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Failure and flow of amorphous materials are central to various phenomena including earthquakes and
landslides. There is accumulating evidence that the yielding transition between a flowing and an arrested
phase is a critical phenomenon, but the associated exponents are not understood, even at a mean-field level
where the validity of popular models is debated. Here, we solve a mean-field model that captures the broad
distribution of the mechanical noise generated by plasticity, whose behavior is related to biased Lévy flights
near an absorbing boundary. We compute the exponent θ characterizing the density of shear transformation
PðxÞ ∼ xθ, where x is the stress increment beyond which they yield. We find that after an isotropic thermal
quench, θ ¼ 1=2. However, θ depends continuously on the applied shear stress; this dependence is not
monotonic, and its value at the yield stress is not universal. The model rationalizes previously unexplained
observations and captures reasonably well the value of exponents in three dimensions. Values of exponents
in four dimensions are accurately predicted. These results support the fact that it is the true mean-field
model that applies in large dimensions, and they raise fundamental questions about the nature of the
yielding transition.
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I. INTRODUCTION

Amorphous solids such as emulsions, glasses, or sands
are yield stress materials that fail and flow if a sufficient
shear stress is applied. In the solid phase, plasticity can be
conceived as consisting of elementary rearrangements, the
so-called shear transformations [1–5]. Shear transforma-
tions are localized but display long-range elastic inter-
actions [6] and organize dynamically into elongated highly
plastic regions [4,7–10]. Above some threshold stress,
failure occurs and one enters a fluid phase where a
stationary flow can be maintained. In various materials,
rheological properties appear to be controlled by a critical
point at the yield stress Σc where the flow stops: At that
point, flow curves relating shear stress and strain rate are
singular [11], and the dynamics displays long-range spatial
correlations [9,12,13]. Despite the importance of these
properties in a variety of phenomena including earthquakes
and landslides, a quantitative microscopic description is
lacking. As is generally the case in condensed-matter
systems, one expects that the density of elementary
excitations strongly affects such properties. For amorphous
solids, this corresponds to the density PðxÞ of shear trans-
formations, characterized by the additional shear stress x

required to trigger them [14,15]. One empirically finds a
pseudogap, i.e. PðxÞ ∼ xθ, for small x with θ > 0 [15–17].
The value of θ was argued to control the singular rheo-
logical properties and diverging length scale of flow just
above the yield stress Σc [18]. The fact that θ > 0 was also
shown to imply crackling (system spanning avalanche-type
response) in the entire solid phase Σ < Σc [19], where Σ is
the applied shear stress, and the value of θ affects avalanche
statistics in that regime.
Pseudogaps are commonly found in glassy systems with

sufficiently long-range interactions [20]. The associated
exponent is constrained by stability, as occurs in electron
glasses [21], fully connected spin glasses [22–26], and
hard sphere packings [27–31]. In the last two cases, the
associated stability bound can be proven to be saturated (a
scenario referred to as marginal stability) [20]. For amor-
phous solids, given the elastic coupling between shear
transformations, stability toward extensive avalanches can
be shown to imply θ > 0 [16]. However, most recent data
indicate that (i) for quasistatic flows (at the yield stress),
θ ∈ ½0.5; 0.57� and θ ∈ ½0.35; 0.43� in two and three
dimensions, respectively [17,18], (ii) right after a fast
quench at zero stress, θ ∈ ½0.4; 0.6� [15,16], and (iii) as
the stress increases within the solid phase, θ rapidly drops
initially and then slowly rises again as Σc is approached
from below [19]. Thus, the marginal stability scenario does
not yield the pseudogap exponent value for amorphous
solids and, moreover, cannot explain its nonmonotonic
dependence on the applied stress.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 3.0 License. Further distri-
bution of this work must maintain attribution to the author(s) and
the published article’s title, journal citation, and DOI.

PHYSICAL REVIEW X 6, 011005 (2016)

2160-3308=16=6(1)=011005(11) 011005-1 Published by the American Physical Society

http://dx.doi.org/10.1103/PhysRevX.6.011005
http://dx.doi.org/10.1103/PhysRevX.6.011005
http://dx.doi.org/10.1103/PhysRevX.6.011005
http://dx.doi.org/10.1103/PhysRevX.6.011005
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


An alternative route seeks progress by considering mean-
field (MF) models that would allow one to compute θ in
large spatial dimension d, where spatial correlations
between local plastic events are presumably weak.
Hebraud and Lequeux (HL) [32] introduced a popular
model where all shear transformations interact with each
other, with a similar magnitude. A pseudogap is predicted,
but one finds θ ¼ 1which is far from the values observed in
two and three dimensions and does not depend on the
applied stress. Lemaitre and Caroli (LC) pointed out that
since elastic interactions decay as an inverse power of
distance, the magnitude between two randomly chosen
shear transformations is broadly distributed [14]. Including
this effect led to a mean-field model that was numerically
shown to display a pseudogap but not solved analytically.
We introduce a class of mean-field models that inter-

polate continuously between these two cases and solve
them using a combination of probabilistic arguments and
analysis. In our models, spatial correlations are neglected.
However, the distribution of stress fluctuations generated
by a local event is kept the same as finite-dimensional
systems. Because of the broad distribution of mechanical
noises, the variables x describing the stability of shear
transformations undergo biased one-dimensional Lévy
flights of index μ with absorbing conditions outside a
compact interval and reinsertion within this interval. The
HL model corresponds to μ ≥ 2 (Brownian motion),
whereas the more physical LC model corresponds to
μ ¼ 1. Our findings are that (a) for μ > 1, θ is independent
of system preparation and follows θ ¼ μ=2 for μ ∈ ð1; 2�.
(b) For μ < 1, θ ¼ μ=2 after an isotropic (Σ ¼ 0) quench
but θ ¼ 0 if Σ > 0, in particular, at the yield stress Σc.
(c) For the physical case μ ¼ 1, θ ¼ 1=2 after a quench, but
θ is not universal for Σ > 0 and is shown to drop
immediately as Σ increases from zero and then increases
continuously with the applied stress. These predictions are
confirmed numerically. They are remarkably consistent
with finite-dimensional observations that were unexplained
even at a qualitative level, in particular, regarding the
nonmonotonicity of the pseudogap exponent with the
applied shear stress. Quantitatively, the values we predict
for exponents are already reasonably accurate in three
dimensions and become very precise in four dimensions.
These facts support that our mean-field model is the true
mean-field model that applies in high spatial dimensions. A
surprising consequence of our approach is that the non-
universal value θðΣcÞ will never reach a well-defined value
above some critical dimension. Instead, it simply tends to
decrease with d, in agreement with observations.
Beyond plasticity, to our knowledge, our model provides

the first nontrivial glassy system where the violation of
marginal stability can be proven (i.e., the fact that the
pseudogap exponent is strictly larger than what is required
by stability). Another significant by-product of our work is
the classification of the asymptotic scaling behavior of a
biased Lévy flight close to an absorbing boundary.

Section II introduces mean-field models. Their thermo-
dynamics limits are worked out in Sec. III, together with a
derivation of the pseudogap exponent. A physical inter-
pretation of these results based on survival probability of
biased Levy flights is presented in Sec. V. Predictions are
tested numerically in Sec. VI. History dependence of the
pseudogap exponents is studied in Sec. VII, while Sec. VIII
investigates the role of spatial dimension. We conclude by
summarizing the consequences of our work for real
materials and by raising open questions.

II. MEAN-FIELD MODELS

Following Refs. [12,16,33–35], we describe amorphous
materials as consisting of N blocks, each characterized by a
local shear stress σi and a local yield stress σthi , which we
choose to be unity. The shear stress applied on the
material is Σ ¼ P

iσi=N, and we assume that Σ is
constant in time (we relax this hypothesis below). A block
becomes unstable if jσij > σth ≡ 1. This condition is easily
expressed by defining xi ≡ 1 − σi, and stability corre-
sponds to xi ∈ ½0; 2�. If the variable xi exits this interval
at some time t, the block i is declared “unstable.” After
some constant time interval τr (describing the time for a
local plastic event to occur), σi relaxes to zero; i.e., xi → 1
at time tþ τr (allowing for a distribution of stress drop
amplitude does not affect our results below). For this choice
of dynamics, xi∉½0; 2� are always absorbing conditions for
the variable xi. (Another popular choice of dynamics
assumes that if xi∉½0; 2�, there is a finite evaporation rate
at which sites become unstable. Such a dynamic leads to an
absorbing condition outside [0,2] only in the quasistatic
limit. For such models, our results below must apply in that
limit, as supported by the fact that the pseudogap exponent
then does not depend on the choice of dynamics [16].)
Such a relaxation event corresponds to a plastic strain in

site i of magnitude Δϵi ¼ σi=E, where E is the shear
modulus. This relaxation causes a global plastic strain
Δϵ ¼ Δϵi=N. Moreover, the stress in i is redistributed on
other sites, leading to

xjðlþ 1Þ ¼ xjðlÞ þ Gjið~ri − ~rjÞσiðlÞ; ð1Þ

where Gjið~ri − ~rjÞ is the interaction kernel which a priori
depends on the position ~rj of the sites, and the integer l
numbers plastic events in chronological order. If the stress
is fixed, one must have

P
j≠iGij ¼ −Gii ¼ −1. In the

following, we set E ¼ τr ¼ 1.
For amorphous solids, GðrÞ is well approximated by the

Eshelby kernel, of magnitude GðrÞ ∼ 1=rd and whose sign
depends on the relative directions between ð~ri − ~rjÞ and the
imposed shear [6,36,37]. This property implies that the
distribution ρðΔxÞ of kicksΔxj ¼ xjðlþ 1Þ − xjðlÞ at each
plastic event is broadly distributed since site i can be close
to or far from site j. Using GðrÞ ∼ 1=rd, one readily finds
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[14] that ρðΔxÞ ∼ jΔxj−1−μ with μ ¼ 1. It is straightforward
to extend this result to the general case GðrÞ ∼ 1=rα, where
we find μ ¼ d=α. Extending Ref. [14], mean-field models
can now be constructed where the distribution of kick
amplitudes preserves that of the original problem but where
all sites interact statistically in an identical way. This result
is achieved by replacing the prescription Eq. (1) for the
relaxation of site i by the new rule:

xiðlþ 1Þ ¼ 1;

xjðlþ 1Þ − xjðlÞ ¼ − 1 − xiðlÞ
N − 1

þ ξj: ð2Þ

In the last equation, the first term on the right side (referred
to as the drift term below) ensures conservation of stress;
i.e.,

P
ixiðlÞ does not depend on l. The random variable ξ

has zero mean hξii ¼ 0, and its distribution wðξÞ mimics
that of the finite-dimensional model:

wðξÞ ¼ A
N
jξj−μ−1; ð3Þ

with a lower cutoff ξc ¼ ð2A=μÞ1=μN−1=μ fixed by nor-
malization and an upper cutoff ξm ¼ ð2A=μÞ1=μ (such a
cutoff is present in the finite-dimensional model and
corresponds to the amplitude of the kick given by an
adjacent site). The dynamical rule of the mean-field models
is illustrated in Fig. 1.
Such mean-field models behave qualitatively like stan-

dard elastoplastic models: There exists a yield stress Σc > 0
such that for Σ < Σc, the dynamics eventually stops,
corresponding to the solid phase. For Σ > Σc, the dynamics
never stops in the thermodynamic limit and is characterized
by a rate of plastic strain _ϵ ¼ Nuhσui=N, where Nu is
the instantaneous number of unstable blocks and
hσui ¼ 1 − hxui their mean stress value when they relax.
hσui has both a positive contribution from σu > 1 (i.e.,
xu < 0) and a negative one from σu < −1 (i.e., xu > 2),

and the symmetry between these is broken as soon as
Σ > 0. In our convention, for Σ > 0, hxi < 1 and most sites
become unstable at the boundary x < 0, leading to _ϵ > 0.
Ultimately, our model describes Lévy flights with

absorbing conditions for x∉½0; 2�. Because of the drift term
in Eq. (2), these flights are biased, which tends to bring
them toward the unstable region x < 0 if Σ > 0. For
Σ > Σc, where a stationary state is reached, computing
the pseudogap in this mean-field approximation requires
one to obtain the stationary distribution of the stable sites
PðxÞ≡P

stableδðx − xiÞ=N of biased Lévy flights near an
absorbing boundary.

III. CONTINUOUS DESCRIPTION

We consider the limit N → ∞ while keeping the variable
γ ≡ l=N fixed, with γ ≪ 1 (γ is essentially a measure of the
accumulated plastic strain ϵ, as ϵ ¼ γhσui where, in
practice, hσui≃ 1 for Σ≃ Σc). In this limit, the dynamics
of stable sites in Eq. (2) becomes

xjðγÞ ¼ xjð0Þ − vγ þ ξjðγÞ: ð4Þ

Here, the drift follows:

v ¼ hσui ¼ 1 − hxui: ð5Þ

For this convention, v > 0 if Σ > 0. We assume that v > 0
and will relax this hypothesis when discussing thermal
quenches at Σ ¼ 0. The random kick ξjðγÞ is an accumu-

lation of γN discrete random kicks, ξjðγÞ ¼
PγN

k¼1 ξk, and
satisfies the probability distribution

wγðξÞ ¼
Z

δ

�XγN
k¼1

ξk − ξ

�YγN
k¼1

wðξkÞdξk: ð6Þ

In Fourier space, ~wγðkÞ ¼ ~wðkÞγN , where ~wðkÞ is the
Fourier transform of wðξÞ defined in Eq. (3).
According to Eq. (4), together with the rule that unstable

sites are reinserted in x ¼ 1, one obtains the time evolution
of the density distribution of x, PðxÞ, from γ to γ þ δγ:

Pðx;γþδγÞ¼Pðxþvδγ;γÞþ
Z

∞

−∞
Pðy;γÞwδγðy−xÞdy

−Pðx;γÞ
Z

∞

−∞
wδγðyÞdyþδγδðx−1ÞþOðδγ2Þ;

ð7Þ

where the first term on the right side represents the drift, the
second term characterizes the flux of a particle arriving in x,
and the third term represents the flux of particles departing
from x. Eventually, we obtain the master equation

FIG. 1. Mean-field model: An unstable site (red line) returns to
xi ¼ 1 from xi < 0 after a time τr. Concomitantly, other sites
implement a drift toward negative x to conserve the mean stress
and a random jump of symmetric distribution wðξÞ. The dashed
line represents PðxÞ, assuming Σ > 0. A pseudogap is repre-
sented at x ¼ 0.
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∂P
∂γ ¼ v

∂PðxÞ
∂x þ

Z
∞

−∞
½PðyÞ−PðxÞ�w0ðy− xÞdyþ δðx− 1Þ;

ð8Þ

with the condition that PðxÞ ¼ 0 if x∉½0; 2�, and
where w0ðξÞ ¼ limγ→0wγðξÞ=γ.
Case μ ≥ 2.—In this case, wðξÞ has a finite variance, and

~wðkÞ ¼ 1 − hξ2ik2=2þOðk4Þ. For ~wγðkÞ to converge in
the large N limit, one must choose hξ2i ¼ 2D=N, where
D is a constant (implying A ∼ N1−ðμ=2Þ), so ~wγðkÞ →
expð−γDk2Þ. Then, w0ðξÞ converges to a Gaussian, and
Eq. (8) leads to the standard Fokker-Planck equation:

∂P
∂γ ¼ v

∂P
∂x þD

∂2P
∂x2 þ δðx − 1Þ: ð9Þ

Solutions of such a diffusion equation vanish linearly near
the absorbing condition; i.e., PðxÞ ∼ x at small x, as found
in the HL model [32]. This corresponds to θ ¼ 1.
Case μ < 2.—In this case, one recovers the well-known

results for Lévy distribution [38]:

w0ðξÞ → A
jξjμþ1

; ð10Þ

with an upper cutoff at ξm (see Appendix B for details).
Equation (8) then leads to

∂P
∂γ ¼ v

∂PðxÞ
∂x − PðxÞ

Z
0

−∞
w0ðy − xÞdy

þ
Z

2

0

ðPðyÞ − PðxÞÞw0ðy − xÞdyþ δðx − 1Þ; ð11Þ

using the condition that PðxÞ ¼ 0 for x < 0 and x > 2.

IV. ASYMPTOTIC SOLUTIONS

We seek stationary solutions of Eq. (11) of the form
PðxÞ ¼ P0 þ C0xn for x ≪ 1, with n > 0. Defining
s ¼ y=x, Eq. (11) reduces to

vnC0xn−1 − A
P0 þ C0xn

μ
x−μ

þ xnþ1

Z
2=x

0

�
PðsxÞ
xn

− P0

xn
− C0

�
w0ðxðs − 1ÞÞds ¼ 0:

ð12Þ

Here, we change the variable s ¼ yx and denote the last
term T3. Using the fact that w0ðξÞ ¼ A=jξjμþ1, in the limit
x ≪ 1, T3 converges to

T3 ¼ AC0xn−μ
Z

∞

0

sn − 1

js − 1jμþ1
ds ð13Þ

if n < μ, or T3 ¼ Oð1Þ if n > μ.
Case μ < 1.—In this situation, we must have P0 > 0;

otherwise, the first term in Eq. (12) cannot be balanced. So
T3 is always negligible compared with the first two terms,
in both cases n < μ and n > μ. Keeping only the dominant
terms, we obtain

vnC0xn−1 − A
P0

μ
x−μ ¼ 0; ð14Þ

implying n − 1 ¼ −μ. Thus, we find

PðxÞ ¼ P0 þ C0x1−μ; ð15Þ

corresponding to θ ¼ 0.
Case 1 < μ < 2.—In this case, if P0 > 0, Eq. (12)

cannot be satisfied because the term proportional to
P0x−μ cannot be balanced. So P0 ¼ 0, and T3 is therefore
not negligible. Equating the dominant terms leads to

−AC0

μ
xn−μ þ T3 ¼ 0: ð16Þ

If n > μ, the first term tends to 0, while the second term
remains Oð1Þ. Thus, n ≤ μ, and

1

μ
−
Z

∞

0

sn − 1

j1 − sj1þμ ds ¼ 0: ð17Þ

We checked that the unique solution of this equation is
n ¼ μ=2, a result which has a simple probabilistic inter-
pretation, as discussed in Sec. IV. Thus, PðxÞ ∼ xμ=2

and θ ¼ μ=2.
Case μ ¼ 1.—The most important physical case is also

the richest. The solution can exist only if P0 ¼ 0 and n < 1,
and Eq. (12) asymptotically implies

vnxn−1 − Axn−1 þ Axn−1
Z

∞

0

sn − 1

j1 − sj2 ds ¼ 0: ð18Þ

TABLE I. Summary of results: MF values of θ at the yield stress
Σc (implying v > 0) and after a quench at Σ ¼ 0 (for which
v ¼ 0) as a function of the Lévy index μ, the random kick
amplitude A, and the bias v. For comparison, we also report θ
(marginality) corresponding to the saturation of the stability
bound derived in Ref. [16].

μ θ (Σc) θðΣ ¼ 0Þ θ (Marginality)

μ ≥ 2 1 1 1
1 < μ < 2 μ=2 μ=2 μ − 1
μ ¼ 1 arctanðπA=vÞ=π 1=2 0
μ < 1 0 μ=2 0
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The last integral yields I1 ¼
R
∞
0 ðsn − 1=j1 − s2jÞds ¼

1 − πn cotðπnÞ, from which we obtain v ¼ Aπ cotðπnÞ.
Thus, PðxÞ ∼ xθ, with

θ ¼ 1

π
arctan

�
πA
v

�
; ð19Þ

implying that θ continuously depends on the drift v and the
magnitude of the noise A.
The above results are summarized in Table I and Fig. 2.

V. INTERPRETATION

A detailed probabilistic derivation of these results is
given in Appendix A, including the case with no bias
(v ¼ 0). In a nutshell, PðxÞ for x ≪ 1 is proportional to the
number of random walkers starting from x ¼ 1, which end
up in position x after a time γ ¼ Oð1Þ, without having
crossed the absorbing condition x < 0. For a Brownian
motion (corresponding to μ ≥ 2 in our model), it is well
known that this number vanishes linearly in x. This result is
independent of the bias for a Brownian motion because on
small length scales of order x (or equivalently on small time
scales of order γ ∼ x2), fluctuations always dominate the
bias, which is therefore irrelevant. Fluctuations also domi-
nate the bias for Levy flights if μ > 1, and thus PðxÞ at
small xmust again be independent of the bias, in agreement
with our result that θ ¼ μ=2 if μ ∈ ð1; 2�. The case μ ¼ 1,
however, is marginal: Bias and fluctuations are always
comparable on all time scales, and both affect the value of

θ, as shown in Eq. (19). Finally, for Levy flights with
μ < 1, the bias dominates on small time scales: Typically,
walkers are essentially convected toward the origin, leading
to a nonvanishing PðxÞ at x ¼ 0.

VI. NUMERICAL TESTS

We now test our predictions numerically, considering
first the case Σ ¼ Σc > 0, implying v > 0. To compute
PðxÞ at Σc efficiently, we use the extremal dynamics
method (see, e.g., Ref. [35]). Starting from a small value
of stress, the shear stress is increased each time the
dynamics stops (i.e., when there are no more unstable
sites). We choose the stress increment δΣ to be just
sufficient to trigger a new avalanche of plasticity, i.e.,
δΣ ¼ minfxig. During avalanches, the shear stress Σ is
lowered. This is achieved, in practice, by removing the bias
in Eq. (2) so that the stress drop is of approximatively 1=N
at each plastic event. Using such dynamics, the system
spontaneously reaches the stationary state where hΣi ¼ Σc.
Fluctuations of stress vanish in the thermodynamic limit,
and the trajectory of each site is equivalent to that in the
fixed stress protocol at the critical stress Σc: Both are biased
Lévy flights towards the absorbing boundary with the same
drift v. We expect our fixed stress predictions to hold, as we
confirm numerically. Figure 3 shows PðxÞ for μ ¼ 0.8 and
μ ¼ 4=3 for two different choices of kick amplitude A. For
μ ¼ 4=3, we measure θ by fitting the part of the curves that
overlap for different system sizes, and find θ ¼ 0.61� 0.04
(A ¼ 0.15) and θ ¼ 0.63� 0.03 (A ¼ 0.35). These results
are slightly smaller but close to the predicted value
θ ¼ 0.667. For μ ¼ 0.8, we fit PðxÞ by the functional
form P0 þ C0x1−μ predicted in Eq. (15). The fit is very
good, as shown in Fig. 3(b).
For μ ¼ 1, θ continuously depends on the kick amplitude

A and the bias v. We plot the measured value of θ and the
theoretical prediction in Fig. 4, and find once again a very
good agreement.

0 1 2
0

0.5

1

FIG. 2. Theoretical prediction of the pseudogap exponent θ vs
the Lévy index of the random kicks μ. Green line: θ at the yield
stress Σc. Red-dotted line: θ after a quench, Σ ¼ 0, overlapping
with the green line for μ > 1. Blue dashed line: Marginal values
of θ, overlapping with the green line for μ > 2, and 0 < μ < 1.
Below the blue line, the system is unstable and forbidden
dynamically [16]. The data points are the measured value of θ
at Σc in the simulated mean-field model: For μ ¼ 4=3, A ¼ 0.15
(circle), A ¼ 0.35 (square); μ ¼ 1, A ¼ 0.15 (circle), A ¼ 0.35
(square), and the yellow stars are the corresponding theoretical
values indicated when μ ¼ 1.
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FIG. 3. PðxÞ for μ ¼ 4=3 (a) and μ ¼ 0.8 (b) for N ¼ L2 as
shown in the legend. (a) The dashed line is the theoretical value
θ ¼ 0.667; the measured values are θ ¼ 0.61� 0.04 (A ¼ 0.15)
and θ ¼ 0.62� 0.03 (A ¼ 0.35). (b) The dashed line is the fits of
Eq. (15), which are PðxÞ ¼ 5.273þ 6.506x0.2 (A ¼ 0.15) and
PðxÞ ¼ 1.655þ 6.618x0.2 (A ¼ 0.35).
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VII. TRANSIENT BEHAVIOR

Consider a liquid state with Σ ¼ 0. We model it as a
configuration where many blocks are unstable because of
thermal fluctuations. The total initial distribution (including
stable and unstable sites) PtðxÞ must be symmetric around
x ¼ 1 and display tails in the unstable regions x < 0 and
x > 2. Next, we suddenly quenched the system by setting
the temperature T to zero. Importantly, the symmetry Σ ¼ 0
imposes that in the dynamics that follows, the same number
of sites become unstable at σ > 1 and σ < −1, implying
that the drift v ¼ hσui ¼ 1 − hxui ¼ 0. According to
Eq. (19), we thus expect θ ¼ 1=2 in our mean-field
approximation. This prediction is consistent with the

molecular dynamics simulations of Ref. [15] which find
θ ≈ 0.6 after a quench both for d ¼ 2 and d ¼ 3. It is tested
numerically in our model in Fig. 5 where we find
θ ¼ 0.53� 0.03 for an initial condition where PtðxÞ is
uniform in ½−1; 3�. Numerically, we found consistent
results as long as enough unstable sites are initially present.
This situation dramatically changes, however, as soon as

Σ increases from 0. Avalanches are then triggered, and the
stress vs plastic strain curves (experiments generally report
the stress vs the total strain, which is a plastic strain ϵ plus
an elastic contribution Σ=E), although smooth in the
thermodynamic limit, consists of steps, as shown in inset
(a) of Fig. 5 [19]. Inside these avalanches (horizontal
segment in the inset), the stress is fixed and one can
measure a drift v, as shown in inset (b) of Fig. 5. However,
when the stress goes up in between avalanches [vertical
segment in inset (a)], all sites are shifted toward negative x,
leading to an additional contribution to the drift. Its
magnitude in the thermodynamic limit follows dΣ=dγ ¼
vdΣ=dϵ. This contribution is large (and dominant) initially
and vanishes at Σc because of the shape of the stress-strain
curves displayed in inset (a) of Fig. 5. Using Eq. (19), we
obtain the mean-field prediction for θ in a transient:

θ ¼ 1

π
arctan

�
πA

vð1þ dΣ
dϵÞ

�
: ð20Þ

This prediction is tested in Fig. 5 and works remarkably
well. Most importantly, Fig. 5 is very similar to what is
found in a finite-dimensional elastoplastic model [19]. This
correspondence indicates that our mean-field model cor-
rectly captures nontrivial effects present in finite dimen-
sions that were unexplained in the past.

VIII. ROLE OF SPATIAL DIMENSIONS

In finite dimensions, the interaction kernel G is well
described by the Eshelby kernel [6,36,37]. For d ¼ 2, for
example, it follows that Gjið~ri − ~rjÞ ∼ cosð4ϕÞ=j~ri − ~rjj2,
where ϕ is the angle between the shear direction and
~ri − ~rj. To quantify finite-dimensional effects, we consider
the mean-field model obtained by shuffling Gji randomly at
each event:

xjðlþ 1Þ ¼ xjðlÞ þ GklðjÞið~ri − ~rjÞσiðlÞ; ð21Þ

where klðjÞ is a random permutation of all indices j ≠ i.
We then measure θ at Σc, considering both the two-
dimensional and three-dimensional Eshelby kernels, and
show our results in Fig. 6(a).
We find that θSF2D ¼ 0.39� 0.02 and θSF3D ¼ 0.29� 0.02.

These values are in very good agreement with the prediction
in Eq. (19), θMF

2D ¼ 0.37� 0.05 and θMF
3D ¼ 0.29� 0.04. To

compute these predictions, we first extracted the prefactorA0

characterizing the amplitude of the power-law distribution of
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FIG. 4. (a) PðxÞ for μ ¼ 1, N ¼ 5122 with different A.
(b) Dependence of θ on A for μ ¼ 1. The blue dots are the
numerical values extracted from (a), and the black line is the
theoretical prediction Eq. (19) using the five measured values of v
(see inset) and a fifth-order polynominal interpolation to guide
the eye.

(a) (b)

FIG. 5. θ as a function of the relative stress Σ=Σc, where Σc is
the yield stress for μ ¼ 1, A ¼ 0.3, and N ¼ 10242. Right after
the quench, θ ¼ 0.53� 0.03. As Σ is increased, a sharp drop to a
lower value occurs. Inset (a): The stress vs plastic strain curves.
Zooming in on a finite-size system reveals a staircase. Inset (b):
The bias v’s dependence on Σ=Σc, from which we get the black
dashed line in the main panel as the theoretical prediction using
Eq. (20).
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the spatial kernel, as done in Fig. 6(b). Following Eq. (21),
the noise amplitudeA is related toA0 asA ¼ A0hjσuji, where
hjσuji is the mean absolute stress of unstable sites when
they relax. The ratio A=v that determines θ follows
A=v ¼ A0hjσuji=hσui. For the mean-field model with a
shuffled kernel, we numerically find that hjσuji=hσui ≈ 1

(hjσuji=hσui ¼ 1.01� 5 × 10−4 ind ¼ 2,1.0� 2 × 10−5 in
d ¼ 3), a result that must hold when most sites become
unstable in the direction of the shear, i.e., at the boundary
x < 0. So the result further simplifies to A=v ≈ A0.
These mean-field values for θ are systematically smaller

than observations in finite dimensions where θ2D ≈ 0.57
and θ3D ≈ 0.35 [17,18]. To complete this comparison,
we computed the mean-field predictions and the finite-
dimensional values of θ in d ¼ 4 in Appendix C. Those
results are summarized for different spatial dimensions
in Fig. 7. We observe that the difference between the

mean-field prediction and finite-dimensional observations
becomes smaller as the spatial dimension increases, and it
becomes indistinguishable numerically for d ¼ 4. Our
work is thus consistent with the critical dimension being
dc ¼ 4. There is currently no Ginzburg-type argument to
justify why this would be the case.

IX. CONCLUSION

We have analytically solved a mean-field model of the
plasticity in amorphous solids, focusing on the exponent θ
characterizing the density of shear transformations and the
stability toward avalanches. The most surprising result is
that θ is found to be universal after an isotropic quench, but
it is otherwise stress dependent and nonuniversal. Two
pieces of evidence support that our model is the correct
mean-field description of elastoplasticity, for which plas-
ticity is governed by local rearrangements interacting
elastically. First, we make the surprising prediction that
θ varies nonmonotonically with the stress level, a fact
previously observed [19] but unexplained even at a
qualitative level. Second, our prediction for θ becomes
accurate as the spatial dimension increases. Most impor-
tantly, our predictions are close to observations in three
dimensions. In four dimensions, predictions and observa-
tions cannot be distinguished, suggesting that the critical
dimension is dc ¼ 4.
Overall, our work is consistent with the notion that the

yielding transition at Σc is a dynamical phase transition, but
it supports the fact that it is a transition of a curious kind,
where exponents can depend continuously on parameters.
It is still unclear if exponents in finite dimensions can be
computed via a perturbation around some critical dimen-
sion, where the mean-field solution becomes exact but
nonuniversal. A first step in that direction would be to build
a Ginzburg-type criterion to predict the critical dimension.
It is interesting to reflect on how predictive the value of θ

measured in elastoplastic models should be to describe real
materials at the yield stress. From the present analysis, this
is a priori not obvious at all since exponents are not
expected to be universal (except at zero shear) and
potentially depend on the details of the model. However,
measurements in molecular dynamics simulations and
elastoplastic models appear to yield very similar values
for θ [17,18]. A possible explanation is that in elastoplastic
models, as long as most sites become unstable along the
direction of the imposed shear (and not opposite to it), we
predict θ to be only a function of the coefficient A0

characterizing the Eshelby kernel G, as discussed in
Sec. VIII. The similarity between elastoplastic models
and molecular dynamics simulations may thus reflect the
accuracy of the Eshelby kernel in capturing the interaction
between shear transformation in real amorphous solids.
Although we have focused on amorphous solids, it is

very plausible that this model applies to disordered crystals
as well, where plasticity is mediated by dislocations whose
motions interact with the same Eshelby kernel studied here.
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FIG. 6. (a) PðxÞ at Σc for the shuffled Eshelby kernel for d ¼ 2

and d ¼ 3. We find θSF2D ¼ 0.39� 0.02 and θSF3D ¼ 0.29� 0.02.
(b) Direct measurements of the distribution PðGÞ of the
Eshelby kernel corresponding to a stress drop of unity at the
origin, from which we extract A0 ¼ 0.7� 0.2 (d ¼ 2) and
A0 ¼ 0.4� 0.1 (d ¼ 3).
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smaller and undetectable for d ¼ 4.
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It will thus be very interesting to test our predictions in both
classes of materials.
Finally, the concept of marginality has been very

influential in electron glasses [21] but its validity is still
debated in that context [20,39]. Introducing dynamical
mean-field models of the type discussed here may resolve
this question.
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APPENDIX A: PROBABILISTIC
INTERPRETATION

We now present a probabilistic interpretation of these
results. The dynamics of a single block is equivalent to a
random walker with Lévy index μ in x space with a bias −v
towards the absorbing boundary at x ¼ 0. We introduce the
Hurst exponent for the mean absolute displacements with-
out bias,

hjx − x0ji ∼ γH; ðA1Þ

for Lévy flights H ¼ 1=μ if μ < 2, and H ¼ 1=2 if μ ≥ 2.
We define Pþðx; x0;−v; γÞ as the probability to find the
walker starting from x0 with a bias −v at position x after a
time γ, without having crossed the x < 0 half-line (in our
argument, the presence of another wall at x > 2 is irrelevant
for the small x behavior of interest here). A block that has
just relaxed starts from x0 ¼ 1 and reaches x after some
time γ. In the stationary state, we obtain

PðxÞ ¼
Z

∞

0

Pþðx; 1;−v; γÞdγ: ðA2Þ

For small x, this integral is dominated by γ ≃ 1. Indeed,
because v≃ 1, for γ ≪ 1 the walker is still far from the
origin and has a negligible chance to hit the origin because
of the random noise. Instead, for γ ≫ 1 the walker is very
likely to have entered the unstable region because of the
bias. Thus, we have for small x,

PðxÞ ∼ Pþðx; 1;−v; 1Þ: ðA3Þ

For a Lévy flight with no bias, it is known that the
absorbing boundary leads to Pþðx; x0; 0; γÞ ∼ xθ at small x
[40,41]. We define the persistence probability Sðx0; γÞ as
the probability for the walker starting at x0 > 0 to have
remained in the positive axis at time γ. In the limit x0 ≪ γH,

Sðx0; γÞ ∼ γ−κ, and κ is called the persistence exponent.
There is a general scaling relation in the absence of bias,
θ ¼ κ=H [42]. In addition, for Lévy flights according to the
Sparre Andersen theorem [43], κ ¼ 1

2
, so for a random

walker without bias (v ¼ 0), θ ¼ μ=2 for μ < 2 and θ ¼ 1
for μ ≥ 2.
We now extend these results to the case where there is a

bias. Time-reversal symmetry implies

Pþðx; x0;−v; γÞ ¼ Pþðx0; x; v; γÞ: ðA4Þ

Thus, we transfer the problem to the backward process,
where x is now the starting position, with a drift away from
the absorbing boundary. We expect Pþðx0; x; v; γÞ to have
the scaling form

Pþðx0; x; v; γÞ ¼
1

γH
0 F

�
x0
γH

;
x
γH

;
v

γH−1

�
: ðA5Þ

Integrating over x0, we obtain the persistence probability
Sðx; v; γÞ ¼ γH−H0

Gðx=γH; v=γH−1Þ, where G is some
function. Because Sðx; v; 0Þ ¼ 1, we must have H0 ¼ H;
therefore,

Sðx; v; γÞ ¼ G

�
x
γH

;
v

γH−1

�
: ðA6Þ

We define the normalized surviving probability density as

px;vðx0;γÞ¼
Pþðx0;x;v;γÞR

∞
0 Pþðx0;x;v;γÞdx0

¼Pþðx0;x;v;γÞ
Sðx;v;γÞ ; ðA7Þ

from which we get, together with Eq. (A5),

Fðy0; y;ωÞ ¼ Gðy;ωÞpy;ωðy0Þ; ðA8Þ

where we use the scaled variables y ¼ x=γH, ω ¼ v=γH−1,
and py;ωðy0Þ ¼ px;vðx0; γÞγH. It is clear from its definition
that py;ωðy0Þ must converge to a constant p0;ωðy0Þ as
y → 0. Thus, the asymptotic behavior of F in the small y
limit is that of the surviving probability Gðy;ωÞ. From this
and Eqs. (A3)–(A5), we get the central result that
PðxÞ ∼ Sðx; v; γ ¼ 1Þ. In other words, PðxÞ is related to
the survival of a walker starting at x with a positive bias v
after a time of order unity. According to Eq. (A6), we then
have PðxÞ ∼Gðx; vÞ, where v is a constant of order one.
Case I: 1 < μ < 2.—In this case, 1=2 < H < 1. From

Eq. (A6), we get that for y ¼ x=γH constant and γ ≪ 1,
Sðx; v; γÞ ¼ Gðy; 0Þ; i.e., the drift term v is irrelevant at
small times. In the absence of bias, it is known that
Gðy; 0Þ ∼ yμ=2 [40]. As γ increases toward 1, the effect
of the bias becomes of the order of the noise; we thus
expect it to only affect the survival probability by a
numerical prefactor, implying that the result
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θ ¼ μ

2
ðA9Þ

holds even with a finite bias, as proven above.
Case II: μ < 1.—In this case, H > 1, and the bias is

relevant at small times according to Eq. (A6). In that limit,
γ ≪ 1; we thus get Sðx; v; γÞ ¼ Gðy;∞Þ ¼ 1. Once again,
when γ increases and becomes of order one, the effect of
the noise becomes of order of the bias and will affect the
survival probability by some numerical prefactor. We
thus get Gðy; 1Þ ∼ 1 for small y, leading to θ ¼ 0 as
derived above.
Case III: μ ¼ 1.—In this case,H ¼ 1, and the velocity is

marginal in Eq. (A6), implying that Sðx;v;γÞ¼Gðx=γH;vÞ.
As first derived in Ref. [44], and reviewed in Ref. [45], it is
known that at long times, for μ ¼ 1, the persistence
exponent follows:

κ ¼ 1

2
− 1

π
arctanðCÞ; ðA10Þ

where C ¼ v=lμ, where in our notation l1 ¼ πA, leading to
C ¼ v=πA. Thus, Gðx=γH; vÞ ∼ γ−κ in that limit, which is
only possible if Gðx=γH; vÞ ∼ xκ=H ∼ xκ. This corresponds
to θ ¼ κ. After some manipulations, it leads to

θ ¼ 1

π
arctanðπA=vÞ ðA11Þ

as derived above.

APPENDIX B: ASYMPTOTIC
BEHAVIOR OF wγðξÞ

The probability distribution of ξ is

wðξÞ ¼ A
N
jξj−μ−1; ðB1Þ

with the lower cutoff at jξjc ¼ ð2A=μÞ1=μN−ð1=μÞ and the
upper cutoff at jξjm ¼ ð2A=μÞ1=μ. The corresponding
Fourier transformation is

1 − wðkÞ ¼ 2A
N

Z
ξm

ξc

1

ξμþ1
ð1 − cosðkξÞÞdξ

¼ 2A
N

jkjμ
Z

kξm

kξc

1

yμþ1
ð1 − cosðyÞÞdy ðB2Þ

in the limit N → ∞; the above integral becomes

1 − wðkÞ ¼ 2A
N

jkjμ
Z

kξm

0

1

yμþ1
ð1 − cosðyÞÞdy

¼ 2AIμ
N

jkjμHðkξmÞ; ðB3Þ

where Iμ ¼ − cosðμπ=2ÞΓð−μÞ, and

HðyÞ ¼ 1

Iμ

Z
y

0

1 − cosðtÞ
tμþ1

dt; ðB4Þ

which behave as

HðyÞ ¼ 1; y ≫ 1;

HðyÞ ¼ B0y2−μ; y ≪ 1; ðB5Þ
whereB0 ¼ 1=½2ð2 − μÞIμ�. In the largeN limit, the coarse-
grained distribution wγðkÞ becomes

wγðkÞ ¼
�
1 − 2AIμ

N
jkjμHðkξmÞ

�
γN

→ expf−γðlμjkjÞμHðkξmÞg; ðB6Þ

where lμ ¼ ð2AIμÞ1=μ. We are interested in wγðξÞ in the
limit γ → 0, so it is convenient to define

~ξ ¼ ξ

lμγ1=μ
;

~ξm ¼ ξm
lμγ1=μ

: ðB7Þ

Making use of Eq. (B5), we can decompose wγðξÞ as

wγðξÞ ≈
1

πlμγ1=μ

Z
∞

0

expð−yμÞ cosðy~ξÞdy

þ 1

πlμγ1=μ

Z ~ξ−1m

0

fe−yμHðy~ξmÞ − e−yμg cosðy~ξÞdy

¼ w1 þ w2: ðB8Þ

Here, w1 ¼ ½1=ðlμγ1=μÞ�Lμð~ξÞ, and in the limit we are
interested in, γ → 0, it reduces to
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FIG. 8. Numerical calculation of wγðξÞ at γ ¼ 0.1, 0.01, 0.001,
μ ¼ 1. The colorful dashed lines are the theoretical prediction, for
γ1=μ ≪ ξ ≪ ξm. The black dashed line is at ξm, where the upper
cutoff begins to play a role.
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w1 ¼
γA
ξμþ1

: ðB9Þ

We discuss the w2 contribution in the two regimes:
Case I: 1 ≪ ~ξ ≪ ~ξm.—In this regime, we can expand the

exponential terms to the first order and obtain

w2 ≈
1

πlμγ1=μ

Z ~ξ−1m

0

ðyμ − B0
~ξ2−μm y2Þdy

¼ 1

πlμγ1=μ
2 − μ

3ðμþ 1Þ
~ξ−μ−1m

∼
γ

ξμþ1
m

; ðB10Þ

which turns out to be much smaller than Eq. (B9) and
therefore negligible in this regime.
Case II: 1 ≪ ~ξm ≪ ~ξ.—In this case, we can extend the

integral to infinity because of the oscillating factor,

w2 ≈
1

πlμγ1=μ

Z
∞

−∞
fexpð−B0

~ξ2−μm y2 þ iy~ξÞ

− expð−jyjμ þ iy~ξÞgdy; ðB11Þ

where the second term cancels w1, and the resulting
distribution wγðξÞ in this limit is

wγðξÞ ≈
1

lμγ1=μ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

πB0
~ξ2−μm

q exp

�
− ~ξ2

4B0
~ξ2−μm

�

∼ γ−1=2 exp
�
− ξ2

4γB0l
μ
μξ

2−μ
m

�
; ðB12Þ

which is much smaller than Eq. (B9) at ξ ≈ ξm and behaves
as an upper cutoff in wγðξÞ. Our numerical calculation of
wγðξÞ is consistent with the above theoretical analysis,
shown in Fig. 8.

APPENDIX C: PðxÞ IN d ¼ 4

To confirm the validity of the mean field as the
dimension increases, we simulate the elastoplastic model
in d ¼ 4. Direct measurement of the coefficient A0 char-
acterizing the distribution PðGÞ yields A0 ¼ 0.29� 0.05,
and numerically, we find hjσuji=hσui ¼ 1 without any
unstable sites hitting the other absorbing boundary, from
which one predicts θMF

4D ¼ 0.24� 0.02, shown Fig. 9(a).
For the shuffled kernel, we measure θSF4D ¼ 0.24� 0.01
[Fig. 9(b)], consistent with the theoretical prediction. The
finite-dimensional measurement yields θ4D ¼ 0.25� 0.01,
as shown in Fig. 9(c).
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