see
Fig. 3(c)], and the rest to be empty.
To calculate the time dependence of the pumped charge,

we begin by deriving an expression for the instantaneous
current flowing across a longitudinal cut through the
cylinder, i.e., across a line parallel to the y axis. The
corresponding current operator is found by first allowing a
flux θx to be threaded through the cylinder. Next, we
pick a gauge where the gauge (vector) potential is nonzero
only on the links connecting sites with x ¼ Lx to sites
with x ¼ 0. The net current flowing across the cut
between x ¼ Lx and x ¼ 0 is then described by the operator
IxðtÞ ¼ ∂ ~Hðθx; tÞ=∂θx, where ~Hðθx; tÞ is the Hamiltonian
of the system in the presence of the flux θx. Here, the tilde
denotes the cylindrical geometry.
Below, we first (Appendix C 1) show that, when aver-

aged over many periods, the charge pumped approaches a
quantized value Q∞ equal to the edge topological invariant
nedge, expressed in terms of the spectral flow on one edge of
the system [Eq. (16)]. We then show (Appendix C 2) that
Q∞ is in fact equal to the bulk topological invariant Wε,
given by Eq. (8).

1. Quantized charge pumping from spectral flow

We start from Eq. (13), which gives the charge pumped
during the time integral 0 < t < T. The initial state, which
is a single Slater determinant in terms of position eigen-
states, is given by a superposition of Slater determinants in
terms of Floquet states:

jΨi ¼
X
S

AS

Y
j∈S

ψ†
j j0i: ðC1Þ

Note that AS are fixed coefficients that depend only on the
initial state. Inserting this into the expression for the
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pumped charge in the interval 0 < t < T, Eq. (13), we get

hQiT ¼
X
S;S0

A�
SAS0

X
j∈S

X
k∈S0

Z
T

0

dthψ jðtÞj
∂ ~Hðθx; tÞ

∂θx jψkðtÞi:

ðC2Þ

The double sum in Eq. (C2) contains both diagonal and
off-diagonal terms for the contributions of single-particle
Floquet states. Denoting each of the contributions by Qjk,
and using i∂tjψðtÞi ¼ ~HðtÞjψðtÞi, the different terms in
Eq. (C2) can be written as

Qjk ¼
Z

T

0

dthψ jðtÞjf∂θxð ~HjψkðtÞiÞ − ~H∂θx jψkðtÞig

¼
Z

T

0

dtfhψ jðtÞj∂θx i∂tjψ jðtÞi

þ i∂tðhψ jðtÞjÞ∂θx jψkðtÞig

¼ i
Z

T

0

dt∂thψ jðtÞj∂θx jψkðtÞi: ðC3Þ

According to Floquet’s theorem, the Floquet states
can be written as jψ jðtÞi ¼ e−iεjtjϕðtÞi, where jϕjðtÞi ¼
jϕjðtþ TÞi is a periodic function. Substituting this into
Eq. (C3), we obtain for the diagonal terms

Qjj ¼ T
∂εj
∂θx ; ðC4Þ

and for the of-diagonal terms

Qjk ¼ iðeiðεj−εkÞT − 1Þhϕjð0Þj∂θx jϕkð0Þi; j ≠ k: ðC5Þ
Clearly, when computing the average charge pumped over
N periods, hQiNT=N, the off-diagonal terms will give a
contribution that decays as 1=N, while the diagonal terms
will give the contribution that does not decay with N,

lim
N→∞

hQiNT=N ¼ Q∞ ¼ T
X
j

nj
∂εj
∂θx ; ðC6Þ

where nj is the probability for the jth Floquet state to be

occupied, nj ¼ hΨjψ†
jψ jjΨi. Averaging over the flux

values, we obtain Eq. (16), which is the result we set
out to obtain in this section.

2. Quantized charge pumping and the winding number

We now show that Q∞, the charge pumped over a period
averaged over long times, is equal to the winding number
W, appearing in Eq. (8). We show that in the limit of a large
number of cycles N, the average charge pumped per cycle
contains a quantized piece equal to the winding number
plus a small correction that decays with the averaging time
at least as fast as 1=N.

Recall that the many-body initial state that we consider is
a single Slater determinant with electrons populating all
sites in the strip of width l near one edge of the cylinder.
At time t, the expectation value of the current hIxðtÞi is
given by the sum of contributions from each of these
single-particle states, propagated forward in time with the
evolution operator ~U≡ ~Uðθx; tÞ for the system with the
threaded flux θx. Defining a projector Pl that projects onto
all sites within the strip of initially occupied sites, the
current is given by

hIxðtÞi ¼ Tr

�
~U†ðθx; tÞ

∂ ~Hðθx; tÞ
∂θx

~Uðθx; tÞPl

�
: ðC7Þ

Using Eq. (C7), the total charge pumped in the first
cycle, hQiT ¼ R

T
0 dthIxðtÞi, is given by

hQiT ¼
Z

T

0

dtTr

�
~U†ðθx; tÞ

∂ ~Hðθx; tÞ
∂θx

~Uðθx; tÞPl

�
: ðC8Þ

Rearranging and using the chain rule, Eq. (C8) becomes

hQiT ¼
Z

T

0

dtTrfPl
~U†ð∂θxð ~H ~UÞ − ~H∂θx

~UÞg: ðC9Þ

In the thermodynamic limit, the current hIxðθxÞi is
expected to be insensitive to the value of the threaded
flux. Thus, replacing the pumped charge by its value
averaged over all θx, and using i∂tU ¼ HU, we obtain

hQiT ¼ i
2π

Z
2π

0

dθx

Z
T

0

dtTrfPlð ~U†∂θx∂t
~U þ ∂t

~U†∂θx
~UÞg;

ðC10Þ

or equivalently, through integration by parts,

hQiT ¼ i
2π

Z
2π

0

dθx

Z
T

0

dtTrfPlð∂t
~U†∂θx

~U − ∂θx
~U†∂t

~UÞg:

ðC11Þ

Inserting ~U ~U† ¼ 1 and using ð∂λ
~U†Þ ~U ¼ − ~U†∂λ

~U in each
of the terms in the above equation gives

hQiT ¼ i
2π

Z
2π

0

dθx

Z
T

0

dtTrfð ~U†∂θx
~UÞ½ð ~U†∂t

~UÞ;Pl�g;

ðC12Þ

where we use TrfPl½A; B�g ¼ TrfA½B;Pl�g.
We now examine the cases for which the commutator in

Eq. (C12) is nonzero. Denoting ~A≡ ð ~U†∂t
~UÞ, the matrix

element hrj½ ~A;Pl�jr0i is nonzero in the two cases:
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hrj½ ~A;Pl�jr0i ¼ −hrj ~Ajr0i; Pljri ¼ jri; Pljr0i ¼ 0;

hrj½ ~A;Pl�jr0i ¼ hrj ~Ajr0i; Pljri ¼ 0; Pljr0i ¼ jr0i:
ðC13Þ

To set up a convenient means for enforcing the con-
ditions above, we introduce an auxiliary gauge trans-
formation under which the single-particle states on the
sites jri≡ jx; yi transform as

jri → jri; y < l;

jri → eiθy jri; l ≤ y ≤ Ly: ðC14Þ

We denote the unitary operator that applies this gauge
transformation as Gθy . Because Eq. (C14) defines a pure
gauge transformation, the pumped charge cannot depend
on the value of θy. Therefore, we are free to average hQiT
over all such gauges. Using ½Gθy ;Pl� ¼ 0 and defining
~AðθyÞ≡ G†

θy
ð ~U†∂t

~UÞGθy and ~BðθyÞ≡ G†
θy
ð ~U†∂θx

~UÞGθy ,

we thus obtain

hQiT ¼ i
4π2

Z
2π

0

dθy

Z
2π

0

dθx

Z
T

0

dtTrf ~BðθyÞ½ ~AðθyÞ;Pl�g:

ðC15Þ
Importantly, Eqs. (C13) and (C14) can be expressed as

½ ~AðθyÞ;Pl� ¼ i∂θy
~AðθyÞ; ðC16Þ

whereby the pumped charge becomes

hQiT ¼ −
1

4π2

Z
2π

0

dθy

Z
2π

0

dθx

Z
T

0

dtTrf ~BðθyÞ∂θy
~AðθyÞg:

ðC17Þ
Thus far, we have expressed the average current using the

evolution ~U on the cylinder. Here, we aim to obtain a bulk-
boundary correspondence, relating the pumped charge to the
evolution operator on a torus, i.e., a geometry without edges.
We consider a completion of the cylinder to a torus with
fluxes θx and θy threaded through the two holes of the torus.
The torus Hamiltonian, H ≡Hðθx; θy; tÞ, is identical to

G†
θy
~Hðθx; tÞGθy in the interior of the cylinder. The corre-

sponding evolution operator is denoted byU ≡Uðθx; θy; tÞ.
Importantly, U and A ¼ U†∂tU, as well as ~U and

~A ¼ ~U†∂t
~U, are local operators for 0 < t < T. Therefore,

up to corrections that are exponentially suppressed in the size
of the system, i∂θyA ¼ i∂θy

~AðθyÞ; i.e., the derivative with
respect to θy gives an identical result in the case of a torus and

a cylinder.Moreover, since i∂θy
~AðθyÞ is also a local operator,

the only matrix elements of hr0j ~BðθyÞjri contributing in
Eq. (C17) are those forwhich r and r0 are in the interior of the

cylinder and close to the edge of the initially filled strip, i.e.,
y ≈ l. For these matrix elements, ~B (defined on the cylinder)
and B≡U†∂θxU (defined on the torus) are identical (up to
corrections that are exponentially small in the size of the
system). Therefore, in Eq. (C17)we can replace ~A and ~Bwith
A and B, giving

hQiT ¼ −
1

4π2

I
dΘ

Z
T

0

dtTrfðU†∂θxUÞ∂θyðU†∂tUÞg;

ðC18Þ

where, for brevity, we denote dθxdθy ¼ dΘ, and unite the
integrals under a single integral sign.
Inserting UU† ¼ 1 between the two terms in the trace in

the equation above, and again using ð∂λU†ÞU ¼ −U†∂λU,
we get

hQiT ¼ −
1

4π2

I
dΘ

Z
T

0

dtTrfðU†∂θxUÞ½U†∂θy∂tU

− ðU†∂θyUÞðU†∂tUÞ�g: ðC19Þ
Using

U†∂θy∂tU ¼ ∂tðU†∂θyUÞ − ∂tU†∂θyU

¼ ðU†∂tUÞðU†∂θyUÞ þ ∂tðU†∂θyUÞ; ðC20Þ

we get

hQiT ¼
1

4π2

I
dΘ

Z
T

0

dtTrfðU†∂tUÞ½ðU†∂θxUÞ;ðU†∂θyUÞ�

−ðU†∂θxUÞ∂tðU†∂θyUÞg: ðC21Þ

For the moment, we focus on the second term in the
above equation. Integrating by parts gives
I

dΘ
Z

T

0

dtTrfðU†∂θxUÞ∂tðU†∂θyUÞg

¼
I

dΘ
Z

T

0

dtTr

�
1

2
∂t½ðU†∂θxUÞðU†∂θyUÞ�

−
1

2
ð∂tU†∂θxUÞðU†∂θyUÞ − 1

2
ðU†∂t∂θxUÞðU†∂θyUÞ

þ 1

2
ðU†∂θxUÞð∂tU†∂θyUÞ þ 1

2
ðU†∂θxUÞðU†∂t∂θyUÞ

�
:

ðC22Þ
Using the cyclic property of the trace, U†U ¼ 1, and
integration by parts with respect to θx and θy, it is possible
to show that the third and fifth terms (containing the double
derivatives) cancel. The second and fourth terms, using
U∂λU† ¼ −∂λUU†, can be shown to give an identical
contribution to the first term in Eq. (C21), but with a factor

TITUM, BERG, RUDNER, REFAEL, and LINDNER PHYS. REV. X 6, 021013 (2016)

021013-16



of− 1
2
. Defining the functionalW½UðtÞ� for a bulk evolution

UðtÞ as

W½U� ¼
I

dΘ
8π2

Z
T

0

dtTrfðU†∂tUÞ½ðU†∂θxUÞ; ðU†∂θyUÞ�g;

ðC23Þ
the net charge pumped during one driving cycle, assuming
initial filling of a strip of sites covering one edge, is given
by

hQiT ¼ W½U� −
I

dΘ
8π2

Z
T

0

dt∂tTrfðU†∂θxUÞðU†∂θyUÞg:

ðC24Þ
It is important to note that W½U� is quantized (and

equal to a winding number, as discussed in Ref. [27]) only
for the case where the evolution is periodic, satisfying
UðTÞ ¼ Uð0Þ. For such “ideal evolutions,” the second term
in Eq. (C24) clearly vanishes, and, therefore, the pumped
charge is quantized and given by the winding number.
For a “nonideal evolution,” where UðTÞ ≠ Uð0Þ, W½U�

need not be an integer. However, if the initially filled strip
near the edge is wide enough such that all edge states are
occupied with probabilities exponentially close to 1, then
the spectral flow arguments we present in Appendix C 1
indicate that the average charge pumped per cycle will yield
a quantized value, with a correction that vanishes at least as
fast as 1=N. As we now show, this behavior can be seen
directly through further manipulations of Eq. (C24).
Consider a “continued” evolution ÛðtÞ, defined on a

larger time period of 2T. We define ÛðtÞ such that it is
equal to the original evolution operator UðtÞ for 0 ≤ t ≤ T,
and to eiHeffðt−TÞUðTÞ ¼ eiHeffðt−2TÞ for T < t ≤ 2T. As in
Ref. [27], Heff ¼ ði=TÞ logUðTÞ; in the discussion below,
the choice of the branch cut of the log is unimportant, as
long as the system is in a localized phase. As constructed,
ÛðtÞ is an ideal evolution in the larger period 2T;
i.e., Ûð2TÞ ¼ Ûð0Þ ¼ 1.
Starting with Eq. (C24), we add and subtract the quantity

W½eiHeffðt−TÞ�, i.e., Eq. (C23) with UðtÞ replaced by
eiHeffðt−TÞ. After a shift of the time variable by T, the added
piece combines with W½U� to give W2½Û�, where W2 is
defined as in Eq. (C23) with the time integration taken
from 0 to 2T. The subtracted piece remains as a correction.
The charge pumped over one cycle is then

hQiT ¼ W2½Û� −W½eiHeffðt−TÞ�

−
1

8π2

I
dΘTrfðU†∂θxUÞðU†∂θyUÞgjT0 ; ðC25Þ

where the last term arises from the full derivative (second
term) in Eq. (C24). Crucially, because Û is 2T periodic,
W2½Û� is a true winding number and is quantized. The issue

remains to characterize the contributions of the second and
third terms; below, we show that they can be neglected in
the limit of a large number of pumping cycles.
Consider the average charge pumped over N driving

cycles, hQiNT=N ¼ ð1=NÞ RNT
0 dthIxðtÞi. To analyze

this quantity we repeat the manipulations leading up to
Eq. (C24). In moving from the evolution operator on the
cylinder to that on a torus, see discussion above Eq. (C18),
we furthermore use the fact that in the localized phase U
and A ¼ U†∂tU remain local even at long times. Likewise,
~U and ~A ¼ ~U†∂t

~U (for the cylinder) are local in the y
coordinate. In this way we find

hQiNT

N
¼ 1

N
WN ½U� þ fðNÞ

N
; ðC26Þ

whereWN ½·� is defined in the sameway asW½·� in Eq. (C23),
but with the time integration taken up to NT rather than T.
The factor fðNÞ on the right-hand side of this equation arises
from the term corresponding to the full derivative term in
Eq. (C24); its magnitude is bounded, and therefore the ratio
fðNÞ=N decays to zero as N goes to infinity.
To see how the last term in Eq. (C26) vanishes for large

N, consider U in terms of its spectral decomposition,
UðNTÞ ¼ P

ne
−iεnNTPn, where Pn is the projector onto

Floquet state n. Each derivative contributes two terms:
U†∂θjU ¼ −ið∂θjεnÞNTPn þ Pn∂θjPn. We consider each
of the four resulting terms from the product
Tr½ðU†∂θxUÞðU†∂θyUÞ� separately.
First, when both derivatives act on the quasienergies, we

get ðNTÞ2Pn∂θxεn∂θyεn. A nonzero value for these terms
would imply the existence of a current that grows linearly
in time, which is unphysical. Moreover, as shown in
Appendix C 1, as a general rule the time-averaged current
(or pumped charge) must limit to a constant plus a
correction that decreases at least inversely with time. In
the fully localized phase, the quasienergies fεng are
exponentially insensitive to changes in the fluxes θx and
θy (see arguments below), and therefore these terms clearly
give a vanishing contribution in the thermodynamic limit.
Therefore, these terms can (and must) be dropped within
the level of all other approximations of exponential
accuracy employed above.
Next, when one of the derivatives acts on the quasienergy

and the other acts on a projector, we get terms like
NT

P
n∂θxεnTr½Pn∂θyPn�. These terms strictly vanish due

to the general identity Tr½PðdPÞ=ðdλÞ� ¼ 0, for any param-
eter λ upon which the projector P depends.
Finally, when both derivatives act on the projectors

we get a nonvanishing contribution of the formP
n;mTr½ðPn∂θxPnÞðPm∂θyPmÞ�. Crucially, these terms do

not depend on the length of the averaging interval NT.
Therefore, the quantity fðNÞ in Eq. (C26) is, in fact,
constant in N, and the ratio fðNÞ=N decays to zero in the
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long-time (large N) limit. Furthermore, in the localized
phase, the contributions from projectors onto states local-
ized far from the bonds where the gauge fields θx;y act
are exponentially suppressed. Thus, it is clear that for any
fixed N the quantity fðNÞ=N remains finite in the thermo-
dynamic limit Lx; Ly → ∞.
To evaluateWN ½U� in Eq. (C26) we break up the integral

over the range 0 ≤ t ≤ NT into N segments of length T.
Shifting the time variable within each segment to run
between 0 and T, we obtain

WN ½U� ¼
XN−1

n¼0

W½Un�; UnðtÞ ¼ UðtÞUðnTÞ: ðC27Þ

As discussed for the nonideal evolution UðtÞ above, the
operators fUng are not periodic in time and therefore
W½Un� is not quantized.
To isolate the quantized contribution to Eq. (C26),

we add and subtract a “return map” contribution
W½eiHeffðt−TÞUðnTÞ� for each termW½Un�. We further define
the “continued” evolution ÛnðtÞ ¼ ÛðtÞUðnTÞ, with ÛðtÞ
as given above. Note that Ûn is periodic in time with period
2T [though Ûnð0Þ ¼ Ûnð2TÞ ≠ 1], and thereforeW2½Ûn� is
separately quantized for each n. Moreover, by virtue of the
fact that the winding number W2½Ûn� is a topological
invariant for periodic evolutions, its value cannot change
under smooth deformations of Ûn. In particular, we
may deform Ûn → Û via the continuous transformation
Ûnðt; sÞ ¼ ÛðtÞUðð1 − sÞnTÞ, by taking s from 0 to 1.
Hence, we find that W2½Ûn� ¼ W2½Û�, and, therefore,P

N−1
n¼0 W2½Ûn� ¼ NW2½Û�.
Inserting the result above into Eq. (C26) and subtracting

the appropriate return map contribution, we obtain

hQiNT

N
¼ W2½Û� − 1

N
WN ½eiHeffðt−NTÞ� þ fðNÞ

N
; ðC28Þ

where we combine the contributions of the return maps
for all n into one term WN ½eiHeffðt−NTÞ�. Note that by
shifting time arguments we can make the replacement
WN ½eiHeffðt−NTÞ� ¼ −WN ½e−iHeff t�.
The quantity WN ½e−iHeff t� is not necessarily quantized,

since the unitary e−iHeff t is not a periodic function of t over
the range 0 ≤ t ≤ NT. However, if the eigenstates of Heff
are all localized, then we can show (see below) that
WN ½e−iHeff t� decays with N as 1=N (or faster). The under-
lying reason is that, in the localized case, the eigenstates of
Heff do not flow under insertion of the fluxes θx and θy into
the torus. For now we simply assert this claim, and prove
it at the end of this section. Accepting the claim to be true,
we obtain

hQiNT

N
¼ W2½Û� þ ~fðNÞ=N; ðC29Þ

where ~fðNÞ is bounded by a constant as a function of N.
Equation (C29) is the result we set out to prove in this
appendix.
Finally, to close the loose ends, we show thatWN ½e−iHeff t�

is bounded as a function of N. Using the spectral decom-
position e−iHeff t ¼ P

ne
−iεntPn, we have

WN ½e−iHeff t�

¼
XZ

NT

0

dΘdt
e−iΔεtεn
i8π2

TrfPn½Pm1
∂θxPm2

;Pk1∂θyPk2 �g;

ðC30Þ

with Δε ¼ εm1
þ εk1 − εm2

− εk2 , and the sum taken over
the integers n;m1;2; k1;2. To get to Eq. (C30), we use
TrfPn½Pm; Pk�g ¼ 0 and TrfPn½Pm; Pk1∂θyPk2 �g ¼ 0.
When Heff is fully localized, its eigenstates do not

“wrap” around the cycles of the torus, and therefore are
insusceptible to the flux insertion. Therefore, up to cor-
rections that are suppressed as expð−L=ξÞ, where ξ is the
localization length, we have that (i) the eigenvalues εnðΘÞ
are independent of the values of the fluxes and (ii) under
changing the values for the fluxes, the projectors Pn
transform as if transforming under a local gauge trans-
formation, PnðΘÞ ¼ eiϒPne−iϒ, with eiϒ ¼ eiQxθxþQyθy .
Here, Qx and Qy are projectors on sites that define the
gauge transformation felt by the localized eigenstates.
Returning to Eq. (C30), we note that in order for a term

in Eq. (C30) to grow with N, it must have Δε ¼ 0.
Excluding the possibility of a fine-tuned degeneracy that
occurs on a finite area in flux space, the condition Δε ¼ 0
requires that either m1 ¼ m2, k1 ¼ k2 or m1 ¼ k2,
m1 ¼ k1. However, the contribution of the latter two cases
to WN ½e−iHeff t� can be shown to vanish by substituting

(a) (b)

FIG. 9. Quantized charge pumping in the AFAI in a single
disorder realization for a system of size 50 × 50. All parameters
are the same as in Fig. 6. (a) Cumulative average of pumped
charge per cycle, hQiNT=N, resolved for five different vertical
cuts across the cylinder (cuts along the y direction, cf. Fig. 3). The
spread of asymptotic values arises from numerical error in the
finite time differences used for evaluating the integral in Eq. (13).
(b) The pumped charge, averaged over all longitudinal cuts in the
same finite-sized system. For a thermodynamically large system,
averaging over all cuts is equivalent to averaging over disorder
realizations; see Fig. 6(b).
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∂θαPm ¼ ieiϒ½Qα; Pm�e−iϒ in Eq. (C30) and applying
straightforward algebraic manipulations. Therefore, we
find that all the terms in WN ½e−iHeff t� are bounded by a
constant as a function of N, and thereby we obtain
Eq. (C28).

APPENDIX D: CHARGE PUMPING STATISTICS

As mentioned in the main text, quantization of the charge
pumped per cycle is realized for every individual disorder
realization in a large system. In this appendix, we show
numerical results for a single disorder realization in a finite
system of size 50 × 50 lattice sites. In the main text we
define the pumped charge by integrating the current across
a single vertical “cut" across the system in a cylinder
geometry (a cut along the y direction, cf. Fig. 3). Here, in
Fig. 9 we show that the detailed time dependence of hQiNT ,
the cumulative average charge pumped per cycle across
each single cut, displays a unique pattern of decaying
oscillations and limits to one at large times [Fig. 9(a)].
Current conservation implies that the average currents
across all cuts must be equal in the long-time limit; the
spread of values at large times is due to numerical
discretization error. In Fig. 9(b), we show the current
averaged over all vertical cuts in the same 50 × 50 system.
Here, the rapid convergence to the quantized value is
clearly displayed.
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