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Cell motion inside dense tissues governs many biological processes, including embryonic development
and cancer metastasis, and recent experiments suggest that these tissues exhibit collective glassy behavior.
To make quantitative predictions about glass transitions in tissues, we study a self-propelled Voronoi model
that simultaneously captures polarized cell motility and multibody cell-cell interactions in a confluent
tissue, where there are no gaps between cells. We demonstrate that the model exhibits a jamming transition
from a solidlike state to a fluidlike state that is controlled by three parameters: the single-cell motile speed,
the persistence time of single-cell tracks, and a target shape index that characterizes the competition
between cell-cell adhesion and cortical tension. In contrast to traditional particulate glasses, we are able to
identify an experimentally accessible structural order parameter that specifies the entire jamming surface as
a function of model parameters. We demonstrate that a continuum soft glassy rheology model precisely
captures this transition in the limit of small persistence times and explain how it fails in the limit of large
persistence times. These results provide a framework for understanding the collective solid-to-liquid
transitions that have been observed in embryonic development and cancer progression, which may be
associated with epithelial-to-mesenchymal transition in these tissues.
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I. INTRODUCTION

Recent experiments have revealed that cells in dense
biological tissues exhibit many of the signatures of glassy
materials, including caging, dynamical heterogeneities, and
viscoelastic behavior [1–5]. These dense tissues, where
cells are touching one another with minimal spaces in
between, are found in diverse biological processes includ-
ing wound healing, embryonic development, and cancer
metastasis.
In many of these processes, tissues undergo an epithelial-

to-mesenchymal transition (EMT), where cells in a
solidlike, well-ordered epithelial layer transition to a
mesenchymal, migratory phenotype with less well-ordered
cell-cell interactions [6,7], or an inverse process, the
mesenchymal-to-epithelial transition (MET). Over many
decades, detailed cell biology research has uncovered many
of the signaling pathways involved in these transitions
[8,9], which are important in developing treatments for
cancer and congenital disease.
Most previous work on EMT or MET has focused,

however, on properties and expression levels in single cells

or pairs of cells, leaving open the interesting question of
whether there is a collective aspect to these transitions: Are
some features of EMTor MET generated by large numbers
of interacting cells? Although there is no definitive answer
to this question, several recent works have suggested
that EMT might coincide with a collective solid-to-
liquid jamming transition in biological tissues [3,10–12].
Therefore, our goal is to develop a framework for jamming
and glass transitions in a minimal model that accounts for
both cell shapes and cell motility, in order to make
predictions that can quantitatively test this conjecture.
Jamming occurs in nonbiological particulate systems

(such as granular materials, polymers, colloidal suspen-
sions, and foams) when their packing density is increased
above some critical threshold, and glass transitions occur
when the fluid is cooled below a critical temperature. Over
the past 20 years these phenomena have been unified by
“jamming phase diagrams” [13,14].
Building on these successes, researchers have recently

used self-propelled particle (SPP) models to describe dense
biological tissues [15–20]. These models are similar to
those for inert particulate matter—cells are represented as
disks or spheres that interact with an isotropic soft repulsive
potential—but unlike Brownian particles in a thermal bath,
self-propelled particles exhibit persistent random walks.
SPP models typically exhibit a glass transition from a
diffusive fluid state to an arrested subdiffusive solid that is
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controlled by (1) the strength of self-propulsion [16,17,21]
and (2) the packing density ϕ [17,21–24]. Just like in
thermal systems, a jamming transition occurs at a critical
packing density ϕG, but this critical density is altered by the
persistence time of the random walks [17,21–24].
During many biological processes, however, a tissue

remains at confluence (packing fraction equal to unity)
while it changes from a liquidlike to a solidlike state or vice
versa. For example, in wound healing, cells collectively
organize to form a “moving sheet” without any change in
their packing density [25], and during vertebrate embryo-
genesis, mesendoderm tissues are more fluidlike than
ectoderm tissues, despite both having packing fraction
equal to unity [5].
Recently, Bi and co-workers [26] have demonstrated that

the well-studied vertex model for 2D confluent tissues
[27–32] exhibits a rigidity transition in the limit of zero cell
motility. Specifically, the rigidity of the tissue vanishes at a
critical balance between cortical tension and cell-cell
adhesion. An important insight is that this transition
depends sensitively on cell shapes, which are well defined
in the vertex model. While promising, vertex models are
difficult to compare to some aspects of experiments
because they do not incorporate cell motility.
In this work, we bridge the gap between the confluent

tissue mechanics and cell motility by studying a hybrid
between the vertex model and the SPP model, which we
name the self-propelled Voronoi (SPV) model. A similar
model was introduced by Li and Sun [33], and cellular
Potts models also bridge this gap [34,35], although glass
transitions have not been carefully studied in any of these
hybrid systems.

II. SPV MODEL

While the vertex model describes a confluent tissue as a
polygonal tiling of space where the degrees of freedom are
the vertices of the polygons, the SPV model identifies each
cell using only the center (ri) of Voronoi cells in a Voronoi
tessellation of space (Dirichlet domains) [36]. The obser-
vation that Voronoi tessellations can describe cellular
patterns in epithelial tissues was first proposed by
Honda [37]. For a tissue containingN cells, the intercellular
interactions are captured by a total energy that is the same
as that in the vertex model. Since the tessellation is
completely determined by the frig, the total tissue
mechanical energy can be fully expressed as E ¼ EðfrigÞ:

E ¼
XN
i¼1

½KAðAðriÞ − A0Þ2 þ KPðPðriÞ − P0Þ2�: ð1Þ

The term quadratic in cell area AðriÞ results from a
combination of cell volume incompressibility and the
monolayer’s resistance to height fluctuations [29]. The
term involving the cell perimeter PðriÞ originates from

active contractility of the actomyosin subcellular cortex
(quadratic in perimeter) and effective cell membrane
tension due to cell-cell adhesion and cortical tension (both
linear in perimeter). This gives rise to an effective target
shape index that is dimensionless: p0 ¼ P0=

ffiffiffiffiffi
A0

p
. KA and

KP are the area and perimeter moduli, respectively. For the
remainder of this article, we assume p0 is homogeneous
across a tissue, although heterogeneous properties are also
interesting to consider [38].
In the vertex model [26], a rigidity transition takes place

at a critical value of p0 ¼ p�
0 ≈ 3.81. When p0 < p�

0,
cortical tension dominates over cell-cell adhesion and
the energy barriers for local cell rearrangement and motion
are finite. The tissue then behaves as an elastic solid with
finite shear modulus. When p0 > p�

0, cell-cell adhesion
dominates and the energy barriers for local rearrangements
vanish, resulting in zero rigidity and fluidlike behavior.
While the energy functional for cell-cell interactions is
identical in the vertex and SPV models, the two are truly
distinct: the local minimum energy states of the vertex
model are not guaranteed to be similar to a Voronoi
tessellation of cell centers, although we do find them to
be very similar in practice. Therefore, we are also interested
in whether a rigidity transition in the SPV model coincides
with the rigidity transition of the vertex model.
We define the effective mechanical interaction force

experienced by cell i as Fi ¼ −∇iE (see Appendix A for
details). In contrast to particle-based models, Fi is nonlocal
and nonadditive: Fi cannot be expressed as a sum of
pairwise force between cells i and its neighboring cells.
Nevertheless, one can show that momentum is still pre-
cisely conserved by this energy functional in the absence of
the additional self-propulsion forces introduced below.
In addition to Fi, cells can also move due to self-

propelled motility. Just as in SPP models, we assign a
polarity vector n̂i ¼ ðcos θi; sin θiÞ to each cell; along n̂i the
cell exerts a self-propulsion force with constant magnitude
v0=μ, where μ is the mobility (the inverse of a frictional
drag). Together these forces control the overdamped
equation of motion of the cell centers ri:

dri
dt

¼ μFi þ v0n̂i: ð2Þ

The polarity is a minimal representation of the front or
rear characterization of a motile cell [35]. While the precise
mechanism for polarization in cell motility is an area of
intense study, here we model its dynamics as a unit vector
that undergoes random rotational diffusion,

∂tθi ¼ ηiðtÞ; hηiðtÞηjðt0Þi ¼ 2Drδðt − t0Þδij; ð3Þ

where θi is the polarity angle that defines n̂i, and ηiðtÞ is a
white-noise process with zero mean and variance 2Dr. The
value of angular noise Dr determines the memory of
stochastic noise in the system, giving rise to a persistence
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time scale τ ¼ 1=Dr for the polarization vector n̂. For small
Dr ≪ 1, the dynamics of n̂ is more persistent than the
dynamics of the cell position. At large values of Dr, i.e.,
when 1=Dr becomes the shortest time scale in the model,
Eq. (2) approaches simple Brownian motion.
The model can be nondimensionalized by expressing all

lengths in units of
ffiffiffiffiffi
A0

p
and time in units of 1=ðμKAA0Þ.

There are three remaining independent model parameters:
the self-propulsion speed v0, the cell shape index p0, and
the rotational noise strength Dr. We simulate a confluent
tissue under periodic boundary conditions with a constant
number of N ¼ 400 cells (no cell divisions or apoptosis)
and assume that the average cell area coincides with the
preferred cell area, i.e., hAii ¼ A0. This approximates a
large confluent tissue in the absence of strong confinement.
We numerically simulate the model using molecular
dynamics by performing 105 integration steps at step size
Δt ¼ 10−1 using Euler’s method. A detailed description of
the SPV implementation can be found in Appendix A.

III. CHARACTERIZING GLASSY BEHAVIOR

We first characterize the dynamics of cell motion within
the tissue by analyzing the mean-squared displacement
(MSD) of cell trajectories. In Fig. 1(a), we plot the MSD as
function of time, for tissues at various values of p0 and
fixed v0 ¼ 0.1 and Dr ¼ 1. The MSD exhibits ballistic
motion (slope close to 2 on a log-log plot) at short times and
plateaus at intermediate time scales. The plateau is an

indication that cells are becoming caged by their neighbors.
For large values of p0, the MSD eventually becomes
diffusive (slope ¼ 1), but as p0 is decreased, the plateau
persists for increasingly longer times. This indicates
dynamical arrest due to caging effects and broken ergo-
dicity, which is a characteristic signature of glassy
dynamics.
Another standard method for quantifying glassy dynam-

ics is the self-intermediate scattering function [39]:
Fsðk; tÞ ¼ hei~k·Δ~rðtÞi. Glassy systems possess a broad range
of relaxation time scales, which show up as a long plateau
in FsðtÞ when it is analyzed at a length scale q comparable
to the nearest-neighbor distance. Figure 1(b) illustrates
precisely this behavior in the SPV model, when j~kj ¼ π=r0,
where r0 is the position of the first peak in the pair
correlation function. The average h� � �i is taken temporally
as well as over angles of ~k. FsðtÞ also clearly indicates that
there is a glass transition as a function of p0: at high p0

values, Fs approaches zero at long times, indicating that the
structure is changing and the tissue behaves as a visco-
elastic liquid. At lower values of p0, Fs remains large at all
time scales, indicating that the structure is arrested and the
tissue is a glassy solid. Figure 1(d) demonstrates that at the
structural relaxation time, the cell displacements show
collective behavior across large length scales, suggesting
strong dynamical heterogeneity. This is strongly reminis-
cent of the “swirl-like” collective motion seen in experi-
ment in epithelial monolayers [1,2,16,40,41].

(a) (c)

(b) (d)

FIG. 1. Analysis of glassy behavior. (a) The mean-squared displacement of cell centers forDr ¼ 1 and v0 ¼ 0.1 and various values of
p0 (bottom to top: p0 ¼ 3.5, 3.65, 3.7, 3.75, 3.8, 3.85) show the onset of dynamical arrest as p0 is changed indicating a glass transition.
The dashed lines indicate a slope of 2 (ballistic) and 1 (diffusive) on a log-log plot. (b) The self-intermediate scattering function at the
same values of p0 shown in (a) shows the emergence of caging behavior at the glass transition. (c) The effective self-diffusivity as a
function of p0 at v0 ¼ 0.1. At the glass transition Deff becomes nonzero. (d) The cell displacement map in the SPV model for a fluid
state very close to the glass transition (p0 ¼ 3.8, v0 ¼ 0.1, and Dr ¼ 1) over a time window t ¼ 104 corresponding to the structural
relaxation at which FsðtÞ ≈ 1=2.
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A. Dynamical order parameter for the glass transition

Although the phase space for this model is three dimen-
sional, we now study the model at a fixed value of Dr ¼ 1.
We then search for a dynamical order parameter that

distinguishes between the glassy and fluid states as a
function of the two remaining model parameters ðv0; p0Þ.
A candidate order parameter is the self-diffusivity Ds:
Ds ¼ limt→∞hΔrðtÞ2i=ð4tÞ. For practicality, we calculate
Ds using simulation runs of 105 time steps, chosen to be
much longer than the typical caging time scale in the fluid
regime. We present the self-diffusivity in units of D0 ¼
v20=ð2DrÞ, which is the free diffusion constant of an isolated
cell. Deff ¼ Ds=D0 then serves as an accurate dynamical
order parameter that distinguishes a fluid state from a solid
(glassy) state in the space of ðv0; p0Þ, matching the regimes
identified using theMSDandFq. In Fig. 2, the fluid region is
characterized by a finite value ofDeff andDeff drops below a
noise floor of∼10−3 as the glass transition is approached. In
practice, we label materials with Deff > 10−3 as fluids
indicated by an orange dot, and those with Deff ≤ 10−3 as
solids indicated by blue squares. Importantly, we find that
the SPV model in the limit of zero cell motility shares a
rigidity transition with the vertex model [26] at p0 ≈ 3.81,
and that this rigidity transition controls a line of glass
transitions at finite cell motilities. Typical cell tracks (Fig. 2)
clearly show caging behavior in the glassy solid phase.

B. Cell shape is a structural order
parameter for the glass transition

In glassy systems it can be difficult to experimentally
distinguish between a truly dynamically arrested state and a

state with relaxation times longer than the experimental
time window. Similarly, in tissues it is experimentally
challenging to quantify a glass transition through the
measurement of a dynamical quantity such as the diffu-
sivity Ds. Identifying a static quantity that directly probes
the mechanical properties of a tissue would, therefore, be a
powerful tool for experiments. Puliafito et al. have sug-
gested that shape changes accompany dynamical arrest in
proliferating tissues [43]. Similarly, a structural signature
based on cell shapes—the shape index q ¼ hP= ffiffiffiffi

A
p i—was

previously shown to be an excellent order parameter for the
confluent tissue rigidity transition in the vertex model [11].
In a model where cells were not motile (v0 ¼ 0), we found
that when p0 < 3.813, q is constant ∼3.81, and when
p0 > 3.81, q grows linearly with p0. Quite surprisingly, we
found that the prediction of q ¼ 3.813 works perfectly in
identifying a jamming transition in in vitro experiments
involving primary human tissues, where cells are clearly
motile (v0 ≠ 0) [11]. At that time, we did not understand
why the v0 ¼ 0 theory worked so well for these tissues.
The prediction of a solid-liquid transition in the SPV

model we present here provides an explanation for this
observation. We find that q (which can be easily calculated
in experiments or simulations from a snapshot) can be used
as a structural order parameter for the glass transition for all
values of v0, not just at v0 ¼ 0. Specifically, the boundary
defined by q ¼ 3.813, shown by the blue dashed line in
Fig. 2(a), coincides extremely well with the glass transition
line obtained using the dynamical order parameter, shown
by the round and square data points. The insets of Fig. 2
also illustrate typical cell shapes: cells are isotropic on

(a) (b)

FIG. 2. (a) Glassy phase diagram for confluent tissues as a function of cell motility v0 and target shape index p0 at fixedDr ¼ 1. Blue
data points correspond to solidlike tissue with vanishing Deff ; orange points correspond to flowing tissues (finite Deff ). The dynamical
glass transition boundary also coincides with the locations in phase space where the structural order parameter q ¼ hP= ffiffiffiffi

A
p i ¼ 3.81

(dashed line). In the solid phase, q ≈ 3.81, and q > 3.81 in the fluid phase. (b) Instantaneous tissue snapshots show the difference in cell
shape across the transition. Cell tracks also show dynamical arrest due to caging in the solid phase and diffusion in the fluid phase.
Simulations videos of typical fluid and solid phases are included in Supplemental Materials [42].
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average in the solid phase and anisotropic in the fluid
phase. This highlights the fact that q can be used as a
structural order parameter for the glass transition at all cell
motilities, providing a powerful new tool for analyzing
tissue mechanics.

IV. THREE-DIMENSIONAL JAMMING PHASE
DIAGRAM FOR TISSUES

Having studied the glass transition as a function of v0
and p0 at a large value of Dr, we investigate the full three-
dimensional phase diagram by characterizing the effect of
Dr on tissue mechanics and structure. Dr controls the
persistence time τ ¼ 1=Dr and persistence length or Péclet
number Pe ∼ v0=Dr of cell trajectories; smaller values of
Dr correspond to more persistent motion.
In Fig. 3(a), we show several 2D slices of the three-

dimensional jamming boundary. Solid lines illustrate the
phase transition line identified by the structural order
parameter q ¼ 3.813 as function of v0 and p0 for a large
range of Dr values (from 10−2 to 103). (In Appendix B 2,
we demonstrate that the structural transition line q ¼ 3.813
matches the dynamical transition line for all studied values
of Dr.) In contrast to results for particulate matter [22], this
figure illustrates that the glass transition lines meet at a
single point (p0 ¼ 3.81) in the limit of vanishing cell
motility, regardless of persistence.
Figure 3(b) shows an orthogonal set of slices of the

jamming diagram, illustrating how the phase boundary
shifts as a function of p0 and Dr at various values of v0.
This highlights the interesting result that a solidlike
material at high value of Dr can be made to flow simply
by lowering its value of Dr. The crossover in behavior at
large v0 occurs when the persistence time 1=Dr is
approximately equal to the viscous relaxation time
1=ðμKAA0Þ ¼ 1.

These slices can be combined to generate a three-
dimensional jamming phase diagram for confluent biologi-
cal tissues, shown in Fig. 3(c). This diagram provides a
concrete, quantifiable prediction for how macroscopic
tissue mechanics depends on single-cell properties such
as motile force, persistence, and the interfacial tension
generated by adhesion and cortical tension.
We note that Fig. 3(c) is significantly different from the

jamming phase diagram conjectured by Sadati et al. [12],
which was informed by results from adhesive particulate
matter [14]. For example, in particulate matter adhesion
enhances solidification, while in confluent models adhe-
sion increases cell perimeters or surface area and enhances
fluidization. In addition, we identify “persistence” as a new
axis with a potentially significant impact on cell migration
rates in dense tissues.
To better understand why persistence is so important in

dense tissues, we first have to characterize the transitions
between different cellular structures. In the limit of zero cell
motility, the system can be described by a potential energy
landscape where each allowable arrangement of cell
neighbors corresponds to a metastable minimum in the
landscape. There are many possible pathways out of each
metastable state: some of them correspond to localized cell
rearrangements, while others correspond to large-scale
collective modes. The maximum energy required to tran-
sition out of a metastable state along each pathway is called
an energy barrier [27].
We observe that tissue fluidity can increase drastically

with decreasing Dr at finite cell speeds. This suggests that
different pathways (with lower energy barriers) must
become dynamically accessible at lower values of Dr.
One hint about these pathways comes from the instanta-

neous cell displacements, shown for different values of Dr
in Fig. 4. At high values of Dr (p0 ¼ 3.78, v0 ¼ 0.1), the
instantaneous displacement field is essentially random and

(a) (b) (c)

FIG. 3. (a) The glass transition in v0 − p0 phase space shifts as the persistence time changes. Lines represent the glass transition
identified by the structural order parameter q ¼ 3.81. The phase boundary collapse to a single point at p�

0 ¼ 3.81, regardless ofDr, in the
limit v0 → 0. (b) The glass transition in p0 −Dr phase space shifts as a function of v0 (from top to bottom: v0 ¼ 0.02, 0.08, 0.14, 0.2,
0.26). For large v0 there is a crossover in the behavior at Dr ∼ μKAA0 ¼ 1, as discussed in the main text. (c) The phase boundary
between solid and fluid as a function of motility v0, persistence 1=Dr, and p0, which is tuned by cell-cell adhesion, can be organized into
a schematic 3D phase diagram. Red lines on the surface correspond to iso-v0 contours and blue lines correspond to iso-Dr contours.
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largely uncorrelated, as shown in Fig. 4, and the material is
solidlike. There is no collective behavior among cells,
and each cell “rattles” independently near its equilibrium
position.
However, as Dr is lowered, the instantaneous displace-

ment field becomes much more collective (Fig. 4) and the
tissue begins to flow, presumably because these collective
displacement fields correspond to pathways with lower
transition energies.
Two obvious questions remain: How does a lower value

of Dr generate more collective instantaneous displace-
ments? Why should collective instantaneous displacements
generically have lower energy barriers? The first question
can be answered by extending ideas first proposed by
Henkes, Fily, and Marchetti [17] to explain why motion in
self-propelled particle models seems to follow the “soft
modes” of a solid. This argument is based on a simple, yet
powerful observation: in the limit of zero motility (v0 ¼ 0),
a solidlike state will have a well-defined set of normal
modes of vibration (with frequencies fωνg), and a corre-
sponding set of eigenvectors (fêνg) that forms a complete
basis. At higher motilities (v0 > 0) near the glass transition,
the motion of particles in the system can be expanded in
terms of the eigenvectors. As discussed in Appendix B 1,
one can use this observation to show that in the limit of
Dr → 0, motion along the lowest-frequency eigenmodes is
amplified—the amplitude along each mode is proportional
to 1=ω2

ν. These low-frequency normal modes are precisely
the collective displacements observed for low Dr.
The second question is more difficult to answer because

it is impossible to enumerate all of the possible transition
pathways and energy barriers in a disordered material.
However, a partial answer comes from recent work in
disordered particulate matter showing that low-frequency
normal modes do have significantly lower energy barriers
[44,45] than higher-frequency normal modes. A similar
analysis could potentially be performed in vertex or SPV
models.

V. CONTINUUM MODEL FOR GLASS
TRANSITIONS IN TISSUES

Although continuum hydrodynamic equations of motion
have been developed by coarse graining SPP models in the
dilute limit, there is no existing continuum model for a
dense active matter system near a glass transition. Here, we
propose that a simple trap [46] or soft glassy rheology
(SGR) [47] model provides an excellent continuum
approximation for the phase behavior in the large Dr
Brownian regime, but fails in the small Dr limit.
For large Dr it is known that particles behave like

Brownian particles with an effective temperature Teff ¼
v20=2μDr [24]. This mapping becomes exact whenDr → ∞
at fixed “effective inertia” ðμDrÞ−1 [23]. In other words,
like in granular systems [48,49], the effective temperature
in SPP is dominated by kinetic effects. Guided by this
result, we conjecture that in our model the temperature also
scales quadratically with the velocity:

Teff ∝ cv20: ð4Þ

Physically, this effective temperature gives the amount of
energy available for individual cells to vibrate within their
cage or “trap.”
The next important question is how to characterize the

“trap depths,” or energy barriers between metastable states.
In the Brownian regime (large Dr) there is no dynamical
mechanism for the cells to organize collectively, and,
therefore, a reasonable assumption is that the rearrange-
ments are small and localized.
In Ref. [27], some of us explicitly calculated the statistics

of energy barriers for localized rearrangements in the
equilibrium vertex model. In the 2D vertex model, one
can show that localized rearrangements must occur via so-
called T1 transitions [50]. Using a trap model [46] or SGR
[47] framework, we were able to use these statistics to
generate an analytic prediction, with no fit parameters, for
the glass transition temperature Tg as a function of p0.
To see if the SGR prediction for the glass transition holds

for the SPV model in the large Dr limit, we simply overlay
the data points corresponding to glassy states from the SPV
model with the glass transition Tg line predicted in
Ref. [27]. There is one fitting parameter c that characterizes
the proportionality constant in Eq. (4). Figure 5 shows that
the SPV data for Dr ¼ 103 are in excellent agreement with
our previous SGR prediction.
Because Teff ∼ v20, and the glass transition line scales as

Tg ∼ p�
0 − p0 for p0 ≪ p�

0 and Dr → 0, the glass transition
line scales as v0 ∼ ðp�

0 − p0Þ0.5 in those limits.
The reason the effective temperature SGR model works

here is that, like in SPP models of spherical active
Brownian colloids, the angular dynamics of each cell
evolves independently of cell-cell interactions and of the
angular dynamics of other cells. An additional alignment

(a) (b) (c)

FIG. 4. (a)–(c) Instantaneous cell displacements at p0 ¼ 3.65
and v0 ¼ 0.5. They are different from the displacements shown in
Fig. 1(d), which are averaged over the structural relaxation time
scale. (a) At the lowest value of Dr ¼ 0.01, the cells are able to
flow by collectively displacing along the “soft” modes of the
system (Appendix B 1). (b) At Dr ¼ 0.1, collective displace-
ments are less pronounced. (c) For Dr ¼ 1 and larger, the
displacements appear disordered and uncorrelated.
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interaction that couples the angular and translational
dynamics may therefore modify this behavior.
To our knowledge, this is the first time that a SGR or trap

model prediction has been precisely tested in any glassy
system. This is because, unlike most glass models, we can
enumerate all of the trap depths for localized transition
paths in the vertex model.
However, for small values of Dr, we show that cell

displacements are dominated by collective normal modes,
and therefore the energy barriers for localized T1 transi-
tions are probably irrelevant in this regime. The inset of
Fig. 5 shows the deviation (L2 norm) between glass
transition lines in the SPV model and T1-based SGR
prediction as a function of Dr. We see that the SGR
prediction fails in the small Dr limit, as expected. A better
understanding of the energy barriers associated with
collective modes will be required to modify the theory
at small Dr.

VI. DISCUSSION AND CONCLUSIONS

We show that a minimal model for confluent tissues with
cell motility exhibits glassy dynamics at constant density.
This model allows us to make a quantitative prediction for
how the fluid-to-solid or jamming transition in biological
tissues depends on parameters such as the cell motile speed,
the persistence time associated with directed cell motion,
and the mechanical properties of the cell (governed by
adhesion and cortical tension). We define a simple, exper-
imentally accessible structural order parameter—the cell

shape index—that robustly identifies the jamming transi-
tion, and we show that a simple analytic model based on
localized T1 rearrangements precisely predicts the jam-
ming transition in the large Dr limit. We also show that this
prediction fails in the small Dr limit, because the instanta-
neous particle displacements are dominated by collective
normal modes.
This model makes several experimentally verifiable

predictions for cell shape and tissue mechanics:
(i) The order parameter q ¼ 3.81 is a structural sig-

nature for the glass transition, even in tissues with
significant cell motility or dynamics. This prediction
has already been tested in epithelial lung tissue [11],
but it should be much more broadly applicable. We
have performed a rudimentary shape analysis of a
small number of images from other systems that
have been previously published, including prolifer-
ating Madin-Darby canine kidney cells (MCDK)
monolayers [51] and convergent extension in fruit
fly development [52] and found that the shapes are
consistent with this prediction. A much more careful
analysis with full data sets should be performed to
further validate this prediction or understand where
it breaks down.

(ii) In the limit of vanishing cell motility, shape and
pressure fluctuations should vanish when the
jamming transition is approached from the solid
side, and remain zero in the fluid. A finite motility v0
will induce such fluctuations in the fluid phase, as
confirmed by preliminary calculation of cellular
stresses and pressure in the SPV model [53]. This
could be studied by combining measurement of cell
shape fluctuations with traction force microscopy in
wound healing assays. After locating the glass
transition by imaging cell shape changes, it may
be possible to extract information on cell motility v0
from cellular stresses and pressure inferred from
traction force microscopy in the fluid phase near the
glass transition. This suggests that one may estimate
cell motility by examining the changes in cellular
stresses and pressure in the cell monolayer near the
unjamming transition and assuming that the local
velocity of the monolayer is very small just
above the transition. The latter assumption can
also be verified independently via particle image
velocimetry.

(iii) Cell proliferation, so far neglected in our model,
causes an increase in cell number density in con-
fluent tissues. Often this is accompanied by a
reduction in individual cell motility v0, via contact
inhibition of locomotion. In cases where this is the
dominant effect and changes to the ratio between A0

and P0 are negligible, our work predicts that pro-
liferation would drive the system towards jamming.
This is consistent with existing reports in the

FIG. 5. ComparisonbetweenSPVglass transitionandananalytic
prediction based on a soft glass rheology (SGR) continuummodel.
The dashed line corresponds to a SGR prediction with no fit
parameter based on previously measured vertex model trap depths
[27]. Data points correspond to SPV simulations with Dr ¼ 10−3
and where we define Teff ¼ cv20 with c ¼ 0.1 as the best-fit
normalization parameter. Blue points correspond to simulations
that are solidlike, with Deff < 10−3, and the boundary of these
points defines the observed SPV glass transition line. Inset: L2

difference between SPV glass transition line (at best-fit value of c)
and the predicted SGR transition line at various values ofDr. The
SGRprediction basedon localizedT1 trap depthsworkswell in the
high Dr limit, but not in the low Dr limit.
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literature [51], although more work is required to test
the prediction carefully. In tissues where v0 remains
low at all times [43], our model predicts that
proliferation can cause either jamming or unjam-
ming, depending on whether cell divisions are
oriented in such a way as to decrease or increase
cell shape anisotropy.

(iv) Spatial correlations and fluctuations of the cell
displacement field, such as swirl sizes
[1,2,16,40,41], should grow as a tissue approaches
the glass transition from the fluid side. Very recently,
a similar prediction for displacements and correla-
tion lengths based on a particle-based model has
been verified in one cell type [16]. The SPV model,
which makes predictions for cell shapes in addition
to displacements and correlation lengths, could be
tested simply by compiling detailed statistics about
cell shapes and cell motion in epithelial monolayers.

Although all of the work we present here focuses on the
SPV model, which tracks cell centers and therefore has
only 2 degrees of freedom per cell, we find that in the limit
of zero cell motility it exhibits the same rigidity transition
as the vertex model which has 2 degrees of freedom per
vertex. We also check that an “active vertex model,” where
active motile forces are added to the vertex model vertices,
also exhibits a robust glass transition characterized by the
shape order parameter q. The fact that two models with
ostensibly different degrees of freedom share the same
transition suggests that there is a deeper universality,
perhaps generated by isostaticity, that remains to be
understood.
Another result of this work is the surprising and

unexpected differences between confluent models (such
as the vertex and SPV models) and particle-based models
(such as Lennard-Jones glasses and SPP models). For
example, works by Berthier [22] and Fily and Marchetti
[24] in SPP models suggest that the location of the zero
motility glass transition packing density ϕG (defined as the
density at which dynamics cease in the limit of v0 → 0)
depends on the value of noise Dr. This is also related to the
observation that the jamming and glass transition are not
controlled by the same critical point in nonactive systems
[54,55]. We find this is not the case in the SPV model.
Figures 3(a) and 3(b) show that while the glass transition
point p�

0 shifts with Dr at finite values of v0, in the limit of
vanishing motility, all glass transition lines merge onto a
single point in the limit v0 → 0, namely, p�

0 ¼ 3.81.
Given these differences, it is important to ask which type

of model is appropriate for a given system. We argue that
SPV models are maybe more appropriate for many bio-
logical tissues. Whereas SPP models interact with two-
body interactions that depend only on particle center
positions, both SPV and vertex models naturally incorpo-
rate contractility as a key property of living cells and
capture the inherently multibody nature of intercellular

forces due to shape deformations. Unlike equilibrium
vertex models, SPV models account for cell motility,
and they are also much easier to simulate in 3D (which
is nearly impossible in practice for the vertex model).
Recent work by Li and Sun [33] also models a confluent

cell as a Voronoi tessellation of the plane. An important
difference between their work and ours is that in Ref. [33]
cell-cell adhesion is captured via a potential that is
quadratic in the distance between cell centers, just as in
particle models. We might guess that stronger cell-cell
adhesion in their model will result in stiffening of the tissue,
which is common for particle-based models, although that
remains to be tested in active systems. In contrast, adhesion
enters our model through the coupling of the shape energy
to the cell perimeter. Increasing cell-cell adhesion (or
decreasing cortical tension) yields a larger value of p0,
which leads to the tissue becoming softer.
We expect that other shape-based models of confluent

tissue dynamics will also yield the glass transition
described here. For example, it has been reported in recent
works based on the cellular Potts model [34,35] and in a
modified SPP model [16] that, when the cell motile force is
decreased beyond a certain threshold, the motion of cells
transitions from diffusive to subdiffusive. This is similar to
crossing the glass transition line in the SPV model by
decreasing the value of v0.
In this work and in previous work based on the vertex

model, the cell volume is generally assumed to be fixed.
While this is a good assumption in developmental systems
such as drosopholia [56,57] and zebrafish [30], epithelial
tissue cells can show significant volume fluctuations, as
reported recently [58,59]. Therefore, it will be important to
incorporate volume fluctuations in future iterations of the
vertex model or the SPV model, as they introduce another
source of active shape fluctuation and could therefore lead
to jamming or unjamming of the tissue locally and
potentially shift the location of the rigidity and glass
transitions.
In our version of the SPV model, we assume that cell

polarity is controlled by simple rotational white noise. It is
also possible to include more complex mechanisms. For
example, external chemical or mechanical cues could be
modeled by coupling v0 and n̂i to chemoattractant or
mechanical gradients, allowing waves or other pattern
formation mechanisms to interact with the jamming tran-
sition. Similarly, simple alignment rules (such as those in
the Viscek model [60]) could lead to collective flocking
modes that also affect glassy dynamics.
Another interesting extension of the SPV model would

be to study the role of cell-cell friction, which has already
been shown to be important in controlling collective
dynamics in particle-based tissue models [16]. Our current
model includes viscous frictional coupling of a cell to the
2D substrate and cell-cell adhesion enters as a negative line
tension on interfaces. However, it would be possible to add
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a frictional force between cells proportional to the length of
the edge shared between two cells, and we know from
previous work on particulate glasses that these localized
frictions can change the location of jamming or glass
transition and the nature of spatial correlations in a
glass [61,62].
It is also tempting to speculate about the relationship

between the unjamming transition captured by our model
and the epithelial-mesenchimal transition that precedes cell
escape from a solid tumor mass. The EMT involves
significant changes in cell-cell adhesion and cytoskeletal
composition, with associated changes in cell shape and
motility. This suggests that escape from the tumor mass is
controlled not just by the chemical breakdown of the
basement membrane, but also by specific changes in
mechanical properties of both individual cells and the
surrounding tissue [63]. One could then hypothesize that
the collective unjamming we describe here may provide the
first necessary step towards the mechanical changes needed
for cell escape from primary tumors.
In particular, recent work suggests that cancer tumors are

mechanically heterogeneous, with mixtures of stiff and soft
cells that have varying degrees of active contractility [38].
Our jamming phase diagram suggests that the soft cells,
which often exhibit mesenchymal markers and presumably
correspond to higher values of p0, might unjam and move
towards the boundary of a primary tumor more easily
than their stiff counterparts. Examining the effects of
tissue heterogeneity on tissue rigidity and patterns of cell
motility is, therefore, a very promising avenue for devel-
oping predictive theories for tumor invasiveness and
metastasis.
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APPENDIX A: SIMULATION
ALGORITHM FOR THE SPV MODEL

To create an initial configuration for the simulation, we
first generate a seed point pattern using random sequential
addition [64] and anneal it by integrating Eq. (2) with

v0 ¼ 0 for 100 MD steps. The resulting structure then
serves as an initial state for all simulations runs. The use of
random sequential addition serves only to speed up the
initial seed generation, as using a Poisson random point
pattern does not change the results presented in this paper.
At each time step of the simulation, a Voronoi tessella-

tion is created based on the cell centers. The intercellular
forces are then calculated based on shapes and topologies
of the Voronoi cells (see discussion below). We employ
Euler’s method to carry out the numerical integration of
Eq. (2); i.e., at each time step of the simulation the
intercellular force is calculated based on the cell center
positions in the previous time step.
In a Delaunay triangulation, a trio of neighboring

Voronoi centers define a vertex of a Voronoi polygon.
For example, in Fig. 6, (~ri, ~rj, ~rk) define the vertex ~h3,
which is given by

~h3 ¼ α~ri þ β~rj þ γ~rk; ðA1Þ

where the coefficients are given by

α ¼ ∥~rj − ~rk∥2ð~ri − ~rjÞ · ð~ri − ~rkÞ=D;

β ¼ ∥~ri − ~rk∥2ð~rj − ~riÞ · ð~rj − ~rkÞ=D;

γ ¼ ∥~ri − ~rj∥2ð~rk − ~riÞ · ð~rk − ~rjÞ=D;

D ¼ 2∥ð~ri − ~rjÞ × ð~rj − ~rkÞ∥2: ðA2Þ

In the vertex model, the total mechanical energy of a
tissue depends only on the areas and perimeters of cells:

E ¼
XN
i¼1

½KPðAi − A0Þ2 þ KPðPi − P0Þ2�: ðA3Þ

In a Voronoi tessellation, the area and perimeter of a cell i
can be calculated in terms of the vertex positions:

FIG. 6. Cell center positions are specified by vectors f~rg. They
form a Delaunay triangulation (black lines). Its dual is the
Voronoi tessellation (red lines), with vertices given by f~hg.
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Pi ¼
Xzi−1
m¼0

∥~hm − ~hmþ1∥; Ai ¼
1

2

Xzi−1
m¼0

∥~hm × ~hmþ1∥; ðA4Þ

where zi is the number of vertices for cell i (also number of
neighboring cells) and m indexes the vertices. We use the

convention ~hzi ¼ ~h0.
With these definitions, the total force on cell i can be

calculated using Eq. (A3):

Fiμ ≡− ∂E
∂riμ ¼ − X

j∈NNðiÞ

∂Ej

∂riμ −
∂Ei

∂riμ : ðA5Þ

Here, μ denotes the Cartesian coordinates (x, y). The first
term on the rhs of Eq. (A5) sums over all nearest neighbors
(NN) of cell i. It is the force on cell i due to changes in
neighboring cell shapes. The second term is the force on
cell i due to shape changes brought on by its own motion.
It maybe tempting to treat ð∂EjÞ=ð∂riμÞ as the force

between cells i and j, but

∂Ej

∂riμ ≠
∂Ei

∂rjμ ; ðA6Þ

since the interaction is inherently multicellular in nature
and interactions between i and j also depend on k and l
(see Fig. 6).
For the typical configuration shown in Fig. 6, the first

term in Eq. (A5) can be expanded using the chain rule and
calculated using Eq. (A1):

∂Ej

∂riμ ¼
X
ν

�∂Ej

∂h2ν
∂h2ν
∂riμ þ ∂Ej

∂h3ν
∂h3ν
∂riμ

�
: ðA7Þ

In Eq. (A7), only terms involving ~h2 and ~h3 are kept since
Ej does not depend on other vertices of cell i. ν is a
Cartesian coordinate index. The energy derivative in
Eq. (A7) can be calculated in a straightforward way, by
using Eqs. (A3) and (A4):

∂Ej

∂h2x ¼ 2KAðAj −A0Þ
∂Aj

∂h2x þ 2KPðPj −P0Þ
∂Pj

∂h2x
¼ KAðAj −A0Þðh3y − h7yÞ

þ 2KPðPj −P0Þ
�
h2x − h7x

∥~h7 − ~h2∥
þ h2x − h3x

∥~h2 − ~h3∥

�
ðA8Þ

and

∂Ej

∂h2y ¼ 2KAðAj −A0Þ
∂Aj

∂h2y þ 2KPðPj −P0Þ
∂Pj

∂h2y
¼ KAðAj −A0Þðh3x − h7xÞ

þ 2KPðPj −P0Þ
�
h2y − h7y

∥~h7 − ~h2∥
þ h2y − h3y

∥~h2 − ~h3∥

�
: ðA9Þ

Similarly, the second term on the right-hand side of
Eq. (A5) can be calculated in a similar way.

APPENDIX B: CELL DISPLACEMENTS
AND STRUCTURAL ORDER PARAMETER

AS A FUNCTION OF Dr

1. Expanding cell displacements in an eigenbasis
associated with the underlying dynamical matrix

In the absence of activity (v0 ¼ 0), the tissue is a solid
for p0 < p�

0 ¼ 3.81. As v0 is increased, the solid behavior
persists up to v0 ¼ v�0ðp0Þ, which is given by the glass
transition line in Fig. 2. In order for the tissue to flow,
sufficient energy input is needed to overcome energy
barriers in the potential energy landscape, which are a
property of the underlying solid state at v0 ¼ 0. In this
limit, the instantaneous cell center positions f~riðtÞg can be

thought of as a small displacement f~diðtÞg from the nearest

solid reference state f~r0ig [17], where ~diðtÞ ¼ ~ri − ~r0i. The
~r0i correspond to positions of a cell in a solid, which has a
well-defined linear response regime [26]. The linear
response is most conveniently expressed as the eigenspec-
trum of the dynamical matrix Dijαβ. Since the eigenvectors
fêi;νg of Dijαβ form a complete orthonormal basis, the cell
center displacement can then be expressed as a linear
combination of fêi;νg:

~diðtÞ ¼
X
ν

aνðtÞêi;ν: ðB1Þ

For simplicity, we adopt the bra-ket notation and express
the eigenbasis simply as jνi, and Eq. (B1) becomes

jdi ¼
X
ν

aνðtÞjνi; ðB2Þ

where

D̂jνi ¼ ω2
νjνi; ðB3Þ

and ω2
ν are the eigenvalues of the dynamical matrix.

The polarization vector n̂i can also be expressed as a
linear combination of eigenvectors:

jni ¼
X
ν

bνðtÞjνi: ðB4Þ

Since the polarization vector and eigenvector are both unit
vectors, it follows that bνðtÞ ¼ hnjνi ¼ cosðθν − ψÞ, where
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ψ is the angle of the polarization and θν is the angle of the
eigenvector.
Then the equation of motion for ~di [Eq. (2)] can be

rewritten as

_~d ¼ −μ ∂E∂~ri j~r0;i þ v0n̂i: ðB5Þ

Using Eqs. (B2)–(B5), we find

d
dt

hνjdi ¼ −μhνjD̂di þ v0hνjni or

d
dt

aνðtÞ ¼ −μω2
νaνðtÞ þ v0bνðtÞ: ðB6Þ

Then the equation of motion for each amplitude is

d
dt

aνðtÞ ¼ −μω2
νaνðtÞ þ v0 cosðθν − ψÞ; _ψ ¼ η: ðB7Þ

This is just the equation of motion for a self-propelled
particle tethered to a spring with active forcing that is
strongest along the direction of the eigenvector [65]. The
solution is then

aνðtÞ¼aνðt¼0Þe−ktþv0

Z
t

0

dt0e−kðt−t0Þcosðθν−ψÞ; ðB8Þ

where k ¼ μω2
ν.

Solving for the ensemble-averaged quantity,

haνðtÞi ¼ aνðt ¼ 0Þe−kt þ v0

Z
t

0

dt0e−kðt−t0Þhcosðθν − ψÞi;
ðB9Þ

and using the relations

hcosψðtÞi ¼ cosψð0Þe−Drt;

hsinψðtÞi ¼ sinψð0Þe−Drt;

cosðθν − ψÞ ¼ sinðθνÞ sinðψÞ þ cosðθνÞ cosðψÞ; ðB10Þ

we obtain

haνðtÞi ¼ aνð0Þe−kt þ v0 cos½θν − ψð0Þ� e
−kt − e−Drt

Dr − k
:

ðB11Þ

In the limit of Dr → ∞, Eq. (B11) becomes

haνðtÞi ¼ aνð0Þe−kt: ðB12Þ

This suggests that while normal modes control the rate of
decay, they do no affect the long-time behavior.

However, as Dr → 0, Eq. (B11) becomes

aνðtÞ ¼ aνð0Þe−μω2
νt þ v0

μω2
ν
cos½θν − ψð0Þ�ð1 − e−μω2

νtÞ:
ðB13Þ

The second term in this equation scales as ∼1=ω2
ν.

Therefore, at short times (corresponding to instantaneous
response), the mode amplitude aν is much larger for modes
at lower frequencies. Since the reference state is an elastic
solid with Debye scaling DðωÞ ∼ ω as ω → 0 [26], this
suggests that the displacement will be heavily dominated
by the lowest-frequency modes that are spatially more
collective in nature.

2. Effect of Dr on glass transition boundary

Figure 7 shows the location in phase space where the
shape index q ¼ 3.81 is in excellent agreement with the
dynamical solid-fluid phase boundary determined by Deff,
at all values of Dr.
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