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Bubbles are dynamic objects that grow and rise or shrink and disappear, often on the scale of seconds.
This conflicts with their uses in foams where they serve to modify the properties of the material in which
they are embedded. Coating the bubble surface with solid particles has been demonstrated to strongly
enhance the foam stability, although the mechanisms for such stabilization remain mysterious. In this paper,
we reduce the problem of foam stability to the study of the behavior of a single spherical bubble coated with
a monolayer of solid particles. The behavior of this armored bubble is monitored while the ambient
pressure around it is varied, in order to simulate the dissolution stress resulting from the surrounding foam.
We find that above a critical stress, localized dislocations appear on the armor and lead to a global loss of
the mechanical stability. Once these dislocations appear, the armor is unable to prevent the dissolution of
the gas into the surrounding liquid, which translates into a continued reduction of the bubble volume, even
for a fixed overpressure. The observed route to the armor failure therefore begins from localized
dislocations that lead to large-scale deformations of the shell until the bubble completely dissolves.
The critical value of the ambient pressure that leads to the failure depends on the bubble radius, with a
scaling of ΔPcollapse ∝ R−1, but does not depend on the particle diameter. These results disagree with the
generally used elastic models to describe particle-covered interfaces. Instead, the experimental measure-
ments are accounted for by an original theoretical description that equilibrates the energy gained from the
gas dissolution with the capillary energy cost of displacing the individual particles. The model recovers the
short-wavelength instability, the scaling of the collapse pressure with bubble radius, and the insensitivity to
particle diameter. Finally, we use this new microscopic understanding to predict the aging of particle-
stabilized foams, by applying classical Ostwald ripening models. We find that the smallest armored bubbles
should fail, as the dissolution stress on these bubbles increases more rapidly than the armor strength. Both
the experimental and theoretical results can readily be generalized to more complex particle interactions
and shell structures.
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I. INTRODUCTION

Foams are ubiquitous and often serve to modify the
mechanical [1], acoustical [2], or optical [3] qualities of the
objects in which they are embedded. The stability of a foam
against aging is therefore a major issue since it determines
the ability to control the material properties and their
evolution in time. Foams suffer from three major aging
processes [4]: First, the density contrast between the gas and
liquid leads to liquid drainage towards the bottom of the
foam, while the bubbles rise to the top and the films that

separate them become thinner. Second, bubbles can merge
together, which produces larger bubbles that rise even faster.
Finally, gas can diffuse through the liquid from the small to
the large bubbles, leading to foam coarsening through a
process known as Ostwald ripening.
Surfactants are very efficient at preventing bubble fusions

but only have a weak effect on preventing Ostwald ripening.
An alternative approach, which has received great interest in
recent years, is to coat the air-liquid interfaces of the bubbles
with solid particles that prevent bubble fusions, modify their
effective density, and also prevent Ostwald ripening [5].
Although these so-called Ramsden foams [6] do display
improved stability compared with the pure liquid case
(e.g., Refs. [7–11]), the mechanical equilibria that lead to
the stabilization remain unclear.
One way to understand the underlying mechanisms is to

focus on the behavior of a single particle-covered liquid-air
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interface. However, the difficulty of making quantitative
measurements on a single coated bubble implies that most
of the work was done by using mm-scale liquid droplets, as
surrogate systems for air bubbles [12–18], and aspirating
these droplets or letting them evaporate while observing a
range of behaviors, depending on the experimental setup.
In contrast, experiments using air bubbles, which have
shown the arrest of gas dissolution in the liquid, remain
mostly qualitative [19,20]. Indeed, in spite of the large body
of literature on armored drops and bubbles, there are still
many open questions on the underlying physical equilibria.
For instance, there are no predictions for the stability of
these armors as a function of parameters such as bubble
and particle sizes, or the thermodynamic environment
(pressure, temperature). Moreover, the failure modes of
the shells remain unclear, as does the net effect of armoring
bubbles within a foam.
Here, we make quantitative measurements of the stability

and buckling of a single spherical air bubble, as it dissolves
into the surrounding liquid. For this, we use our recently
developed microfluidic tools that rely on confinement
gradients to produce a single bubble into a quiescent fluid
and hold it stationary for observation [21,22]. Such devices
have previously been used to observe the flows on bubble
surfaces [23], to measure chemical kinetics [24], or to
explore the rigidity of giant unilamellar lipid vesicles [25].
Here, the interaction between a bubble and the surrounding
foam is simulated by controlling the ambient pressure in the
liquid, which allows us to impose a controlled dissolution
stress on the bubble. We begin by describing the exper-
imental procedure and results; then a theoretical model of
the shell mechanics completes the description. We end by
discussing the implications for particle-stabilized foams.

II. EXPERIMENTS

A. Bubble generation and coating

The microfluidic channel and the main steps of bubble
production and particle coverage are shown in Fig. 1
(see also movie 1 in Ref. [26]). The device consists of a
succession of microfluidic elements: An air inlet leads to a
rectangular chamber with a sloping ceiling. Two additional
inlets to the chamber serve to bring the particle dispersion
and push the whole mix through the coating channel, which
then ends in an observation chamber having a conical
ceiling. Finally, two channels connect this chamber to the
outlets of a pressure controller. The microfabrication details
are discussed in Appendix A.
A typical experiment (see movie 1 in Ref. [26]) begins

by producing a single air bubble through the injector
[Fig. 1(b)], by relying on the confinement gradient in this
chamber to produce the bubble into the stationary aqueous
phase [22]. Once the bubble is formed, it is pushed through
the coating channel by injecting the particle dispersion,
which thus progressively coats the bubble with particles

[Figs. 1(c) and 1(d)] [27,28]. The coated bubble is then
released into the observation chamber [Fig. 1(e)], where it
is trapped by the conical ceiling [Fig. 1(f)]. Finally, clean
water from a side channel (P1 or P2) is flowed around it to
remove the excess of unattached particles. This protocol
leaves a single trapped spherical bubble whose interface is
armored with a monolayer of loosely packed adsorbed
colloids. During the observation, a weak flow (v ≈ 2 μm=s)
is maintained around the bubble in order to ensure a
constant gas concentration in the water.

B. Control of bubble dissolution

The fate of this bubble depends on the values of the
thermodynamic variables in the observation chamber: For a
bubble of radius R and at fixed temperature, there exists an

FIG. 1. (a) General view of the microfluidic device which
consists of a bubble formation zone, a coating channel, and an
observation chamber. (b)–(d) Composite bright-field or fluores-
cence images where the particles appear in green. (b) First, a
slopped injector (height ¼ 30 μm to 80 μm, angle 2.3°) produces
a single air bubble. (c,d) The bubble is then squeezed through the
coating channel by the flow of a particle dispersion where it
progressively collects particles. Scale bars are 200 μm. The
armored bubble is then released in the observation chamber,
and the excess of unattached particles in suspension is washed
away, yielding a bubble coated with a single layer of particles
with loosely packed crystalline domains. (e) Phase contrast
micrograph of such a bubble with 4.5-μm diameter particles.
The scale bar is 30 μm. (f) Cross-section schematic of the conical
observation chamber (not to scale). The air bubble is trapped even
if the liquid around it is flowed.
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equilibrium value of the ambient pressure Peq for which the
bubble neither shrinks nor grows [29]. This can be seen by
writing the free energy of a gas bubble interacting with a
gas-liquid solution [30] (see Appendix B for the detailed
calculation):

F ¼ 4πγr2
�
1 −

2r
3R

þ RΔP
3γ

�
; ð1Þ

where γ is the surface tension of the liquid-gas interface, R
is the initial radius of the bubble for which Peq is obtained,
r is the actual radius of the bubble, and ΔP ¼ P − Peq.
For ΔP ¼ 0, the bubble of radius R is in an unstable

equilibrium state, for which F is maximum, as shown in
Fig. 2. If ΔP is increased to a positive value, the F curve
shifts to the right, and the bubble is no longer at equilib-
rium. The system will decrease its free energy by dissolving
the gas into the water, thus reducing the bubble radius.
Conversely, if ΔP is decreased to a negative value, the
opposite transfer will take place and the bubble will swell.
The rate of growth or shrinking depends on the departure
from the equilibrium pressure ΔP ¼ P − Peq.
In our experiments, the temperature in the device is kept

constant, while the pressure in the observation chamber is
varied using a pressure controller. In this way, we can force
the air in the bubble to dissolve into the surrounding water
or vice versa. This control of the bubble size through
pressure control closely mimics the exchange that takes
place because of an overpressure or underpressure expe-
rienced by each bubble in a foam [31,32].
The pair (R, Peq) must be tuned together before the

armor strength can be determined. A typical experiment
therefore begins by shrinking the bubble to a radius for
which the particles at the interface are nearly jammed since
the bubble surface is initially only partially covered. This is
done by increasing P well above a rough estimate of Peq

(typically up to 100 mbar). Once this radius R is reached, P
is finely tuned until the bubble size remains stationary for
several minutes, indicating that the equilibrium pressure
Peq has been found for the current bubble with a nearly
jammed shell.

C. Measurement of armor resistance

When the bubble is armored, the particles can resist the
dissolution for pressures up to a limiting overpressure that
we wish to determine. For this, ΔP is increased stepwise,
from a few millibars above Peq until buckling is observed,
as summarized in Fig. 3(a). Between each of these steps, a
short period of negative ΔP allows the bubble to swell
again before the next pressure increase, in order to release
any stresses that build up during the dissolution step.
The evolution of the armored bubble is monitored over

time (see movie 2 in Ref. [26]), and the projected area of the
armor is extracted by image analysis as shown in Fig. 3(a).
The plot shows a first range of pressures for which the area is
stable over a period of two hours, indicating that the armor is
capable of blocking the dissolution of the gas into the
surrounding medium at these values (ΔP ∈ ½6–18� mbar in
this example). The shell remains spherical and smooth in this
regime, as shown in the insets of Fig. 3(a) and in movie 2 of
Ref. [26]. When the bubble inflates during the periods of
negative ΔP, a crack appears in the armor and then closes
again as ΔP returns to a positive value. This crack can take
different orientations and differs strongly from the initial
condition for the experiment where the particles were loosely
packed (see Fig. 1 of Ref. [26]).
At a particular value of ΔP (denoted ΔPcollapse), the

measured area sharply decreases with time, indicating the
sudden buckling of the colloidal shell. Above this value,
the armor is no longer stable and the bubble dissolves
completely into the water, leaving the colloidal particles in
suspension. The same behavior is observed for all of the
particle sizes that we have tested, as shown, for instance, in
Fig. 3 and in Ref. [26] (Fig. 1) for larger particles.
ΔPcollapse characterizes the resistance of each armored

bubble against gas dissolution. Its variation with the
physical parameters is determined by repeating the experi-
ment for several armor radii and three different particle
sizes. The results are presented in Fig. 3(b), where
ΔPcollapse is plotted against 1=R, the inverse of the radius
of the spherical armor in the jammed state before buckling
occurs. We observe that ΔPcollapse decreases when the size
of the shell increases. Indeed, a linear fit between ΔPcollapse
and 1=R shows good agreement with the data up to 1=R≃
0.03 μm−1 (R≃ 33 μm), as shown by the dashed line in
Fig. 3(b). The slope of the fitted line is 104 mN=m, which
corresponds to 1.5γ, where γ ¼ 70 mN=m is the estimated
surface tension. Surprisingly, ΔPcollapse is nearly indepen-
dent of the diameter of the particles that make up the armor:
A variation of a factor 9 in particle diameter only leads to a
minor variation in the measured collapse pressures.

FIG. 2. Free energy of a single gas bubble of radius R in a weak
gas-liquid solution. If ΔP ¼ 0, the bubble radius is stationary.
The bubble shrinks if ΔP > 0 and it swells if ΔP < 0 because of
gas exchange between the liquid and the bubble.
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This failure mechanism is catastrophic in the sense that
once the threshold is reached, the buckled region grows
until no gas is left inside the bubble, even for a fixed ΔP
[Fig. 3(c) and movie 3 in Ref. [26]]. However, if ΔP is
decreased again to a negative value, the armor can reswell
and regain its mechanical rigidity in a nonbuckled spherical
state. This reversibility suggests that the liquid-gas contact
line on the particles is pinned on the solid surface, which is
confirmed by the fact that the particles never desorb from
the interface: They stay attached together as a continuous
granular material until the bubble has completely disap-
peared. These observations suggest that the air-water
interface acts like a spring that pulls the armor back into
place if the stress is released.

III. MODELING THE ARMOR BEHAVIOR

We now seek a model to reproduce the threshold value of
ΔP at the onset of collapse of the colloidal shell, as well as
the buckling mode. To do so, we consider a spherical shell of
radius R that undergoes an infinitesimal isotropic compres-
sion (radius variation δR). This allows us to calculate the

energy variation (Wdiss) due to the gas dissolution in the
liquid and compare it to the energetic cost of buckling the
shell (Wshell), as detailed below.
The dissolution cost is estimated from Eq. (1) and by

noting that the volume variation associated with the shell
compression is δV ¼ 4πR2δR. The energy Wdiss can
therefore be estimated, per unit surface area of the shell, as

Wdiss ¼ −
δV
4πR2

∂F
∂V

����
r¼R

¼ −ΔPδR: ð2Þ

This result is equivalent to saying that the shell is submitted
to an external overpressure ΔP, whose work Wdiss is
done over the compression δR. Note that ΔP here is the
departure from the equilibrium pressure ðP − PeqÞ and that
this result does not require any knowledge of the pressure
within the bubble.
In order to estimate the energetic cost of deformation of

the shellWshell per unit surface, we reduce the problem to
the more tractable study of a 1D fiber [see Fig. 4(a)]. This
fiber is an arbitrary line ofN rigid beads of diameter a taken

(a)

(c)

(b)

FIG. 3. (a) Typical evolution of the bubble projected area (plus) with the imposed overpressure ΔP (minus) over time. The insets are
fluorescence micrographs from the corresponding experiment. The figure shows the blocked armor (square, R ¼ 100 μm), the
appearance of fractures during the bubble swelling step (triangle), and finally the buckled armor (circle). (b) Plot of ΔPcollapse as a
function of 1=R, for three particle diameters. The error bars are estimated from the uncertainty in the measurement of Peq and the size of
the ΔP steps. The black line shows the value of collapse pressure predicted by our model ΔP� ≈ 1.57γ=R. (c) Detail of the buckling
event for a bubble armored with 4.5 μm beads dissolving at ΔP ¼ 50 mbar. Scale bars are 30 μm.
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on the shell surface, having a total length L and width a.
These beads are adsorbed on the liquid-gas interface
(surface tension γ), resulting in a radial restoring force
that tends to hold the beads at an equilibrium position,
defined here as z ¼ 0 [Fig. 4(b)]. The expression of the
energy associated with this capillary restoring force has
been derived previously. Indeed, the energy of a single bead
trapped on a fluid-fluid interface minus the energy of the
same bead completely immersed in the liquid is [33]

ΔE ¼ πazðγsv − γsl − γlvÞ þ πz2γlv; ð3Þ

where z is the depth of penetration of the bead into the fluid
interface. The equilibrium position for which ΔE is
minimum is attained for z0 ¼ ð1 − cos θÞa=2 (using the

Young-Dupré relation), and the value of the minimum is
ΔEmin ¼ −πγz20. The energy variation ΔE − ΔEmin ¼ wi

γ ,
which is the capillary potential energy for each bead i for a
vertical displacement z − z0 ¼ δzi, can then be written as

wi
γ ¼ πγδz2i : ð4Þ

The compression of the armor radius leads to a longi-
tudinal compression of the fiber, which results in a uniaxial
strain uxx. Since the beads are rigid, they must move out of
the plane of the shell to comply with the x-axis displace-
ment. A sinusoidal profile of amplitude A is assumed to
describe the out-of-plane displacements [see Fig. 4(b)]:

δzi ¼ A cos

�
πi
n

�
with n ∈ N; n ∈ ½1; N�: ð5Þ

We can then calculate the longitudinal (x-axis) distance
di between two adjacent beads i and iþ 1 at different
deflections (z axis), for infinitesimal displacements A ≪ a.
One can then express the strain as (see Appendix B for
details)

uxx ¼
P

n
i¼1 di − an

an
¼ −

A2

2a2

�
1 − cos

�
π

n

��
: ð6Þ

The total energy cost per unit surface areaWshell of the
deformed shell can now be estimated by summing the
energies necessary to displace each bead over one period of
the sinusoidal deflection δzi. Using Eqs. (4), (5), and (6),
and noting that the uniaxial strain uxx in any fiber of the
shell is uxx ¼ δR=R, we have

Wshell ¼
X
i¼1;n

wi
γ

n × a2
¼ −

πγδR

R
h
1 − cosðπnÞ

i : ð7Þ

Now, by equating Wshell and Wdiss, the value of the
threshold pressure above which mechanical stability is lost
can be obtained as

ΔP�
n ¼

πγ

R
h
1 − cosðπnÞ

i : ð8Þ

This equation predicts different threshold pressures depend-
ing on the buckling mode n, with the lowest threshold ΔP�
being attained for n ¼ 1: ΔP�

1 ¼ πγ=ð2RÞ≃ 1.57γ=R,
which corresponds to the smallest possible wavelength.
This prediction reproduces the three major observations

in our experiments: first, the scaling ofΔP� with the bubble
radius as 1=R. Second, its insensitivity to the particle
size agrees with the quantitative measurements shown in
Fig. 3(b). Third, the most unstable mode is predicted to be
n ¼ 1, which corresponds to the highest available spatial
frequency with alternating beads [Fig. 4(b)]. Experimentally,
this translates to the emergence of localized dislocations

(a)

(c)

(b)

FIG. 4. (a) Sketch of the colloidal armor with an arbitrary 1D
fiber highlighted in red. (b) Sketch of the buckling of the fiber.
The red line shows the undeformed initial state of the fiber of
length L; the blue lines are the deflected sinusoidal states. Light
blue is the lowest frequency mode; dark blue is the highest
frequency mode with alternating beads. (c) Detail from fluores-
cence micrographs of the buckling event (movie 4 in Ref. [26]),
where the beads overlaid in red and yellow overlap and come out
of the plane of the monolayer. The direction of the compression is
indicated by the white arrows. Scale bars are 5 μm.
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between adjacent beads at the onset of the instability. Once
such a dislocation appears, the shell is expected to lose its
mechanical stability just like an arch. This is indeed what is
observed in the experiments [see Fig. 4(c) and movie 4 in
Ref. [26]), where the buckling takes place through localized
events that lead to total collapse.
This behavior is fundamentally different from what

would be obtained with an elastic hollow shell [34]. In
the continuous elastic case, the deformation energy cost
would be proportional to the squared mean curvature of the
deflection, rather than the squared amplitude as for the rigid
particles. This would lead toWelast

shell ∝ uxx=n2, which leads
to a least-energetic cost when n is maximum, that is to say,
for large wavelength deformation, as in the classical Euler
buckling. Moreover, the critical pressure would scale with
1=R2 [34], also contrasting with our measurements. Note,
however, that our results and analysis agree with previously
observed behavior of armored interfaces, as described in
Appendix C below.

IV. GENERALIZATION TO A FOAM

The results above focused on the evolution of an isolated
armored bubble, whose thermodynamic parameters were
controlled externally. However, the final goal is to under-
stand evolution of a foam, which is made up of a large
number of interacting bubbles. Although the number of
different scenarios can be large, we can readily apply our
results and model above to the case where the bubbles in
the foam remain spherical. This condition is verified when
the foam is wet, i.e., with a liquid fraction above 30%. This
range of liquid fraction is a relevant regime for a wide
variety of industrial applications: For instance, it is the case
in many food products [35], such as ice cream [36], but also
for metallic [37] or polymeric [38] foams, or cellular
concrete [39]. In such foams, the spherical bubbles expe-
rience a dissolution pressure ΔPfoam that depends on their
own size, compared to an effective size representing the
surrounding foam. Lemlich derived a model based on a
mean-field approximation to estimate this pressure from the
statistical distribution of bubble sizes in the foam [31,32].
He proposed a model that treated the foam as an infinite
liquid medium in equilibrium with a fictitious bubble of
radius RLemlich.
This radius RLemlich is estimated by assuming a Fick’s

law for the gas exchange between the bubbles, where the
mass flux is proportional to the pressure difference between
the bubbles and the liquid. By mass conservation, the total
flux summed over every bubble should be zero. This yields
an expression of RLemlich as a function of the probability
density function of the bubble-size distribution in the foam,
FlðrÞ, as

RLemlich ¼
Rþ∞
r¼0 r

2FlðrÞdrRþ∞
r¼0 rFlðrÞdr

: ð9Þ

Therefore, in a foam described by Lemlich’s model, each
bubble experiences the dissolution pressure

ΔPfoam ¼ 2γ

�
1

R
−

1

RLemlich

�
: ð10Þ

However, for a single bubble of radius R immersed in
water in our microfluidic device, ReqðPÞ is the radius of
the bubble that would be in equilibrium with the liquid
for a given pressure P, temperature, and dissolved gas
concentration. Using the expression of Req Eq. (B1) (see
Appendix B) and Henry’s law, we obtain

ΔP ¼ 2γ

�
1

R
−

1

ReqðPÞ
�
; ð11Þ

which is the dissolution pressure felt by the bubble of
radius R in our microfluidic chamber. This is equivalent to
the pressure felt by a bubble in a foam where we would
have Req ≡ RLemlich. This shows that our device simulates
the environment of a foam, with ΔP≡ ΔPfoam.
The behavior of any armored bubble in a foam can

therefore be predicted by supposing a size distribution in
the foam and comparing the resulting pressure that acts on
each of these bubbles with our prediction of ΔP�. We
perform this analysis by studying a log-normal distribution
of bubble sizes, of constant mean but variable standard
deviation. The overpressure or underpressure experienced
by each bubble depend on its own size and on the size
distribution in the foam, as shown by the colored hyper-
bolas in Fig. 5(a). These curves for ΔPfoam intersect the
prediction of ΔP� [Eq. (8)] at different locations depending
on the initial polydispersity [Fig. 5(a), inset], thus defining
a cutoff radius Rcut that distinguishes stable from unstable
regimes: Bubbles whose radius is above Rcut are stabilized
by their armor, while those whose radius is below Rcut are
expected to buckle.
It is more informative to calculate the number fraction of

collapsed bubbles in the foam (dissolved fraction) by
summing the number of bubbles below Rcut. The model
for foams with no particles at the interfaces predicts that
over 50% of the bubbles will start to dissolve at the
beginning of the foam aging, even for very monodisperse
initial distributions, as shown in Fig. 5(b).
In contrast, when the bubbles are armored, less than

0.1% of them are predicted to collapse and dissolve, even
for polydispersity up to 40%. In that case, a very small
volume of gas is transferred from those 0.1% to the rest of
the foam, meaning that the global bubble-size distribution
is essentially unaltered. Consequently, the particle coverage
of the bubbles remains unchanged, and no topological
rearrangements are expected to occur. A foam meeting this
polydispersity condition would thus be stable against
Ostwald ripening from the very beginning of its aging.
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V. DISCUSSION

As microfluidic tools continue to develop and to gain in
robustness, they provide qualitatively new methods to
address questions in different areas of science. The study

shown here, which relies on the ability to generate and coat
a single microscopic bubble and observe it over long
periods, provides a unique approach for measuring the
mechanical stability of a microscopic armor. Our results on
armored bubbles provide a multiscale framework for
understanding foam stabilization: The quantitative mea-
surements of the armor strength are accounted for by a
theoretical model, which is based on the energy balance
between the energy gain of gas dissolution and the cost of
displacing individual particles across the interface. These
observations show that the stability of the armored bubbles
is similar to that of an arch, emerging from the geometric
arrangement of the individual bricks. As such, dislocations
of individual particles lead to the shell collapse.
One consequence of this microscopic behavior is that the

shell resistance departs strongly from what is expected
from elasticity, contrary to what is commonly assumed
[16,40,41]. This suggests ways to reinforce the colloidal
armor by inhibiting the short-wavelength dislocations, for
example, by using nonspherical or rough particles to
prevent rolling or by using adhesive particles to sinter
the shell. A second surprising consequence is that the effect
of particle size on the stabilization is very weak, with
submicron particles displaying equivalent stability as par-
ticles 10 times larger. This motivates the choice of smaller
particles for foam stabilization since the material usage
is reduced, and smaller colloids adsorb more easily on
interfaces [5].
Finally, the model of stability on the bubble scale can be

used to predict the long-term evolution of a foam by
Ostwald ripening. This is suitable since the dissolution
pressure applied in our experiments is a direct analog for
Lemlich’s model for the behavior of an individual bubble in
a foam. We find that in an aging particle-stabilized foam,
small bubbles will buckle before big bubbles since the
dissolution pressure they experience grows faster than their
resistance to it. Also, we show that the stability of the final
foam is conditioned by the initial polydispersity of the
bubbles, which is determined by the foaming method. This
criterion can therefore be used in the choice of foaming
methods for practical industrial processes.
Both the theoretical model and the microfluidic setup can

naturally be generalized to physicochemical systems with
more industrial relevance, including elastic shells or par-
ticles having different chemical, electrostatic, or mechani-
cal interactions. Finally, the new physical mechanisms
evidenced for particle-coated interfaces hold for liquid-
liquid interfaces. Our results can therefore be generalized to
investigate the stability of armored droplets and particle-
stabilized emulsions.
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FIG. 5. (a) The blue-green curves display the overpressure felt
by a bubble as a function of its inverse radius R in a foam with a
log-normal bubble-size distribution. The mean of the distribution
is kept constant at 100 μm, while the standard deviation is varied
from 3.5 μm (blue) to 84 μm (green), as shown in the lower
inset. The black line represents the resistance ΔP� of a colloidal
shell as defined by our model and our experiments. Bubbles
subjected to a pressure below this critical value will collapse and
disappear, while the others will remain stable. The case of
unarmored bubbles (ΔP ¼ 0) is displayed in gray for compari-
son. The inset is a close-up of the region where ΔP ¼ ΔP� (∘),
which defines the cutoff radii Rcut. (b) The percentage of bubbles
that collapse or dissolve under the influence of the whole
foam, in the armored case (black) and the unarmored case (gray).
The polydispersity is calculated as the standard deviation of the
distribution divided by the mean. The buckled percentage is
calculated by integrating the probability density function on
½0; Rcut�, as shown in the right inset. The left inset shows the
probability density functions FðRÞ used for the calculations, with
increasing polydispersity.
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APPENDIX A: MATERIALS AND METHODS

1. Microfluidics

The experiments were conducted in PDMS (Sylgard
184, Dow Corning) microchannels, plasma bonded to
glass. A mold (see Fig. 6) was first micromilled in a brass
block using a CNC micromilling machine (Minitech),
following a 3D model of the channel drawn using CAM
software (Rhinoceros). Liquid PDMS was then cast over
the mold and cured on a hot plate at 150 °C for at least 24 h.
This thermal aging was necessary to reduce the hydro-
phobic recovery of the PDMS after plasma treatment [42].
The patterned PDMS was then sealed to a glass slide after
30 s in an air plasma, and the resulting channel was
immediately filled with distilled water (Milli-Q) to ensure
that the walls remain hydrophilic. The microfluidic chips
were stored in a 100% humidity sealed container in order to
prevent drying and to keep the channels hydrophilic. Fluids
were flowed into the channels using Teflon (PTFE) tubing
and glass syringes driven by syringe pumps (Nemesys,
Cetoni). The ambient pressure inside the microsystem was
controlled by an external pressure controller (MFCS,
Fluigent). The temperature was regulated at 50 °C by
placing the microchip on a heated microscope stage
(Warner Instruments). The bubbles were monitored by
phase contrast or fluorescence microscopy (Eclipse Ti,
Nikon) using a CCD camera (Insight, SPOT). We estimated
the evolution of the volume of gas inside the bubble by
measuring the projected area of the bubble by gray-level
threshold image analysis (Matlab).

2. Particles

The particles used for the experiments were yellow-
green fluorescent polystyrene (PS) microbeads, charge
stabilized by covalently bonded carboxylate groups.

They were washed three times with distilled water by
centrifugation-sonication cycles and finally redispersed in
DI water with 0.5 M sodium chloride (pH ¼ 7) to a final
solid concentration of 0.5% w=w. Salty water was used in
order to screen the electrostatic repulsion between the
particles and the interface [5], to facilitate adsorption. In
our experiments, we used three different particle diameters:
0.5, 1.1 (Fluospheres, Life Technologies), and 4.5 μm
(Fluoresbrite, Polysciences).

APPENDIX B: DETAILED CALCULATIONS

1. Calculation of the free energy of the
dissolving bubble

Let us consider a gas bubble of radius R in an infinite
liquid medium at a given thermodynamic state: temperature
T, pressure P, liquid-gas surface tension γ, liquid-vapor
pressure P∞, dissolved gas concentration C, and saturation
concentration of gas in the liquid through a flat interface
CsatðP; TÞ. A bubble is in unstable equilibrium if it has a
radius ReqðPÞ, the so-called Gibbs critical radius, for which
the free energy F of the system is maximum. Req can be
expressed as [30]

1

ReqðPÞ
¼ 1

2γ

�
P∞ þ P

�
C

CsatðPÞ
− 1

��
: ðB1Þ

Conversely, we can find a pressure value Peq for which the
initial state matches an unstable equilibrium state, that is,
ReqðPeqÞ ¼ R. Ward et al. [30] derived an approximate
expression of the free energy F for a bubble of radius r in
the vicinity of Req:

F ¼ 4πγ

�
r2 −

2

3

r3

Req

�
: ðB2Þ

Bubbles with radius r > Req will swell, while those with
r < Req, will shrink. The concentration of gas being
considered low, it is reasonable to assume that it follows
Henry’s law, CsatðPÞ ¼ KHP, where KH is the Henry
constant of the air dissolved in the water at temperature
T. Inserting the expression of Csat into Eq. (B1) written for
ReqðPeqÞ ¼ R yields an expression of C, which remains
constant throughout the experiment. Then, using this in
Eq. (B1) and combining with Eq. (B2) gives the result
in Eq. (1).
We verify experimentally the ability to control the

evolution of an air-in-water bubble by varying the pressure
around it. Figure 7 shows the time evolution of the relative
radius of the bubble for different values of ΔP, for a typical
experimental temperature of 50 °C and an initial bubble
radius of R ¼ 120 μm. In these conditions, the equilibrium
pressure is Peq ¼ 80 mbar. At that pressure value, corre-
sponding to ΔP ¼ 0, the radius of the bubble changes by
less than 1% over 20 minutes, which indicates that the

FIG. 6. Three-dimensional view of the brass mold used for the
casting of the microchips. It was obtained with an optical
profilometer (Zygo) by stitching images from multiple acquis-
itions. The height of the coating channel is 80 μm, and its width is
300 μm. The slope of the bubble injector is 4%.
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unstable state of equilibrium has been reached. As soon as
the value of ΔP is increased (resp. decreased), the radius of
the bubble decreases (resp. increases). It can also be
noticed that the rate of variation of the bubble radius is
related to the absolute value of ΔP. The further the system
is driven out of equilibrium, the higher the rate of variation
of r.

2. Calculation of the strain of the armor fiber

Using the Pythagorean theorem and assuming a ≪ A,

di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − A2

�
cos

�
πi
n

�
− cos

�
πðiþ 1Þ

n

��
2

s

≃ a

�
1 −

A2

2a2

�
cos

�
πi
n

�
− cos

�
πðiþ 1Þ

n

��
2
�
:

The length of one period is then

Xn
i¼1

di ¼ an −
A2

2a

Xn
i¼1

�
cos

�
πi
n

�
− cos

�
πðiþ 1Þ

n

��
2

¼ an −
nA2

2a

�
1 − cos

�
π

n

��
:

APPENDIX C: COMPARISON
WITH PREVIOUS RESULTS

The mechanical resistance of armored interfaces has
been measured by other authors, particularly in Ref. [13]
(water-in-oil droplets) and Ref. [17] (hemispherical water-
in-air droplets). As summarized in Table I, our study covers
a range or particle-to-bubble diameters that bridges these
two studies while overlapping slightly with them. In spite
of the differences in experimental setups, our measure-
ments and theoretical predictions for the collapse pressure
quantitatively agree with the results presented in these
studies, as described below.
Monteux et al. [13] investigated the deflation of a

particle-coated millimetric droplet of decane in water.
Despite observing jamming of the particles at the interface
and a subsequent collapse of the shell, they did not address
the question of the mechanical resistance of such armor.
Indeed, they controlled the volume of the droplet rather
than the pressure, which would make a measurement of the
collapse pressure tricky. Their most relevant measurements

were performed in a flat Langmuir trough, where they
found a buckling surface pressure Π that is independent of
the particle size (regime III at large compression values, in
their Fig. 8).
This surface pressure is related to our collapse

pressure since the surface pressure in an isotropically
compressed spherical shell is related to the external over-
pressure by Π ¼ RΔP=2 (expression used in Ref. [17],
p. 5). Thus, our expressionΔP ≈ 1.57γ=R can be translated
in terms of surface pressure (using γ ¼ 50.3 mN=m for the
decane/water interface):Π≈ 0.78γ ¼ 0.78× 50.3 mN=m¼
39.5 mN=m. This value is in very good agreement with data
of Monteux et al., who find a value around 40 mN=m, with
no observable dependence on particle size.
In the study by Pitois et al. [17], the authors decrease the

internal pressure of an armored hemispherical droplet until
they observe buckling. Their measurements of collapse
pressure for two particle diameters, as reported in their
Fig. 3, collapse on a single master curve when plotted as a

TABLE I. Range of particle diameter to bubble radius ratios
(a=R) covered by the three studies.

Reference Min ða=RÞ Max ða=RÞ Max/Min

Monteux et al. [13] 2.1 × 10−4 2.8 × 10−3 13
Pitois et al. [17] 2.0 × 10−2 1.8 × 10−1 9
Current study 1.6 × 10−3 5.9 × 10−2 36

FIG. 7. Measurement of the time evolution of the normalized
radius of an air bubble in water, for different values of ΔP.

FIG. 8. Armored bubble collapse pressure as a function of the
inverse radius. The black line is our model prediction, the gray
symbols correspond to our experimental points, and the colored
symbols correspond to measurements from Ref. [17] for two
different particle diameters: 16 μm and 40 μm. The inset is a
close-up for small values of 1=R.
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function of the bubble radius (Fig. 8 inset). This indicates
that there is no dependence on the particle diameter in their
measurements. Indeed, their data align well with ours and
with our theoretical prediction of the collapse pressure
(Fig. 8), except for the largest values of a=R for which
different stabilization mechanisms are expected [17,20].
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