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External driving is emerging as a promising tool for exploring new phases in quantum systems. The
intrinsically nonequilibrium states that result, however, are challenging to describe and control. We study
the steady states of a periodically driven one-dimensional electronic system, including the effects of
radiative recombination, electron-phonon interactions, and the coupling to an external fermionic reservoir.
Using a kinetic equation for the populations of the Floquet eigenstates, we show that the steady-state
distribution can be controlled using the momentum and energy relaxation pathways provided by the
coupling to phonon and Fermi reservoirs. In order to utilize the latter, we propose to couple the system and
reservoir via an energy filter which suppresses photon-assisted tunneling. Importantly, coupling to these
reservoirs yields a steady state resembling a band insulator in the Floquet basis. The system exhibits
incompressible behavior, while hosting a small density of excitations. We discuss transport signatures and
describe the regimes where insulating behavior is obtained. Our results give promise for realizing Floquet
topological insulators.
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I. INTRODUCTION

The availability of coherent driving fields such as lasers
opens many exciting possibilities for controlling quantum
systems. In particular, the recent realization that the
topological characteristics of Bloch bands can be modified
through periodic driving [1–4] sparked a wave of proposals
[5–18] and experiments [19–23] to realize various types of
“Floquet topological insulators” in solid-state, atomic, and
photonic systems. Here, topology emerges in the basis of
Floquet states, time-periodic eigenstates of the driven
system’s single-particle evolution operator [24–26].
Floquet states provide a convenient basis for describing

the evolution of driven systems, in many ways analogous
to the Hamiltonian eigenstates of nondriven systems.
However, the powerful thermodynamic rules that govern
the level occupations of static systems in thermal equilib-
rium in general cannot be directly translated into the
inherently nonequilibrium context where Floquet states
are defined [27–30]. Photon-assisted scattering processes in
which energy is exchanged with the driving field produce
heating and violate the reversibility conditions that give rise
to the Boltzmann distribution in equilibrium [31]. This
crucial difference brings up many intriguing and important

questions about the steady-state physical properties of
open Floquet-Bloch systems. Knowing the steady state
is crucial in order to obtain the transport and response
properties of the system on time scales longer than those on
which the system-bath coupling acts. This work is moti-
vated by the possibility to realize topological phenomena in
nonequilibrium systems. One of the most outstanding
questions in the field is to identify which types of systems,
baths, and system-bath couplings can lead to nonequili-
brium steady states enabling Floquet topological insulators
to exhibit behaviors similar to those of their equilibrium
counterparts [32,33].
Floquet-Bloch steady-state distributions are currently

known for certain special cases. A closed driven system
tends to heat up to a maximal entropy (infinite-temperature
from the viewpoint of local observables) steady state
[34,35], in the absence of integrability or many-body
localization [36,37]. In contrast, an open driven system
connected to a thermal bath need not reach such an end.
Indeed, when the system and system-bath coupling
Hamiltonians can be made time independent through a
simple rotating-frame transformation, Gibbs-type steady
states are expected [38–41]. More generically, however,
even spontaneous emission into a zero-temperature bath
may cause heating due to the possibility of absorbing
energy from the driving field. How to control the steady
states of driven systems, and, in particular, under what
conditions they may be used to explore novel topological
phenomena, pose challenging questions.
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Our aim in this work is to uncover new means to control
the steady-state occupations of Floquet-Bloch states in
driven systems. Here, we focus on the dissipative open-
system dynamics governed by the system’s coupling to
external baths; the complicated problem of electron-electron
interactions will be addressed in future work. In particular,
we target the case of a half filled fermionic system, where we
seek to obtain an insulatorlike steady state in which the lower
Floquet band is filled and the upper Floquet band is empty.
We refer to this state as a Floquet insulator. We investigate
how this state can be approached through the relaxation
of momentum and energy, enabled by connection to low-
temperature bosonic and fermionic baths; see Fig. 1. For a
semiconductor-based realization, these baths naturally cor-
respond to phonons and the electromagnetic environment
(bosonic baths) and to a lead connected to the system
(fermionic bath); analogous couplings can be arranged, e.g.,
in cold-atomic systems [42,43].
Several dynamical processes and their interplay govern

the density of particle-hole “excitations” above the ideal
Floquet-insulator state [44]. Radiative recombination con-
stitutes an important mechanism for generating excitations.
In a nondriven system, recombination allows electrons in
the conduction band to annihilate with holes in the valence
band via the spontaneous emission of a photon. For resonant
driving, as illustrated for the case of a one-dimensional
system in Fig. 1(b), the Floquet bands feature a band
inversion: States with crystal momenta between the two
resonance values�kR in the lower Floquet band are primarily
formed from conduction-band states of the nondriven system.
In the same interval, the upper Floquet band is comprised of
valence-band states. Therefore, radiative recombination
results in transitions from the lower to the upper Floquet
band, thus increasing the density of excitations; see Fig. 1(c).
Phonon scattering, on the other hand, enables relaxation of
momentum and quasienergy within and between Floquet
bands and may balance the recombination-induced heating.
A fermionic reservoir provides additional channels for
removing excitations from the system and also gives means
to tune its total carrier density. Importantly, photon-assisted
electron-phonon scattering, as well as photon-assisted tun-
neling to and from the Fermi reservoir, generally also
contribute to heating [30,45]; see Fig. 2.
Our main message is that the driven electronic system

can approach the Floquet-insulator steady state when
appropriately coupled to phonon and Fermi reservoirs. In
order for this to work, the coupling to the fermionic
reservoir must be “engineered” to avoid the deleterious
effects of photon-assisted tunneling. This can be accom-
plished by connecting the system to the reservoir via a
narrow-band energy filter (see Fig. 2 and Sec. IV C). We
also discuss regimes in which photon-assisted electron-
phonon scattering can be suppressed. Most remarkably, at
low temperatures and with energy-filtered coupling to a
fermionic reservoir, we find that the driven system exhibits

incompressible and insulating behavior. This implies that a
steady-state Floquet topological insulator phase may be
within reach.

A. Structure of the paper and main results

Before beginning the analysis, we briefly summarize the
structure of the text to follow. Keeping in mind our
motivation of realizing Floquet topological insulators,
our main focus in this work is on achieving Floquet-
insulator steady states.
First, in Sec. II we introduce the Floquet states of the

periodically driven lattice system, with band structure
depicted schematically in Fig. 1(b). After defining the
Floquet states, we introduce the Floquet kinetic equation
[Eq. (4)], which forms the basis for the description of
many-body population dynamics throughout this work.
The kinetic equation can be obtained systematically from
the exact (infinite) hierarchy of equations of motion for
multiparticle correlators (see Appendix A), and at our level
of approximation takes on a simple intuitive form in terms
of incoming and outgoing rates for each state.
Next, in Sec. III we study the steady states when the

system is coupled only to the bosonic baths. Here, our
aim is to elucidate the competition between heating due to

(a)

(c)

(b)

FIG. 1. Carrier kinetics in a Floquet-Bloch system coupled to
Bose and Fermi reservoirs. (a) One-dimensional semiconductor
wire coupled to an energy-filtered fermionic reservoir. Energy
filtering is achieved by coupling the system and reservoir via a
deep impurity band in a semiconductor with a large band gap.
(b) Band structure of the nondriven system. The driving-field
photon energy ℏΩ exceeds the band gap Egap, causing resonant
coupling at crystal momentum values �kR. (c) Floquet band
structure, indicating the character of the Floquet band in terms of
the original conduction (blue) and valence (red) bands. Coupling to
acoustic phonons mediates electronic momentum and energy
relaxation (orange arrows), while radiative recombination scatters
electrons vertically between conduction- and valence-band-like
states (purple arrow). At half filling, the steady state resembles that
of an insulator with a small density of excited electrons and holes.
Coupling to an energy-filtered Fermi reservoir (depicted on the
left) can further suppress the density of excitations.
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radiative recombination and momentum and energy relax-
ation by phonons in a particle-number-conserving system.
When the electron-phonon-scattering rates (ignoring Pauli
blocking) are large compared to the recombination rate, we
find that the driven system approaches a Floquet-insulator
state, with separate particle and hole densities in the upper
and lower Floquet bands, respectively; see Fig. 3. The
steady-state excitation density depends on the ratio of
phonon-assisted inter-Floquet-band relaxation and recombi-
nation rates, becoming small for fast interband relaxation.
Using rather general arguments, we show that the steady-
state excitation density scales with the square root of the
recombination rate in the limit of fast interband relaxation.
As a result, even strong electron-phonon coupling may be
insufficient to fully deplete excited carriers from the system.
In Sec. IV, we introduce coupling to a fermionic reservoir.

In Fig. 4, we display the steady states for both wide-band and
energy-filtered reservoirs. We show that coupling to a wide-
band reservoir increases the density of excitations, due to
photon-assisted tunneling. The energy-filtered system-
reservoir coupling suppresses all photon-assisted tunneling,
and our results demonstrate that it can further reduce the
density of excitations. We discuss two coupling geometries
where the Fermi reservoir is either coupled to the system at a
single point (as a lead) or uniformly throughout the system.
For homogeneous coupling, when the chemical potential of
the filtered reservoir is set inside the Floquet gap, the
excitation density may be highly suppressed, thus bringing
the system close to the ideal Floquet-insulator state.
Interestingly, even when the steady state hosts a finite
density of excitations, the system is incompressible in the
sense that the excitation density is unaffected by small shifts
of the chemical potential of the reservoir; see Fig. 5. For a
lead coupled at a single point, the steady-state distribution is
necessarily inhomogeneous. We provide an estimate for the
“healing length” over which the distribution can be affected
by such coupling. Beyond this length, the steady state is set
by the competition between recombination and electron-
phonon coupling, as described in Sec. III.
Finally, in Sec. V we summarize the main results and

discuss implications for transport experiments. We discuss
the corresponding observables and the conditions under
which insulating behavior could be observed.

II. FLOQUET-BLOCH KINETIC EQUATION
FOR THE DRIVEN TWO-BAND SYSTEM

In this section, we describe the single-particle properties
of an isolated periodically driven system. We first give the
Hamiltonian of the system without driving and then discuss
the form of driving and the resulting Floquet states. We then
introduce the kinetic equation for Floquet-state occupation
numbers, which is the foundation for the description of
many-body dynamics used throughout this work. The
section concludes with a brief overview of the dynamical
processes described by the kinetic equation.

A. System Hamiltonian and Floquet-Bloch states

We now introduce the single-particle Hamiltonian and
Floquet-Bloch states for the periodically driven system that
we consider. Many of the features that we describe,
including the form of the kinetic equation, hold quite
generally, independent of dimensionality. For concreteness,
and to allow comparison with detailed numerical simu-
lations, we focus on the case of a one-dimensional system
with two bands.
The single-particle Hamiltonian of the driven system is

defined as follows. We assume that the driving field is
spatially uniform, thus maintaining the translational sym-
metry of the lattice. In this case, the crystal momentum k is
conserved. For each k, the evolution within the correspond-
ing 2 × 2 Bloch space is given by the Hamiltonian
HðkÞ ¼ H0ðkÞ þ VðtÞ, with
H0ðkÞ ¼

1

2
Ekðdk · σÞ; VðtÞ ¼ 1

2
V0ðg · σÞ cosΩt; ð1Þ

where� 1
2
Ek are the energies of the conduction and valence

bands, dk and g are unit vectors, V0 andΩ are the amplitude
and angular frequency of the drive, and σ is a vector of
Pauli matrices acting in the two-component orbital space.
(In this work, we ignore spin.) For now, we leave the values
of dk and g unspecified, giving explicit forms when
discussing numerical results below.
To understand the nature of the coupling induced by

driving, we rotate to the basis of conduction- and valence-
band states, i.e., to the basis which diagonalizes H0ðkÞ.
Specifically, the Bloch eigenstates in the conduction
and valence bands of the nondriven system satisfy
H0ðkÞjukci ¼ 1

2
Ekjukci and H0ðkÞjukvi ¼ − 1

2
Ekjukvi.

The driving term VðtÞ in Eq. (1) is expressed in the basis
of lattice orbitals and naturally does not depend on k.
However, after rotating to the basis of conduction- and
valence-band states for each k, the driving picks up a
nontrivial k-dependent matrix structure

~H0ðkÞ ¼
1

2
Ekσz; ~Vðk; tÞ ¼ 1

2
V0ð~gk · σÞ cosΩt; ð2Þ

where tildes indicate operators in the basis of conduction
and valence bands, and ~gk ¼ ~gk;∥ẑþ ~gk;⊥ is a unit vector
determined by the relative orientations of dk and g in
Eq. (1), broken down to z and x − y components.
When the system is isolated, the Floquet-Bloch states

fjψk�ðtÞig provide a convenient basis for describing its
evolution. Each state jψk�ðtÞi can be expressed as a sum
over harmonics:

jψk�ðtÞi ¼
X∞
n¼−∞

e−iðEk�þnℏΩÞt=ℏjϕn
k�i; ð3Þ

where Ek� is the quasienergy of jψk�ðtÞi and fjϕn
k�ig is a

non-normalized (and overcomplete) set of states found by
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Fourier transforming the time-dependent 2 × 2 Schrödinger
equation [24,25] in the Bloch space for crystal momentum
k. The quasienergies fEk�g and harmonics fjϕn

k�ig in
Eq. (3) are only uniquely defined up to the gauge freedom
E0
k� ¼ Ek� þmℏΩ, jϕ0n

k�i ¼ jϕnþm
k� i. Here, we fix the

gauge by choosing Ek� within a single Floquet-Brillouin
zone centered around a specific energy E0∶ E0 − ℏΩ=
2 ≤ Ek� < E0 þ ℏΩ=2. Throughout the paper, we use a
labeling convention for the þ and − bands whereby
Ekþ > Ek−. We use the terminology “upper” and “lower”
for the þ and − Floquet bands, respectively. Note that by
shifting the Floquet zone center E0 one can interchange the
states corresponding to Ekþ and Ek−. The physics is of
course insensitive to the arbitrary choice of E0 and the
choice of labeling.
Before discussing many-body dynamics, a few com-

ments on the nature of the Floquet bands are in order. We
are interested in the case where the driving-field photon
energy ℏΩ exceeds the band gap Egap of the nondriven
system; see Fig. 1(b). In the Floquet picture, the leading-
order influence of the driving can be understood by first
shifting the valence band up by the photon energy ℏΩ.
After shifting, the bands become degenerate at the reso-
nance points �kR in the Brillouin zone [46], where EkR ¼
ℏΩ. Here, the driving opens avoided crossings, resulting in
a gap ΔkR ≈ V0j~gkR;⊥j between the two Floquet bands. The
resulting band structure is depicted in Fig. 1(c). We center the
Floquet zone on these resonances in the conduction band,
setting E0 ¼ 1

2
ℏΩ. Throughout, we assume that the band-

width is narrow enough such that the two-photon resonance
condition is never satisfied; i.e., Ek < 2ℏΩ for all k.
As discussed in the Introduction, the resonant driving

introduces a band inversion in the Floquet bands.
Furthermore, near the resonant momenta kR, the Floquet
bands are strongly hybridized superpositions of conduc-
tion- and valence-band states. Away from the resonant
momenta, the Floquet states are only slightly perturbed
with respect to the Bloch eigenstates of the nondriven
system. We will refer to Floquet states which predomi-
nantly overlap with valence-band states as having valence-
band character, and vice versa. These features of the
Floquet bands have important consequences both for
controlling band topology [47,48] and for the nature of
many-body dynamics in the system, as we describe below.

B. The Floquet kinetic equation

Below, we use the Floquet basis of single-particle states
to describe the many-body dynamics of the driven system
when it is coupled to bosonic and fermionic baths. In
particular, we aim to characterize the steady states of the
system in terms of the Floquet-state occupation numbers
Fkα ¼ hf†kαðtÞfkαðtÞi, where f†kαðtÞ creates an electron in
the state jψkαðtÞi at time t, with α ¼ �. Focusing on many-
body dynamics on coarse-grained time scales much longer
than the driving period, we develop a kinetic equation in the

Floquet basis to describe the net rate of change of the
population in the Floquet state jψkαi due to electron-
phonon scattering, radiative recombination, and tunneling
to and from the fermionic reservoir:

_Fkα ¼ IphkαðfFgÞ þ Ireckα ðfFgÞ þ Itunkα ðFkαÞ: ð4Þ

Here, the “collision integrals” Iph, Irec, and Itun describe
electron-phonon scattering, recombination, and tunnel
coupling to the reservoir, respectively, and fFg indicates
the set of occupation factors for all momentum and band
index values. The key processes associated with each of
these terms are represented schematically in Fig. 1(c).
The derivation of Eq. (4) is rather technical, so here

we briefly summarize the approach. (For details, see
Appendix A and, e.g., Ref. [49].) We begin by considering
the equations of motion for the single-particle correlators
hf†kαðtÞfkαðtÞi. Coupling to the bath degrees of freedom
generates an infinite hierarchy of equations of motion
involving correlators of higher and higher order. We focus
on a homogeneous system, in the regime where coherences
between different Floquet states can be neglected (see
below). Using a standard cluster-expansion approach, we
systematically truncate the equation-of-motion hierarchy
and obtain transition rates which coincide with those given
by the “Floquet Fermi’s golden rule.” Below, we frame the
discussion in terms of these golden-rule transition rates,
which provide a clear intuitive picture for all terms
contributing to Eq. (4). We will use the rates to build up
the specific forms of the collision integrals Iph, Irec,
and Itun.
In describing the dynamics of the system, it is important

to note that the occupation factors Fkα do not generally give
a complete description of the steady state. However, off-
diagonal correlations such as hf†kαðtÞfkα0 ðtÞi are suppressed
in the steady state for ðΔkRτscatÞ−1 ≪ 1; see Appendix D.
Here, τscat is the scattering time in the steady state of the
system. As above, ΔkR is the Floquet gap, which is
approximately proportional to the driving amplitude.
Crucially, even if the scattering rates are large when the
system is far from the steady state, Pauli blocking in the
steady state can strongly suppress the phase space for
scattering. Indeed, such suppression occurs in the steady
states that we find in this work. For these states, we estimate
τscat to be similar to the scattering rate in the nondriven
system in equilibrium at an elevated temperature. (See
Appendix D for more details.)
It follows from the above discussion that in the regime

ðΔkRτscatÞ−1 ≪ 1, Eq. (4) can provide a good description of
the steady state, even in parameter regimes where it does
not give a faithful description of the transient dynamics.
The requirement that the steady-state scattering rates
remain small compared with the Floquet gap ΔkR provides
an important consistency check, which we apply to all
numerical simulations discussed below.
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Finally, we note that the nonunitary dynamics of the
kinetic equation derived using the cluster expansion can be
equivalently obtained using a master-equation approach
(see Appendix D). The cluster expansion provides a
powerful framework that can be used to incorporate the
roles of interactions, coherences, and non-Markovian
dynamics, going beyond the regime studied here [50].

III. ELECTRON-PHONON COUPLING
AND RECOMBINATION

In this section, we discuss the steady states of the
electronic system which result from the competition
between radiative recombination and coupling to the
phonon bath. Both processes arise from the coupling of
electrons to a bosonic bath, comprised of photons in the
former case and phonons in the latter. Formally, the
collision integrals Irec and Iph describing these processes
are very similar. However, it is important to understand that
they act in competition. During recombination, an electron
transitions from the nondriven conduction band to the
valence band, while emitting a photon. In terms of the
Floquet bands, this process promotes an electron from
the lower to the upper Floquet band (see Fig. 1), thereby
heating the electronic system and increasing the total
number of excitations. On the other hand, electron-phonon
scattering primarily relaxes excited electrons to the bottom
of the upper Floquet band (and similarly relaxes holes to the
top of the lower Floquet band) and allows excited electrons
to relax back to the lower Floquet band, thereby reducing
the number of excitations.
Note that the electron-phonon interaction may also play

an adverse role in the system: Photon-assisted scattering
processes may increase the number of excitations. We show
that these processes can be effectively eliminated under
suitable conditions on the phononic spectrum and the form
of the drive. Even when these processes are eliminated,
radiative recombination remains as a source of heating in
our model.
The competition between electron-phonon scattering and

recombination determines the steady state of the system. We
show that these steady states feature Fermi seas of excited
electrons and holes, with separate chemical potentials and a
temperature equal to that of the phonon bath. Below, we first
analyze the kinetic equation in the presence of a generic
bosonic bath. We then input the specific details needed to
describe recombination and scattering by acoustic phonons
and analyze the resulting steady states. Finally, through an
analytical estimate, we show that for fixed electron-phonon
coupling the steady-state excitation density grows with the
square root of the radiative recombination rate.

A. Collision integral for a generic bosonic bath

The bosonic bath is described by the Hamiltonian
Hb ¼

P
qℏωqb

†
qbq, where b†q and bq are the creation and

annihilation operators for a bosonic excitation carrying
(crystal) momentum q and ωq is the corresponding fre-
quency. Using the creation and annihilation operators
fc†kν; ckνg for electrons in the bands of the nondriven
system, defined below Eq. (1), we describe the “electron-
boson” interaction via Hint ¼

P
qHintðqÞ, with

HintðqÞ ¼
X
kk0

X
ν;ν0

Gk0ν0
kν ðqÞc†k0;ν0ckνðb†q þ b−qÞ: ð5Þ

Here, Gk0ν0
kν ðqÞ is the matrix element for scattering an

electron with crystal momentum k in band ν to crystal
momentum k0 in band ν0, with the emission (absorption) of
a boson of momentum q (−q). We take the bath to be three
dimensional and the electronic system to lie along the x
axis. Note that for an infinite, translation-invariant system,
momentum conservation enforces k0 ¼ k − qx. To allow the
possibility of describing a system of finite size, where the
bath momenta may not be commensurate with the allowed
values of the discrete crystal momentum of the system, we
keep the general form for Gk0ν0

kν ðqÞ in Eq. (5).
As a fundamental building block for constructing the

many-body collision rates, we calculate the rate Wk0α0
kα for a

single electron in an otherwise empty system to scatter from
crystal momentum k in Floquet band α to crystal momen-
tum k0 in Floquet band α0. For transparency, we focus on
zero temperature; the analogous expressions at finite
temperature are given in Appendix A. For simplicity, we
take the matrix elements in Eq. (5) to depend only on qx,
i.e., Gk0ν0

kν ðqÞ ¼ Gk0ν0
kν ðqxÞ; the discussion that follows can be

easily generalized beyond this assumption, but the quali-
tative results will not be affected.
Because of the harmonic structure of the time-dependent

Floquet-state wave functions [Eq. (3)], the transition rate
is given by a sum over many contributions Wk0α0

kα ¼P
nW

k0α0
kα ðnÞ. In terms of the electronic operator ĜðqxÞ≡P

k;k0
P

ν;ν0 G
k0ν0
kν ðqxÞc†k0;νckν0 , these contributions are

Wk0α0
kα ðnÞ¼2π

ℏ

X
qx

���X
m

hϕmþn
k0α0 jĜðqxÞjϕm

kαi
���2ρqxð−ΔEnÞ; ð6Þ

where ΔEn ¼ ΔE þ nℏΩ, and ΔE ¼ Ek0α0 − Ekα is the
quasienergy difference between final and initial electronic
states. Here, ρqxðωÞ is the boson density of states at
frequency ω for a fixed value of the boson’s longitudinal
momentum component qx. Note that for a monotonic boson
dispersion, ρqxðωÞ is only nonzero if ω > ωq0 , where
q0 ¼ ðqx; 0; 0Þ. The scaling of the individual rates Wk0α0

kα
with system size is discussed in Appendix B.
The structure of the transition rates in Eq. (6) can be

understood heuristically as follows. Superficially, jψk�ðtÞi
in Eq. (3) takes the form of a superposition over a ladder
of states jϕn

k�i with “energies” Ek� þ nℏΩ; see the
illustration in Fig. 2(a). Viewing these harmonics jϕn

k�i
as independent states, the net transition rate
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Wk0α0
kα ¼ P

nW
k0α0
kα ðnÞ is found by summing the contribu-

tions from all pairs of initial and final states, while taking
into account “energy” conservation. The appearance of
nℏΩ inside the density of states in Eq. (6) expresses the
fact that quasienergy is a periodic variable, and therefore
Floquet-scattering processes need only conserve quasie-
nergy up to multiples of the driving-field photon energy
ℏΩ. If a boson is emitted and an electron decreases its
quasienergy ΔE < 0, then the scattering rate can be
nonzero for n ¼ 0. Interestingly, the scattering rate can
also be nonzero if a boson is emitted and an electron
increases its quasienergy ΔE > 0, if n < 0.
The collision integrals in Eq. (4) are given by the

differences between the total rates for scattering into and
out of the state jψkαðtÞi, due to recombination or coupling
to acoustic phonons. In turn, these rates are obtained by
multiplying the bare rates in Eq. (6) by products of
occupation factors Fkα, F̄k0α0 ≡ ð1 − Fk0α0 Þ, etc., to account
for the filling of the initial and final states:

Ikα ¼
X
k0α0

½Wkα
k0α0F̄kαFk0α0 −Wk0α0

kα F̄k0α0Fkα�: ð7Þ

The corresponding expressions for nonzero bath temper-
ature are shown in Appendix A.
Equations (6) and (7) support what we refer to as

“Floquet-Umklapp” processes, in which quasienergy

conservation is satisfied with n ≠ 0. Such processes generi-
cally heat the system when they are allowed within the
kinematic constraints imposed by the bath and Floquet-
system spectra (i.e., by quasienergy and crystal-momentum
conservation). For example, even at zero bath temperature,
an electron may spontaneously transition from the lower
Floquet band to the upper one while emitting a bosonic
excitation [see Fig. 1(c)]. As we show below, such processes
cause deviations from the ideal Floquet-insulator state.
Fortunately, Floquet-Umklapp processes are suppressed

under appropriate conditions on the dispersion of the bath
bosons. In fact, Floquet-Umklapp processes are completely
suppressed if the bath bandwidth is limited such that
Wk0α0

kα ðnÞ strictly vanishes for all n ≠ 0. Practically speak-
ing, this means that the maximal boson energy ℏωD must
be smaller than the quasienergy gap at the Floquet zone
edge [i.e., the gap around ℏΩ=2 in Fig. 1(c)], such that the
energy conservation condition −ΔE − ℏωq − nℏΩ ¼ 0
cannot be satisfied with n ≠ 0. Below, we will show
how Floquet-Umklapp processes are manifested in radia-
tive recombination and phonon-scattering processes and
discuss methods to suppress them.

B. Radiative recombination

Having established the general framework for coupling
the driven system to a bosonic bath, we now use it to study
specific dissipation mechanisms which are relevant for
driven semiconductor systems. We start by considering
radiative recombination.
In nondriven systems, radiative recombination occurs

when an excited particle in the conduction band relaxes to
fill a hole in the valence band. This results from the
interaction of electrons with the electromagnetic environ-
ment, which is represented by a bosonic bath in our model.
In typical semiconductors, the electromagnetic interaction
leads to transitions between states of different bands. This
restriction on the transitions arises due to two important
factors: (1) The large speed of light implies that energy- and
momentum-conserving transitions are practically “vertical”
(i.e., the electronic momentum is conserved) and (2) the
electromagnetic dipole matrix elements couple states from
different atomic orbitals. To impose this restriction in
our model, we describe the interaction with the electro-
magnetic environment using matrix elements of the form
Grec ∝ ð1 − δνν0 Þ. For simplicity, in the simulations
below we model vertical recombination [51] via Grec ¼
grecð1 − δνν0 Þδqx;0δk;k0 and take a constant density of states
ρ0 for photons with energies ℏω≳ Egap.
We now describe the processes resulting from the

coupling to the electromagnetic environment in the driven
system that we consider. The most dominant of these
involve transitions from Floquet states of predominantly
conduction-band character to final states of predominantly
valence-band character and follow directly from processes
present in the nondriven case. Because of the band

(a) (b) (c)

FIG. 2. Harmonic structure of Floquet states and energy-filtered
reservoir coupling. (a) Floquet harmonics of a two-level system
with states jvi and jci coupled by an on-resonance driving
field VðtÞ. The Floquet zone (shaded) is centered at the energy E0,
set equal to the energy of the resonant state jci. In the special
case of a rotating field VðtÞ ¼ 1

2
V0e−iΩtjcihvj þ H:c:, we have

jϕ0
�i ¼ jci, jϕ−1

� i ¼ �jvi, and E� ¼ E0 � 1
2
V0; see Eq. (3).

Away from resonance, the relative normalizations of jϕnþi and
jϕn

−i will change. For a more general form of weak driving, the
dominant harmonics are shown in bold. (b) The Floquet states
jψ�ðtÞi are both coupled to filled and empty states of a wide-band
reservoir via the harmonics fjϕn

�ig; see Eq. (10). Here, the
reservoir chemical potential is set in the gap of the nondriven
system. (c) When coupling is mediated by a narrow-band energy
filter, the tunneling density of states (TDOS) and photon-assisted
tunneling are suppressed outside the filter window. By setting the
reservoir chemical potential inside the Floquet gap, centered
around the energy E0 in the original conduction band [see Fig. 1
(b)], the lower and upper Floquet bands are selectively filled and
emptied, respectively.
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inversion described in detail in Sec. II, the − Floquet band
has conduction-band character for momenta jkj < kR.
Therefore, spontaneous transitions from the − to the þ
Floquet band are active for states in this momentum range.
Note that these Floquet-Umklapp processes increase the
total electronic quasienergy and play an important role in
determining the density of excitations in the steady state of
the system (see Sec. III D). The rates of these processes
may be controlled to some extent by placing the system in a
cavity or photonic crystal, which modifies the photon
density of states. In addition, spontaneous transitions from
the þ to the − Floquet band are allowed in the momentum
region jkj > kR, where the þ Floquet band has predomi-
nantly conduction-band character. These processes help
reduce the total electronic quasienergy, but play a minor
role near the steady state where the þ Floquet band is
mostly empty.
The processes described above follow directly from

those that are active in a nondriven system. However, in
a driven system an electron may also transition from a state
of valence-band character to one of conduction-band
character, by emitting a photon to the environment while
absorbing energy from the drive. Such processes are
possible for initial states in the − Floquet band with jkj >
kR and for initial states in theþ Floquet band with jkj < kR.
Both cases involve a spontaneous emission and the
absorption of two photons from the driving field.
Because of the latter, the matrix elements for such proc-
esses are suppressed by ½V0=ðℏΩÞ�2 for weak driving [52],
and hence their rates are suppressed as ½V0=ðℏΩÞ�4.

C. Scattering due to acoustic phonons

The interaction between the electronic system and a bath
of acoustic phonons plays a key role in setting the steady
state of the driven system. Phonon-mediated scattering
quickly relaxes excited electrons (holes) to the bottom
(top) of the respective Floquet band. In addition, phonon-
mediated scattering allows these excitations to relax across
the Floquet gap. The competition between the latter inter-
band-scattering processes and radiative recombination sets
the steady-state density of excitations as we discuss below.
In our model, we assume that the electron-phonon

coupling conserves the band index ν of the nondriven
system Gph ∝ δνν0 , as is typical for wide gap semiconduc-
tors [49,53,54]. The coherent drive hybridizes the bands
near the resonances �kR, thus enabling both intraband and
interband scattering in the Floquet bands [see Fig. 1(c)].
Note that the scattering crucially involves the exchange of
both crystal momentum and quasienergy between the
phonons and the electrons, thus allowing relaxation of
these quantities. We take the matrix elements to conserve
lattice momentum Gk0ν0

kν ðqxÞ ¼ gðqxÞδνν0δqx;k−k0 . In princi-
ple, the qx dependence of gðqxÞ depends on the specific
type of electron-phonon coupling. For simplicity, we take
the matrix elements to be independent of qx but have

numerically verified that other choices do not change the
qualitative results.
Besides helping relax excitations, photon-assisted elec-

tron-phonon scattering can increase the excitation density.
Such Floquet-Umklapp scattering transfers electrons from
the lower to the upper Floquet band and can occur even for
a zero-temperature phonon bath.
Phonon-related Floquet-Umklapp processes can be sup-

pressed in several ways. First, as discussed in Sec. III A,
limiting the bandwidth for the phonons to be smaller than
the quasienergy gap at the Floquet zone edge Δedge
efficiently suppresses Floquet-Umklapp phonon scattering.
Note, however, that the phonon bandwidth should remain
bigger than the Floquet gap emerging at the resonance
momenta ΔkR , as otherwise phonons would be unable to
facilitate relaxation between the upper and lower Floquet
bands. An optimal phonon bandwidth ωD would therefore
satisfy ΔkR < ℏωD < Δedge. The bandwidth for the phonon
bath depends on material parameters, however, and may not
be easily tunable.
Interestingly, additional routes are available for sup-

pressing Floquet-Umklapp processes involving phonons. If
the boson bandwidth allows the energy conservation
condition −ΔE − ℏωq − nℏΩ ¼ 0 to be satisfied for jnj ≤
1 (but not for jnj > 1), the rates Wk0α0

kα ðnÞ with n ¼ �1 can
be controlled by the choice of driving. In particular, for
harmonic driving they vanish as ~g∥ → 0 (see Appendix A).
For many experimentally relevant materials driven by
optical fields, ~g∥ is indeed small for momenta near
k ¼ 0. Additionally, even when none of the conditions
above are met, the amplitudes of the Floquet harmonics
fjϕn

kαig [and hence the rates Wk0α0
kα ðnÞ] are generically

suppressed for large n. Hence, although heating inevitably
accompanies coupling to a bosonic bath, there are many
ways to control or limit the corresponding effects on the
steady-state distribution (see below and also Refs. [38–41]).
For a summary of the different regimes of phonon-assisted
scattering, see Table I.

TABLE I. Summary of the different regimes of scattering
processes assisted by acoustic phonons. Interband and Flo-
quet-Umklapp processes are active or inactive depending on
the relation between the phonon bandwidth ℏωD and the relevant
Floquet gap: ΔkR is the Floquet gap at E ¼ 0, while Δedge is the
Floquet gap at the Floquet zone edge E ¼ ℏΩ=2. The drive
parameter ~g∥ is defined through Eq. (2).

Phonon-assisted
scattering regime Phonon bandwidth ℏωD

No Floquet-Umklapp
scattering

ℏωD < Δedge
Δedge ≤ ℏωD < ℏΩþ Δedge; ~g∥ ¼ 0

Intraband scattering only ℏωD < ΔkR
Intraband and interband
scattering

ΔkR < ℏωD
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D. Steady state

The steady state of the driven model described above
results from the competition between the two main dis-
sipation mechanisms: radiative recombination and acoustic
phonon scattering. To gain a more quantitative picture of
the behavior, we numerically solve for the steady states of
the kinetic equation (4) in the model outlined above, with
the parameter values given in Table II. We take acoustic
phonons to have a linear dispersion in three dimensions
ωph
q ¼ csjqj, up to a “Debye frequency” cutoff ωD. To

simplify the discussion in this section, we focus on the
situation ΔkR < ℏωD < Δedge, which allows inter-Floquet-
band scattering but forbids Floquet-Umklapp phonon-
scattering processes. Quantitative changes to the results
for larger ωD are suppressed by the mechanisms described
above. The rates fWkα

k0α0 g are calculated using the form for
the matrix elements described in Secs. III B and III C. Our
results are summarized in Fig. 3.
The main result of the numerical simulation is the

steady-state distribution Fkþ of excited carriers in the
upper Floquet band, which is shown in Fig. 3(a) for a
total density of particles corresponding to half filling.
Because of particle-hole symmetry, the distribution of
holes in the lower Floquet band F̄k− is identical to that
above. We examine the behavior of the steady-state dis-
tribution while tuning the ratio of the phonon scattering and
radiative recombination rates. Specifically, we fix the
parameters for electron-phonon coupling and vary the
overall scale of the matrix elements for recombination.
As seen in Fig. 3(a), in all cases the upper Floquet band

hosts a finite density of excited Floquet carriers localized
around the two band minima. For relatively weak electron-
phonon coupling, the excitation density is large but is
limited by saturation of the recombination rates due to Pauli
exclusion above a given density. Notably, when electron-
phonon coupling is relatively strong, the excitation density
is significantly suppressed. Moreover, in this regime the

distribution of excited carriers is well described by a
Floquet-Fermi-Dirac distribution with an effective chemi-
cal potential μe (a fit parameter) and temperature corre-
sponding to that of the phonon bath (solid lines). By
“Floquet-Fermi-Dirac distribution,” we refer to a distribu-
tion of particles in Floquet states, described by a Fermi-
Dirac function of quasienergy. The distribution of holes in
the lower Floquet band (not shown) takes an identical form
with an effective chemical potential μh ¼ μe due to particle-
hole symmetry of the model. To check the consistency of
our approach, we verify that the scattering rates in the
steady state are significantly smaller than the Floquet gap
ΔkR . This condition is satisfied, in particular, for momenta
around kR where the electron and hole excitation densities
are localized. A more detailed discussion of the scattering
rates is provided in Appendix D.
The above form for Fkþ can be understood by consid-

ering the dynamics of the electrons coupled to the photon
and phonon baths. When an electron is excited to the upper
Floquet band via a recombination process, it quickly

(a)

(b)

FIG. 3. Numerically obtained steady states with radiative
recombination and coupling to acoustic phonons. Here, the
density is set to half filling, and we use a 3D acoustic phonon
bath with ℏωD smaller than the gap Δedge at the Floquet zone
edge. The phonon temperature is set to kBT ¼ 10−2ℏΩ. We keep
the phonon and photon densities of states fixed and only vary an
overall scale for the coupling matrix elements. The full details of
the model can be found in Table II. (a) Distribution of electrons in
the upper Floquet band Fkþ ¼ hf†kþfkþi for several values of
κ ¼ kRW

rec=πΛinter; see Eq. (9) and Appendix C for definitions.
The distributions are fitted to a Floquet Fermi-Dirac distribution
at temperature T (solid lines). Because of particle-hole symmetry,
the distributions of holes in the lower Floquet band, 1 − Fk−, are
identical to the distributions shown. Inset: Log-log plot showing
the total density of electrons in the upper Floquet band ne as a
function of κ. The density ne is normalized to the “thermal
density” nth ¼ 6.8 × 10−4 (see the text). The plot demonstrates
the square root behavior predicted in Eq. (9). Note that for large
ne, the recombination rates saturate due to Pauli blocking. The
Floquet band structure is shown in (b).

TABLE II. Parameters fixed in all simulations. Top row:
Parameters of the electronic Hamiltonian [Eq. (1)], with Ek ¼
2A½1 − cosðkaÞ� þ Egap, where a is the lattice constant. The drive
is spatially uniformVðtÞ ¼ 1

2
V0ðg · σÞ cosΩt. Bottom row: Param-

eters of the three-dimensional acoustic phonon bath, where cs is the
phonon velocity and ωD is the Debye frequency. In all simulations,
the overall scale of the phonon matrix elements is set by fixing the
ratio2πðGph

0 Þ2ρ̄ph=ðℏΩÞ,where ρ̄ph is thephonondensityof states at
zero momentum and energy ℏcsðπ=aÞ. For convergence, in the
simulations we keep the phonon bath at a small temperature
kBT ≈ 10−2ℏΩ.

A Egap g dk V0

0.25ℏΩ 0.8ℏΩ (1,0,0) (0,0,1) 0.1ℏΩ

cs ℏωD 2πðGph
0 Þ2ρ̄ph kBT

ð0.05=π ffiffiffi
3

p ÞaΩ 0.15ℏΩ ð2 × 10−2ÞℏΩ 0.1ΔkR
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“trickles down” via repeated intraband scattering from
acoustic phonons until eventually reaching one of the
minima of the band. There, it joins the Fermi gas of
excited electrons. Relaxation from the upper to the lower
band via phonon emission is only substantial near the band
bottom, where the original valence and conduction bands
are strongly hybridized. The total density of excited carriers
is determined by a balance between the interband excitation
and relaxation process.
As seen in Fig. 3(a), even for relatively large electron-

phonon coupling strengths the density of excited electrons
remains appreciable. As we now explain, this situation
arises from a bottleneck in interband relaxation due to the
suppression of phonon-emission rates for small excitation
densities.
The relaxation bottleneck can be understood by consid-

ering the rate of change of the excitation density ne ¼R ðdk=2πÞFkþ of excited electrons in the upper Floquet
band. In a heuristic model for the regime of low excitation
density, recombination transfers electrons from the mostly
filled states in the “valley” between maxima of the lower
Floquet band (centered around k ¼ 0) to the mostly empty
“hump” in the upper band, providing a constant source term
for the excitations [see Fig. 1(c)]: _nrece ¼ γrec, with

γrec ≈
Z

kR

−kR

dk
2π

Wrec
k : ð8Þ

Here, Wrec
k ≡P

k0W
k0þ
k− is the total rate for an electron,

initially in the lower Floquet band with momentum k, to
“decay” to the upper Floquet band with any final momentum
(within the constraints of quasienergy and crystal momentum
conservation). Thus, Wrec

k is simply the recombination rate
for a single electron. When we compute γrec using Wrec

k , we
take the occupations in the lower and upper Floquet bands in
the interval −kR ≤ k ≤ kR to be 1 and 0, respectively. It is
convenient to define an average recombination rate Wrec in
this interval, whereby Eq. (8) becomes γrec ≈ ðkR=πÞWrec.
Relaxation via interband electron-phonon scattering

occurs for momenta in narrow regions around �kR, from
the bottom of the upper Floquet band to the top of the lower
Floquet band. In these momentum regions, the bands are
strongly hybridized, giving nonzero matrix elements for the
electron-phonon coupling which is diagonal in the bands of
the nondriven system. For simplicity, in the discussion
below we set Wk0−

kþ ¼ Winter, where Winter is an average
value for the transition rates in the active regions around
�kR. The total rate of electrons relaxing from the upper to
the lower Floquet band is found by summing the transition
rates from occupied states in the upper band to empty states
in the lower band. The corresponding change to the
excitation density goes as _nintere ≈ ð1=LÞPk

P
k0 W

inter

FkþF̄k0−. Using particle-hole symmetry of the distribution
and

P
kFkþ ¼ Lne, we obtain _nintere ≈ −Λintern2e, where

Λinter ≡ LWinter.

The two powers of excitation density appearing in the
expression for _ne come from (1) the density of excited
electrons available to decay and (2) the density of final
states available for each electron. Note that the above
discussion assumes zero temperature of the bath. However,
when the phonon bath is at finite temperature, the picture
above gives a good approximation when ne exceeds the
thermal excitation density (see below).
Importantly, despite the system size L appearing explic-

itly in the definition of Λinter, the net relaxation rate is in fact
system size independent. As explained in Appendix B, the
individual rates Wk0α0

kα to scatter between specific momen-
tum values k and k0 generically scale as 1=L. The system
size independence is restored by the increasing number of
final states, which scales as L.
Combining the recombination and interband phonon-

scattering terms, we obtain _ne ¼ γrec − Λintern2e. The
condition _ne ¼ 0 yields an approximate relation for the
steady-state excitation density ne ¼ nsteady, where

nsteady ¼
�
kR
π

Wrec

Λinter

�
1=2

: ð9Þ

The square root dependence in Eq. (9) is clearly exhibited
in our simulations [55], as shown in the inset of Fig. 3(a).
Note that in our simulations the bath temperature is set to

kBT ¼ 0.1ΔkR . At this temperature, a “global” Floquet-
Fermi-Dirac distribution with its chemical potential set in
the middle of the Floquet gap would have a small density
of excited electrons nth (and similarly for holes). Here, we
define the “global” Floquet-Fermi-Dirac distribution as a
single distribution describing the electronic occupations in
both bands of the system. For very low recombination rates,
the square root behavior should saturate when ne ≈ nth.
However, throughout the parameter range used for
Fig. 3(a), ne ≫ nth, and therefore the effect of the finite
temperature of the bath on the square root behavior is
negligible. Thus, we see that even for zero bath temperature
the deviation from the global Floquet-Fermi-Dirac distri-
bution remains and is given by Eq. (9).
To summarize this section, when radiative recombination

and other Floquet-Umklapp processes are absent, the
system approaches the ideal Floquet-insulator state (at half
filling). Importantly, our analysis shows that Floquet-
Umklapp processes cannot be ignored; the steady-state
excitation density rises rapidly when the recombination rate
is increased from zero. In order to further reduce the
excitation density, additional controls are needed. Coupling
the system to a Fermi reservoir can provide such a control,
which we shall study in detail in the next section.

IV. COUPLING TO A FERMI RESERVOIR

In this section, we consider the steady state of the system
upon coupling it to an external fermionic reservoir. Our
motivation here is twofold: The reservoir serves as an
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additional effective control over the steady state of the
system, and is a necessary component of transport experi-
ments. However, as we show below, when the driven system
is coupled to a standard fermionic reservoir with a wide
bandwidth, photon-assisted tunneling significantly increases
the density of excitations. In addition, even in the ballistic
regime, photon-assisted tunneling opens extra channels for
transport [6,7,11,12,30]. Wewill discuss how such processes
can be suppressed using energy filtering, thereby allowing
the possibility to control and probe the driven system using
external fermionic reservoirs.
In the discussion below, we first assume that the distri-

bution remains homogeneous under coupling to the reser-
voir. This can be approximately satisfied for small systems
with pointlike coupling to a lead or for systems where the
coupling is extended rather than pointlike. Next, we focus on
the scenario of a lead coupled at a point, where we will
discuss the role of inhomogeneities and the length scale over
which the steady-state distribution is controlled by the lead.

A. Collision integral for a fermionic reservoir

The Hamiltonian of the isolated reservoir is given by
Hres ¼

P
lEld

†
ldl, where d

†
l creates an electron in state jli

of the reservoir with energy El. Throughout this work, we
assume that the periodic driving acts only on the system and
does not affect the reservoir. We describe tunneling between
the reservoir and states of the (undriven) system by the
HamiltonianHtun ¼

P
l;kνJl;kνðd†lckν þ c†kνdlÞ. The values

of the tunneling matrix elements Jl;kα depend on the precise
forms of the reservoir states fjlig, the Blochwave functions
of the undriven system, and the details of the coupling.
The Floquet states jψk�i are coupled to the Fermi

reservoir via the harmonics jϕn
k�i, as shown in Figs. 2(b)

and 2(c). These harmonics are spread over a large range of
frequencies Ek� þ nℏΩ. As a result, both the upper and
lower Floquet bands are coupled to reservoir states in a wide
range of energies. This coupling is directly mirrored in the
collision integral for the reservoir. Following the spirit of the
discussion surrounding Eq. (6), we define the “bare” rate Γn

kα
for a single electron to tunnel from a (filled) reservoir into the
Floquet state jψkαðtÞi, via the harmonic jϕn

kαi

Γn
kα ¼

2π

ℏ

X
l

jhϕn
kαjHtunjlij2δðEkα þ nℏΩ − ElÞ: ð10Þ

Next, we assume that the reservoir is in equilibrium with the
occupation of a state with energy El ¼ Ekα þ nℏΩ given by
the Fermi-Dirac distribution DðElÞ with chemical potential
μres and temperature Tres. To obtain the integral Itunkα in the
kinetic equation (4), we supplement the rates fΓn

kαg in
Eq. (10) with the occupation factors Fkα and DðEn

kαÞ, with
En
kα ≡ Ekα þ nℏΩ:

Itunkα ¼
X
n

Γn
kα½F̄kαDðEn

kαÞ − FkαD̄ðEn
kαÞ�: ð11Þ

The first and second terms of Eq. (11) correspond to
electrons tunneling into and out of the system, respectively.

B. Steady state with fermionic and bosonic baths

How does the coupling to the reservoir influence the
steady state of the system? The possibility of photon-
assisted tunneling of particles between the system and the
reservoir makes the behavior of the driven system strikingly
different from its equilibrium behavior.
To understand the effect of the reservoir, it is instructive

to first look at the steady-state distribution ~Fkα of Eq. (4) in
the absence of recombination and electron-phonon scatter-
ing Irec ¼ Iph ¼ 0. Staying within the homogeneous regime
and setting the left-hand side of Eq. (4) to zero while using
Eq. (11) for Itunkα yields

~Fkα ¼
P

nΓn
kαDðEn

kαÞP
nΓn

kα
: ð12Þ

For a typical metallic reservoir with a wide bandwidth
(greater than ℏΩ), the photon-assisted tunneling rates Γn

kα in
Eq. (10) may be significant for n ≠ 0. Consequently, the
sum over n in Eq. (12) leads to steady-state occupations
which differ substantially from those given by a simple
global Floquet Fermi-Dirac distribution Fkα ¼ DðEkαÞ.
We now directly illustrate the difficulties which arise from

coupling the periodically driven system to a wide-band
fermionic reservoir, in the more general case where the
system is also subject to electron-phonon coupling and
radiative recombination Irec, Iph ≠ 0. In Fig. 4(a), we plot
steady-state distributions for several values of the coupling
strength to the reservoir. The parameters of the bosonic bath
(phonons and recombination) are held fixed, with values
identical to those yielding the green (middle) curve of
Fig. 3(a). We start at half filling with the chemical potential
of the reservoir set in the middle of the band gap of the
nondriven system; i.e., we set μres ¼ E0 − ℏΩ=2; see Fig. 1.
The system-reservoir coupling Jl;kν as well as the reservoir
density of states are taken to be constant [56]. As the reservoir
coupling increases, the steady-state distribution becomes
“hotter,” with a higher and higher density of excitations.
The heating effects of the reservoir can be understood

as follows. In terms of the original (nondriven) bands
[Fig. 1(b)], the leading-order effect of the reservoir is to
populate valence-band-like states and to empty conduc-
tion-band-like states. In terms of the Floquet bands, this in
particular entails removing electrons from states in the
lower Floquet band within the momentum window −kR <
k < kR and injecting electrons into states of the upper
Floquetbandin thesamemomentumwindow.Qualitatively,
this is similar to the effect of radiative recombination;
compare to Fig. 3. Strong coupling to the reservoir thus
leads to a large density of excitations in the Floquet bands.
To achieve an insulatorlike distribution, as needed for the
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realization of a Floquet topological insulator, these excita-
tions must be suppressed.

C. Energy-filtered fermionic reservoirs

Interestingly, photon-assisted tunneling can be effec-
tively suppressed if the system-reservoir coupling is medi-
ated through a narrow band of “filter” states. (Realizations
are discussed below.) For illustration, let us imagine that the
system is connected to the reservoir via an energy filter: a
device with a finite density of states in a restricted energy

range, whose states couple strongly to the electron reser-
voir. The filter states hybridize with the reservoir states to
produce a peak in the continuum density of states within the
filter energy window. When the system is coupled to the
fermionic reservoir only via the filter, the transition rates in
Eq. (10) are controlled by the effective tunneling density of
states (TDOS) ρtunðEÞ≡P

ljhxfilterjlij2δðE − ElÞ. Here,
hxfilterjli is the amplitude of the continuum state jli
(formed of hybridized filter and reservoir states) at the
position of the filter xfilter, where tunneling occurs. The
factor jhxfilterjlij2 is part of the squared matrix element in
Eq. (10). Note that in the above discussion, we assumed
that the filter is not subject to the external drive [57].
As a concrete example, consider resonant tunneling

through a single filter level at energy Efilter. Here, we find
tunneling rates with a Lorentzian dependence on energy:
Γn ∼ γJ2n=½ðEkα þ nℏΩ − EfilterÞ2 þ ðℏγ=2Þ2�, where γ is
the level broadening of the filter state due to its coupling
to the continuum of reservoir modes and Jn characterizes
the matrix elements for coupling into the nth harmonic of
the system’s Floquet state. Consider, for example, setting
Efilter ¼ 1

2
ℏΩ ¼ E0 (i.e., at the conduction-band resonance

energy). Then, in the limit Ω ≫ γ, photon-assisted tunnel-
ing rates (n ≠ 0) are strongly suppressed. If the energy filter
consists of multiple resonant levels connected in series, or a
narrow band of states, a sharper “boxlike” transmission
window can be obtained (see, e.g., Ref. [58]). In addition to
this filtering effect on the effective TDOS, note that the
rates Γn for large n are suppressed via Jn due to the
negligible admixture of very high harmonics in the Floquet-
state wave functions. (This suppression also occurs for the
case of no filtering.)
In practice, the energy filter may be realized by coupling

the system to the reservoir via a section of large band gap
material hosting a narrow band of impurity states deep
inside its gap. The intermediate band should satisfy three
essential requirements: (i) The Fermi level should lie inside
it, (ii) the band should be narrower than the width ℏΩ of a
single Floquet zone, as discussed above, and (iii) it should
be separated from the conduction and valence bands of the
host material by more than ℏΩ, to avoid the direct
absorption of photons from the driving field. Highly
mismatched alloys featuring narrow bands of extended
states in their band gaps have been realized in the context of
intermediate-band solar cells [59–61]. We expect that
similar methods allow the realization of the energy filter
introduced in this work. Energy filtering through quantum
dots could provide an alternative approach. Because of their
large size as compared to atoms, however, achieving a level
spacing exceeding ℏΩmay prove challenging (especially at
optical frequencies) [61].

D. Steady state with filtered reservoir

We now investigate how coupling to an energy-filtered
reservoir affects the steady state of the system. We start

(a) (b)

FIG. 4. Numerically obtained steady states of the system
coupled to both bosonic and fermionic baths. The top and
bottom panels show the distributions of electrons in the Floquet
þ and − bands, respectively, for increasing strength of the
coupling to the Fermi reservoir. We characterize the coupling
strength by the ratio of tunneling and recombination rates
ϒ ¼ 2Γ0

kR;þ=W
rec. [See Eqs. (8) and (10) for definitions of the

rates.] Two types of Fermi reservoirs are studied. (a) Wide-band
Fermi reservoir, whose Fermi level lies in the middle of the
original band gap (the band gap of H0). An increase in the
coupling strength to such a reservoir leads to a substantial
increase in the electron and hole densities ne and nh, due to
photon-assisted tunneling. (b) Energy-filtered Fermi reservoir,
whose Fermi level lies at the resonance energy E0 in the original
conduction band, i.e., in the middle of the Floquet gap of the
driven system. The electron and hole densities ne and nh are
suppressed via the coupling to the narrow-band Fermi reservoir.
In all panels, the red data points are for a half filled system which
is disconnected from the Fermi reservoir. The other colors
correspond to the values of ϒ indicated at the bottom. The solid
lines are fits to Floquet-Fermi-Dirac distributions, with separate
chemical potentials for electrons and holes in the Floquetþ and −
bands, respectively. The temperature taken for the fits is identical
to the phonon and reservoir temperature kBT ¼ 10−2ℏΩ. In these
simulations, the parameters for the photon (recombination) and
phonon baths are kept fixed at the values yielding the green curve
in Fig. 3, while we vary the overall scale of the coupling strength
to a homogeneously coupled fermionic reservoir.
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with the case where phonons and radiative recombination
are absent Irec ¼ Iph ¼ 0. Throughout the discussion
below, we assume a boxlike filter such that the tunneling
density of states is strictly 0 outside the filter window.
When the filter window (bandwidth) is narrower than

ℏΩ, photon-assisted processes are suppressed. According
to Eq. (12), the occupation distribution in the reservoir,
taken as a function of energy, is then directly mapped into
the occupation distribution of the driven system, taken as a
function of quasienergy [i.e., the occupation Fkα of each
Floquet state jψkαi is determined by a single term DðEkαÞ
with fixed n on the right-hand side]. In the case of the wide-
band reservoir, half filling is ensured by placing the
chemical potential of the reservoir in the middle of the
gap of the nondriven system. Here, the best choice is to
center the filter window around the energy of the resonance
in either the conduction band or the valence band μres ¼
�ℏΩ=2 and also to set the chemical potential μres close to
the resonance value. (For the simulations below, we center
the filter window around the resonance in the conduction
band.) In this way, the reservoir chemical potential will end
up inside the Floquet gap. Note that although the chemical
potential μres is set to an energy within the conduction
bands of the nondriven system, the filtering prevents a large
inflow or outflow of electrons which would otherwise push
the density far away from half filling. Since this is a highly
nonequilibrium situation, however, some density shifts
away from half filling are generically expected (see dis-
cussion below).
To illustrate how the filtered lead can help achieve the

Floquet-insulator steady state, we first continue with the
special case Irec ¼ Iph ¼ 0. The ideal Floquet-insulator
distribution is then achieved in the situation where the
reservoir chemical potential is set inside the Floquet gap
and where the filter window is wide enough to cover
the full bandwidth of the Floquet-Bloch band structure
but narrower than the driving-field photon energy ℏΩ.
The latter ensures that photon-assisted processes are
suppressed.
More generically, the filter window will be narrower than

the bandwidth of the Floquet-Bloch bands, as depicted in
Fig. 1(c). In this case, the kinetic equation (4) with Irec ¼
Iph ¼ 0 does not have a unique steady state as excited
electrons and holes above and below the filter edges,
respectively, have no way to relax.
We now turn to the case Iph ≠ 0. Once electron-phonon

scattering is introduced, the situation in the paragraph
above gives way to a Floquet-insulator steady state. Here,
the emission of acoustic phonons allows electrons to
“trickle down” and fill up all Floquet states below the
bottom of the filter window. In the absence of Floquet-
Umklapp processes, the resulting steady state will corre-
spond to that of an insulator at finite temperature (assuming
the same temperature for the phonons and the Fermi
reservoir). More specifically, the electronic distribution

for both bands will be described by a global Floquet-
Fermi-Dirac distribution with a single chemical potential,
which is set by that of the reservoir.
Once we include the contributions of Floquet-Umklapp

processes such as recombination, the steady state hosts
densities of excited electrons and holes ne and nh, respec-
tively (which are generally large compared with the thermal
density nth). In the limit of a weakly coupled reservoir, the
combined density of electrons and holes n̄ ¼ ne þ nh is
determined solely by the recombination and phonon-scatter-
ing rates, as discussed in Sec. III. The steady-state excitation
density is further suppressed with increasing coupling to the
reservoir, as we demonstrate below [see Fig. 4(b)].
While the steady-state electron and hole excitation

densities are equal for a half filled system without coupling
to a Fermi reservoir (Sec. III), ne and nh need not be equal
when the reservoir is present, even when the chemical
potential of the filtered reservoir is placed in the middle of
the Floquet gap. To see why, note that here the Fermi level
of the filtered reservoir is aligned with the resonance energy
1
2
ℏΩ in the conduction band of the nondriven system.

The asymmetric placement of the energy window of the
reservoir with respect to the nondriven band structure
generically breaks any effective particle-hole symmetry
and yields a shift of the total density away from half filling.
Importantly, the shift Δn ¼ ne − nh can be small, being
bounded by n̄. More careful considerations (see
Appendix E) show that Δn is in fact expected to be
significantly lower than n̄, which is confirmed by our
numerical simulations [see Fig. 5(d)].
Staying within the regime of a weakly coupled reservoir,

let us now consider what happens when the reservoir’s
Fermi energy is shifted away from the center of the Floquet
gap. As long as the Fermi level of the reservoir remains
within the Floquet gap, the occupation factors DðEkαÞ in
Eq. (11) change only weakly, due to the finite temperature
of the reservoir. Since the rates Γn

kα are independent of the
occupation of the reservoir, the changes in Itunkα are only
“thermally activated” by the reservoir’s temperature. We
therefore expect the steady state of the system to be only
weakly affected. This implies that an interesting situation
has been obtained in which the driven system becomes
incompressible with respect to changes of the reservoir’s
Fermi level. Interestingly, this incompressibility occurs in
the presence of a finite excitation density. Once the Fermi
level enters, say, the upper Floquet band, the density of
excited electrons in the band is greatly affected. If we
approximate the distribution of excited electrons by a Fermi
function, we can expect its Fermi level to track the Fermi
level of the reservoir.
As the strength of the coupling to the reservoir is

increased, we expect the Fermi reservoir to become more
dominant in setting the steady state of the system. In the
limit where the coupling to the reservoir dominates all other
scattering mechanisms, we expect the steady state to be
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described by a global Floquet-Fermi-Dirac distribution
with the same chemical potential as that of the filtered
reservoir. Note that in this limit, a nonzero coupling to the
phonon bath is still important in order to allow electrons to
fill up states from the bottom of the lower Floquet band up
to the reservoir’s Fermi level.
The above considerations are confirmed by our numeri-

cal simulations which are given in Figs. 4 and 5. In these
simulations, we fix the matrix elements describing the
coupling to the photon (recombination) and acoustic
phonon baths as in the green (middle) curve of
Fig. 3(a), and vary the overall scale of the couplings
Jl;kν to the Fermi reservoir (which are taken to be uniform).
The reservoir density of states is taken to be constant in a
window of width ℏΩ=2 placed symmetrically around
E0 ¼ 1

2
ℏΩ. The distributions of electrons hf†kαfkαi in the

two bands are plotted in Fig. 4 and are separately fitted to
Floquet-Fermi-Dirac distributions with independent chemi-
cal potentials μe and μh for electrons and holes, as in
Sec. III D.
Figure 4 clearly demonstrates that for a wide-band

reservoir [Fig. 4(a)], the density of excitations increases
when the coupling to the reservoir is increased; in contrast,
for a filtered reservoir [Fig. 4(b)], the density of excitations
decreases with increasing coupling strength to the reservoir.
For the filtered reservoir, the chemical potential sits at the
resonance energy in the conduction band 1

2
ℏΩ. In all fits in

Fig. 4, we set the temperatures of the Floquet-Fermi-Dirac
distributions to be identical to the phonon and reservoir
temperature. While we obtain excellent fits at weak
reservoir coupling, the fits become less accurate when
the coupling to the reservoir is increased. This arises due to
the nonuniform way in which the reservoir is coupled to the
Floquet bands. As in Sec. III D, we verify that the scattering
rates in the numerically obtained steady states are signifi-
cantly smaller than the Floquet gap ΔkR for all reservoir
coupling strengths used (see Appendix D).
In Fig. 5, we study the densities ne and nh as functions of

the strength of the coupling to the reservoir and its chemical
potential. The figure demonstrates two important points.
First, the steady-state densities ne and nh are insensitive to
small shifts of the Fermi level of the reservoir away from
the middle of the Floquet gap, yielding an “incompressible”
behavior dne;h=dμres ≈ 0. This is demonstrated most clearly
by Fig. 5(c), which shows n̄ vs μres. (Similar plots ofΔn can
be found in Appendix E.) Second, when the Fermi level of
the reservoir lies within the Floquet gap, a sufficiently
strong coupling to the reservoir can effectively suppress the
electron and hole densities, giving a steady state close to an
ideal Floquet insulator.
The coupling strength at which the reservoir is expected

to significantly affect the steady-state excitation density can
be estimated as follows. Radiative recombination acts to
increase the excitation density with the rate _nrece ¼ γrec

defined in Eq. (8). As above, we approximate γrec by

γrec ≈ ðkR=πÞWrec, where kR=π represents the fraction of
states that participate in the recombination process and
Wrec is the average recombination rate in this interval.
Meanwhile, the reservoir can extract excitations at a rate
_ntune ≈ −Γ0ne, where Γ0 ≡ Γ0

kR;þ characterizes the rate for a
single electron to tunnel in or out of the system. When the
reservoir is weakly coupled, the steady-state excitation
density is controlled by the rate of phonon-mediated
interband relaxation, as discussed around Eq. (8). The
reservoir begins to play an important role when
Γ0ne ≳ ðkR=πÞWrec, or equivalently, when

ϒ≡ ð2Γ0=WrecÞ≳ kR=ðπneÞ: ð13Þ
This relation is indeed borne out in Fig. 5(d), where

ne ≈ 0.05 and kR=π ≈ 0.3, and the excitation density is
suppressed for log10ϒ≳ 1. Note that Fig. 5(d) also shows a
small nonzero value of Δn ≪ n̄ when the Fermi level is in

(a) (b)

(c) (d)

FIG. 5. Electron and hole densities ne and nh in the steady state
of the system coupled to bosonic baths (acoustic phonons and
recombination) and an energy-filtered fermionic reservoir. The
figure clearly demonstrates that (1) the steady-state densities ne
and nh are insensitive to small shifts of the reservoir’s chemical
potential μres near the middle of the Floquet gap and (2) a
sufficiently strong coupling to the reservoir can effectively
suppress the electron and hole densities when μres is within
the Floquet gap. (a) The total density n̄ ¼ ne þ nh as a function of
the Fermi level of the reservoir μres and the coupling strength ratio
ϒ ¼ 2Γ0

kR;þ=W
rec. As long as μres is within the Floquet gap, ne

and nh remain low. Once μres enters the Floquetþ or − bands, the
system becomes metallic and the electron (hole) density ne (nh) is
set by the Fermi level of the reservoir. This behavior is seen in (b),
where we plot ne. To further demonstrate the incompressible
regime, in (c) we show n̄ as a function of μres for several coupling
strengths to the reservoir, corresponding to the dotted lines in (a).
(d) The electron and hole densities ne (circles) and nh (squares)
for two values of μres in the middle of the Floquet gap (black) and
at the edge of the þ Floquet band (red). In the first case, the
results explicitly demonstrate the suppression of the excitation
densities ne and nh with increasing reservoir coupling. Model
parameters are the same as in Fig. 4.

CONTROLLED POPULATION OF FLOQUET-BLOCH STATES … PHYS. REV. X 5, 041050 (2015)

041050-13



the middle of the Floquet gap [black symbols in Fig. 5(d)],
arising from the asymmetry of the coupling of the reservoir
to the two Floquet bands.

E. Point coupling to a lead

In many experimentally relevant situations, the system is
coupled to a lead at a single point. What is the spatial
dependence of the steady state in this situation? So far, we
have discussed homogeneous steady-state distribution
functions f ~Fkαg, which depend on momentum and band
indices but not on position. A homogeneous steady state
can arise in several situations. For the bosonic baths
discussed earlier, we assume a uniform coupling through-
out the system. Therefore, by themselves, the bosonic baths
yield a spatially homogeneous steady-state distribution.
Clearly, if in addition we introduce a fermionic reservoir
which is coupled homogeneously throughout the system, a
spatially homogeneous steady state is expected. In addition,
for a lead coupled at a single point, there are still two limits
in which the steady state remains uniform: (1) in the absence
of any other sources of dissipation and (2) in the limit of a
small system size. In the latter case, a uniform distribution is
obtained when the level spacing of the system’s single-
particle states is larger than the tunneling rate to and from the
reservoir; this corresponds to a tunneling time that exceeds
the time required for an electron to traverse the system.
For larger system sizes, where the stringent criterion

above is not met, the steady state need not be spatially
homogeneous. If the tunneling rates are comparable to or
larger than the level spacing, the coupling to the reservoir
can yield nonzero values of the “coherence” terms
hf†kαfk0βi, which generically cause spatial inhomogeneity.
Calculating the full set of such coherences is a formidable
task. Fortunately, we can gain an intuitive understanding of
the form of the inhomogeneous steady state by considering
the dynamics of a spatially dependent excitation densities
neðx; tÞ and nhðx; tÞ. Close to the lead, placed at x ¼ 0, the
excitation density will be affected by the lead and will
roughly correspond to that found for a homogeneous
system-reservoir coupling. Far from the lead, we expect
the excitation densities to relax to bulk values nbulke and
nbulkh . Below, we estimate the “healing length” over which
this transition occurs.
Because of fast intraband electron-phonon scattering

(which is still slow compared with the driving frequency
and the on-resonance Rabi frequencyΔkR=ℏ), carrier motion
on time scales much larger than the driving period is
expected to be diffusive. The corresponding diffusion con-
stant can be estimated asD ¼ v̄2=Wintra, where v̄ is a typical
velocity of the excitations [62] and Wintra is a typical
intraband-scattering rate from acoustic phonons, both taken
in the steady state. Focusing on the situation near half filling
and incorporating the source and sink terms due to recombi-
nation and interband phonon scattering discussed in Sec. III,
we obtain two reaction-diffusion equations for the electron

and hole densities ∂tnλ ¼ D∂2
xnλ þ γrec − Λinternenh, with

λ ¼ e, h. Adding and subtracting these equations, we find
the reaction-diffusion equations governing the total and
offset densities n̄ and Δn

∂tn̄ ¼ D∂2
xn̄þ 2γrec −

1

2
Λinterðn̄2 − Δn2Þ;

∂tΔn ¼ D∂2
xΔn: ð14Þ

For the boundary conditions for the above equations, we
use Δnðx ¼ 0Þ and n̄ðx ¼ 0Þ, which are set by the lead, as
well as ∂xΔn ¼ ∂xn̄ ¼ 0 for x ≫ 0, which corresponds to
no net flow of particles into the system. Equation (14)
entails two main consequences for the spatial distribution
of the steady state ∂tnλðx; tÞ ¼ 0. First, the shift of the total
density of electrons from half filling Δn is in fact
homogeneous across the system and set by the lead.
Furthermore, linearizing Eq. (14) around the bulk steady
state gives the healing length

ξ ¼
�
Dn̄bulk

4γrec

�
1=2

; ð15Þ

where we can approximate n̄bulk ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kRW

rec=πΛinter
p

from Eq. (9). Here, we neglect corrections due to a small
Δn. For system sizes smaller than ξ, a lead coupled at a
point can be effective in setting the distribution throughout
the system. In such a system, for a sufficiently strong point
coupling to a filtered lead, an ideal Floquet-insulator
distribution can be approached, as is shown for the
homogeneous case in Sec. IV D.

V. SUMMARY AND DISCUSSION

The ability to control and probe nonequilibrium quantum
many-body systems poses one of the most outstanding
challenges in modern condensed-matter physics. In this
paper, we analyzed steady states in a model for a periodically
driven semiconductor and demonstrated the means through
which these steady states can be controlled. We considered
the open-system dynamics of a resonantly driven electronic
system coupled to acoustic phonons and the electromagnetic
environment, as well as to an external fermionic reservoir.
The couplings to these baths have two complementary roles:
They allow energy relaxation but may also induce processes
which lead to heating. Motivated by the prospect of realizing
Floquet topological insulators, our goal was to find the
conditions under which the steady state resembles a band
insulator. Importantly, we focused on the regime where the
scattering rates in the steady state are smaller than the drive-
induced Floquet gap. Only in this regime could we expect
to observe effects requiring quantum coherence, such as
drive-induced topological phenomena.
Starting with the case where the system is coupled only

to the bosonic baths, we have shown that the system can
approach a Floquet-insulator steady state with an added
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density of excitations in the two Floquet bands. The density
of excitations is controlled by the ratio of radiative
recombination and electron-phonon-scattering rates and
can be small for experimentally relevant parameter values.
We found a square root dependence of the excitation
density on the above ratio [see Eq. (9)], which implies
that additional controls are needed to fully suppress the
deviations from the Floquet-insulator state. Next, we
considered the effects of coupling to an external Fermi
reservoir, which plays two important roles in our setup.
First, the reservoir is a crucial component for transport
experiments. Importantly, we show this coupling signifi-
cantly increases the density of excitations, unless the
reservoir is coupled through an energy filter. Second, the
energy-filtered reservoir can serve as an additional control
to reduce the density of excitations, bringing the system
closer to the ideal Floquet-insulator state. Our main results
are summarized in Table III.
A main motivation for our work is the prospect of

obtaining a Floquet topological insulator: a driven system
with an insulating bulk but with conductive edge and
surface modes. What are the implications of our results for
transport? Our findings are relevant for system sizes which
are larger than the electronic inelastic mean free path.
(Transport in the complementary ballistic regime has been
studied previously in a number of works; see, for example,
Refs. [6,7,15].) Interestingly, we find that even in the
presence of a finite density of excitations, the steady state of
the driven system can exhibit an “incompressible” behav-
ior: The steady state is unaffected by small changes in the
chemical potential of the energy-filtered reservoir, as long
as it is situated near the middle of the Floquet gap [65]. This
behavior is shown in Fig. 5. In addition, when energy-
filtered leads are used for transport, photon-assisted con-
duction channels are suppressed. In the case of neutral
particles, the incompressibility implies insulating behavior:

No current would result from a small source-drain bias
between two spatially separated energy-filtered leads. This
follows from the insensitivity of the steady state to the
leads’ chemical potentials.
When we consider charged particles, however, the

electric field which accompanies the source-drain bias
may drive a current due to the nonzero density of excited
carriers. Thus, here we expect a finite resistivity even in the
parameter range corresponding to the insulating regime
above. Given the diffusive nature of particle motion in
the system, we estimate the local resistivity σ−1ðxÞ using
the Drude form σ−1ðxÞ ¼ jm�jWintra=½e2n̄ðxÞ�, where m� is
the effective mass around the Floquet upper (lower) band
minimum (maximum) and e is the electric charge. Consider
now a two-terminal transport measurement using energy-
filtered leads, through such a system of charged carriers.
If the system is small enough such that the steady state is
spatially homogeneous, a sufficiently strong coupling to
energy-filtered leads can, in fact, suppress the density of
excited carriers and yield nearly insulating behavior. For
larger systems, with a spatially inhomogeneous steady
state, the total resistance R is given by the sum of series
resistances R ¼ R

L
0 dxσ−1ðxÞ. The bulk of the system gives

an extensive contribution Rbulk ≈ Ljm�jWintra=½e2n̄bulk�.
Interestingly, if the lead coupling is strong, the excitation
density near the ends of the system will become very small
and thus give a large contribution Rend to the resistance.
Therefore, for a fixed system size, the system may obtain
insulating behavior in a two-terminal measurement upon
increasing the coupling strength of the lead.
The analysis of steady states in driven electronic systems

is currently the subject of intense activity (see, e.g.,
Refs. [32,45]). In Ref. [32], time evolution and steady states
after a quench were studied for a 2D semiconductor with a
topological Floquet spectrum. There, the authors considered
open-system dynamics with momentum-conserving inter-
actions with a bosonic bath and found regimes exhibiting
quantized Hall conductivity. In addition, Ref. [45] studied a
resonantly driven electronic system where the only relaxa-
tion pathway was through an external fermionic lead and
found that a grand canonical distribution could be obtained
under finely tuned conditions [66]. In our work, we
considered the combined effects of momentum and energy
relaxation through the coupling to acoustic phonons and the
coupling to an external fermionic reservoir. Notably, we
included the inevitable effects of heating due to Floquet-
Umklapp processes, as exemplified by radiative recombi-
nation. Importantly, momentum relaxation plays a crucial
role in establishing the Floquet-insulator steady state under
these conditions.
To make a connection with experimentally relevant

regimes, we compare our model parameters with those
accessible in solid-state systems. Consider a drive fre-
quency of Ω ¼ 2π × 100 THz, which translates to 0.4 eV
in energy units. Correspondingly, the parameters used in

TABLE III. Summary of main results for the steady-state
distributions in different regimes. FFD denotes a steady state
in which electrons and holes in Floquet bands þ and − are
described by separate Fermi-Dirac distributions with independent
chemical potentials (at the bath temperature). GFFD stands for a
global Floquet-Fermi-Dirac distribution, with a single chemical
potential. Other symbols: nth stands for the thermal excitation
density, while nsteady is defined in Eq. (9). The parameter ϒ
characterizing the tunneling rate to the Fermi reservoir is defined
in Eq. (13), andWrec and Λinter characterizing recombination and
phonon-mediated interband relaxation rates are defined below
Eq. (8).

Parameter
regime

Steady
state

Excitation
density ne

No Floquet Umklapp Wrec ¼ 0 GFFD ne ¼ nth
Phonon dominated Wrec=Λinter ≪ 1 FFD ne ≈ nsteady
Filtered Fermi reservoir
dominated

πϒnsteady=kR ≫ 1 FFD ne ≈ nth
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Sec. III yield a Floquet gap of ΔkR=ℏ ≈ 2π × 10 THz
(translating to 40 meV). To achieve a Floquet gap of this
size in a typical spin-orbit-coupled material, a laser of on
the order of 1 W focused on a micron-sized sample is
needed. (This equates to an electric field of order
107 V=m.) Accordingly, the characteristic phonon-relaxa-
tion time scale corresponds to ½Pk0W

k0þ
k¼0;−�−1 ¼ 500 fs.

This is the total relaxation rate out of the state k ¼ 0 in the
upper band. The recombination time scales ðWrec

k¼0Þ−1 used
to obtain the steady-state distribution in Fig. 3 then
correspond to [1 μs, 60 ns, 3 ns, 180 ps, 10 ps]. When
coupling to the fermionic reservoir was introduced in
Sec. IV, we fixed the recombination time scale at 3 ns;
the steady-state distributions in Fig. 4 correspond to
tunneling times ðΓk¼0;−Þ−1 of approximately [200 ps,
30 ps, 3 ps]. In Fig. 5, the tunneling time from the reservoir
varies from 30 ns to 3 ps. Note that these values are in line
with those in typical semiconductor nanostructures, where
tunneling times can vary widely [53].
Although our model is inspired by resonantly driven

semiconductors, we expect our conclusions and formalism
to be relevant to a broad variety of driven-dissipative
systems including cold-atomic gases. Our results also have
important implications for Floquet topological insulators.
Indeed, they provide a roadmap toward the practical
realization of the Floquet-insulator state, which is key to
observing quantized transport in Floquet topological
insulators. We expect engineered reservoirs of carriers to
be particularly useful in this context, allowing us to perform
transport measurements while stabilizing insulatinglike
steady states.
Several aspects of the problem require further study. In

this work, we have not addressed the effect of interparticle
interactions. Floquet-Umklapp processes involving inter-
particle scattering give an additional channel for the system
to absorb energy from the driving field and increase the
number of excitations. However, our current work dem-
onstrates that coupling to a bath of phonons can help keep
the heating and excitation density under control. Another
important direction is a careful study of the inhomogeneous
steady states of Floquet topological insulators, which is
crucial in order to predict the edge and surface responses of
these systems.

ACKNOWLEDGMENTS

The authors would like to thank A. İmamoğlu, C. Grenier,
A. Srivastava, and L. I. Glazman for insightful discussions.
Financial support from the Swiss National Science
Foundation (SNSF) is gratefully acknowledged. M. S. R.
acknowledges support from the Villum Foundation and from
the People Programme (Marie Curie Actions) of the
European Union’s Seventh Framework Programme (FP7/
2007-2013) under REA Grant Agreement No. PIIF-GA-
2013-627838. N. H. L. acknowledges support from the
Israel-U.S. Binational Science Foundation and I-Core, the

Israeli Excellence Center “Circle of Light,” and the People
Programme (Marie Curie Actions) of the European Union’s
Seventh Framework Programme (FP7/2007-2013) under
REA Grant Agreement No. 631696. G. R. and K. I. S. are
grateful for support from the NSF through Grant No. DMR-
1410435, as well as the Institute of Quantum Information
and Matter, an NSF Frontier center funded by the Gordon
and Betty Moore Foundation, and the Packard Foundation.
K. I. S. is grateful for support from the NSF Graduate
Research Fellowship Program.

APPENDIX A: KINETIC EQUATION IN THE
FLOQUET BASIS

In this Appendix, we discuss the key points in the
derivation of the Floquet kinetic equation, represented
schematically in Eq. (4) of the main text. Specifically,
the aim is to derive a system of differential equations which
describe the time evolution of the Floquet-state occupation
factors FkαðtÞ ¼ hf†kαðtÞfkαðtÞi, where f†kαðtÞ and fkαðtÞ
are the creation and annihilation operators for Floquet
states as defined above Eq. (4). The time derivative _Fkα ¼
ðd=dtÞhf†kαðtÞfkαðtÞi couples to an infinite hierarchy of
higher and higher-order correlation functions. The main
approximation is to truncate this hierarchy at the lowest
nontrivial order and obtain a closed system of evolution
equations. We now outline the required steps.

1. Basis transformation and dressed
matrix elements

The first important step is to express the electronic terms
in the Hamiltonian in terms of the Floquet creation and
annihilation operators. Using Eq. (3), the transformation is
made via

c†kν ¼
X
α

X
n

eiðEkαþnΩÞthϕn
kαjνkif†kαðtÞ;

ckν ¼
X
β

X
m

e−iðEkβþmΩÞthνkjϕm
kβifkβðtÞ; ðA1Þ

where jνki is the Bloch function corresponding to crystal
momentum k in band ν of the nondriven system and f†kαðtÞ
and fkαðtÞ are creation and annihilation operators for the
Floquet state jψkαðtÞi. (We simplify notations by setting
ℏ ¼ 1 here and everywhere below.) Using these relations,
we write the electron-boson interaction and system-
reservoir tunneling Hamiltonians as

Hint ¼
X
kq

X
αα0

X
n

eiðEk−qx;α0−EkαÞt

× einΩtGðnÞ
α0αðk; qxÞf†k−qx;α0 ðtÞfkαðtÞðb−q þ b†qÞ; ðA2Þ

Htun ¼
X
kl

X
n

�
eiEkαteinΩtJ ðnÞ

l;kαf
†
kαðtÞdl þ H:c:

�
; ðA3Þ

KARTHIK I. SEETHARAM et al PHYS. REV. X 5, 041050 (2015)

041050-16



with “dressed” matrix elements

GðnÞ
α0αðk; qxÞ ¼

X
ν

X
m

Gk−qxν0
kν ðqxÞhϕmþn

k−qx;α0
jν0; k − qxi

× hνkjϕm
kαi; ðA4Þ

J ðnÞ
l;kα ¼

X
ν

Jl;kνhϕn
αkjνki: ðA5Þ

Here, we use G and J to indicate the coupling matrix
elements in the Floquet basis.
Note that in Eq. (A4) we have imposed lattice momen-

tum conservation of the electron-phonon interaction
Gk0ν0

kν ðqxÞ ∝ δqx;k−k0 . Equations (A2) and (A4) arise from
Eq. (5) of the main text. Sets of equivalent scattering
processes can be identified based on the following useful
relation:

GðnÞ
α0αðk; qxÞ ¼ ½Gð−nÞ

αα0 ðkþ qx;−qxÞ��: ðA6Þ

The explicit form of the dressed matrix elements shows that
the overlaps hϕm

kαjkνi between the original states and the
Fourier components jϕm

kαi of the Floquet modes are crucial
in determining the rates of the different Floquet-scattering
processes, as discussed in the main text.

a. Matrix elements for Floquet-Umklapp
processes

An interesting situation occurs when the coupling to
the driving field is defined by a vector g [see Eq. (1)] such
that ~g∥ ¼ 0. [See Eq. (2) for the definition of ~g.] This
commonly occurs in experimentally relevant materials
driven by optical fields. In this case, the Fourier harmonics
jϕm

kαi have a fixed band character for m of fixed parity: For
example, in the convention used throughout the paper
and set below Eq. (3), jϕm

kαi is proportional to jkvi for m
odd and proportional to jkci for m even; see Fig. 2(a).
Additionally, note that scattering by phonons preserves the
band character Gνν0 ∝ δνν0. As a consequence, under these
conditions Floquet-Umklapp processes involving phonons
are forbidden for n odd. Therefore, if in addition to ~g∥ ¼ 0
the phonon bandwidth is less than ℏΩþ Δedge, all Floquet-
Umklapp phonon-assisted scattering processes, including
both even and odd n, are not allowed.

2. Equations of motion

We now study the equations of motion for the Floquet-
state populations Fkα ¼ hf†kαðtÞfkαðtÞi. The populations
are the diagonal part of the “polarization matrix”
Pk0α0
kα ðtÞ ¼ hf†k0α0 ðtÞfkαðtÞi. In addition to the populations,

this matrix also characterizes coherence between Floquet
states with different crystal momenta and/or band indices.
This off-diagonal part may be important for the dynamics
and for characterizing steady states. In the main text, we

focus on steady states in a regime where the off-diagonal
part of the polarization matrix can be neglected. Here, we
derive the kinetic equation in a more general context,
including the full polarization matrix, and discuss when and
how the off-diagonal parts may be neglected.
As a preliminary, we note the following important

property of the Floquet-state creation operators f†kαðtÞ.
Similar relations hold for the annihilation operators.
Let Uðt; t0Þ be the single-particle time-evolution operator
corresponding to the Schrödinger equation iðd=dtÞjψi ¼
HðtÞjψi, with the Hamiltonian HðtÞ ¼ P

kc
†
kνHνν0

ðk; tÞckν0 , where Hðk; tÞ ¼ H0ðkÞ þ VðtÞ is defined in
Eq. (1) in the text. The operator f†kαðtÞ satisfies
f†kαðtÞ ¼ Uðt; t0Þf†kαðt0ÞU†ðt; t0Þ, which can be written in
the differential form

i∂tf
†
kαðtÞ ¼ ½HðtÞ; f†kαðtÞ�: ðA7Þ

This expression will be used below.
The derivation of the kinetic equation proceeds along

standard lines, as explained in detail in, e.g., Ref. [49]. The
main difference from the usual case (i.e., for nondriven
systems) is the appearance of the “dressed”matrix elements
in the interaction Hamiltonians. Below, we set up the
calculation and point out where these terms appear and
where special considerations are needed to complete the
derivation for the case of a periodically driven system.
We seek the time evolution of the Floquet-state pop-

ulations FkαðtÞ. However, since these populations are
special cases of the polarizations Pk0α0

kα ðtÞ defined above,
for k ¼ k0, α ¼ α0, we begin with the more general
expression for the time derivative of Pk0α0

kα ðtÞ:

i∂thf†k0α0 ðtÞfkαðtÞi ¼ h½f†k0α0 ðtÞfkαðtÞ; Htot −HðtÞ�i; ðA8Þ

where HðtÞ is the full single-particle Hamiltonian (includ-
ing driving) as defined above and Htot ¼ HðtÞ þHb þ
Hint þHres þHtun is the total Hamiltonian including the
baths and the system-bath coupling. The commutator in
Eq. (A8) includes two types of contributions, arising from
(1) the time derivative acting on the state with respect to
which the average is taken and (2) the explicit time
dependence of the operators f†k0α0 ðtÞ and fkαðtÞ. The latter
are given by Eq. (A7) and its Hermitian conjugate.
To simplify the expressions below, we introduce a more

compact notation in which k and the Floquet-band index α
are compressed into a single index a. In this notation, the
dressed electron-phonon coupling matrix elements will be

written as GðnÞ
α0αðk; qxÞ≡ GðnÞ

a0aðqxÞ. The commutator in
Eq. (A8) has two nontrivial terms related to the system-
boson and system-reservoir couplings Hint and Htun,
½f†aðtÞfbðtÞ; Hint� and ½f†aðtÞfbðtÞ; Htun�, respectively. The
system-boson coupling produces the following contribution:
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h½f†aðtÞfbðtÞ;Hint�i
¼
X
a0q

X
n

eiðEb−Ea0 ÞteinΩtGðnÞ
ba0 ðqxÞhf†aðtÞfa0 ðtÞðb−q þ b†qÞi

−
X
a0q

X
n

eiðEa0−EaÞteinΩtGðnÞ
a0aðqxÞhf†a0 ðtÞfbðtÞðb−q þ b†qÞi;

ðA9Þ
while the system-reservoir coupling leads to

h½f†aðtÞfbðtÞ;Hres�i ¼
X
l

X
n

eiEbteinΩtJ ðnÞ
l;bhf†aðtÞdli

−
X
l

X
n

e−iEate−inΩtJ ðnÞ�
l;a hfbðtÞd†li:

ðA10Þ
Note the appearance of “mixed” correlators such as
hf†aðtÞfa0 ðtÞðb−q þ b†qÞi and hf†aðtÞdli involving both sys-
tem and bath degrees of freedom, which appear in Eqs. (A9)
and (A10). The expressions are very similar to those that
would be obtained for a nondriven system, except that here
we find an additional sum over n which accounts for the
harmonic structure of the Floquet-state wave functions.
In order to describe scattering between Floquet states, we

need to solve for the equations of motion of these mixed
correlators. To do so, we must evaluate expressions such as

i∂thf†aðtÞfbðtÞb−qi ¼ h½f†aðtÞfbðtÞb−q; Htot −HðtÞ�i;
i∂thf†aðtÞdli ¼ h½f†aðtÞdl; Htot −HðtÞ�i: ðA11Þ

Similar expressions are also needed for i∂thf†aðtÞfbðtÞb†qi
and i∂thfbðtÞd†li.
The commutators in Eq. (A11) generate many terms. The

corresponding calculation is straightforward but somewhat
tedious. As above, the primary difference from the textbook
case of a nondriven system [49] is the appearance of sums
over Floquet harmonic indices.
Mathematically, the crucial point is that the commutators

in Eq. (A11) give rise to higher-order correlation functions
such as hf†af†cfbfdb†qbq0 i and hf†afbd†ldl0 i. In the first case,
we split the averages into products of averages of fermionic

and bosonic bilinear operators: hf†af†cfbfdb†qbq0 i≈
hf†afdihf†cfbihb†qbq0 i − hf†afbihf†cfdihb†qbq0 i, etc. The fer-
mionic averages involving system operators just give the
polarizations Pa0

a defined above. We take the averages of
the bosonic operators with respect to a thermal distribution
with inverse temperature β∶ hb†qbq0 i ¼ δqq0NðωqÞ, where
NðεÞ ¼ 1=ð1 − e−βεÞ and ωq is the frequency of bosonic
mode q. Likewise, we split the averages involving reservoir
degrees of freedom as hf†afbd†ldl0 i ≈ hf†afbihd†ldl0 i. For
the Fermi reservoir, we take hd†ldl0 i ¼ δll0DðElÞ, where
DðEÞ is the Fermi-Dirac function with temperature T
and chemical potential μres. For brevity, below we use
Dl ¼ DðElÞ.
Through the above approximations we close the equation-

of-motion hierarchy. After splitting the averages on the
right-hand sides of Eq. (A11), we integrate them from time 0
to t to find the correlation functions hf†aðtÞfbðtÞbqiðtÞ and
hf†aðtÞdliðtÞ needed as input for the equations of motion
of the polarizations [Eqs. (A8), (A9), and (A10)].
To give an explicit example, we focus on one term which

arises from the system-reservoir coupling

i∂thf†adli ¼ Elhf†adli þ
X
b

X
n

e−iEbte−inΩtJ ðnÞ�
l;b

× ½Pa
bð1 −DlÞ − ðδab − Pa

bÞDl�: ðA12Þ

The calculation for other terms yields similar expres-
sions. A straightforward formal integration, taking
hf†adbiðt ¼ 0Þ ¼ 0, then yields

hf†adli ¼
1

i

X
b

X
n

J ðnÞ�
l;b e−iElt

×
Z

t

0

dze−iðEb−ElÞze−inΩz

× ½Pa
bð1 −DlÞ − ðδab − Pa

bÞDl�: ðA13Þ

The next step is to introduce this result and its counterpart
for hd†lfai into Eq. (A10), for the contribution of the
system-reservoir coupling to the evolution of the popula-
tion Pa0

a [Eq. (A8)]. Doing so, we obtain

h½f†afa0 ; Htun�i ¼
1

i

X
lb

X
mn

J ðnÞ
l;a0J

ðmÞ�
l;b eiðEa0−ElÞteinΩt

Z
t

0

dze−iðEb−ElÞze−imΩz

× ½Pa
bð1 −DlÞ − ðδab − Pa

bÞDl� −
1

i

X
lb

X
mn

J ðnÞ�
l;a J ðmÞ

l;b e
−iðEa−ElÞte−inΩt

×
Z

t

0

dzeiðEb−ElÞzeimΩz½ðδa0b − Pb
a0 ÞDl − Pb

a0 ð1 −DlÞ�: ðA14Þ

Importantly, notice that the right-hand side of Eq. (A14) couples the evolution of the population Fa ¼ Pa
a to both the

diagonal and off-diagonal polarizations Pa
b. Thus, in principle, we do not have a closed set of equations for the populations

alone. In particular, for transient behavior (e.g., at early times when the driving is just switched on) such terms can not be
ignored.
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Close to the steady state, we may expect the off-diagonal
polarizations (coherences) to be small under certain circum-
stances. For a homogeneous system where the steady state
maintains translational invariance, the polarizations in the
steady state are diagonal in the electronic crystal momentum
Pk0α0
kα ∝ δkk0 . Furthermore, coherences between the two

Floquet bands can be suppressed in the steady state under
suitable conditions, which are discussed at length in
Appendix D. These conditions are expected to be met for
weak system-bath coupling, and we have verified that the
steady states resulting from our simulations are indeed in this
regime (see Appendix D).
For strong system-bath coupling, the conditions dis-

cussed in Appendix D might not be met, and a more
complicated situation may arise. There, the particular form
of system-bath coupling may try to drive the system toward
specific states other than the Floquet states. For example,
relaxation may occur into the eigenstates of the nondriven
system. The competition between driving and relaxation

may then lead to steady states featuring significant inter-
Floquet-band coherences.
In this work, we focus on the case of homogeneous

steady states, with weak (but nonetheless realistic) system-
bath coupling. We neglect all off-diagonal coherences,
setting Pa

b ∝ δab in Eq. (A14) and similarly for all other
terms in the equations of motion. Additionally, in the sums
over Fourier harmonics we only keep the terms for which
n ¼ m; when the Floquet-state populations evolve slowly
on the time scale of the driving period, the terms with
n ≠ m give rise to fast oscillations and thus produce
negligible contributions. With these two simplifications,
the standard Markovian approximation yields the full
Floquet kinetic equation

∂tFkα ¼ Iphkα þ Ireckα þ Itunkα ; ðA15Þ

with the collision integral for electron-phonon scattering
given by

Iphkα ¼
2π

ℏ

X
α0q

X
n

jGðnÞ
α0αðk; qxÞj2fFk−qxα0F̄kαNðℏωqÞ − FkαF̄k−qxα0 ½1þ NðℏωqÞ�gδðEkα − Ek−qxα0 − ℏωq − nℏΩÞ

þ 2π

ℏ

X
α0q

X
n

jGðnÞ
α0αðk; qxÞj2fFk−qxα0F̄kα½1þ NðℏωqÞ� − FkαF̄k−qxα0NðℏωqÞgδðEk−qxα0 − Ekα − ℏωq þ nℏΩÞ: ðA16Þ

Tunneling in and out of the Fermi reservoir is described by [see Eqs. (10) and (11) in the main text]

Itunkα ¼ 2π

ℏ

X
l

X
n

jJ ðnÞ
l;kαj2fF̄kαDðElÞ − Fkα½1 −DðElÞ�gδðEkα − El þ nℏΩÞ: ðA17Þ

The collision integral corresponding to radiative recombina-
tion looks identical to that for electron-phonon scattering in

Eq. (A16), with the matrix elements GðnÞ
α0αðk; qxÞ replaced by

the appropriate ones for coupling to the electromagnetic
environment. In our model, the matrix element for coupling
to bath photons is purely off diagonal in the basis of the
conduction and valence bands of the nondriven system. This
model is motivated by the form of radiative transitions for
electrons near k ¼ 0 in many experimentally relevant materi-
als. For simplicity, we modeled recombination as “vertical”
transitions [68], giving Grec ¼ grecð1 − δνν0 Þδqx;0δk;k0 .
According to our convention in Eq. (3), the fact thatGrec ∝

ð1 − δνν0 Þ requires a couplingbetween jϕm
kαi and jϕm0

kα0 i,where

m andm0 are separated by an odd integer for the case ~g∥ ¼ 0.
Furthermore, the conservation of energy expressed by the
delta function in Eq. (A16) requires n to be negative.
Therefore, in our model recombination only acts through
terms in Eq. (A16) with n < 0 odd. The dominant contribu-
tioncomes forn ¼ −1 forweakdriving.Correspondingly, the
emitted photon energy is large (on the order of the driving
frequency), and hence we set all Bose occupation factors for
photons to 0 (i.e., only spontaneous emission is included).
Finally, to get the collision integral (A16) into the form

of Eq. (7) in the text, we integrate over the delta function to
get the density of states for bosons with momentum qx
parallel to the system. This gives

Iphkα ¼
2π

ℏ

X
k0α0

X
n

jGðnÞ
α0αðk; qxÞj2fFk0α0F̄kαNðΔEnÞ − FkαF̄k0α0 ½1þ NðΔEnÞ�gρqxðΔEnÞ

þ 2π

ℏ

X
k0α0

X
n

jGðnÞ
α0αðk; qxÞj2fFk0α0F̄kα½1þ Nð−ΔEnÞ� − FkαF̄k0α0Nð−ΔEnÞgρqxð−ΔEnÞ; ðA18Þ

where in the above qx ¼ k − k0 and ΔEn ¼ Ekα − Ek0α0 − nℏΩ.
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APPENDIX B: SYSTEM SIZE SCALING
OF TRANSITION RATES

In this section, we discuss the scaling of the electron-
boson-scattering rates Wk0α0

kα with the system size. We will
show that in the limit of a large system, the rates scale as
approximately 1=L. As we explain below, this implies that
both γrec and Λinter ¼ LWinter, defined in Eq. (8) and the
discussion below, are independent of system size. An
important consequence is that the excitation density
nsteady is also independent of the system size, as one would
naturally expect. We first focus our discussion on radiative
recombination, i.e., the interaction with a photon bath, and
then explain how it can be easily applied also to a bath of
phonons. To simplify the discussion, we illustrate the
scaling using a nondriven toy model, but the discussion
can be easily generalized for the transition rate between
Floquet states in a driven system.
We consider an electronic Bloch Hamiltonian of the

form H0ðkÞ ¼ f2A½1 − cosðkaÞ� þ Egapgσz. We define the

Bloch states as jkαi ¼ ð1= ffiffiffiffi
N

p ÞPðN−1Þa
x¼0 eikxjx; αi, where

c, v correspond to the positive and negative eigenvalues of
σz, a is the lattice constant, and L ¼ Na is the electronic
system size.
The electron-photon interaction Hamiltonian, in the

rotating-wave approximation, is given byHint¼
P

qHintðqÞ,
with

HintðqÞ ¼
X
x

Mqeiq·rðc†x;vcx;cb†q þ c†x;ccx;vb−qÞ þ H:c:;

ðB1Þ

where in the above c†x;α are creation and annihilation
operators for Wannier states in the conduction and valence
bands and jMqj depends on the volume of the electromag-
netic environment as jMqj ∼ 1=

ffiffiffiffiffiffiffiffiffi
Venv

p
. Note that HintðqÞ is

diagonal in the lattice coordinate x. The rate for recombi-
nation from jk; ci to jk0; vi is then given by

Wk0v
kc ¼ 2π

ℏ

X
q

����Mq

X
x

eiðk−k0þqÞx

N

����
2

δðEkc − Ek0v − ℏωqÞ;

ðB2Þ

where fEkαg are the eigenenergies of H0ðkÞ. Importantly,
the photon momentum lives on a different reciprocal lattice
than the momenta of the electronic system q ¼ ð2π=LenvÞn.
For simplicity, we drop the q dependence ofMq. Summing
over the transverse photon momenta q⊥ yields a 2D density
of states for the transverse modes with qx held fixed

Wk0v
kc ¼ 2π

ℏ

X
qx

jMj2
N2

���X
x
eiðk−k0þqÞx

���2ρqxðEkc − Ek0vÞ:

ðB3Þ

Note that ρqxðEkc − Ek0vÞ has dimensions of 1=energy and
scales as L2

env. The photons emitted by the radiative recom-
bination transition have a typical energy of Egap, and there-
fore the corresponding photon momentum ℏq� ¼ Egap=c
plays an important role in the calculation of the rates. For
simplicity, we set the density of states ρqxðEkc − Ek0vÞ to be a
constant ρð2DÞ0 for jqxj ≤ q� and 0 otherwise. This gives

Wk0v
kc ¼ 2π

ℏ
M2ρð2DÞ0

N2

Xq�
qx¼−q�

���X
x
eiðk−k0þqÞx

���2: ðB4Þ

Assuming a large environment volume, we can write

Wk0v
kc ¼ 2π

ℏ
M2ρð2DÞ0 Lenv

N2

Z
q�

−q�

dq
2π

���� 1 − eiqL

1 − eiðk−k0þqÞa

����
2

: ðB5Þ

Recalling that M ∼ 1=
ffiffiffiffiffiffiffiffiffi
Venv

p
, we see that the factor

M2ρð2DÞ0 Lenv is independent of environment size.
The calculation now amounts to evaluating the integral in

Eq. (B5). Using integers to represent momenta as in
k ¼ ð2π=LÞn, we denote this integral by gNðn − n0Þ, where
the N subscript denotes the fact that the integral depends on
the system size L ¼ Na. We are interested in the scaling of
this integral with N. We define the dimensionless variable
~q ¼ qL and divide by N2 for later convenience, whereby
the integral becomes

gNðmÞ
N2

¼ 1

L

Z
q�Na

−q�Na
d ~q

sin2ð ~q=2Þ
N2sin2ð 1

2N ½2πmþ ~q�Þ : ðB6Þ

Note that in the prefactor on the right-hand side above, L is
the electronic system size. In order for Wk0v

kc ∼ 1=L, which
guarantees that, e.g., nsteady remains independent of system
size, one has to have that ðgNðmÞ=N2Þ ∼ 1=L.
In the following, we assume q�a ¼ ðEgapa=ℏcÞ ≪ 1,

which means the photon wavelength is much larger then the
lattice spacing of the system. We furthermore consider the
limit where the system size is larger than the photon
wavelength N ≫ 1=ðq�aÞ. We start again from Eq. (B6).
Clearly, for gNðmÞ=N2 to be of order 1=L, we must have
2πjmj≲ Nq�a, which guarantees that the integral picks the
contribution where the sine function in the denominator of
(B6) vanishes. Physically, this corresponds to the require-
ment that jk − k0j≲ q�.
We now need to check how the integral in Eq. (B6) scales

with N. We do this explicitly for m ¼ 0; the result can be
generalized for any 2πjmj≲ Nq�a. We break the integral
into three integration regions: (1) ½− ffiffiffiffiffiffiffiffiffiffiffi

q�Na
p

;
ffiffiffiffiffiffiffiffiffiffiffi
q�Na

p �,
(2) ½ ffiffiffiffiffiffiffiffiffiffiffi

q�Na
p

; q�Na�, and (3) ½−q�Na;−
ffiffiffiffiffiffiffiffiffiffiffi
q�Na

p �. In region
2, we can give an upper bound to the integral by

Z
q�Na

ffiffiffiffiffiffiffiffi
q�Na

p d ~q
1

N2sin2ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q�a=4N

p Þ �!
N→∞

C; ðB7Þ
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where C is a constant. The same result applies to the
integral in region 3. In region 1, we expand the denominator
to obtain

Z ffiffiffiffiffiffiffiffi
q�Na

p

−
ffiffiffiffiffiffiffiffi
q�Na

p d ~q
sin2ð ~q=2Þ

1
4
~q2

�
1 −

~q2

12N2
þ � � �

�
: ðB8Þ

The first term in the above expansion clearly gives an order-
one contribution, while the remaining terms vanish in the
limit of large N.
The result of the above analysis is that gNðmÞ≈

ðN2=LÞḡðmÞ, where ḡðmÞ is independent of system size.
The full expression for gNðmÞ may contain terms that scale
slower thanN2=Lwith the system size. Finally, inserting this
result this back into Eq. (B5), we arrive at the scalingWk0c

kv ∼
1=L of rateswith the system size in the limit of a large system.
Putting this into the definition of the total rate of

recombination out of the state jk; ci, defined by
Wrec

k ¼ P
k0W

k0v
kc , we get

Wrec
k ¼ L

Z
dk0

2π
Wk0v

kc ≈ L
Egap

πℏc
Wkv

kc: ðB9Þ

ThereforeWrec
k is independent of system size, as promised.

Likewise, the total rate density γrec ¼ ð1=LÞPk;k0W
k0v
kc ¼R ðdk=2πÞWrec

k is independent of system size. Note that
the factor ðEgap=πℏcÞ in Eq. (B9) accounts for the photon
density of states in the longitudinal direction, whereby
ρ3D ¼ ðEgap=πℏcÞρ2D.

1. Scaling of phonon matrix elements

The treatment of the phonon matrix elements follows
along the same lines as above. Let us treat the longitudinal
size (along the direction of the one-dimensional system) of
the phonon bath to be equal to the system size L. This
ensures the conservation of crystal momentum k0 þ q ¼ k.
We start from the analogue of Eq. (B2), for phonon-
scattering rates. Performing the sum over x, we obtain a
factor of N2δk0−k;qx . In this case, however, the factorM

2ρ2D0
scales as approximately 1=L. Therefore, Wk0α0

k0α ∼ 1=L.

APPENDIX C: NUMERICAL SIMULATIONS

In our numerical simulations, the steady-state distribu-
tions are obtained by direct evolution of Eq. (4). The results
are independent of the initial distribution fFkαðt ¼ 0Þg.
In Sec. III, we discuss the square root dependence of

the excitation density nsteady on the ratio πWrec=kRWinter.
This behavior is observed in our numerical simulations, as
shown in Fig. 3. Below, we discuss how each factor in the
above ratio is calculated from the numerical data. For
recombination, the quantityWrec is calculated by averaging
the quantity Wrec

k [defined below Eq. (8)] in the interval
½−kR; kR�. SinceWrec

k becomes negligible far outside of this
interval, we define Wrec ¼ π=ðkRLÞ

P
kW

rec
k , with

Wrec
k ¼ 2π

ℏ
jgrecj2ρ0

X∞
n¼1

����
X
m

hϕm−n
kþ jkvihkcjϕm

k−i
����
2

: ðC1Þ

To estimate the typical interband-scattering rate from
phonons, we evaluate Winter by taking an average
interband-phonon-scattering rate near the resonances �kR.
The explicit form for Winter we use is

Winter ¼ 2

N2
ε

XkRþε

k¼kR−ε

XkRþε

k0¼kR−ε

Wk0−
kþ : ðC2Þ

In the above, the rates Wk0−
kþ ¼ Wk0−

kþ ð0Þ, defined in
Eq. (6), corresponds to interband transitions from the upper
to the lower Floquet band, through the energetically
allowed phonon-emission processes in the model that we
studied numerically. The factor of 2 comes from summing
over transitions at momenta around �kR. Furthermore, in
Eq. (C2), we denote by Nε the number of k points
corresponding to the region near kR set by ε ¼ ðπ=10aÞ.
The excitation density, normalized to the thermal
density, is fitted using nonlinear least squares, to the
form log10ðne=nthÞ ¼ plog10½ðkR=πÞWrec=Winter� þ ½b −
log10ðnthÞ� to obtain p ¼ 0.49 and b ¼ 0.95with a standard
error of 0.001 in the region away from saturation.

APPENDIX D: POPULATIONS VS
COHERENCES IN THE

STEADY STATE

Throughout this paper, we have used the basis of single-
particle Floquet states to describe the steady state of the
driven system. We focus on a regime in which the quadratic
correlators in the steady state are approximately diagonal
in the Floquet-state basis (i.e., where the “off-diagonal”
correlations of the form hf†kαðtÞfk0βðtÞi, and higher-order
correlations, are negligible for k ≠ k0 and/or α ≠ β). In this
regime, the steady state of the system can be efficiently
described in terms of occupation numbers of the single-
particle Floquet states.
In this Appendix, we obtain a criterion for the system to

be in the “diagonal” regime described above. The criterion
can be summarized as 1=ðΔkRτscatÞ ≪ 1, where τscat is a
typical scattering time in the steady state of the system. (See
below for a formal definition.) To relate this condition to
experimentally relevant quantities, first recall that ΔkR , the
Floquet gap at the resonance momentum, is directly
proportional to the drive amplitude ΔkR ¼ V0j~gkR;⊥j; see
Eq. (2). Heuristically, the value of τscat is comparable to the
scattering time of charge carriers (in the same system
studied throughout this paper) at thermal equilibrium in the
absence of driving, but with an effective temperature
yielding a similar excitation density as in the steady state
of the driven system.
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1. Criterion for the diagonal regime

Our approach is to derive a Markovian master equation
for the reduced density matrix describing the modes with
momentum k0, for each k0. In the limit 1=ðΔkRτscatÞ → 0,
we will show that the self-consistent solution to this set of
equations yields the steady state obtained in the main text.
In particular, all of the “off-diagonal” correlations such as
hf†kαðtÞfk0βðtÞi with α ≠ β strictly vanish in this limit.
To set up the approach, we consider the Hilbert

space associated with a specific momentum k0, which
can be spanned by the state jei≡ j0i, where j0i is the
vacuum for the single-particle modes at momentum k0,
j−i≡ f†k0;−ðtÞj0i, jþi≡ f†k0;þðtÞj0i, and j2i≡ f†k0;þðtÞ
f†k0;−ðtÞj0i. Accordingly, the reduced density matrix
ρðk0Þ in this space (given by tracing out the electronic
degrees of freedom at all other momenta) is given by a
4 × 4 matrix. Importantly, there are no off-diagonal corre-
lations between states with different occupation numbers
[69]. Therefore, the only nonzero elements in ρðk0Þ are
ρjjðk0Þ with j ¼ fe;þ;−; 2g and ρ�þ−ðk0Þ ¼ ρ−þðk0Þ. As
in the cluster-expansion approach (see Appendix A), we
assume that four-point correlators can be well approxi-
mated by factorization into products of two-point correla-
tors. The relation between the density matrix ρðk0Þ and the
two-point correlators hf†k0αfk0α0 i is simple: For the diagonal
elements of ρðk0Þ, we have ρeeðk0Þ ¼ F̄k0;þF̄k0;−,
ρ−−ðk0Þ ¼ Fk0;−F̄k0;þ, ρþþðk0Þ¼Fk0;þF̄k0;−, and ρ22ðk0Þ¼
Fk0;þFk0;−. The off diagonals are given by ρþ−ðk0Þ ¼
hf†k0−fk0þi. In the following, we will denote ρ≡ ρðk0Þ.
The derivation of the Markovian master equation follows

a standard weak coupling procedure. (For a reference
discussing the master equation for periodically driven
systems, see Ref. [70].) In our case, the bath consists of
the bosonic baths discussed in Sec. III, the fermionic
reservoir discussed in Sec. IV, as well as the electrons at
all other momenta k ≠ k0. Here, we assume that the
electrons with k ≠ k0 are in a time-periodic steady state
ρsteady, which is determined self-consistently by the sol-
utions to the master equations for all values of k0. This time
dependence of the bath’s density matrix is an important
difference between the situation in this work and the one
described in Ref. [70]. Making the appropriate minor
modifications, we obtain an evolution equation for the
“coherence vector” ρ ¼ ðρee; ρ−−; ρþþ; ρ22; ρþ−; ρ−þÞT :

_ρ ¼ Lρ; L ¼
�

R V

V 0 C

�
: ðD1Þ

Generically, the Liouvillian L in Eq. (D1) depends peri-
odically on time LðtÞ ¼ P

me
imωtLm. As in Ref. [70], here

we keep only the zero-frequency component L ¼ L0,
which is justified when ρ changes slowly in time. The
dimensions of the submatrices R, V, V 0, and C are 4 × 4,

4 × 2, 2 × 4, and 2 × 2, respectively. Note that the matrix L
depends on the occupation factor of all other momentum
states k ≠ k0.
In the formulation above [Eq. (D1)], the evolution

described by the kinetic equation (4) is incorporated in
the submatrix R. The collision integrals Ikα in Eq. (4) can be
written in terms of the matrix elements of R by taking the
time derivative of the identity Fk0α ¼ ραα þ ρ22. Therefore,
if we restrict Eq. (D1) to the first four components of ρ for
each momentum, the solution for this set of equations will
be identical to the solution to the kinetic equation [Eq. (4)].
To study the coherences ρþ−, ρ−þ, we need to take into

account the submatrices V, V 0, and C. The matrix C takes
the form

C ¼
�

iΔE Cþ−;−þ
C−þ;þ− −iΔE

�
; ðD2Þ

where ΔE ¼ Ek0;þ − Ek0;−.
We now investigate the role of the coherences in

Eq. (D1) using perturbation theory for small jVj=ΔE and
jV 0j=ΔE, where jVj ¼ maxi;jjVijj. In the limit jVj=ΔE,
jV 0j=ΔE → 0, the zero-order steady-state solution Lρ ¼ 0
reduces to Rρ ¼ 0, where ρ is restricted to the first four
components, the remaining two being 0. As discussed
above, this solution is identical to the solution of the kinetic
equation used in the main text.
For finite but small values of jVj=ΔE ∼ jV 0j=ΔE, we

compute corrections to the steady-state solution, i.e.,
changes to the zero eigenvector of L due to mixing in
contributions from the ρþ−, ρ−þ subspace. Here, ΔE serves
as an “energy denominator” which effectively decouples
the populations from the coherences.
We now show that the matrix elements of the subma-

trices V and V0 are similar in magnitude to the matrix
elements of R. Therefore, our perturbative approach is
justified when jRj=ΔE ≪ 1. This allows us to formulate the
criterion for the applicability of the kinetic equation purely
in terms of the rates discussed in the main text.
To see why the matrix elements of V, V 0, and R are

similar in magnitude, we consider as an example the matrix
element Vee;þ− for the case of zero temperature:

Vee;þ− ¼ F̄k0α0
X
k0α0

ðVk0α0þ þ Vk0α0
− Þ; ðD3Þ

where

Vk0α0
� ¼ π

ℏ

X
hϕmþn

k0α0 jĜðqxÞjϕm
k�iðhϕm0þn

k0α0 jĜðqxÞjϕm0
k∓iÞ�

× ρqxð−ΔEð�Þ
n þ nℏΩÞ: ðD4Þ

Following the notation in Eq. (6), we denote ΔEðβÞ
n ¼

Ek0;α − Ek0;β þ nℏΩ, and the sum is taken over qx, m,m0, n.
In comparison, the matrix element Ree;þþ is given by
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Ree;þþ ¼
X
k0α0

F̄k0α0Wk0α0
k0þ; ðD5Þ

where Wk0α0
k0þ is defined using Eq. (6). Equations (6)

and (D4) are of a very similar form. [Note that in
Eq. (D4), the � and ∓ signs prevent a completion to a
square as in Eq. (6).] Comparing the two equations, we see
that jVee;þ−j ∼ jRee;þþj.
In summary, the above discussion gives a clear criterion

for the regime in which the off-diagonal coherences ρþ−
and ρ−þ can be neglected. We define τ−1scat ¼ jRj, where R is
computed in the self-consistent steady-state solution of
Eqs. (D1) for all momenta k0, at zeroth order in jVj=ΔE.
Intuitively, τ−1scat signifies the typical scattering rate in or out
of the momentum state at k0, in the steady state.
Furthermore, the quasienergy difference ΔE is bounded
from below by the Floquet gap ΔE ≥ ΔkR . From the
discussion above, we see that the coherences ρþ− and
ρ−þ can be neglected in the limit ðΔkRτscatÞ−1 ≪ 1.

2. Comparison between τscat and scattering rates
in nondriven systems

What is the typical magnitude of ðΔkRτscatÞ−1? The
Floquet gap ΔkR depends on driving power and may be
on the order of 0.5 ps−1 or even larger in experimentally
accessible setups (see, e.g., Refs. [21,71]). Our model
includes three scattering mechanisms: electron-phonon
interaction, radiative recombination, and the coupling to
the Fermi reservoir. Typically in semiconductors, radiative
recombination rates are on the order of 1 ns−1 and can
therefore be neglected in comparison to ΔkR . Phonon-
scattering rates can be appreciably larger. An order of
magnitude for the “bare” phonon-scattering rate (not sup-
pressed, e.g., by Pauli blocking) is on the order of 1 ps−1.
In nondriven systems, Pauli blocking and phase-space

considerations can significantly reduce the scattering rates
for the populated states, relative to their bare values. As we
discuss below, a similar suppression of the scattering rates
occurs in the driven system. Therefore, we can expect τ−1scat
in the steady state to be of similar magnitude to the
scattering rate in an equilibrium semiconductor at a temper-
ature which supports a similar excitation density.
Importantly, even when the coupling to the reservoir is
strong enough to significantly suppress the densities of
excited electrons and holes, it may induce tunneling rates to
and from the reservoir which are still significantly smaller
than the “bare” rate for scattering from phonons.
To see how Pauli blocking suppresses the scattering rates

in the steady state of the driven system, we focus our
attention to regions near the resonance momenta �kR,
where the distributions of excited electrons neðkÞ ¼
hf†kþfkþi and holes nhðkÞ ¼ 1 − hf†k−fk−i are concen-
trated. In the regime of low excitation densities studied
in this paper, the fermionic distributions neðkÞ and nhðkÞ
are far from degenerate (see Fig. 4). Since neðkÞ and nhðkÞ

are highly peaked around the minima and maxima of the
Floquet bands, intraband scattering from acoustic phonons
is suppressed due to reduced phase space for these
processes. The interband phonon-scattering rates are also
reduced because of phase-space arguments: Recall that an
electron in the upper Floquet band can only relax to
momentum states around kR in the lower Floquet band.
These are the considerations which lead us to the square
root behavior in Eq. (9). In conclusion, for the momentum
regions near the resonances, we expect a suppression of the
scattering rate τ−1scat compared to its “bare” value, making it
comparable to the scattering rate of electrons (or holes) near
the band minimum (maximum) in the nondriven system, at
an effective temperature supporting a comparable excita-
tion density.
In other regions in momentum space jkj ≫ kR and

jkj ≪ kR, the steady state has Fkþ ≈ 1 and Fk− ≈ 0. The
coherences appearing in the perturbative corrections to the
steady state must be suppressed in the limit Fkþ → 1 and
Fk− → 0, simply by the fact that ρðk0Þ is a positive matrix
(i.e., the magnitude of a coherence between two states is
limited by the geometric mean of the probabilities for being
in those two states). This conclusion also follows from
examining the scattering rate in these momentum regions,
as we discuss below.

3. Numerical evaluation of ΔEτscat
In order to compare the scattering rates in the steady state

to the Floquet gap, we numerically evaluate the scattering
rate τ−1scat (or equivalently, jRj) in the steady state of the
system for the same parameter regime analyzed in the main
text. We denote RαðkÞ≡ jRαα;ααðkÞj; see Eq. (D1). Recall
that the structure of the matrix R requires that RαðkÞ is the
sum of the off-diagonal matrix elements of R in the column
αα. Therefore, it is larger than each one of them separately.
The value of RαðkÞ is just the inverse lifetime of a test
particle which we initialize in a Floquet state α at
momentum k

RαðkÞ ¼
X
k0α0

fWk0α0
kα ½1þ NðEkα − Ek0α0 Þ�

þWkα
k0α0NðEk0α0 − EkαÞ þWrec

k δkk0δα−δα0þgðF̄k0α0 Þ
þ Γ0

kα½1 −DðEkαÞ�: ðD6Þ

In the above, the first two terms correspond to electron-
photon scattering. In the first term, the rates Wk0α0

kα ¼
Wk0α0

kα ð0Þ, defined in Eq. (6), correspond to the energetically
allowed phonon-emission processes in the model we
studied numerically. Note that Wk0α0

kα ¼ 0 when Ek−
Ek0 < 0, due to the requirement for a nonzero density of
states for the phonons. The second term in Eq. (D6)
corresponds to phonon absorption, described by the
rates Wkα

k0α0 ¼ Wkα
k0α0 ð0Þ which vanish when Ek − Ek0 > 0.

Furthermore, in Eq. (D6), Wrec
k [see Eq. (C1)] is the
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radiative recombination rate out of the state k;− to the state
k;þ. (Recall that we model recombination with “vertical”
transitions.) The results are given in Fig. 6, which
shows RαðkÞ normalized to the Floquet gap ΔkR in both
Floquet bands, for two representative values of the
coupling strength to an energy-filtered Fermi reservoir.
The chemical potential of the reservoir is placed in the
middle of the Floquet gap. In the same figures, we plot the
numerically obtained distributions of electrons neðkÞ and
holes nhðkÞ.
Let us first examine the situation when the system is not

coupled to the Fermi reservoir; see Fig. 6(a). Consider the
scattering rates in the lower Floquet band (shown in the
lower panel). For values of jkjwhich are significantly larger
than kR, the scattering rate vanishes. This is due to Pauli
blocking, which prohibits scattering from phonons. Other
scattering mechanisms are absent in this momentum region:
For small ~g∥ or for weak driving, the radiative recombi-
nation rate out of these states is strongly suppressed.
Therefore, overall we expect negligibly small scattering
rate in the lower Floquet band for jkj ≫ kR. In the
momentum region jkj < kR, recombination is active. For
the simulations shown, the “bare” recombination rate
(defined without taking into account the occupations
Fkα) is taken to be Wrec

k ¼ 3 × 10−5ΔkR , in line with
experimentally accessible parameter regimes. Therefore,
a small nonzero RαðkÞ, set by the recombination rate, can
be seen in Fig. 6(a). Finally, for momenta jkj ≈ kR, more
significant scattering rates can be observed, due to the
nonzero density of holes and the possibility for scattering
from phonons. However, due to phase-space restrictions,
the scattering rate is strongly suppressed relative to its
“bare” value (see below), and therefore it is significantly

smaller than the Floquet gap. [Note the scale of the vertical
axis in the lower panel of Fig. 6(a)].
Next, we examine the rates in the upper Floquet band

[upper panels of Fig. 6(a)]. In this band, momentum states
with jkj ≫ kR and jkj ≪ kR are mostly unoccupied, and
therefore a test particle initialized in these momentum states
is expected to exhibit the “bare” phonon-scattering rate.
This “bare” scattering rate is the predominant contribution
to the maximal scattering rate appearing in Fig. 6.
Importantly, near the resonances k ≈ kR the scattering rate
is significantly suppressed compared with this bare scatter-
ing rate due to reduced phase space for phonon scattering
and therefore is significantly smaller than the Floquet gap.
Finally, we consider the scattering rates when the system

is connected to an energy-filtered Fermi reservoir. We note
that increasing the coupling strength to the Fermi reservoir
increases the scattering rates in the upper Floquet band for
states with jkj≲ kR. This is a result of the significant
original conduction-band component in these Floquet
states, which is coupled to predominantly empty reservoir
states (up to thermally induced corrections). The rates in the
lower Floquet band are only weakly affected, as this band is
coupled to predominantly filled reservoir states.
In summary, near the resonances k ≈ kR, the criterion

ðΔkRτscatÞ−1 ≪ 1 strictly holds. Away from the resonances,
ðΔkRτscatÞ−1 < 1. As we discussed above, the positivity of
the density matrix ρðkÞ implies a strong suppression of any
corrections in ðΔkRτscatÞ−1. Indeed, when perturbatively
computing the corrections to the steady state, the bare rates
appearing for jkj ≫ kR and jkj ≪ kR in the upper Floquet
band have negligible effects since the occupations in the
upper Floquet band at these momenta are negligible (as
indicated Fig. 6).

APPENDIX E: PARTICLE-HOLE ASYMMETRY
DUE TO AN ENERGY-FILTERED LEAD

In Sec. IV D, we studied the situation where the system is
coupled to an energy-filtered Fermi reservoir with its
chemical potential μres placed in the middle of the
Floquet gap. Here, we generically find a nonzero difference
between the densities of excited electrons and holes
Δn ¼ ne − nh, despite the symmetry of the Floquet band
structure. This highlights one of the interesting features of
driven systems, where steady-state level occupations
depend both on the state of the bath as well as on the
detailed form of the system-bath coupling.
To see how a nonzeroΔn arises, we first note that in order

to have μres in the middle of the Floquet gap, we align it with
the resonant energy 1

2
ℏΩ in the conduction band. This

placement manifestly breaks the particle-hole symmetry of
the system. Consider how the Floquet states jψkαðtÞi are
coupled to the reservoir, as depicted in Fig. 2. Because
the reservoir is energy filtered, within our convention for
defining the quasienergy zone the available reservoir states
only couple to the jϕ0

�i harmonics of the Floquet states; i.e.,

(a) (b)

FIG. 6. Scattering rates (red) RαðkÞ [see Eq. (D6)] in the steady
state of the system. The top (bottom) plot corresponds to the
upper (lower) Floquet band. Also shown (blue) are the distribu-
tions neðkÞ an nhðkÞ in each Floquet band. In (a), we show the
case of half filling, with no reservoir coupling (corresponding to
Fig. 3 in the main text), while in (b) we take log10ðϒÞ ¼ 3.15.
Other model parameters are the same as for the green (middle)
curve in Fig. 3. Note the enhanced scale for the rates in the bottom
plots and the enhanced scale for the distributions in (b).
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only the rates with n ¼ 0 in Eq. (10) are nonzero. Consider
the situation now for weak driving or small ~g∥. The n ¼ 0
harmonics are then predominantly formed from conduction-
band components jϕ0

k�i ≈ jc; ki. Therefore, in the lower
Floquet band, only states with momenta −kR ≲ k≲ kR have
an appreciable jϕ0

k−i component, and therefore only those
are coupled to the reservoir. The situation in the upper
Floquet band is reversed: Only states with jkj ≳ kR have an
appreciable jϕ0

kþi component and are therefore coupled to
the reservoir.
From the above considerations, we see that the rates Γ0

kþ
and Γ0

k− are not equal in the regions around the resonance
momenta kR. As a consequence, the following rates are not
equal: (1) the rate for excited electrons in the distribution
neðkÞ to tunnel to the reservoir and (2) the rate for electrons
in the reservoir to tunnel into empty states of the distri-
bution nhðkÞ. The difference between these rates leads to
the nonzero value of Δn.
To conclude this section, we examine howΔn behaves as

μres is shifted away from the middle of the Floquet gap. In
Sec. IV D, we discussed an incompressible behavior of the
system. Specifically, Fig. 5(c) shows that n̄ ¼ ne þ nh,
which characterizes the number of “free carriers,” is
unchanged by small shifts of μres around the middle of
the Floquet gap. Here, we complement this result by
plotting the behavior for Δn in Fig. 7. The small slope
ofΔnðμresÞ can be attributed to an activated behavior due to
the finite temperature of the reservoir. Note that jΔnj
decreases as the coupling to the fermionic reservoir is
increased. This is expected as jΔnj < jn̄j.
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