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Carrying out fault-tolerant topological quantum computation using non-Abelian anyons (e.g., Majorana
zero modes) is currently an important goal of worldwide experimental efforts. However, the Gottesman-
Knill theorem [1] holds that if a system can only perform a certain subset of available quantum operations
(i.e., operations from the Clifford group) in addition to the preparation and detection of qubit states in the
computational basis, then that system is insufficient for universal quantum computation. Indeed, any
measurement results in such a system could be reproduced within a local hidden variable theory, so there is
no need for a quantum-mechanical explanation and therefore no possibility of quantum speedup [2].
Unfortunately, Clifford operations are precisely the ones available through braiding and measurement in
systems supporting non-Abelian Majorana zero modes, which are otherwise an excellent candidate for
topologically protected quantum computation. In order to move beyond the classically simulable subspace,
an additional phase gate is required. This phase gate allows the system to violate the Bell-like Clauser-
Horne-Shimony-Holt (CHSH) inequality that would constrain a local hidden variable theory. In this article,
we introduce a new type of phase gate for the already-existing semiconductor-based Majorana wire systems
and demonstrate how this phase gate may be benchmarked using CHSH measurements. We present an
experimentally feasible schematic for such an experiment using a “measurement-only” approach that
bypasses the need for explicit Majorana braiding. This approach may be scaled beyond the two-qubit
system necessary for CHSH violations, leading to a well-defined platform for universal fault-tolerant
quantum computation using Majorana zero modes.
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I. INTRODUCTION

Implementing fault-tolerant quantum computation using
physical qubits is now a goal of many laboratories all
over the world. Unique among such experimental efforts is
so-called topological quantum computation (TQC), which
utilizes exotic non-Abelian quasiparticles in storing the
qubits. These anyons, the most prominent examples of
which are zero-energy localized excitations (called
“Majorana zero modes”) in the superconducting gaps of
certain types of topological superconductors, are neither
fermions nor bosons, obeying instead non-Abelian statistics
in two-dimensional systems. As nonlocal topological
objects, these anyonic quasiparticles are immune to local
perturbations in the system and are thus characterized by
highly suppressed quantum decoherence [3,4], making them,
in some sense, ideal from the perspective of storing quantum
information. Similarly, protected unitary operations may be
performed with these anyons by adiabatically moving them

around one another (“braiding” them) to take advantage of
the non-Abelian statistics. In the current work, we propose a
compelling practical resolution of one of the most crucial
conceptual roadblocks in carrying out anyonic TQC by
providing a blueprint for how to carry out universal quantum
computation using Majorana qubits. In the process, we also
connect the anyonic TQC with fundamental aspects of
quantum nonlocality, proposing the observation of a par-
ticular variant of the Bell inequality using Majorana zero
modes as a clear signal of the universality of the underlying
topological quantum computing platform.
Universal quantum computation requires the operator to

have the ability to produce any quantum state in the
computational Hilbert space, including, in particular, those
that violate the limits imposed on local hidden variable
theories by the Bell inequality [5] or its variants such as the
Clauser-Horne-Shimony-Holt (CHSH) inequality [6]. Even
with the aid of measurement, however, a topological quan-
tum computer based on the braiding of anyonic Majorana
fermion zero modes (MZMs) cannot create such a state in a
topologically protected manner [3,4]. This is intimately
related to the fact that the braids and measurements of
MZMs together form a representation of the Clifford group
[4,7–12], which is classically simulable [1]. This well-known
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limitation of MZMs in carrying out universal quantum
computations arises from the Ising [or SUð2Þ2] nature of
the corresponding topological quantum field theory (TQFT),
which enables only π=2 rotations in the Hilbert space of the
qubits through braiding. (The surface code implementation
in superconducting qubits [13], which is turning out to be
one of the most promising practical approaches to quantum
computation at the present time [14], also suffers from the
limitation of only supporting Clifford group operations in a
natural way.)
While there are many theoretical proposals [15–19] for

going beyond MZMs (i.e., beyond the Ising anyon univer-
sality) which, in principle, could lead to universal topologi-
cal quantum computation by utilizing richer TQFT, e.g.,
SUð2Þ3 or Fibonacci anyons, no such system has been
experimentally demonstrated. Furthermore, these richer
systems enabling universal TQC often require extremely
complicated braiding operations involving very high over-
head in order to approximate Clifford group operations [20],
which themselves are useful for quantum error-correcting
codes [21]. It is therefore of great importance to explore
ideas that specifically utilize MZMs (with some additional
operations) to carry out inherently quantum-mechanical
tasks beyond the constraint of the Gottesman-Knill theorem.
In particular, it is well known that the “protected”

operations of braiding and measurement on MZMs (and
also the surface code) become universal for quantum
computation when supplemented with a single-qubit phase
gate of small enough angle [4,7–12,22]. The so-called π=8
phase gate (or T gate) e−iπ=8j0ih0j þ eiπ=8j1ih1j is often
named as part of a universal gate set. In part, this is because
of the “magic state distillation” [23] protocol that corrects
errors in noisy T gates through the use of Clifford gates and
measurement. However, any phase gate with θ ≠ nπ=4with
n integer is sufficient for universal quantum computation as
long as it can be produced consistently. (In fact, it would be
useful for the reduction of overhead to be able to produce a
phase gate of arbitrary angle, and there are now error-
correction algorithms designed with this in mind [24].)
In this paper, we introduce a method for adiabatically

performing the phase gate necessary to complement the
existing Clifford operations and allow universal quantum
computation with Majorana systems. In order to test such a
gate, we propose what we believe to be the simplest
nontrivial quantum demonstration feasible with MZMs,
namely, violations of CHSH-Bell inequality. Furthermore,
we show that the design used for the testing of the
inequality leads directly to a practical platform for perform-
ing universal TQC with Majorana wires in which explicit
braiding need never occur. Thus, our work involves three
synergistically connected aspects of anyonic TQC (in the
context of the currently active area of using MZMs for
topological quantum computation): proposing a practical
phase gate for universal topological quantum computation
using MZMs, providing a precise protocol (using CHSH

inequality) for testing that the desired gate operation has
been achieved, and bypassing the necessity of MZM
braiding (and so avoiding, e.g., problems of nonadiabaticity
in the braids [25]).
In designing the phase gate and the quantum computa-

tion platform, we take a “black-box” approach to the
Majorana wire system itself, avoiding, as much as possible,
the manipulation of parameters that might change the
topological nature of the wire state, or tune couplings
between the MZMs. We find this approach advantageous
because of the still-developing nature of the Majorana
field—the “best” wire platform may be yet to be proposed.
We focus instead on a universal aspect of the Majorana
system: a well-developed degeneracy associated with the
fermion parity of a given wire. Remarkably, this approach
(based in “measurement-only” TQC [26,27]) is entirely
sufficient for producing and testing the adiabatic phase gate
and (by extension) for universal quantum computation.
In Sec. II, we review the CHSH inequalities in the

context of Majorana zero-mode physics. A measurement of
violations of the CHSH-Bell inequalities is an important
step in demonstrating not only the fundamental quantum
physics and non-Abelian statistics of Majorana zero modes,
but also the departure from the Clifford group that is
necessary for universal quantum computation. In particular,
it has been shown [28] that operations capable of producing
a violation of the CHSH inequality, when combined with
Clifford operations, are sufficient for universal quantum
computation. This may be thought of as a refinement of the
usual error-correction bound given by magic-state distil-
lation [23]. Put another way, if a phase gate produces a
violation of the CHSH inequalities, then it falls within the
error-correction bound. Thus, a CHSH measurement may
be used as a single-number benchmark of the quality of a
gate, rather than relying on tomography of the entire
produced state.
In Secs. III and IV, we introduce and analyze a new type

of phase gate. Previous proposals [4,7,9,11,22,29–32] for
introducing a single-qubit phase gate into a Majorana-wire–
based system are fundamentally limited by timing errors
due to the largely unknown relaxation rates involved in the
detailed wire physics. We bypass these limitations by
eliminating timing errors entirely, instead performing the
phase gate adiabatically. This phase gate uses elements
already present in the Hyart et al. proposal for braiding and
Majorana-based memory [33] (semiconductor Majorana
wires, superconductors, magnetic fields, and Josephson
junctions), and so may be integrated into such a design
without much additional overhead. For this reason, we use
a design appropriate for incorporation into such a system in
our analysis. However, the concept behind our phase gate is
not limited to this specific setting, and its analog should be
available in any Majorana wire system.
In Sec. V, we lay out our suggested experimental setup for

benchmarking the new phase gate using the CHSH
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inequalities. One great practical advantage of our proposal is
that it builds on the existing proposals [33–37] for carrying
out MZM braiding in semiconductor nanowire systems,
which are currently being implemented in various labora-
tories on InSb and InAs nanowires [38,39]. In contrast to the
various exotic proposals for going beyond MZMs and
SUð2Þ2 TQFT [15–19,40–42], our proposal does not neces-
sitate building new experimental platforms but uses the
already-existing and extensively experimentally studied
semiconductor nanowire-based MZM platforms [7–12].
Importantly, the experiment we propose would unequivo-
cally establish the non-Abelian nature of the Majorana zero
modes, as well as testing the phase gate, and measurement-
based experiments directly equivalent to Majorana braiding
[26,27] could be performed in the same architecture. In fact,
our system may provide a simpler platform for (effectively)
braiding with nanowire MZMs than existing proposals
[33–37] in the sense that no coupling needs to be fine-tuned
between the various Majorana modes.
In Sec. VI, we construct a scalable memory register

capable of measuring any Pauli operator on a set of qubits.
This architecture requires only one junction of Majorana
wires per qubit, greatly simplifying fabrication require-
ments for a Majorana-wire platform. Combined with the
phase gate of Sec. III, this design would enable universal
fault-tolerant quantum computation using nanowire
MZMs. We note that we have designed this device with
elements in mind that are available now, but the principles
behind our phase gate and memory design should be
adaptable to any future Majorana wire system.

II. CHSH INEQUALITIES

To begin, we discuss the device-independent aspects of
our proposal, as the protocol we describe to test the CHSH
inequalities is independent of the particular platform used
to realize MZMs (and, as such, transcends the specific
Majorana wire system of current experimental interest we
focus on later in the paper). In order to test the inequality,
we require a minimum of six Majorana zero modes, the
ability to do a pairwise measurement of adjacent Majorana
modes, and a phase gate implemented on (a particular) two
of the Majorana modes. The procedure is as follows:
First, we divide our six MZMs into two sets of three (see

Fig. 1). We label the Majorana fermion operators associated
with the zero modes as αi and βi, where i ∈ f1; 2; 3g. The
eigenvalues and commutation relations of the operators
iαiαj are such that we can make the identification

iϵijkαiαj ≡ 2σ�k; ð1Þ

where the σk are Pauli matrices. The complex conjugation
on the right-hand side reverses the sign of σ2 and ensures
the correct commutation relations. In this way, we can
identify the operators of three MZMs with those of a single
spin-1

2
, such that the pairwise measurement of the state of

two of the three MZMs corresponds to a projective
measurement along the x, y, or z axis of the spin. We
have labeled these pseudospin axes in Fig. 1. We define
Pauli matrices for the βi operators similarly and label the
axes there with capital letters.
The CHSH-Bell inequality [6] now asserts that, in

particular,

Eðx; XÞ − Eðx; ZÞ þ Eðz; XÞ þ Eðz; ZÞ ≤ 2 ð2Þ

for a local hidden variable theory, where Eða; BÞ indicates
the expectation value of the operator a ⊗ B. Local in this
case means local to the qubits, i.e., sets of three MZMs. The
measurements we are making are necessarily nonlocal in
the individual MZMs themselves.
That said, one may prepare a state that violates the

CHSH inequality by first making initialization measure-
ments that entangle the state of the two qubits. To this end,
we begin by measuring the operators iα1β1 and iα2β2,
projecting both into their −1 eigenstates [43]. Surprisingly,
this alone is not enough to violate the inequality but only to
saturate it. In spin language, in the z basis, we are in the
state 1ffiffi

2
p j↑↑i þ j↓↓i. One may easily check that the

expectation value of x ⊗ X − x ⊗ Z þ z ⊗ X þ z ⊗ Z
for this state is indeed 2. In fact, any set of measurements
(or braiding) we do on the MZMs can only saturate the
classical bound, never exceed it (thus not manifesting
quantum entanglement properties, as is consistent with
the Gottesmann-Knill theorem). To violate the CHSH
inequality, we must add a phase gate (or equivalent) to
the system. Applying this gate around the y axis with an
angle θ, we find that

Z

X Y
β

2 1

z

α
2 1

3

3

yx

FIG. 1. This figure shows six Majorana zero modes arranged in
two qubits consisting of three MZMs each, with pairs corre-
sponding to the x, y, and z axes of each qubit labeled. An arrow
designates the definition of the corresponding Pauli operator in
terms of the MZMs. For example, σz ¼ iα1α2, σy ¼ iα1α3.
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Eðx; XÞ − Eðx; ZÞ þ Eðz; XÞ þ Eðz; ZÞ
¼ 2

ffiffiffi
2

p
cosð2θ − π=4Þ: ð3Þ

Note that the phase gate that is available from braiding
alone has θ ¼ π=4 and therefore can only saturate the
classical bound (2). A more finely resolved phase gate than
is available from braiding is necessary in order to violate
the CHSH inequality. We discuss below how this can be
done in a simple manner in order to directly observe
quantum entanglement properties through the violation of
CHSH-Bell inequality in a MZM-based platform.

III. PHASE GATE

There are now several proposals for introducing the
necessary phase gate into a Majorana-based quantum
computing scheme, including bringing the MZMs together
in order to split the degeneracy for some time period
[4,7,9,11], using the topological properties of the system to
create such a splitting nonlocally [29–32], or transferring
the quantum information to a different kind of qubit in
order to perform the gate [44]. Of these, the third requires a
separate control scheme for the additional qubit, while the
first two rely crucially on timing. In this paper, we present a
new type of phase gate whose elements are native to the
Majorana wire platform and which performs the phase
rotation adiabatically so that precise timing is not a
concern. The phase gate builds on previous proposals
[29,30,45] that use the topological properties of the system
in a non-topolologically-protected way in order to produce
the gate [46]. However, the fact that it is only a slight
variation on already-existing experimental setups [47–53]
should presumably make our proposal easier to implement.
We begin by considering the following thought experi-

ment: Two Majorana zero modes (or Ising anyons) together
form a two-level system, which we may think of as the σz
component of a qubit. A third Ising anyon will pick up a
topological component of phase πð1 − σzÞ=2 upon going
past this pair around the top, relative to the phase it picks up
going around the bottom, in addition to any Abelian phase
(see Fig. 2). If instead of giving this particle a classical
trajectory, we allow it to behave quantum mechanically,
then it now has some complex amplitude A (or B) for going
above (or below) the qubit pair as it moves from left to
right. The total left-to-right amplitude is Aσz þ B. In the
special case that the (Abelian) phases of A and B differ by
χ ¼ 90°, the transmission probability is independent of the
qubit state, and a phase gate

UðA;BÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jAj2 þ jBj2

p ðjBj þ ijAjσzÞ

¼ ei arctan½ðjAjÞ=ðjBjÞ�σz ð4Þ
is applied to the qubit by the passage of the anyon. In order to
realize this concept in a more physical (i.e., experimental)

setting, we consider a ring of superconducting islands
connected by three Josephson junctions (Fig. 3). Two of
the Josephson junctions will be adjustable, while the third is
assumed to be a much stronger link than the other two. One
of these islands will hold a Majorana wire of the type
described by Refs. [54–56], which has already been the
subject of experimental studies [47–53]. The endpoints of

FIG. 2. This figure shows the phase gained by an Ising anyon
passing above or below a stationary Ising pair. The phase
acquired is dependent on the combined state (qubit) stored by
the two anyons. If the test particle passes entirely to one side of
the pair, it acquires a topological phase of 0 or π relative to
passing on the other side, in addition to the Abelian phase χ.
Quantum effects, whereby the test particle has an amplitude to
pass on either side and these paths interfere, can lead to more
general (though unprotected) phases. The role of the test particle
in our proposal is played by a Josephson vortex, while that of the
stationary pair is held by a Majorana wire placed on a super-
conducting island.

J2

J3

J1

1 2

Bulk Superconductor

V1 V2

FIG. 3. Proposed device for implementing a phase gate. A
Majorana nanowire sits on the upper left of two superconducting
islands connected to a bulk superconductor. Josephson junctions
J1 and J2 are adjustable, while a Josephson junction J3 is strong
and fixed. Gates of potential V1 and V2 are capacitively coupled
to the superconducting islands. Operation of the phase gate is
performed by ramping up the flux in the superconducting loop
fromΦ ¼ 0 toΦ ¼ 2π, while the strengths of couplings J1 and J2
are comparable to draw a Josephson vortex into the loop through
two interfering paths, then ramping the flux back down to zero
with J2 ≪ J1 to release the vortex deterministically through the
right junction.
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this wire act as Majorana zero modes and allow that island to
contain either an even or odd number of electrons with no
energy penalty. We use the fermion parity (q ¼ f0; 1g) of
this island as the axis of the qubit around which we perform
our rotation. The role of the mobile Ising anyon in the above
proposal may then be played by a magnetic flux vortex
traveling through the Josephson junctions to enter the ring.
The topological component of the phase picked up when a
flux encircles the Majorana wire is again πð1 − σzÞ=2, now
arising from the Aharanov-Casher effect [30,31,57–60].
Finally, our setup includes a capacitive coupling to an
adjustable gate voltage to one or both of the superconducting
islands. This is represented in our model by the “gate
charge” vector ~Q ¼ ðCg1Vg1 C2Vg2 Þ, where Cgi and
Vgi are, respectively, the capacitance and voltage of the
gates on each island. Changing ~Q allows us to adjust the
relative (Abelian) phase χ acquired by the flux as it moves
through one or the other of the weak Josephson links.
In order to implement our phase gate, we adjust the

external magnetic field to slowly (adiabatically) increase
the amount of magnetic flux running through the super-
conducting loop from 0 to 2π. (Note that there is no precise
constraint on the exact timing of the flux-threading process
as long as it is adiabatic.) This adjustment will determin-
istically draw a Josephson vortex into the loop through one
of the weak links, but crucially, it does not measure which
path that vortex takes. This is exactly the anyon interfer-
ometer we need to produce the phase gate [45].
It remains to determine the phase that is produced based

on the physical parameters of the system. To do so, we
begin with the Lagrangian

L ¼ 1

2

�
Φ0

2π

�
2 _~ϕC

_~ϕ
T þ Φ0

2π
_~ϕ · ð ~QT þ e~qTÞ − Vðϕ1;ϕ2Þ;

ð5Þ

where ~ϕ ¼ ðϕ1 ϕ2 Þ, C ¼ ð C1

−C3

−C3

C2
Þ, and

Vðϕ1;ϕ2Þ ¼ −J1 cosðϕ1 − Φ=2Þ − J2 cosðϕ2 þ Φ=2Þ
− J3 cosðϕ1 − ϕ2Þ: ð6Þ

Here, ~q ¼ ð q 0 Þ is the fermion parity on the Majorana
wire, the variable Φ is the flux through the superconducting
ring, and _ϕi is the time derivative of the superconducting
phase on island i.
To run our phase gate, we adiabatically increase the value

of Φ from 0 to 2π by applying an external magnetic field
(Fig. 4). We are most interested in the point Φ ¼ π, at
which the system will need to cross a tunnel barrier to move
from one degenerate minimum (the true minimum for
Φ < π) to the other (the true minimum for Φ > π) (see
Fig. 5). We consider a system for which

J3ðJ1 þ J2Þ ≥ J1J2 ≥ J3ðJ1 − J2Þ ≥ 0: ð7Þ

In such a system, the tunneling is well described by two
interfering paths. Both paths will alter the phase difference
δϕ ¼ ϕ1 − ϕ2 by the same amount. The paths differ by a
full 2π winding of the average phase ϕ̄ ¼ ðϕ1 þ ϕ2Þ=2 of
the superconducting islands.
When Φ ¼ π, the degenerate minima of the potential V

occur at

cosðδϕÞ ¼ J21 þ J22
2J1J2

−
J1J2
2J23

;

tanðϕ̄Þ ¼ J1 − J2
J1 þ J2

cotðδϕ=2Þ: ð8Þ

The value of the potential at these minima is

Vmin ¼ J3
J21 þ J22
2J1J2

−
J1J2
2J3

: ð9Þ

The classical equations of motion for the above
Lagrangian (with Φ ¼ π) may be easily derived and
rewritten as

Φ2
0

8π2J
Ĉ

� ̈ϕ̄
δϕ̈

�
¼

�
1 ϵ

ϵ 1

��− sin ϕ̄ sin δϕ
2

cos ϕ̄ cos δϕ
2

�

−
�

0

λ sinðδϕÞ

�
; ð10Þ

where we have defined J1 ¼ ð1þ ϵÞJ, J2 ¼ ð1 − ϵÞJ,
J3 ¼ λJ,

Ĉ ¼
�
C̄ ~C
~C Cδ

�
; ð11Þ

FIG. 4. Potential energy vs the superconducting phase differ-
ence δϕ ¼ ϕ1 − ϕ2 [minimized over ϕ̄ ¼ ðϕ1 þ ϕ2Þ=2], plotted
for a junction twice as strong as the average of the other two
(λ ¼ 2) and a Josephson asymmetry ϵ ¼ 0.1, and various values
ofΦ. AsΦ is tuned from 0 to 2π, a magnetic flux is drawn into the
superconducting loop. Note the degeneracy at Φ ¼ π.
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and

C̄ ¼ C1 þ C2 − 2C3;

~C ¼ C1 − C2;

Cδ ¼ C1 þ C2 þ 2C3:

We analyze these equations using an instanton approxi-
mation in the limit η ¼ ½ð1 − ϵ2Þ=ð2λÞ� ≪ 1. Note that the
condition (7) additionally requires that ϵ < η.
In this case, we can vastly simplify the equations of

motion by expanding in orders of η:

δϕ ¼ 2η cos ϕ̄ −
Φ2

0η ~C
4π2J

̈ϕ̄þOðη3Þ: ð12Þ

To bound the order of the corrections, we have used the fact
that the first equation of motion implies that time deriv-
atives scale as

ffiffiffi
η

p
because the ϕ̄ excursion for the instanton

is not small. Next, we make use of energy conservation to
gain the first integral of motion:

H ¼ 0 ¼ Φ2
0

8π2C̄
ðC̄ − η ~C sin ϕ̄Þ2 _̄ϕ2 þ Jη

�
sin ϕ̄ −

ϵ

η

�
2

þOðη3Þ: ð13Þ

Note that for this equation to have a nontrivial solution for
real ϕi, we must propagate the system in imaginary time
(hence the instanton solution). The total instanton action is
therefore

S ¼
Z

i∞

−i∞
dt

ffiffiffiffiffiffiffiffiffiffiffi
Φ2

0Jη
2π2C̄

s
iðC̄ − η ~C sin ϕ̄Þ

�
sin ϕ̄ −

ϵ

η

�

þ Φ0

2π
ðQ1 þQ2 þ eqÞ _̄ϕþ Φ0

4π
ðQ1 −Q2 þ eqÞδ _ϕ

þOðη3Þ: ð14Þ

The last term provides a constant phase shift that is exactly
canceled by the adiabatic phase coming from the change of
the potential minimum for δϕ as Φ is cycled from 0 to 2π
(unlike ϕ̄, δϕ returns to zero after a full cycle). Likewise,
we may ignore terms that are independent of the direction
that ϕ̄ travels. In fact, we are only interested in the
difference between the action of the paths with positive
and negative _̄ϕ. The effective phase gate after adiabatic
evolution of Φ is given by

UðqÞ ¼ exp ðiArgð1þ eiðSþðqÞ−S−ðqÞÞÞÞ; ð15Þ

where q is the qubit state and we can now calculate

Sþ − S− ¼ −iΦ0

ffiffiffiffiffiffi
Jη
2C̄

r �
2C̄

ϵ

η
þ η ~C

�
þOðη5=2Þ

þ Φ0ðQ1 þQ2Þ þ πq: ð16Þ

Note that the phase gate given by Eq. (15) is gauge
dependent. We have chosen the gauge in which tunneling
a Josephson vortex through J1 gives a π phase difference
between the two states of the qubit, while tunneling a
vortex through J2 does not measure the qubit charge. In
order to get a gauge-invariant quantity, we can reverse our
procedure to release the vortex from the superconducting
loop by ramping down the magnetic field, this time with J2
tuned to 0 so that the vortex has a guaranteed exit path. We
do not comment further on this second step of the
procedure and simply make the preceding (equivalent)
gauge choice in what follows.
The difference in instanton actions for the two entry

paths takes the form iðSþ − S−Þ ¼ iπqþ iχ − d, where χ
and d are real numbers with χ ¼ Φ0ðQ1 þQ2Þ and
d ≈ Φ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðJηÞ=ð2C̄Þ�

p
½ð2C̄ðϵ=ηÞ þ η ~CÞ�. In these terms,

the phase accumulated between the two qubit states is
given by

2θ ¼ arg½sinhðdÞ þ i sinðχÞ�: ð17Þ

The π=8 phase gate appropriate to magic-state distillation
[23], or for maximizing the violation of the CHSH

FIG. 5. Potential energy vs the superconducting phase differ-
ence δϕ (minimized over the average superconducting phase ϕ̄)
near the degeneracy point, plotted for a strong junction twice as
strong as the average of the other two (λ ¼ 2) and a Josephson
asymmetry ϵ ¼ 0.1. Note that two inequivalent minima develop
when the flux from the external field Φ ¼ π, and an instanton
event is required for the system to remain in the absolute
minimum of energy as Φ is tuned past this point. This instanton
may occur either with a forward or a backward jump in ϕ̄, and
there is interference between the two paths.
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inequality [see Eqs. (2) and (3)], may be attained by
choosing, e.g., χ ¼ π=2, d ¼ asinhð1Þ.
One possible source of error is an induced splitting

between the qubit states due to different rates of tunneling
for the two qubit states near the instanton point Φ ¼ π,
leading to a dynamic phase error in the qubit. Near the
instanton point, the wave function is in a superposition
between the left and right minima, and the energy of the
lower state depends on the probability of the instanton
event occurring. If this probability is different for different
qubit states, the qubit will split. The probability of the
instanton event occurring for each state is proportional to

PðqÞ ∝ j1þ eiðSþðqÞ−S−ðqÞÞj ¼ j1þ ð−1Þqe−dþiχ j: ð18Þ
This splitting puts a lower bound on how fast the phase gate
should be performed, so as to minimize the accumulation of
phase error. Note that if χ ¼ π=2, there is no splitting, as the
probabilities are equal for the two qubit states. [This is also
the condition that maximizes the controlled phase given by
Eq. (17)]. We expect the dynamic phase error to be
minimized under this condition, an expectation that is
(approximately) borne out by our numerical calculation.
In the next section, we present the results of a numerical

calculation that supports the analytical instanton analysis of
this section.

IV. NUMERICAL SIMULATION

In order to go beyond the instanton approximation
detailed in the previous section, we performed numerical
simulations of the Schrodinger equation associated with the
Lagrangian (5). The corresponding Hamiltonian for the
system can be written as

HðΦÞ ¼ EC

X
j¼1;2

�
nj −

Qj

2e

�
2

− J1 cosðϕ1Þ

− J2 cosðϕ2 þ ΦÞ − J3 cosðϕ1 − ϕ2Þ; ð19Þ
where EC is the charging energy of each island (here, we
assume C1 ¼ C2 ¼ 2e2=EC, C3 ¼ 0 for simplicity) and
nj ¼ −i∂ϕj

is the charge operator on each superconducting
island. The Josephson energy part of the Hamiltonian,
which is proportional to J1;2;3, is identical to the potential
used in the Lagrangian in Eq. (6) up to a gauge trans-
formation. For the numerical calculation, it is convenient to
choose a gauge where the Hamiltonian is manifestly 2π
periodic. Technically, there are three different such gauges
where the flux enters across each of the junctions. As
mentioned at the end of the last section, invariance with
respect to the different gauge choices is guaranteed only
when the Hamiltonian traces a closed loop where the fluxΦ
vanishes at the beginning and the end of the loop.
In order to perform the simulation of the phase gate

process, we divide the process of changing the flux Φ
through the loop from 0 to 2π into a series of small time

steps. At each step, we numerically solve the Schrodinger
equation HðΦÞjψðΦÞi ¼ EðΦÞjψðΦÞi by expanding the
wave function in the eigenbasis jn1; n2i of the charge
operators. The charging energy is diagonal in this basis, and
the Josephson energy terms are represented in terms of
“hopping” terms such as jn1; n2ihn1 þ 1; n2j, etc. Choosing
a large enough cutoff (nj ∈ ½−15; 15� turns out to be
sufficient for our parameters), we can diagonalize the
Hamiltonian matrix in the charge basis to obtain the
ground-state wave function. Since the Hamiltonian is 2π
periodic in the flux, the Berry phase can be computed from
the expression

eiθBerry ≈
YN
n¼1

�
ψ

�
2πn
N

�
jψ
�
2πðnþ 1Þ

N

��
; ð20Þ

where N is the number of steps into which we discretize the
flux. Note that if we choose N to be too small, the
magnitude of the right-hand side will be significantly less
than unity, while as N → ∞, the above approximation
becomes exact [61]. The magnitude of the overlap at each
step is thus an important diagnostic of the algorithm and
should be near unity, serving as an important check on the
accuracy of our simulation.
Figure 6 shows the relative phase between the two qubit

states acquired through the adiabatic evolution. Note that the
“magic” phase π=4 [23] can be attained either by adjusting
the gate voltages to changeQi or by adjusting the imbalance
ϵ in the Josephson couplings. We can compare these results
to the prediction of the instanton approximation using our
calculated d ≈ 4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðλJÞ=½ECð1 − ϵ2Þ�g

p
ϵ.
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FIG. 6. The relative phase acquired between states of the qubit
after the phase gate is enacted, here plotted as a function of the
Josephson junction asymmetry ϵ for a strong junction that is
twice as strong as the weak junctions (λ ¼ 2). The charging
energy EC has been chosen to be 0.4 relative to the scale of the
Josephson energy ðJ1 þ J2Þ=2. The sum and difference of the
gate charges [Qþ ¼ ðQ1 þQ2Þ and Q− ¼ Q1 −Q2] are ex-
pressed in units of the Cooper pair charge 2e. Note that a
relatively small junction asymmetry of ϵ ≤ 0.1 can tune the gate
through a large range of phases.

A PRACTICAL PHASE GATE FOR PRODUCING BELL … PHYS. REV. X 6, 021005 (2016)

021005-7



The qubit state q is encoded in the Hamiltonian through a
shift of the gate charge Q1 → Q1 þ q. The qubit phase
generated from the phase gate is found by calculating the
difference of Berry phases θBerryðq ¼ 1Þ − θBerryðq ¼ 0Þ
acquired as the flux Φ is changed by 2π. To maintain
adiabaticity, the flux must be swept at a rate that is small
compared to the first excitation gap Egap above the ground
state jψðΦÞi of the Hamiltonian in Eq. (19). Such a slow
sweep rate leads to a dynamical contribution to the qubit
phase that is given by

θdyn ¼
Z

dΦ
EðΦ; q ¼ 1Þ − EðΦ; q ¼ 0Þ

_Φ
: ð21Þ

To keep this error small, the sweep rate _Φ must be kept
larger than the energy difference, i.e., jEðΦ; q ¼ 1Þ−
EðΦ; q ¼ 0Þj ≪ _Φ. At the same time, adiabaticity requires
_Φ ≪ Egap. Thus, the dynamical range (i.e., the range of
sweep rates) over which this gate can operate, is propor-
tional to

ζ ¼ Egap

jEðΦ; q ¼ 1Þ − EðΦ; q ¼ 0Þj : ð22Þ

The inverse of the dynamical range ζ−1 also quantifies the
contribution of the dynamical phase to the systematic error
in the gate.
While at the lowest-order instanton approximation, the

energy EðΦ; qÞ is independent of q, as seen from the
numerical results in Fig. 7, higher-order instanton correc-
tions lead to energy splittings that are a finite fraction
ζ−1 > 0 of the gap. This is apparent from Fig. 7 since in the
ideal case ζ would be infinite. However, it is also clear that
the leading-order contribution to ζ can be minimized by

choosing the total gate charge nearQ1 þQ2 ¼ 0.25. This is
expected if the major contribution to the qubit splitting
comes from the instanton contribution described in Sec. III.
Here,Q1 þQ2 ¼ 0.25 corresponds to χ ¼ π=2 in Eq. (18).
Figure 8 shows that the resonance in the dynamic range
(corresponding to the degeneracy point for the qubit states)
does not always occur exactly at Q1 þQ2 ¼ 0.25. Higher-
order corrections to the instanton calculation will detect the
asymmetry in the system, leading to dependence of the
resonance onQ1 −Q2 and ϵ. Nevertheless, it is evident that
a dynamic range of 2–3 orders of magnitude is achievable
over a broad range of parameter space, enabling a rather
unconstrained experimental implementation of the phase
gate without undue fine-tuning. Based on these results, in
the next section we suggest a precise experimental scheme
to implement our proposed phase gate as well as to verify
the CHSH-Bell inequality mentioned in the title of
our paper.

V. EXPERIMENTAL PROPOSAL

In order to implement and test this phase gate within a
physical system, we turn to the measurement scheme
proposed by Hassler et al. [32] (and used extensively by
Hyart et al. [33]) in which the parity of a pair of Majorana
fermions is read out through a superconducting charge
qubit in a transmission line resonator (a “transmon” [62]).
Using the arrangement shown in Fig. 9, we can implement
all of the steps of the CHSH-Bell test without ever needing
to physically braid any of the Majoranas. This is in line with
the so-called “measurement-only” schemes for topological
quantum computation [26,27]. In our proposed experiment,
each of the islands containing Majorana wires is attached
through a series of adjustable Josephson junctions to the
larger superconducting region on either the top (bus) or
bottom (phase ground). We assume that the coupling
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FIG. 8. The dynamical range of the phase gate as a function of
the total gate charge Qþ ¼ ðQ1 þQ2Þ (units of 2e) for a set of
values of the Josephson asymmetry ϵ and Q− ¼ Q1 −Q2

(expressed in units of 2e). Note the resonances in the dynamic
range as the qubit states are tuned to degeneracy.
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FIG. 7. The dynamical range of the phase gate as a function of
the Josephson asymmetry ϵ for a set of gate charge values Qþ ¼
ðQ1 þQ2Þ and Q− ¼ Q1 −Q2 (expressed in units of 2e). The
best dynamic range is found for Q1 þQ2 ¼ 1=4, corresponding
to a phase of χ ¼ π=2 in Eq. (18). Here, the dynamic phase error
and the minimal gap differ by 3 orders of magnitude, allowing the
gate to function for a significant range of ramping times.
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between the three Majoranas at each of the trijunctions is
strong compared with the charging energy of the islands
and is comparable to the Josephson energy at junction
J8 during the performance of the phase gate. Because of
this large coupling, the Majorana at the left end of the wire
in Fig. 3 is effectively replaced by the zero mode of the
trijunction.
Measurement of the resonance frequency of this

system when placed within a microwave resonator can
resolve whether the total parity of islands connected to
the bus is even or odd [31,33,62]. Again, the trijunction
coupling is assumed to be large compared with the
measurement scale so that the trijunctions are treated
as effectively single MZMs. The X and Z components of
the upper qubit may be measured by connecting the
islands containing the corresponding MZMs strongly to
the bus (while connecting all other islands to the phase
ground; see Fig. 11). Similarly, measurements of the
lower qubit may be made by strongly connecting the
corresponding islands to the phase ground (Fig. 12).
Because the resonator measurement determines the total
parity connected to the bus, the parity of the islands
connected to the phase ground may be inferred once the
overall parity of the Majorana system is measured. We
label this a “tare” measurement (see Fig. 10).
Together, Figs. 10–12 show the sets of islands coupled to

the bus and phase ground corresponding to each of the
measurements necessary for a test of the CHSH inequality.
In most cases, we need only two settings for our Josephson
junctions, a strong connection EJ ≫ EC (on) and a very

weak connection EJ ≪ EC (off). This switching can be
controlled, e.g., by threading half a flux between two strong
Josephson junctions [33]. The two Josephson junctions in
the lower right of Fig. 9, labeled 7 and 8, adjust the phase
gate in the manner described above, acting as control
parameters for J1 and J2. A strong Josephson coupling J3 is
assumed between the two islands in the lower right. While
the phase gate is being implemented, junctions 2 and 3
should be off, allowing flux to pass freely between the
island containing the lower right Majorana wire (“y”) and
the remaining wires. The loop in the lower right now acts as
the superconducting loop of Fig. 3 for implementing the
phase gate around the y axis. The remaining Josephson
junctions should be on so that no measurement path is open
in the resonator system and all other islands have the
superconducting phase inherited from the phase ground. In
this case, the Josephson energy of the lower trijunction acts

1

5

876

2
34

FIG. 9. Experimental design for CHSH measurement. The
system consists of several superconducting islands placed within
a microwave resonator. Five Majorana nanowires are placed
among the islands in such a way as to produce six Majorana zero
modes, one at each endpoint along the outer edge, and one at each
intersection where three wires meet [33]. The top three Majoranas
form one qubit, and the bottom three another. Eight adjustable
Josephson junctions (and one strong fixed junction) couple the
islands to each other and to the bus (top) and phase ground
(bottom) of the microwave resonator. Of these junctions, those
labeled 1–6 need only have “on” (strongly coupled) and “off”
(very weakly coupled) settings. Junctions 7 and 8 are used to
implement the phase gate as described in the main text.

FIG. 10. Initialization process. The blue (dark gray) and orange
(light gray) superconducting islands are strongly Josephson
coupled to the bus and phase ground, respectively. (Top)
Coupling all islands to the bus gives a measurement of the
overall fermion parity of the system. This allows one to
equivalently measure the parity of a qubit by coupling the
constituent Majorana modes to the bus or the phase ground.
(Middle and bottom) The two qubits in this device may be put
into the superposition ð1= ffiffiffi

2
p Þðj00i þ j11iÞ by making two

measurements; each measurement includes one MZM from each
qubit. (Along with the tare measurement, this will also effectively
measure the parity of the central island.)
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to renormalize the coupling J1 in the phase gate design
of Fig. 3.
Figures 9–12 provide the schematic and the protocol for

the experimental platform as well as the necessary mea-
surements for the phase gate and CHSH violation being
introduced in this work. They also provide all the tools
necessary to conduct an independent test of the fidelity of

the phase gate without any alteration of the device, e.g., by
measuring x before and after a phase rotation around y.

VI. QUBIT DESIGN FOR UNIVERSAL
QUANTUM COMPUTATION

Once Bell violations have been demonstrated, the next
step toward universal quantum computation is a scalable
qubit register in which all necessary gate operations (e.g.,
Clifford gates and the π=8 phase gate) could be performed.
Our phase gate may be easily worked into such a design, as
we demonstrate here in a simplification of the random access
Majorana memory (RAMM) introduced in Ref. [33].
As shown in Fig. 13, we can construct a set of islands

within the resonator system to function as a single qubit,
with measurement settings available to measure any Pauli
operator fI; X; Y; Zg, along with a phase gate that operates
around the Y axis. Furthermore, by coupling several qubits
to the same register, we may perform any Pauli measure-
ment on the qubits. As described in Refs. [26,27], the set of
Clifford gates may be efficiently constructed using Pauli
measurements. Combined with the phase gates available on
each qubit and the distillation of magic states [23] using
these phase gates, this design provides the necessary
components for universal quantum computation. One
important feature of this new design is the elimination
of a need for nanowire “networks.” Only a single (and
separated) crossing of Majorana wires is needed for each
qubit, significantly simplifying the fabrication of the
Majorana register. We believe that the method outlined
in our Fig. 13, which combines magic-state distillation and
measurement-only ideas in the context of our proposed
phase gate, may very well be the most practical exper-
imental way yet proposed for carrying out universal
quantum computation using nanowire MZMs.

FIG. 11. Measurement of the X and Z projections of the upper
qubit. The parity of a set of MZMs is measured by Josephson
coupling the corresponding superconducting islands strongly to
the bus while coupling the remaining islands to the phase ground.

FIG. 12. Measurement of the x and z projections of the lower
qubit. The tare measurement (see Fig. 10) allows one to relate the
parity of the section coupled to the phase ground to the parity of
the section coupled to the bus.

FIG. 13. Top four panels: Qubit design showing measurement
configurations for X, Y, Z, and Tare (I) measurements of a qubit.
Bottom panel: Portion of a RAMM in a configuration measuring
X ⊗ I ⊗ Z.

CLARKE, SAU, and DAS SARMA PHYS. REV. X 6, 021005 (2016)

021005-10



VII. OUTLOOK

The novel phase gate described in this paper should more
than meet the threshold for error correction in carrying out
universal fault-tolerant quantum computation using MZMs
[23]. The real-world function of the phase gate, as well
as its quantum entanglement properties (beyond the
Gottesmann-Knill constraint of pure Clifford operations),
can be diagnosed through Bell measurements. These tests
of the CHSH inequality are no more daunting than tests of
braiding, yet are better targeted toward the eventual
implementation of quantum information processing in
Majorana-based platforms. In fact, it has been shown that
any operation capable of producing a violation of the
CHSH inequality, when combined with Clifford operations,
is sufficient for universal quantum computation [28]. By
contrast, we do not envision our proposed experiments as
tests of quantum nonlocality itself, as it is unlikely that the
qubits in our proposal will be spacelike separated. In any
case, it is clear that nonlocality is not sufficient for universal
quantum computation, as it may be achieved in Ising
anyons through braiding alone [63] (a system that does
not even suffice for universal classical computation). The
role of the CHSH inequalities as a benchmark in Ising or
Majorana systems has been explored before [28,64–66].
Here, we propose to use this benchmark to experimentally
characterize the new phase gate realization we have put
forth, a realization that benefits from a relative immunity to
timing errors and that can be combined with measurement
operations in a unified architecture.
We believe that our proposal is simple enough, and the

consequences of an experimental implementation impor-
tant enough, that serious consideration should be given by
experimentalists toward trying this Bell violation experi-
ment as the very first quantum entanglement experiment in
the semiconductor Majorana wire system, even before
garden-variety braiding experiments are performed. We
note here with considerable relief that our phase-gate idea
leads to a precise test for Bell violation as well as a well-
defined platform for universal fault-tolerant quantum com-
putation on more or less the same footing, using platforms
very similar to those currently being constructed in labo-
ratories for nanowire MZM braiding experiments.
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