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We present a comprehensive theoretical study of the static spin response in HgTe quantum wells,
revealing distinctive behavior for the topologically nontrivial inverted structure. Most strikingly, the q ¼ 0

(long-wavelength) spin susceptibility of the undoped topological-insulator system is constant and equal to
the value found for the gapless Dirac-like structure, whereas the same quantity shows the typical decrease
with increasing band gap in the normal-insulator regime. We discuss ramifications for the ordering of
localized magnetic moments present in the quantum well, both in the insulating and electron-doped
situations. The spin response of edge states is also considered, and we extract effective Landé g factors
for the bulk and edge electrons. The variety of counterintuitive spin-response properties revealed in our
study arises from the system’s versatility in accessing situations where the charge-carrier dynamics can be
governed by ordinary Schrödinger-type physics; it mimics the behavior of chiral Dirac fermions or reflects
the material’s symmetry-protected topological order.
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I. INTRODUCTION AND MAIN RESULTS

The two-dimensional (2D) topological insulator (TI)
realized in inverted HgTe quantum wells exhibits unusual
electric-transport properties [1–4] that have attracted great
interest [5]. TI behavior is also found in other 2D [6,7] and
bulk [5,8] materials. The potential for interesting interplay
between a TI’s electronic and magnetic degrees of freedom,
e.g., through hyperfine interaction with the material’s
nuclei [9], or local exchange interaction with magnetic
dopants [10], has been pointed out recently [11,12]. These
efforts have opened up new perspectives and extended
previous work devoted to understanding spin effects
[13,14] and magnetism [15] in ordinary semiconductors.
Our present theoretical study of the spin response in HgTe
quantum wells reveals unconventional spin-related proper-
ties that distinguish this paradigmatic TI material from all
other currently known 2D electronic systems. We thus
provide alternative means for the experimental identifica-
tion of the topological regime and extend current knowl-
edge about the fundamentals of spin-response behavior in
solids.

The spin susceptibility contains comprehensive infor-
mation about the magnetic properties of a material. In the
simplest case of a spin-rotationally invariant noninteracting
electron gas, the spin susceptibility is proportional to the
charge-response (Lindhard) function [16]. Noticeable devi-
ations from that situation occur, e.g., in systems with strong
spin-orbit coupling such as 2D hole gases [17]. For metals
or degenerately doped semiconductors, the spin response of
only the partially filled band is typically considered. This
approach misses intrinsic contributions to many-particle
response functions arising from virtual interband transi-
tions that become important in narrow-gap and, especially,
gapless electron systems. Examples for the latter are the 2D
Dirac-like electron states on the surface of a bulk TI whose
magnetic properties have been discussed in Refs. [18,19].
The HgTe quantum wells considered here present an ideal
testing ground for exploring the importance and properties
of intrinsic, or virtual-carrier, effects, as it is possible to
tune the band gap in such systems with a single structural
parameter (i.e., the quantum-well width d). Furthermore,
deviations from the conical 2D-Dirac dispersion in the
gapless case are well characterized within a continuum-
model (BHZ) description [20], which also gives controlled
access to the full range of, and interesting transitions
between, Schrödinger-physics-dominated, chiral-Dirac-
fermion-like, and topologically nontrivial phases. In par-
ticular, definite (i.e., cutoff-independent) results for the
intrinsic response at long wavelengths are obtained even in
the limit of vanishing band gap—unlike in the case of the
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previously considered 2D-Dirac models used to describe
the surface states of bulk TIs [18,19].
Before going into greater detail in the remainder of this

article, we briefly highlight four major advances and central
new insights gained from our work.

(i) We find an analytical expression for the uniform
static spin susceptibility of the intrinsic (undoped)
system,

χ̄ðintÞxx;zzðγ;q¼0Þ¼−C2x;zðγÞ
16πjBj

1

1þ4ξMΘðξMÞ
; ð1Þ

where ξM is proportional to the band gap and
positive (negative) for the topologically trivial nor-
mal (topologically nontrivial inverted) regime, Θ
denotes the Heaviside step function, B is a band-
structure parameter from the BHZ model introduced
below, and the constants Cx;zðγÞ depend both on the
valence-band mixing of quantum-well basis states
and on the parameter γ that characterizes the relative
coupling strength of the conduction-band and
valence-band spin degree of freedom to the physical
quantity of interest. While the intrinsic spin response
is suppressed with increasing band gap in the normal
regime (ξM > 0), it becomes independent of gap
size in the topological regime where ξM ≤ 0. This
unexpected behavior is a special feature of the
symmetry-protected topological phase of the bulk
system associated with the existence of gapless
edge states.

(ii) A physical consequence of the unusual spin
response in the intrinsic system is the asymmetric
variation of the critical (Curie) temperature for
virtual-carrier-mediated magnetic order in a HgTe
quantum well that has been doped magnetically but
not electronically. See Fig. 1(a). A similarly striking
asymmetry arises when charge carriers are present
in the 2D conduction band, which is illustrated in
Fig. 1(b). Furthermore, in this situation, a rather
strong, and counterintuitive, suppression of the
Curie temperature with the density of itinerant
charge carriers is revealed. This tendency arises
from the unconventional character of conduction-
band states in the topological regime. See Sec. III B
for details.

(iii) We extract the effective g factors for 2D conduction
electrons in both the topological and normal re-
gimes, which are directly accessible experimentally
[4]. Their strong density and gap-parameter depend-
encies reflect the band mixing and transition be-
tween regimes dominated by Schrödinger-type and
Dirac-like dynamics of charge carriers. Full details
can be found in Sec. IV. These results are essential,
e.g., to enable quantitative characterization of the
transition between quantum spin-Hall and quantum

anomalous Hall phases in magnetic 2D topological
insulators [11].

(iv) We predict the effective g factors of the helical edge
states that are present in the topological regime of
the HgTe quantum well. For the out-of-plane mag-
netic-field direction, the g factor assumes a constant
value that is determined by band mixing in the
quantum-well eigenstates. In contrast, the in-plane g
factor has a strong density dependence. See Sec. V.

In the following, we discuss relevant details of our
theoretical analysis and present complete results for the
spin response in both intrinsic and electron-doped systems.

II. QUANTUM-WELL BAND STRUCTURE

The electronic properties of HgTe quantum wells are
adequately captured by an effective four-band (BHZ)
Hamiltonian [20] that acts in the low-energy subspace
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FIG. 1. (a) Mean-field critical temperature TCðiÞ for virtual-
carrier-mediated magnetism in a HgTe quantum well plotted as a
function of the band-gap parameter ξM. Note the striking asym-
metry between the topological (ξM < 0) and normal (ξM > 0)
regimes. An explicit expression for T0 is given in the text; it
contains the local exchange coupling between magnetic-impurity
orbitals and HgTe quantum-well basis states, which is roughly
constant across the transition [21]. (b) Critical temperature TCðdÞ
for the electron-doped HgTe quantumwell plotted as a function of
ξM and for various charge-carrier densities [corresponding to
indicated values for the Fermi wave vector kF, where kF ¼ q0
corresponds to a charge density n0 ≡ q20=ð2πÞ ¼ 4.25 ×
1012 cm−2 for a typical structure [22]]. We used ξD ¼ −0.7 for
the BHZ-model electron-hole-asymmetry parameter in both plots,
and γ ¼ −2.22 as relevant for the (Hg,Cd,Mn)Te system [21].
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spanned by basis states jE1þi, jH1þi, jE1−i, jH1−i and
explicitly reads

H0 ¼
�
HðkÞ 0

0 H�ð−kÞ
�
; ð2Þ

with HðkÞ ¼ hμσμ, h ¼ ðC −Dk2; Akx;−Aky;M − Bk2Þ
and σμ ¼ ð1;σÞ. The parametersA,B,C,D,M are functions
of the well width d, and their numerical values are typically
obtained by a fitting procedure [23]. The parameterM opens
a band gap, where (in the conventionB < 0) the system is in
the topological (normal) regime whenM < 0 (M > 0). The
basis functions jE1�i are a superposition of conduction-
electron and light-hole (LH) basis functions with a given
spin projection. The associated band jL1�i has a much
lower band-edge energy and can therefore be omitted. On
the other hand, the heavy-hole (HH) states jH1�i also
belong to the set of low-energy excitations. In the following,
we set C ¼ 0 and employ a dimensionless description of
Eq. (2) that is obtained by defining an energy scaleE0 ≡ Aq0
and a scale for the wave vector q0 ≡ A=jBj [24,25]. (In a
typical HgTe quantum-well structure [22], E0 ¼ 0.189 eV
and q0 ¼ 0.517 nm−1.) By making use of the axial sym-
metry of theBHZHamiltonian (2), we rotate to a real basis to

obtain H0ðkÞ ¼ UðþÞ†
ϕk

HðkÞUðþÞ
ϕk

¼ E0h0μσμ, with UðsÞ
ϕk

¼
diagðeisϕk=2; e−isϕk=2Þ and h0 ¼ ð−ξD ~k2; ~k; 0; ξM þ ~k2Þ,
where ϕk is the polar angle of the 2D wave vector k, and
~k ¼ k=q0. We have defined the dimensionless parameters
ξM ≡M=E0 and ξD ≡D=jBj, which have typical values
[20,22,23] jξMj, jξDj≲ 0.5. The eigenvectors in the complex

and real bases are related via aðsÞkα ¼ UðsÞ
ϕk
aðsÞkα , where α ¼ �

distinguishes the conduction and valence bands, which are
doubly degenerate in the quantum number s ¼ � for spin
projection along the growth direction and have the
dispersions

EðsÞ
kα ≡ EðsÞ

kα ¼ E0

�
−~k2ξD þ α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðξM þ ~k2Þ2 þ ~k2

q �
: ð3Þ

III. EFFECTIVE SPIN SUSCEPTIBILITY OF THE
2D SYSTEM: INTRINSIC AND DOPED CASES

The spin susceptibility is used to characterize a
system’s response to spin-related external stimuli within
the framework of linear-response theory [16]. In the static
limit, and for quantum-well-confined electrons, it can be
written as [17]

χijðR; z;R0; z0Þ

¼ lim
η→0þ

�
− i
ℏ

Z
∞

0

dte−ηth½SiðR; z; tÞ; SjðR0; z0; 0Þ�i
�
;

ð4Þ

with R≡ ðx; yÞ and z being coordinates in the 2D plane
and perpendicular to it, respectively, and SjðR; zÞ ¼
Ψ†ðR; zÞ ŜjΨðR; zÞ denoting the electron spin density
measured in units of ℏ. For a homogeneous 2D electron
system, the spin susceptibility is most straightforwardly
obtained in terms of the spatially Fourier-transformed
quantity χijðq; z; z0Þ via

χijðR; z;R0; z0Þ ¼
Z

d2q
ð2πÞ2 e

iq·ðR−R0Þχijðq; z; z0Þ: ð5Þ

The dependence of χijðq; z; z0Þ on the coordinates z and
z0 encodes the spatial profile of the quantum-well bound
states. Within the BHZ framework, the z-dependent part
of electron wave functions is contained in the four basis
functions jE1�i, jH1�i. The latter are spinors whose
explicit form has been derived [20] within the six-band
Kane-model description [26] for the charge-carrier dynam-
ics that includes the bands with Γ6 and Γ8 symmetry closest
to the bulk material’s fundamental gap. As is generally the
case in multiband systems, the spin response of electrons
in a HgTe quantum well is strongly influenced by both the
in-plane dynamics described by the BHZ Hamiltonian and
the nontrivial spinor structure of the BHZ-model basis
states. We therefore need to express the spin susceptibility
within the underlying six-band Kane model.
The coupling between some physical stimulus repre-

sented by a field F and the Γ6 and Γ8-band intrinsic
angular-momentum degrees of freedom σ̂ and Ĵ is most
generally described by a term

HF ¼
X
i

F i

�
bΓ6

σ̂i
2
⊕ 04×4 þ bΓ8

02×2 ⊕ Ĵi

�
ð6Þ

in the Kane-model Hamiltonian. See, e.g., Table C.5 in
Ref. [26]. Within this approach, the coefficients bΓj

are
intraband coupling constants with appropriately renormal-
ized values to take into account all field-induced band-
coupling effects in the bulk material. To be able to discuss
a wide range of spin-related phenomena, we define an
effective (pseudo)spin operator

ŜiðγÞ ¼
σ̂i
2
⊕ ðγĴiÞ; ð7Þ

such that HF ≡ bΓ6

P
iF iŜiðbΓ8

=bΓ6
Þ. The actual value

of the parameter γ depends on the physical quantity or
situation of interest [27]. The system’s response is then
fully captured by the effective spin-susceptibility tensor

χijðγ;q; z; z0Þ ¼
X
α;β;s;s0

Z
d2k
ð2πÞ2W

ðs;s0Þ
ijðk;kþq;α;βÞðγ; z; z0Þ

×
nFðEðsÞ

kαÞ − nFðEðs0Þ
kþqβÞ

EðsÞ
kα − Eðs0Þ

kþqβ þ iℏη
; ð8aÞ
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where nF denotes the Fermi function, and

Wðs;s0Þ
ijðk;kþq;α;βÞðγ; z; z0Þ ¼ ½ψ ðsÞ

kαðzÞ�† · ½ŜiðγÞψ ðs0Þ
kþqβðzÞ�

× ½ψ ðs0Þ
kþqβðz0Þ�† · ½ŜjðγÞψ ðsÞ

kαðz0Þ�
ð8bÞ

are matrix elements of the effective spin operator given in
Eq. (7). In the spirit of subband k · p theory, the six-

dimensional spinor wave functions ψ ðsÞ
kαðzÞ can be expressed

in terms of the BHZ-model basis state spinors ψ ðsÞ
0i ðzÞ as

ψ ðsÞ
kαðzÞ ¼

X2
i¼1

ðUðsÞ
ϕk
Þ
ii
aðsÞkα;iψ

ðsÞ
0i ðzÞ; ð9Þ

where the coefficients aðsÞkα;i are the components of the
corresponding eigenvectors of the BHZ Hamiltonian (see
Sec. II). The explicit form of the basis states was derived
in Ref. [20] by solving a confined-particle problem in the

HgTe=CdTe hybrid system. For instance, ψ ðþÞ
01 ðzÞT ¼

ðf1ðzÞ; 0; 0; f4ðzÞ; 0; 0Þ, with the detailed form of the
envelope function components fiðzÞ provided in the sup-
plemental information of Ref. [20].
In the following, we consider the growth-direction-

averaged spin susceptibility of charge carriers in the
HgTe quantum well, given by χ̄ijðγ;qÞ ¼

R
dz

R
dz0χij

ðγ;q; z; z0Þ [17], with χijðγ;q; z; z0Þ calculated using the
Kane-model-based BHZ approach as described above.
Note that, by replacing the spin matrices in Eq. (8b) by
the unit matrix and averaging over z, z0, we obtain the
charge-response function studied in Refs. [24,25]. From the
axial symmetry of our Kane-model description, and the fact
that the eigenstates have definite spin projection in the
growth direction, it follows that the in-plane spin suscep-
tibilities are the same, i.e., χ̄xxðγ; qÞ ¼ χ̄yyðγ; qÞ, and they
only depend on the magnitude q≡ jqj. This is an important
difference from other semiconducting systems, where
HH-LH mixing occurs [17]. In the present situation,
HH-LH mixing arises only from terms linear in k (giving
rise to Dirac-like excitations), which is a consequence of
the envelope function components [20] behaving differ-
ently (even or odd) under the parity transformation z↔ − z.

A. Spin response of the intrinsic system

In the insulating limit, the conduction band is empty and
the Fermi level lies in the band gap, i.e., jμj < E0jξMj. In
this situation, the spin susceptibility originates from virtual
interband transitions across the band gap. In the following,
we focus on the zero temperature limit. The analytical
result for the intrinsic spin susceptibility obtained in the
limit of zero momentum transfer q → 0 is given in Eq. (1),
where

CxðγÞ ¼ 1þ ð2γ − 1ÞCLH; ð10aÞ

CzðγÞ ¼ 1 − 3γ þ ðγ − 1ÞCLH; ð10bÞ

and CLH ≡ R
dzjf4ðzÞj2 (≈0.4) is the amount of LH

admixture in the basis states jE1�i. (Details about the
calculation of the intrinsic spin susceptibility are given in
Appendix A. Results for q ≠ 0 can be calculated numeri-
cally. For completeness, some of these are also shown in
Appendix A.) Equation (1) exhibits anomalous behavior
in the inverted region (ξM < 0) in that the uniform spin
response is independent of the gap size and pinned to the
value for the gapless case, even though it arises from virtual
interband transitions. In the normal region (ξM > 0), the
expected decrease of the response functions with increasing
band gap is found. The spin susceptibility (1) is strongly
anisotropic, generally exhibiting a dominant out-of-plane
response except for a very small range of the parameter γ.
See Fig. 2.

A nonvanishing χ̄ðintÞjj ðγ; 0Þ seems to imply the counter-
intuitive phenomenon that an applied magnetic field could
generate a magnetization of the HgTe quantum-well system
in the intrinsic limit where no charge carriers are present.
Our more detailed analysis shows, however, that this is not
the case. Direct calculation of the derivative of the free
energy with respect to magnetic-field strength in a model
based on the BHZHamiltonian (2) augmented by a Zeeman
term reveals that the total magnetization is strictly zero
[28]. This is due to the fact that intrinsic-spin and orbital
contributions to the magnetization cancel, as expected in a
spin-orbit-coupled system [29]. This conclusion is further

underpinned by the observation that χ̄ðintÞjj ðγ; 0Þ vanishes in
the limit of zero HH-LH mixing [30].
As it is possible to engineer and study effective exchange

interactions between impurity atoms [31,32], it is tempting
to consider such interactions between two localized spins
in a HgTe quantum well. Quite generally, the RKKY
Hamiltonian is given by [33]
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FIG. 2. Prefactors C2
x and C2

y determining the magnitude of
intrinsic in-plane and out-of-plane spin response, respectively
[see Eq. (1)], plotted as a function of the parameter γ from the
definition of the effective Kane-model spin operator (7).
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Heff
r;r0 ¼ G2

X
i;j

IirI
j
r0χijðr; r0Þ: ð11Þ

Here, χijðr; r0Þ, the Fourier transform of Eq. (8a), is the spin
susceptibility in real space, Iir denotes the ith Cartesian
component of an impurity spin located at position
r ¼ ðR; zÞ, and G is the local exchange-coupling constant
between the spin degree of freedom carried by band
electrons and localized (e.g., impurity) spins. (The differ-
ence in exchange-coupling strengths for conduction-band
and valence-band states is accounted for by the appropriate
value of γ.) In Fig. 3(a), we plot the growth-direction-
averaged effective out-of-plane real-space spin susceptibil-
ity χ̄zzðRÞ as a function of the distance R for various
values of ξM (and ξD ¼ −0.7 corresponding to realistic
situations [23]).
Figure 3 shows that the effective exchange interaction

mediated by the intrinsic spin response of the HgTe
quantum well for localized spins is of ferromagnetic
(FM) type if Rq0 ≪ 1, and that there is a crossover to
antiferromagnetic (AFM) coupling for Rq0 ≳ 1 that sensi-
tively depends on ξM. In particular, we find that this
crossover is shifted significantly to smaller impurity-spin
separations in the case of the inverted regime as compared
to the normal regime. Also, the magnitude of exchange
interaction in the ferromagnetic regime for fixed distance R

markedly increases when enlarging the gap in the inverted
system. In contrast, the exchange interactions in the normal
regime have a very small magnitude. To further illustrate
the parametric dependencies of the carrier-mediated
exchange interaction, Fig. 3(b) shows the various regions
of preferential spin alignments as a function of ξM < 0.
Interestingly, in between the two out-of-plane localized-
spin alignments (FM⊥ and AFM⊥), we also find sizable
regions for the distance where it is energetically favorable
for impurity spins to align ferromagnetically in-plane
(FM∥). Moreover, for larger distances, we find the usual
Bloembergen-Rowland [34] behavior for the intrinsic spin
susceptibilities, which is characterized by an exponential
decay factor that depends on the band gap, approximately
given by ∼ exp ð−R=R0Þ=R3, where R0 ¼ ðjξMjq0Þ−1 is the
Compton wavelength of the band electrons. More details
are given in Appendix B. In the limit of zero gap (ξM → 0),
the R−3 decay found previously in various Dirac systems
[18,19,35] is reproduced.
Having considered the case of two localized impurity

spins with exchange interactions mediated by virtual
excitations, we now focus on a HgTe quantum well that
is doped with a large number of homogeneously distributed
magnetic impurities (e.g., Mn ions), forming effectively
a Hg1−xMnxTe alloy [36]. The average distance between
the spins is RNN ≈ ð3a30=16πxÞ1=3 [37], with a0 the HgTe
lattice constant and x the concentration of magnetic ions.
We calculate the Curie temperature in the mean-field
limit, assuming RNN=R0 ≪ 1, which is justified when
x ≫ 2 × 10−3jξMj3, where we have used q0 ≲ 0.5 nm−1.
Since jξMj≲ 0.3 [23], this condition is practically always
fulfilled. The Curie temperature for Ising-type ferromag-
netic order with magnetization perpendicular to the
quantum-well growth direction is given by

TCðiÞ ¼ T0

dc=dðξMÞ
1þ 4ξMΘðξMÞ

; ð12Þ

where T0 ¼ f½IðI þ 1ÞC2zðγÞ�=ð48πÞg½G2=ðkBjBjÞ�ðnI=dcÞ,
I denotes the impurity-spin magnitude, nI is the 3D density
of magnetic impurities, and dc ≈ 6.3 nm is the critical well
width. For obtaining Eq. (12), we have used the approxi-

mation
R d=2
−d=2 dz

R d=2
−d=2 dz0χ

ðintÞ
jj ðγ; 0; z; z0Þ ≈ χ̄ðintÞjj ðγ; 0Þ. In

Fig. 1(a), we show the Curie temperature as a function
of ξM, where we set A ¼ 0.375 eV nm and B ¼
−1.120 eV nm2 [23] because the variation of A and B
with d is much weaker than that of M. We see that the
behavior of the Curie temperature in its dependence on ξM,
or equivalently d, provides a clear means to distinguish
between topological and normal regions.
Knowing the spin susceptibility as a function of the wave

vector allows us to go beyond the mean-field limit [13,14]
and discuss the stability of the mean-field ground state with
respect to thermally excited spin waves (magnons). In our
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FIG. 3. (a) Intrinsic real-space spin susceptibility χ̄zzðRÞ plotted
as a function of Rq0 for several values of the gap parameter ξM,
with fixed ξD ¼ −0.7 and γ ¼ −2.22. (b) Parameter domains of
preferential alignments between localized Mn spins having a
distance R, mediated by the intrinsic spin response of an HgTe
quantum-well system. The blue (white) domain favors a ferro-
magnetic (antiferromagnetic) out-of-plane spin alignment. In the
yellow region, the two localized spins tend to align ferromagneti-
cally in-plane.
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present case of interest, the magnon dispersion for
q=q0 ≪ 1 is given by ωq ¼ ω0 þ c2q2, with a coefficient

c2 ¼ 1
2
f½∂2χ̄ðintÞzz ðγ; qÞ�=ð∂q2Þgjq¼0. Using Fig. 6 in

Appendix A, which shows results for the relevant set of
parameters, we find c2 ≲ 0. Thus, the criterion [14,17,33]
c2 > 0 needed to guarantee stability of the mean-field
ground state is generally violated. It may be possible that
electron-electron interactions and/or spin-orbit coupling
help to stabilize ferromagnetic order, as has been shown
to be the case for an ordinary 2D electron gas [13,14,38],
but this question is beyond the scope of our present work.

B. Spin response of the electron-doped system

We now consider situations where the conduction band
is occupied (μ > E0jξMj). In the q → 0 limit, an analytical
expression for the extrinsic contribution to the spin sus-
ceptibility (arising from filled conduction-band states) is
found as

χ̄ðdopÞxx ðγ; 0Þ ¼ C2xðγÞ
16πjBj

�
2π ~Nð0Þ

f2
ð~k2F − 2fð~k2F þ ξMÞ − 2f2Þ

þ
~k2Fð1þ 2ξMÞ þ 2ξ2M − 2fjξMjÞ

fð1þ 4ξMÞ
�
; ð13aÞ

χ̄ðdopÞzz ðγ; 0Þ ¼ C2zðγÞ
16πjBj

�
2π ~Nð0Þ

f2

�
6γDzðγÞ
C2zðγÞ

~k2F

− 4f2fD2
zðγÞð~k2F þ ξM þ fÞ4 þ 9γ2 ~k4Fg

C2zðγÞ½~k2F þ ð~k2F þ ξM þ fÞ2�2
�

þ
~k2Fð1þ 2ξMÞ þ 2ξ2M − 2fjξMjÞ

fð1þ 4ξMÞ
�
; ð13bÞ

where the first (second) term between the square brackets in

the expression for χ̄ðdopÞjj ðγ; 0Þ is an intraband (interband)
contribution. In Eqs. (13), we used the abbreviations

DzðγÞ≡ð1−γÞCLH−1 and f ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~k2F þ ξMÞ2 þ ~k2F

q
. ~Nð0Þ

is related to the density of states at the Fermi energy as
−χ̄0ð0Þ ¼ Nð0Þ ¼ ð2=jBjÞ ~Nð0Þ [where χ̄0ðqÞ is the static
charge-response function], and it reads ~Nð0Þ ¼
1
2π j½ð1þ 2~k2F þ 2ξMÞ=ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~k2F þ ξMÞ2 þ ~k2F

q
Þ� − 2ξDj

−1
. For

the general case with q > 0, χ̄jjðγ; qÞ can be calculated
numerically, and its line shape is presented in Appendix C
for various examples. Because of the sharpness of the
Fermi surface, we find, for the corresponding real-space
spin susceptibilities, the R−2 oscillatory decay expected
from a 2D Fermi liquid [16].
Next, we calculate the Curie temperature using the

mean-field approach under the premise kFRNN ≪ 1,
which leads to the condition x ≫ 2 × 10−3 ~kF. This con-
dition is generally fulfilled since kF ≲ 0.1 nm−1 is the

reliable range of the effective model [23]. The Curie
temperature is given by

TCðdÞ ¼ T0

dc
dðξMÞ

16πjBj
C2
zðγÞ

jχ̄zzðγ; 0Þj; ð14Þ

where χ̄zzðγ; 0Þ ¼ χ̄ðintÞzz ðγ; 0Þ þ χ̄ðdopÞzz ðγ; 0Þ. Note that,
also in the doped case, Ising-type magnetism prevails.
In Fig. 1(b), we show the Curie temperature as a function
of ξM for various values of the Fermi wave vector. For low
doping, we see a strong dependence of the Curie temper-
ature on ξM in the topological regime, which becomes
very weak in the normal regime. For large doping, on
the other hand, the Curie temperature is not very sensitive
to ξM in its whole range. Furthermore, the Curie temper-
ature is generally suppressed with increased doping, but
this trend is much stronger in the topological regime. For
the doped case, we find the magnon dispersion ωq ¼
ω0 þ c̄2q2, where c̄2 ≡ 1

2
f½ð∂2χ̄zzðγ; qÞ�=ð∂q2Þgjq¼0 > 0

always, in contrast to the intrinsic case. See Fig. 8
in Appendix C. Thus, a necessary condition for the
stability of the ferromagnetic ground state is fulfilled
[14,17,33].

IV. CONFINEMENT DEPENDENCE OF THE
2D-ELECTRON EFFECTIVE g FACTOR

The paramagnetic response of charge carriers in
quantum-confined structures is usually interpreted in terms
of the Pauli spin susceptibility and quantified by an
effective single-particle g factor [39–41]. However, any
actually measured spin-related quantities almost always
correspond to averaged collective responses of the, e.g.,
quasi-2D electron system that can be crucially affected by
nontrivial spin-related phenomena [17]. Here, we consider
the paramagnetic response of conduction-band electrons in
HgTe quantum wells and show how their paramagnetic
response is changed as a function of the band-gap param-
eter that drives the transition between the topological and
normal regimes.
To define an effective g factor for our system of a HgTe

quantum well, we introduce the bulk-material Zeeman term
HB ¼ g�μB

P
jBjŜjð−2κ=g�Þ, where μB is the Bohr mag-

neton and g� (κ) the Γ6-band (Γ8-band) g factor [26].
Linear-response theory enables us to determine the para-
magnetic response to the magnetic field, which is given

by χ̄P;j ¼ ðg�μBÞ2χ̄ðdopÞjj ð−2κ=g�; qÞjq¼0, where χ̄ðdopÞjj

ð−2κ=g�; qÞ are the spin susceptibilities of the electron-
doped system for the in-plane and out-of-plane response
involving Ŝjð−2κ=g�Þ [see Eq. (13) for γ ¼ −2κ=g�]. We
compare this with the Pauli susceptibility given by
χ̄P;j ¼ ðgjμBÞ2χ̄0ð0Þ=4, with χ̄0ð0Þ being (up to a minus
sign) the density of states which is the zero-q limit of the
Lindhard function and gj is the Landé g factor for the two
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directions. Thus, we can extract collective g factors for the
charge carriers as

gj ¼ g�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4
χ̄ðdopÞjj ð−2κ=g�; qÞ

χ̄0ðqÞ
				
q¼0

vuut : ð15Þ

Our approach to determine g factors via the spin suscep-
tibility complements previous work [42] where an effective
Zeeman term was derived for the BHZ Hamiltonian.
For a narrow-gap semiconductor, the values for g� and κ

are dominated by band-coupling contributions. Using
generic expressions resulting from Kane-model descrip-
tions [26], we find

2κ

g�
¼ − ξM þ ξΔ

2ξΔ
; ð16Þ

with ξΔ ¼ Δ0jBj=A2 in terms of the spin-orbit-splitting gap
Δ0 between the Γ8 and Γ7 band edges in the 8 × 8 Kane
model. As ξΔ ≫ jξMj for our situations of interest, we can
set 2κ=g� → −0.5 in the following. Hence, in Fig. 4, we
show the effective g factors for in-plane and out-of-plane
responses as a function of ξM for various levels of electron
doping obtained for 2κ=g� ¼ −0.5.

For very low densities, we see a vanishing in-plane
response and a maximal gz ¼ 6κ HH-like out-of-plane
response in the topological region ξM < 0. This behavior
arises because the conduction-band character is dominated
by the HH basis states, which experience a “frozen” spin
orientation perpendicular to the quantum well due to the
confinement-induced HH-LH energy splitting [43]. This
can be easily verified from Eq. (13) by taking the limit
kF → 0. Departures from these results occur for larger
doping levels (larger kF) due to increased HH-LH mixing.
In the normal region (ξM > 0), we encounter the situation
in which the conduction band is dominantly composed of
the electron basis states, rendering the g factor sizable at
any doping. The fact that the in-plane spin response is
notably larger than the out-of-plane response for ξM > 0
and low doping is due to the LH admixture in the
conduction-band states. As the carrier density increases,
the concomitantly increased HH-LH mixing results in
significant modifications. More detailed exploration of
parametric dependencies exhibited by the collective g
factors obtained here will be useful to augment previous
perturbative estimates [42] and aid the interpretation of
recent measurements [4].t

V. SPIN RESPONSE OF QUASI-1D HELICAL EDGE
STATES IN THE TOPOLOGICAL REGIME

We have also investigated the edge-state contributions to
the spin susceptibility in the topological region, finding
them to be negligible compared to the bulk contributions
in almost all situations. The only exception occurs for the
in-plane response function χ̄xxðγ; qÞ in the purely intrinsic
situation where the Fermi level lies in the minigap of the
edge-state dispersions that opens up in a finite-size sample
[5,44]. More details and full results pertaining to edge
states are given in Appendixes D and E.
Up to very small finite-size corrections, the paramagnetic

response of helical edge states is captured by using the

effective g factors gðeÞx;z given by

gðeÞx

g�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2xð−2κ=g�Þ

4
ln

�
Λ
kF

�s
⟶
2κ
g�¼−1

2

ffiffiffiffiffiffiffiffiffiffiffi
lnðΛkFÞ

q
2

; ð17aÞ

gðeÞz

g�
¼ −

4κ

g�
þ 1 − CLH

2

�
1þ 2κ

g�

�
⟶
2κ
g�¼−1

2

1þ 1 − CLH
4

: ð17bÞ

The results shown in Eqs. (17) were obtained using Eq. (15)
together with Eqs. (E7a) and (E7b). The prediction of the
edge-state g factor is a major result of our work. In Fig. 5,
we plot the in-plane g factor as a function of kF, where we
used the natural cutoff scale Λ ¼ π=a0. Interestingly, the
in-plane g factor of edge states decreases monotonically
with increasing doping level. Such a behavior is in stark

0.3 0.2 0.1 0 0.1 0.2 0.3
0

0.5

1

kF 0.01q0

kF 0.3q0

kF 0.5q0

(a)

0.3 0.2 0.1 0 0.1 0.2 0.3

1

1.5
kF 0.01q0

kF 0.3q0

kF 0.5q0

(b)

FIG. 4. Effective g factors associated with (a) the in-plane
and (b) the out-of-plane response of an electron-doped HgTe
quantum well, plotted as a function of the gap parameter ξM
for various levels of doping and with ξD ¼ −0.7, 2κ=g� ¼ −0.5.
(Note that kF ¼ q0 corresponds to a charge density n0 ≡
q20=ð2πÞ ¼ 4.25 × 1012 cm−2 for a typical structure [22].)
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contrast to the bulk case shown in Fig. 4(a) and to other 2D
systems [17,45] where the in-plane response increases with
increased doping. This behavior reflects the fact that the
spin-quantization axis of the edge states is perpendicular
to the 2D plane, i.e., parallel to the z direction, and their
helical nature.

VI. CONCLUSIONS

We present a detailed theoretical study of the spin
response in HgTe quantum wells where virtual-carrier-
related processes are particularly relevant and exactly
tractable within the effective BHZ-model description.
Anomalous properties of the spin susceptibility and car-
rier-mediated magnetism are found in the inverted regime,
extending our current understanding of spin-related proper-
ties in topological materials.
Most strikingly, the uniform static spin susceptibility in

the intrinsic limit is constant, independent of the band gap,
in the topological regime [see Eq. (1)]. This results in a
distinct asymmetry between normal and inverted systems
illustrated, e.g., by the dependence of the critical temper-
ature for virtual-carrier-mediated magnetic order in a
system that is doped with magnetic ions. Important
differences between the two regimes are also exhibited
in the situation where the conduction band becomes filled
(see Fig. 1). The stability of mean-field ferromagnetic
ground states with respect to thermal excitations of mag-
nons has been analyzed. We find that the magnetic order is
stable in the situation with finite doping.
In the topological regime, quasi-1D helical edge states

exist. We have investigated their spin-response properties,
finding that their contribution to the spin susceptibility is
thermodynamically suppressed compared to that arising
from 2D quantum-well states, except in the very special—
and probably physically hard-to-realize—situation when the
chemical potential is in the minigap opened by the hybridi-
zation of states from opposite edges in a finite sample.
We have used our results obtained for the spin suscep-

tibility to define effective collective g factors for states from
the quasi-2D quantum-well subbands and also for the
quasi-1D helical edge states. The different character of

quasi-2D-subband states in the normal and topological
(inverted) regimes is reflected in the values for the effective
g factor. Their strong dependence on charge-carrier density
reveals the importance of interband mixing. The behavior
of the g factors found for the edge states reflects their
helical nature and spin-quantization property.
Our results are directly relevant for current and potential

future experimental investigations of the spin-related prop-
erties of 2D topological insulators, in particular, those
realized in HgTe=HgCdTe and InAs=GaSb quantum
wells. For example, recent observation of Josephson-
junction interference patterns in an S-HgTe=HgCdTe-S
hybrid system has enabled extraction of g factors for the
quantum-well charge carriers [4]. It would be interesting to
use similar techniques [46,47] to measure the edge-state g
factors and compare with our predictions. Furthermore, our
results for the spin response in both the intrinsic and doped
regimes are informative for the design of, and interpretation
of measured quantities for, dilute magnetic phases in these
systems [10,15].
It would be interesting to extend our formalism to study

the spin response in 3D topological-insulator materials [8].
In particular, as was the case in the 2D quantum-well-based
TIs considered in this work, the interplay of charge-carrier
dynamics and the spinor character of extended bulk states
could be a source of rich variety in spin-related properties
also in 3D, and the contributions of the conducting surfaces
are currently not understood.
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APPENDIX A: INTRINSIC CONTRIBUTION
TO THE SPIN SUSCEPTIBILITY

The intrinsic contributions to the diagonal entries of the
spin susceptibility (the only ones that are nonzero for the
BHZ model) are calculated by

χ̄ðintÞjj ðγ;qÞ ¼ −X
s;s0
δ¼�1

Z
d2k
ð2πÞ2

Wðs;s0Þ
jjðk;kþq;þ;−ÞðγÞnFðEðsÞ

k−Þ
EðsÞ
kþ − Eðs0Þ

kþq− þ iℏηδ
;

ðA1Þ
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kF q0
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e

g

FIG. 5. Effective g factor characterizing the response of helical
edge states to an in-plane magnetic field.
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where in the zero-temperature limit the valence band is fully

occupied, i.e., nFðEðsÞ
k−Þ ¼ 1. Here and in the following, we

consider the growth-direction-averaged case: χ̄ijðγ; qÞ ¼R
dz

R
dz0χijðγ; q; z; z0Þ ⇒ Wðs;s0Þ

jjðk;kþq;α;βÞðγÞ ¼ R
dzdz0

Wðs;s0Þ
jjðk;kþq;α;βÞðγ; z; z0Þ. In Fig. 6, we plot χ̄zzðγ; qÞ

[χ̄xxðγ; qÞ] in panel (a) [(b)] as a function of q for various
values of ξM. The inset in Fig. 6(a) illustrates that

f½∂2χ̄ðintÞzz ðγ;qÞ�=ð∂q2Þgjq¼0 < 0 for all of the values of
ξM considered, which implies that the mean-field ferromag-
netic order for out-of-plane aligned magnetic impurity
spins will generally be destroyed by spin-wave (magnon)
excitations [14].

APPENDIX B: BLOEMBERGEN-ROWLAND
BEHAVIOR OF THE LOCAL INTRINSIC

SPIN SUSCEPTIBILITY

Bloembergen and Rowland [34] found that the local
RKKY interaction of gapped systems becomes short
ranged, i.e., is exponentially suppressed by the band
gap. The functional dependence of the local spin

susceptibility on the distance for the gapped Dirac system
at hand can thus be modeled by

χ̄jjðRÞ ∼
e−cðR=λCÞ

R3
; ðB1Þ

where λ−1C ≡ jξMjq0 is the inverse of the Compton wave-
length of the system and c ∼Oð1Þ is a numerical coef-
ficient that can depend on the distance itself. To illustrate
this behavior for the HgTe quantum-well system, we plot
χ̄zzðRÞ in Fig. 7 as a function of Rq0 for ξM ¼ 0.1
[ξM ¼ −0.1] in panel (a) [(b)] together with both the line
shape expected for 2D massless-Dirac particles and the
Bloembergen-Rowland result.

APPENDIX C: ELECTRON-DOPED
CONTRIBUTION TO THE SPIN

SUSCEPTIBILITY

For the case where the Fermi energy is above the
conduction energy band edge, i.e., μ > jMj, the spin
susceptibility receives contributions due to electron doping
given by

0 0.1 0.2 0.3

1

1.001

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2 (a)

0 1 2 3 4 5
0

0.01

0.02

0.03
(b)

FIG. 6. Intrinsic spin susceptibilities (a) χ̄zzðγ; qÞ and
(b) χ̄xxðγ; qÞ as a function of q=q0 for various values of ξM ¼
ð−0.3;−0.2;−0.1; 0; 0.1; 0.2; 0.3Þ (from top to bottom) with
ξD ¼ −0.7, CLH ¼ 0.4, and γ ¼ −2.22. The inset in (a) displays
the normalized spin susceptibility χ̄zzðγ; qÞ=χ̄zzðγ; 0Þ in the
small q=q0 region for ξM ¼ ð0.1; 0.2; 0.3Þ, which shows more
clearly that χ̄zzðγ; qÞ > χ̄zzðγ; 0Þ in the small-q limit in the
normal regime also.

5 10 15 20 25 30
10 8

10 7
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10 4
(a)

M 0.1

5 10 15 20 25 30
10 7

10 6

10 5

10 4

0.001 (b)

M 0.1

FIG. 7. Local intrinsic spin susceptibilities χ̄zzðRÞ (solid orange
curve) as a function of Rq0 for (a) ξM ¼ 0.1 and (b) ξM ¼ −0.1
with ξD ¼ −0.7, CLH ¼ 0.4, and γ ¼ −2.22. The dashed green
curve shows the modeled behavior in Eq. (B1) with coefficients
c ¼ 1 for (a) and c ¼ 1.2 for (b). For comparison, we also show
the R−3 decay for a gapless Dirac system represented by the dot-
dashed blue curve. The sharp drop of the orange curve in (a) is
due to a sign change of χ̄zzðRÞ at about Rq0 ≈ 8.
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χ̄ðdopÞjj ðγ;qÞ ¼
X
s;s0
δ¼�1

Z
d2k
ð2πÞ2 nFðE

ðsÞ
kþÞ

� Wðs;s0Þ
jjðk;kþq;þ;þÞðγÞ

EðsÞ
kþ − Eðs0Þ

kþqþ þ iℏηδ

þ
Wðs;s0Þ

jjðk;kþq;þ;−ÞðγÞ
EðsÞ
kþ − Eðs0Þ

kþq− þ iℏηδ

�
; ðC1Þ

where for zero temperature nFðEðsÞ
kþÞ ¼ ΘðkF − jkjÞ, with

kF being the Fermi wave vector associated with the
conduction band. The complete spin susceptibility in the
doped case is therefore given by

χ̄jjðγ;qÞ ¼ χ̄ðintÞjj ðγ;qÞ þ χ̄ðdopÞjj ðγ;qÞ: ðC2Þ

We show the line shape of χ̄zzðγ;qÞ and χ̄xxðγ; qÞ in Fig. 8
for ξM ¼ �0.2 and various choices of doping. The insets
of Figs. 8(a) and 8(c) show the small q dependence of
χ̄zzðγ; qÞ, indicating the stability of the out-of-plane Ising-
type ferromagnetism with respect to magnon excitations.

APPENDIX D: COMBINING BULK AND
EDGE CONTRIBUTIONS TO THE

SPIN SUSCEPTIBILITY

In order to compare bulk and edge contributions to the
spin susceptibility, we begin by considering the real-space
spin-response function

χijðr; r0Þ ¼ − i
ℏ

Z
∞

0

dte−ηth½Siðr; tÞ; Sjðr0; 0Þ�i; ðD1Þ

where SiðrÞ ¼ Ψ†ðrÞŜiΨðrÞ are spin-density operators. In
our system of interest, electrons are confined to move freely
in d < 3 dimensions, with system size L in all of these free
directions. The position vector is split up into a part R
comprising the coordinate directions in which the motion is
free and a part ϱ in whose coordinates motion is confined;
r ¼ ðR; ϱÞ. The second-quantized electron operator in a
real-space representation can be written as

ΨðrÞ ¼
X
k;α;s

eik·Rffiffiffiffiffiffi
Ld

p ψ ðsÞ
kαðϱÞcðsÞkα ðD2Þ

with normalized spinor bound-state wave functions ψ ðsÞ
kαðϱÞ.

A straightforward calculation yields

χijðr; r0Þ ¼
1

Ld

X
q

eiq·ðR−R0ÞχðdDÞij ðq; ϱ; ϱ0Þ; ðD3aÞ

with the q-dependent spin susceptibility of the
d-dimensional (dD) system given by

FIG. 8. Normalized spin susceptibilities χ̄zzðγ; qÞ (a,c) and χ̄xxðγ; qÞ (b,d) as a function of q=ð2kFÞ for various levels of doping. (a,b)
are the results for ξM ¼ −0.2 and (c,d) for ξM ¼ 0.2, with ξD ¼ −0.7, CLH ¼ 0.4, and γ ¼ −2.22. The insets of (a,c) show the quadratic
~q ¼ q=q0 dependence close to q ¼ 0.
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χðdDÞij ðq; ϱ; ϱ0Þ ¼
X
α;β;s;s0

1

Ld

X
k

Wðs;s0Þ
ijðk;kþq;α;βÞðϱ; ϱ0Þ

×
nFðEðsÞ

kαÞ − nFðEðs0Þ
kþqβÞ

EðsÞ
kα − Eðs0Þ

kþqβ þ iℏη
: ðD3bÞ

We are now interested in the homogeneous part of the
spin response defined as

ϒij ¼
Z

d3r
Z

d3r0χijðr; r0Þ≡ Ldχ̄ðdDÞij ðq ¼ 0Þ; ðD4aÞ

where

χ̄ðdDÞij ðqÞ ¼
Z

d3−dϱ
Z

d3−dϱ0χðdDÞij ðq; ϱ; ϱ0Þ: ðD4bÞ

In the situation where both 2D bulk and 1D edge states are
present, we therefore find

ϒij ¼ L2

�
χ̄ð2DÞij ðq ¼ 0Þ þ 1

L
χ̄ð1DÞij ðq ¼ 0Þ

�
: ðD5Þ

Thus, L−2ϒ is the well-defined quantity in the thermody-
namic limit, and only those edge-related terms that scale
with L will contribute to it.

APPENDIX E: SPIN SUSCEPTIBILITY
OF EDGE STATES

1. Spin susceptibility of edge states:
Omitting finite-size effects

Following Ref. [5] (see also Ref. [44]), the dispersions
for the edge states, using open boundary conditions for a
confinement along the x direction and assuming D ¼ 0, is
given by

EðsÞ
k ¼ sAk; ðE1Þ

where k≡ ky. The associated spinor wave functions are

ηðsÞðϱÞ ¼
X2
l¼1

φðsÞ
0;l ðxÞψ ðsÞ

0l ðzÞ; ðE2Þ

where φðsÞ
0 ðxÞ ¼ Cðeλ1x − eλ2xÞϕ−s, with ϕT

� ¼ ð1;�iÞ and
λ1;2 ¼ − q0

2
ð1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4jξM
p jÞ, since M < 0. To simplify

matters, we have assumed particle-hole symmetry (D ¼ 0)
and the system length L → ∞; i.e., the gap in the
dispersions of the edge states is negligible. Note that the
spinors in Eq. (E2) are independent of the wave-vector
component along the y direction.

The spin susceptibility of the edge states is calculated by

χðedgeÞjj ðγ; q; ϱ; ϱ0Þ ¼
X
s;s0

Z
dk
2π

Wðs;s0Þ
jj ðγ; ϱ; ϱ0Þ

×
nF½EðsÞ

k � − nF½Eðs0Þ
kþq�

EðsÞ
k − Eðs0Þ

kþq þ iℏη
; ðE3Þ

where

Wðs;s0Þ
jj ðγ; ϱ; ϱ0Þ ¼ ½ηðsÞðϱÞ�† · ŜjðγÞ · ηðs0ÞðϱÞ

× ½ηðs0Þðϱ0Þ�† · ŜjðγÞ · ηðsÞðϱ0Þ: ðE4Þ

With an averaging over the coordinates along the confined
directions, we have

Z
dϱdϱ0Wðs;s0Þ

zz ðγ; ϱ; ϱ0Þ ¼ Ξ2
zðγÞ
16

�
1 0

0 1

�
; ðE5Þ

Z
dϱdϱ0Wðs;s0Þ

xx ðγ; ϱ; ϱ0Þ ¼ Ξ2
xðγÞ
16

�
0 1

1 0

�
; ðE6Þ

with ΞzðγÞ ¼ 1þ 3γ þ ðγ − 1ÞCLH and ΞxðγÞ ¼ 1þ
ð2γ − 1ÞCLH ≡ CxðγÞ. Thus, χðedgeÞzz ðγ; qÞ ∝ χðedgeÞ0 ðqÞ,
where χðedgeÞ0 ðqÞ is the Lindhard function associated with
the edge states. Explicit calculation of Eq. (E3) yields

χðedgeÞzz ðγ; qÞ ¼ −Ξ2
zðγÞ

16πA
≡ Ξ2

zðγÞ
16

χðedgeÞ0 ðqÞ; ðE7aÞ

χðedgeÞxx ðγ; qÞ ¼ Ξ2
xðγÞ

32πA
ln

�jq2 − 4k2Fj
4Λ2 − q2

�
; ðE7bÞ

where Λ is a large-wave-vector cutoff. Because of the

special energy dispersion, Eq. (E1), χðedgeÞzz ðγ;qÞ is a
constant (independent of kF and q). Clearly, for the
hole-doped case (μ < 0), the same result as in Eq. (E7)
is obtained because of the assumed particle-hole symmetry.

2. Spin susceptibility of edge states:
Finite-size effects included

Following Ref. [44], we now take into account the
finite size of the system. As a result, edge states at the
two sides that have the same spin can couple, which results
in a gapped spectrum of their energy dispersions. We
assume the system size L to be large and use an approxi-
mation of the wave functions in Ref. [44]. Taking into
account the various degrees of freedom of both system
sides, we modify the approach of Ref. [5], where the
solutions for the wave functions read
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φðsÞ
ν ðxÞ ¼ 1ffiffiffiffi

C
p ðeλ1½ðL=2Þ−sνx� − eλ2½ðL=2Þ−sνx�Þϕ−sν; ðE8Þ

where C is a normalization constant and ν ¼ � denotes the
right and left movers. For nonzero wave vector k, we
consider the matrix

HRL ¼
�
Ak Δ
Δ −Ak

�
ðE9Þ

in the basis of right and left movers, where Δ is the induced
gap, which is a function of the system parameters [44]. The
energy dispersions of Eq. (E9) are

EðsÞ
kτ ¼ τ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðAkÞ2 þ Δ2

q
; ðE10Þ

where τ ¼ � labels the (spin-degenerate) conduction and
valence bands, respectively. The associated eigenstates are

aðsÞkτ ¼

0
BBB@

ffiffiffiffiffiffiffiffiffiffiffiffi
EðsÞ
kτ þAk

2EðsÞ
kτ

r

τ

ffiffiffiffiffiffiffiffiffiffiffiffi
EðsÞ
kτ −Ak
2EðsÞ

kτ

r
1
CCCA: ðE11Þ

With this information, the spinors in Eq. (E2) are modified
to

ηðsÞkτ ðϱÞ ¼
X2
l¼1

X
ν

aðsÞkτ;νφ
ðsÞ
ν;l ðxÞψ ðsÞ

0l ðzÞ: ðE12Þ

Thus, for the present case, the spin susceptibility of the
edge states is

χðedgeÞjj ðγ; q; ϱ; ϱ0Þ ¼
X
s;s0
τ;τ0

Z
dk
2π

Wðs;s0Þ
jjðk;kþq;τ;τ0Þðγ; ϱ; ϱ0Þ

×
nF½EðsÞ

kτ � − nF½Eðs0Þ
kþqτ0 �

EðsÞ
kτ − Eðs0Þ

kþqτ0 þ iℏη
; ðE13Þ

where

Wðs;s0Þ
jjðk;kþq;τ;τ0Þðγ; ϱ; ϱ0Þ ¼ ½ηðsÞkτ ðϱÞ�† · ŜjðγÞ · ηðs

0Þ
kþqτ0 ðϱÞ

× ½ηðs0Þkþqτ0 ðϱ0Þ�† · ŜjðγÞ · ηðsÞkτ ðϱ0Þ:
ðE14Þ

Averaging over the coordinates along the confined direc-
tions, we obtain, for the overlap factor of the Lindhard
function,

Z
dϱdϱ0Wðs;s0Þ

0ðk;kþq;τ;τ0Þðϱ; ϱ0Þ

¼ δss0

4

� ðakakþq þ bkbkþqÞ2 ðτ ¼ τ0Þ
ðakbkþq − bkakþqÞ2 ðτ ≠ τ0Þ; ðE15Þ

where ak ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ½Ak=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðAkÞ2 þ Δ2

p
�

q
, bk≡ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ½Ak=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðAkÞ2 þ Δ2

p
�

q
. The result for the overlap

factors of the spin susceptibilities isZ
dϱdϱ0Wðs;s0Þ

zzðk;kþq;τ;τ0Þðγ; ϱ; ϱ0Þ

¼ δss0

64

8>>>>><
>>>>>:

½ðakakþq þ bkbkþqÞΞzðγÞ ðτ ¼ τ0Þ
þτðakbkþq þ bkakþqÞCzðγÞNLΔ�2
½ðbkbkþq − akakþqÞCzðγÞNLΔ ðτ ≠ τ0Þ
þτðakbkþq − bkakþqÞΞzðγÞ�2

ðE16Þ

andZ
dϱdϱ0Wðs;s0Þ

xxðk;kþq;τ;τ0Þðγ;ϱ;ϱ0Þ

¼Ξ2
xðγÞ
64

ð1−δss0 Þ

8>>>>><
>>>>>:

½akbkþqþbkakþq ðτ¼ τ0Þ
þτðakakþqþbkbkþqÞNLΔ�2
½akakþq−bkbkþq ðτ≠ τ0Þ:
−τðakbkþq−bkakþqÞNLΔ�2

ðE17Þ

In obtaining Eqs. (E15)–(E17), we have usedZ
dx

Y
ν

ðeλ1½ðL=2Þ−νx� − eλ2½ðL=2Þ−νx�Þ ≈ Leλ2L; ðE18Þ

the functional L dependence of Δ ≈ F expðλ2LÞ [44],
where F=E0 ¼ 4jξMj=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4jξMj

p
, and we have defined

N ≡ ðFCÞ−1.

a. Intrinsic contribution to the spin susceptibilities
of the edge states in the limit q → 0

Calculating the intrinsic contribution to the spin suscep-
tibilities of the edge states in the long-wavelength limit
(q → 0), we obtain

χðint;eÞzz ðγ; 0Þ ¼ ðNLΔÞ2 gsC
2
zðγÞ

16πA

�
1 − ln

�
2Λ
~Δ

��
; ðE19aÞ

χðint;eÞxx ðγ; 0Þ ¼ gsΞ2
xðγÞ

16πA

�
1 − ln

�
2Λ
~Δ

��
; ðE19bÞ
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where ~Δ≡ Δ=A. We note that the intrinsic contribution to
the Lindhard function vanishes in the limit q → 0, which
can be inferred from Eq. (E15). To compare this result with
the one of the intrinsic bulk contribution, we divide
Eqs. (E19a) and (19b) by the length L and let L go to
infinity (see Appendix D). Thus, we obtain

lim
L→∞

χðint;eÞzz ðγ; 0Þ
L

¼ 0; ðE20aÞ

lim
L→∞

χðint;eÞxx ðγ; 0Þ
L

¼ − gsΞ2
xðγÞ

32πjBj


1 − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4jξMj
p �

: ðE20bÞ

Therefore, the edge states give a contribution to the total
susceptibility only for the in-plane component, and its sign
equals that of the bulk contribution.

b. Electron-doped contribution to the spin
susceptibilities of the edge states in the limit q → 0

Next, we include the contributions due to doping to the
spin susceptibilities. The interband contributions read (for
AkF ≫ Δ)

χðinter;eÞzz ðγ; 0Þ ¼ −ðNLΔÞ2 gsC
2
zðγÞ

16πA

�
1 − ln

�
2kF
~Δ

��
;

ðE21aÞ

χðinter;eÞxx ðγ; 0Þ ¼ − gsΞ2
xðγÞ

16πA

�
1 − ln

�
2kF
~Δ

��
; ðE21bÞ

while the intraband contributions are

χðintra;eÞzz ðγ; 0Þ ¼ − gsΞ2
zðγÞ

16πA
; ðE22aÞ

χðintra;eÞxx ðγ; 0Þ ¼ −ðNLΔÞ2 gsΞ
2
xðγÞ

16πA
; ðE22bÞ

which is consistent with the finding that χðintra;eÞzz ðγ; qÞ
[χðintra;eÞxx ðγ; qÞ] are important [unimportant] for Δ → 0,
whereas it is the other way around for the interband
contributions. Considering

lim
L→∞

½χðintra;eÞzz ðγ; 0Þ þ χðinter;eÞzz ðγ; 0Þ�
L

¼ 0; ðE23aÞ

lim
L→∞

½χðintra;eÞxx ðγ; 0Þ þ χðinter;eÞxx ðγ; 0Þ�
L

¼ gsΞ2
xðγÞ

32πjBj ð1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4jξMj

p
Þ; ðE23bÞ

we find that this is the same contribution as the intrinsic
contribution, Eq. (20b), which has, however, the opposite

sign. Thus, the sum of doped and intrinsic contributions
of the edge states vanishes in the large L limit. As a
consistency check, we verify for q ¼ 0 that the sum of
Eqs. (E19), (E21), and (22) yields Eqs. (E7a) and (E7b)
(multiplied by gs) in the limit Δ → 0.

APPENDIX F: EFFECTS OF STRUCTURAL
INVERSION ASYMMETRY

Here, we demonstrate that the basic features of the
intrinsic spin susceptibilities given in Eq. (1) are robust
even when effects due to structural inversion asymmetry
(SIA) are included. By taking into account the influence of
a perpendicular electric field Ez, it has been shown in
Ref. [22] that the BHZ Hamiltonian is supplemented by
entries that mix the spin-up and spin-down components of
the BHZ basis states. The leading contribution due to SIA is
linear in the wave vector and given by

HR ¼

0
BBB@

0 0 −iR0k− 0

0 0 0 0

iR0kþ 0 0 0

0 0 0 0

1
CCCA; ðF1Þ

where k� ¼ kx � iky. The necessity to avoid dielectric
breakdown provides an upper limit for the electric-field
magnitude through the condition jeEzjd < 2jMj. Defining
the SIA-related dimensionless parameter ξR ≡ R0=A, this
condition translates into jξRj < 16.1jξMj=ðd½nm�Þ ≈ 0.12
for a typical heterostructure [22]. Thus, ξR is generally a
small parameter, and a perturbative treatment for SIA
effects is appropriate. To lowest order in ξR, the intrinsic
spin susceptibility in the limit q → 0 is found as

χ̄ðintÞxx ðγ;q ¼ 0Þ

¼ − C2xðγÞ
16πjBj

1

1þ 4ξMΘðξMÞ
�
1þ ξ2R

8ξMΘðξMÞ
3½1þ 4ξMΘðξMÞ�2

�
;

ðF2aÞ

χ̄ðintÞzz ðγ;q ¼ 0Þ

¼ −
C2zðγÞ
16πjBj

1

1þ 4ξMΘðξMÞ

×

�
1þ ξ2R

2f9γ2 þ 2ξMΘðξMÞ½C2zðγÞ þ 18γ2�g
3C2zðγÞ½1þ 4ξMΘðξMÞ�2

�
:

ðF2bÞ

Thus, the lowest-order SIA corrections to χ̄ðintÞjj ðγ;q ¼ 0Þ
are quadratic in the small parameter ξR. This means that the
result given in Eq. (F2) already represents an excellent

approximation. Interestingly, χ̄ðintÞxx ðγ;q ¼ 0Þ turns out not
to be modified by SIA contributions in the inverted regime.
We find that this remains true even when higher-order
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corrections in ξR are considered. In contrast, χ̄ðintÞzz ðγ;q ¼ 0Þ
in Eq. (F2b) has finite SIA corrections in the inverted
regime given by 6γ2ξ2R=C

2
zðγÞ. In our case, where

γ ¼ −2.22, this amounts to a relative change that is about
1%. Also in the normal regime, SIA contributions to

χ̄ðintÞjj ðγ;q ¼ 0Þ are at most of relative magnitude 1%.
Thus, we conclude that the spin susceptibilities in
Eq. (1) generally receive only very small corrections when
SIA terms are included in the BHZ Hamiltonian.
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