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Improving the understanding of strongly correlated quantum many-body systems such as gases of
interacting atoms or electrons is one of the most important challenges in modern condensed matter physics,
materials research, and chemistry. Enormous progress has been made in the past decades in developing
both classical and quantum approaches to calculate, simulate, and experimentally probe the properties of
such systems. In this work, we use a combination of classical and quantum methods to experimentally
explore the properties of an interacting quantum gas by creating experimental realizations of continuous
matrix product states—a class of states that has proven extremely powerful as a variational ansatz for
numerical simulations. By systematically preparing and probing these states using a circuit quantum
electrodynamics system, we experimentally determine a good approximation to the ground-state wave
function of the Lieb-Liniger Hamiltonian, which describes an interacting Bose gas in one dimension. Since
the simulated Hamiltonian is encoded in the measurement observable rather than the controlled quantum
system, this approach has the potential to apply to a variety of models including those involving
multicomponent interacting fields. Our findings also hint at the possibility of experimentally exploring
general properties of matrix product states and entanglement theory. The scheme presented here is

applicable to a broad range of systems exploiting strong and tunable light-matter interactions.
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Progress in revealing relations between solid-state physics
and quantum information theory has constantly extended the
range of quantum many-body problems that are tractable
with classical computers. One such successful approach is
the density matrix renormalization group (DMRG), which
was introduced by White in 1992 [1] and since then
developed into a leading method for numerical studies of
strongly interacting one-dimensional lattice systems [2].
Later it was realized that the DMRG can be interpreted
as a variational optimization over matrix product states
(MPS) [3,4]. The class of matrix product states [5,6]
naturally incorporates an area law for the entanglement
entropy [7] and is thus ideally suited to parametrize many-
body states with finite correlation length [8].

An interesting connection between the MPS formalism
and open quantum systems has recently been discovered
[9], which led to the suggestion of using the high level of
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experimental control achievable over open cavity QED
systems to create continuous matrix product states [10] as
itinerant radiation fields for the purpose of quantum
simulations [11,12]. In this article, we provide experimental
evidence that this concept is indeed capable of determining
the properties of strongly correlated quantum systems and
offers promising perspectives, complementary to existing
digital and analog quantum simulation approaches [13]
explored, for example, with trapped atoms and ions
[14-18] or superconducting circuits [19-21].

In clear distinction to previous experiments, here, we
simulate a continuous quantum field theory rather than a
lattice model. In particular, we study the ground state
of the Lieb-Liniger model H{= [dxH = [dx(N+T+W)
[22], which describes a gas of interacting bosons confined
in a one-dimensional continuum [23], as schematically
depicted in Fig. 1(a). Here, N = —/ll/A/ll/A/x is the potential
energy, T = 0,10, is the kinetic energy of particles,
and W = 1}(12/;)212/)2( is the interaction energy expressed in
second quantization by the field operator y,. The Lieb-
Liniger model has only one intensive parameter, v = v/p,
where p = (), ) is the average particle density and v the
interaction strength. The ground-state energy of this model
can be calculated analytically using the Bethe ansatz [22].
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The calculation of two-point correlation functions requires
the use of numerical methods such as the quantum
Monte Carlo method or DMRG [10]. The fact that this
model is well understood makes it an ideal test case to
benchmark the as yet unexplored quantum variational
algorithm recently proposed by Barrett et al. [12].

In the experiments presented here, we prepare continu-
ous matrix product states |¢(1)) [10,12] as microwave
radiation fields propagating along a one-dimensional
transmission line; see Fig. 1(b). The radiation fields are
generated by an ancillary quantum system—in our case a
tunable circuit QED system [24]—which is coupled with
rate k to the transmission line. Notably, any radiation field
generated in this way is described by a continuous matrix
product state [12] with a bond dimension equal to the
number of energy levels participating in the dynamics of
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FIG. 1. Schematic of the interacting Bose gas and the principle

of the quantum variational algorithm. (a) Bosonic particles with
kinetic energy T are propagating in one dimension along the x
axis. Repulsion between particles mediates an interaction energy
W. The particle density p of the gas is controlled by the chemical
potential 4. (b) We experimentally simulate the ground state of &
by employing a variational minimization procedure. A tunable
cavity QED system is used to generate radiation fields emulating
continuous matrix product states |¢(A)) in a 1D transmission line.
The average energy E, = (¢(7\)|I:I |p(X)) of the simulated
Hamiltonian is experimentally determined from measured corre-
lation functions. External control fields A are used as variational
parameters. (c),(d) Examples of first-order Gm(’r) and second-
order ¢ (z) correlation functions measured (dots) in super-
conducting circuits and simulated (solid lines) using a master
equation approach for the indicated drive rates €, effective
anharmonicity «/27 =5.2 MHz, and cavity decay rate
k/2m = 2.2 MHz.

the ancillary quantum system [9]. We vary the quantum
state |¢(4)) by tuning a set of two external variational
parameters A = (a, Q). Here, Q is the drive rate of a
coherent field applied resonantly to the upper eigenmode
of the coupled system and « is the effective anharmonicity
of the driven mode. Tunability of the effective anharmo-
nicity a is experimentally achieved by employing a qubit
of which both the frequency and its coupling to the cavity
are adjustable in situ during the experiment [25]; see
Appendix A 5 for details.

The variational ground state of the Lieb-Liniger
Hamiltonian A is found by evaluating the expectation
value E, = (¢p(1)|H|p(1)) = (N) + (T) + (W) and mini-
mizing E; with respect to the variational states |¢(4))
created and characterized in our experiments. The con-
trolled cavity QED system is thus used solely to create
characteristic variational states |¢(1)), while the expect-
ation value of the simulated Hamiltonian is determined by
the measured correlation functions of the created states
|p(2)), as discussed below. Any model of which the
corresponding expectation values can be measured is
therefore accessible with this approach. For example,
simulated Hamiltonians could include terms with finite-
range interactions | dxw(x—y)l/?iy?;y?yl;?x, symmetry-
breaking terms ~({2 4+ H.c.) [26], or terms composed of
multiple coupled fields [27]. Multibody interactions could
be incorporated by measuring higher-order correlation
functions of the created variational states. In general, the
controlled quantum system then needs to become suffi-
ciently complex and flexible in order to be capable of
generating states capturing the relevant ground-state
physics.

Given the photonic realization of |¢(4)), the measure-
ment of E, translates into the measurement of photon
correlation functions. Spatial correlations in the field i, are
mapped onto time correlations in the cavity output field
Aoy (7) by identifying W, = doy(t = x/5)/+/s, wWhere the
scale parameter s = x/f acts as an additional variational
parameter [12]. Entanglement in the matrix product states
thus corresponds to entanglement between photons emitted
from the cavity at different times. According to this
correspondence, E,; for the Lieb-Liniger Hamiltonian
can be calculated from the measured first- and second-
order correlation functions G (7) = (al,(z)ao, (0)) and
G (2) = (a5u(0)a5u(7) dou(7) e (0)) [28], which can be
determined experimentally by measuring the cavity output
fields. More specifically, the average kinetic energy
(T) =57 [ dw @*G" (w) is calculated from the Fourier
transform of the first-order correlation function f}(l)(w),
the interaction energy is (W) =s2vG?(0), and the
potential energy is given by the average photon flux
(N) = —s~'uG1(0).

The presented variational approach thus crucially relies
on the ability to generate and probe a wide range of
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different (quantum) radiation fields with high efficiency.
For fast and reliable correlation measurements [29], we
have developed a quantum-limited amplifier that allows
for phase-preserving amplification at large bandwidth and
high dynamic range [30]. The examples of measured
correlation functions shown in Figs. 1(c) and 1(d) illustrate
their dependence on the drive rate € at constant @. While
G (z = 0) equals the total average photon flux (adou).
the limit GM") (7 — o0) is proportional to the square of the
coherence of the field |{ay,)|*. Therefore, G() increases
with drive rate due to the enhanced photon transmission
rate. The normalized second-order correlation functions
d?(z) = G?(7)/(G1)(0))?> show antibunched behavior
[¢¥(0) < 1] for weak drive and Rabi-type oscillations
when the drive rate Q becomes larger than the decay rate
[29]. Both the measured first-order and second-order
correlation functions are in agreement with the results
obtained from master equation simulations (black solid
lines).

We measure ~10° such correlation functions over a wide
range of variational parameters Q and @, acquiring data
during a time of about one week. Without the employed
parametric amplifier, the time for measuring this set of data
would have been on the order of years because of the
exponential dependence of the statistical error on correla-
tion order [31]. Based on the measured set of time-resolved
correlation functions, we evaluate the three relevant terms
GM(0), [ do@*G"(w), and g (0) that enter the calcu-
lation of E;; see Fig. 2. As expected, the average photon
flux G()(0) [Fig. 2(a)] increases with drive rate Q and is
suppressed for increasing anharmonicity a. The kinetic
energy term [ dw @*G"Y(w) in Fig. 2(b) is determined by
the power spectral density G'"(w). Only the spectral
weight of photons generated at finite detuning from the

GM(0) [1s7]

(b)

drive frequency (Jw| > 0) contributes to the integral. In the
Bose gas picture such photons correspond to particles in
finite momentum states and therefore carrying kinetic
energy. The rate of scattering events from drive photons
into photons with finite @ increases with drive strength and
has a nontrivial dependence on «. Finally, the second-order
correlator g (0) in Fig. 2(c) clearly reveals the crossover
from antibunched radiation [¢(® (0) — 0] for large a and
small Q to coherent radiation [¢ (0) — 1] when lowering
the anharmonicity.

Based on the three measured quantities shown in Fig. 2
and a chosen interaction parameter v, we evaluate the
energy E, for all prepared states |¢(4)). We identify a local
minimum in variational space (blue region), which approx-
imates the variational ground state of the Lieb-Liniger
model; see Fig. 3. When changing the interaction parameter
v we find the energy E), to be minimized by a different set
of parameters (@, Q) in variational space. While for large
values of v the minimum appears in the antibunched region
(lower right-hand corner in top panel), the minimum moves
to the region where the radiation is mostly classically
coherent when the considered interaction strength v is
weaker (upper left-hand corner in bottom panel). The
maximum and minimum value of v, which can be explored
in this way, is limited by the range of variational parameters
a and Q for which correlation functions have been acquired
experimentally.

After having identified the variational ground state for
each interaction strength v as the respective minimum in the
energy landscape, we further investigate its properties. We
follow the usual convention and rescale all quantities so
that they correspond to a particle density of p = 1 [10]. The
Lieb-Liniger ground-state energy density Ej;, which is the
sum of kinetic energy and interaction energy, increases with
interaction strength and ideally converges towards the
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FIG. 2. Measured correlations in the variational space spanned by the anharmonicity a and the drive rate Q. (a) Average photon flux
G (0) proportional to the potential energy (N), (b) [ do wzé(l)(a)) proportional to the kinetic energy (7), and (c) second-order
correlator (> (0) proportional to the interaction energy (W). The smallest drive rate is Qy/27 = 0.37 MHz.
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FIG. 3. Measured energy landscape for the Lieb-Liniger
model. E; calculated from the measurement data shown in
Fig. 2 relative to its minimum E,;, as a function of a and Q.
Interaction strength v increases from bottom to top as indicated.
The color scale is adjusted in each panel such that the
maximal value “max” appears red. The minima from bottom
to top are located at (Q/Q))% € {13,10,7,3} dB and a/2z €
{1.56,2.25,3.43,5.04} MHz, as indicated by red dots.

Tonks-Giradeau limit lim;_ E;; = 7°/3 indicated as a
dashed line in Fig. 4(a). The experimental data (blue dots)
approximate the characteristic dependence of Ej; on v of
the exact solution (red solid line) quite well. The exper-
imentally obtained Lieb-Liniger energies are systematically
larger due to the approximative nature of the variational
minimization procedure and the small number of varia-
tional parameters. The increasing difference between
experiment and theory at larger interaction parameters is
also likely related to the finite degree of antibunching
observed in the experiment for the chosen parameters.
The numerically exact results are obtained from a
variational matrix product state algorithm executed on a
classical computer with constant bond dimension D = 14
and 2D? variational parameters [10]. The effective bond
dimension of the experimentally generated states equals the
number of participating ancillary energy levels, which
depends on both the drive strength and the anharmonicity.
It is therefore not a constant over the range of variational
parameters. To capture the system dynamics over the entire
range of parameters used in the experiment, we take 6

resonator and 3 qubit levels into account for master
equation simulations, corresponding to an estimated maxi-
mum bond dimension of 18.

Importantly, having physical access to the ground-state
wave functions |¢(1)) we can also probe quantities beyond
the ground-state energy, such as two-point correlation
functions. First-order correlation functions (i) are
obtained from G!)(z) by converting time into spatial
coordinates [Fig. 4(b)]. As expected, we observe a decrease
in correlation length with increasing interaction strength .
The exact ground state of the Lieb-Liniger model does not
exhibit Bose-Einstein condensation, due to the absence of
spontaneous symmetry breaking in one dimension [32,33].
The observed finite limit lim,_, <1,7/iz,7/0) is a characteristic
feature of matrix product states which do not support the
U(1) symmetry of the model for finite bond dimensions.

The nontrivial nature of the ground state in the presence
of interactions also becomes manifest in the particle-
particle correlator <1/7$1/7i1/7xz/70> shown in Fig. 4(c). With
increasing v, particles are more likely to repel each other
leading to antibunching. Our experiments clearly resolve
this crossover from a weakly into a strongly interacting
Bose gas by accessing variational wave functions for
interaction parameters v over 2 orders of magnitude.
While this general behavior is qualitatively well repro-
duced, an accurate quantitative agreement with the numeri-
cal results would require a larger number of independent
variational parameters in the experimental realization. This
becomes apparent when comparing the experimental
results with numerical calculations based on continuous
matrix product states of different bond dimensions, D = 2
and D = 14, where the number of variational parameters is
2D?. Correlation functions simulated with low bond
dimension D =2 deviate from the exact results
(D = 14) similarly to the measured ones [Figs. 4(d)—4(g)].

In summary, we experimentally reveal connections
between open quantum systems, the matrix product state
variational class, and quantum field theories that can be
used for practical quantum simulations. The presented
quantum variational algorithm is general in the sense that
it can be applied to any one-dimensional quantum field
theory. Exploring interacting vector field models seems
particularly appealing, since they are difficult to simulate
on classical computers. Experimentally, this could be
achieved by coupling tunable quantum systems to multiple
transmission lines, each representing one of the vector field
components [27]. Higher accuracy in the simulation will
require more variational parameters and quantum systems
with more degrees of freedom, which is achievable with
tunable superconducting circuits. In this context, the
collective dissipation of multiple emitters coupled to the
same transmission line at finite distance [34] may turn out
to be very useful. Extensions of the presented approach
may be envisaged to also explore dynamical phenomena
and discrete lattice models using experimentally created
matrix product states.
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FIG. 4. Comparison between experimental simulation and numerical result. (a) Lieb-Liniger ground-state energy density Ej; versus

interaction parameter v at constant particle density p = 1 on a log-log scale. (b),(c) Experimentally obtained first-order <y7;1i/0) and

particle-particle correlation functions (17/31/7;1?/,(1/7@ for the seven indicated interaction strengths 7. (d)—(g) Corresponding numerical
solutions using continuous matrix product states with bond dimensions D =2 and D = 14.
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APPENDIX A: EXPERIMENTAL DETAILS

1. Measurement setup, sample fabrication,
and characterization

The experiments presented in the main text are per-
formed with a device consisting of a superconducting
circuit; see Fig. 5(a) for details about the experimental
setup. The sample [Fig. 5(b)] consists of a 4/2 transmission
line cavity with a resonance frequency /27~
7.3425 GHz of the fundamental mode. The resonator
has one output port that dominates the total decay rate
k/2n~2.2 MHz and one weakly coupled input port
Kin/k =~ 0.01 that is used for coherent driving of the cavity
field. The resonator is fabricated using photolithography
and reactive ion etching of a niobium thin film sputtered on
a sapphire wafer. We fabricate a superconducting qubit

[Fig. 5(c)] close to one end of the resonator. Both its
transition frequency @, and coupling strength g to the
resonator are tunable by varying the magnetic fluxes
threading the two SQUID loops [25,35]. Flux control is
achieved by a combination of a superconducting coil
mounted on the back side of the sample holder and a local
flux line that couples predominantly to one of the two
SQUIDs. The currents feeding the coil and the flux line are
generated by voltage-biased resistors at room temperature.
The qubit is fabricated using double-angle evaporation of
aluminum on a mask defined by electron beam lithography.
The qubit decay and dephasing times are measured to be
Ti~18 us and T,~ 12 pus. The anharmonicity of
the qubit is (w,; — w,,)/27 ~ —80 MHz, where w,; is
the transition frequency from the first excited state |e) to the
second excited state |f) of the qubit.

The sample is mounted on the baseplate of a dilution
refrigerator cooled down to a temperature of about 20 mK.
The qubit and the resonator are coherently driven through
attenuated charge control lines. The microwave radiation
emitted from the cavity is guided through two circulators to
a Josephson parametric dimer (JPD), which provides
quantum-limited amplification at large bandwidth and
dynamic range [30,36,37]. A directional coupler is used
to apply and interferometrically cancel the reflected pump
field. The amplified signal reflects back from the JPD,
passes a bandpass (BP) filter, is further amplified by a high-
electron mobility transistor (HEMT) amplifier, and is
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(a) Schematic of the measurement setup. For details see text. (b) Optical micrograph of the sample. The second qubit gap

in the left part of the chip is left empty. Enlarged images of (c) the output capacitor, (d) the qubit, and (e) the input capacitor

are shown.

down-converted to an intermediate frequency (IF) of
25 MHz. After low-pass (LP) filtering and IF amplification
the down-converted signal is digitized using analog-to-

digital conversion (ADC) and further processed with field

programmable gate array (FPGA) electronics.

2. Controlling the qubit frequency

and the coupling strength

We characterize the coupled cavity-qubit system by
probing the transmission coefficient of the cavity and

fitting the data to the absolute square of the expression
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which we obtain from input-output theory for the Jaynes-
Cummings model [38]. Here, w is the probe frequency, y is
the qubit decoherence rate, and A is a scaling factor. The
probe power is chosen such that the average number of
excitations of the coupled resonator qubit system is much
smaller than one. In this case, the qubit may be approxi-
mated by an harmonic oscillator. We determine the qubit
detuning A = @, — w,, and its coupling strength g to the
cavity by fitting spectroscopically obtained transmission
data to the above model; see Fig. 6. The magnetic fluxes
through the qubit SQUID loops and with that the qubit
parameters g and A are controlled by a pair of voltages V;
and V, applied to coil bias resistors. For small g and A we
approximate the relation between (g, A) and (V4,V,) by
linear equations of the form

m m Vi=-V
<g>_< 11 12)( 1 1,0>‘ (A2)
A My My Va=Vapo
We determine the coupling matrix elements m;; and the

offset voltages V o and V, ( by recording transmission data
for pairs (Vy,V,),. For each set of data we extract the
corresponding parameters (g,A), and perform a least-
squares fit to determine the model parameters m;;, V ,
and V,,. By inverting Eq. (A2) we calculate the voltages
V' and V, for a given set of desired qubit parameters (g, A).
In order to further fine-tune the parameters, we develop an
automated calibration algorithm that minimizes the devia-
tions from desired target values by iteratively measuring,

With this control procedure we are able to independently
set the qubit frequency and the interaction strength. We also
use this procedure to monitor and correct for slow qubit
frequency drifts occurring during long runs of the
experiment.

We demonstrate individual control of qubit parameters
either by tuning the qubit frequency for approximately
constant coupling strength g [Fig. 6(a)] or by varying g for
fixed qubit frequency [Fig. 6(b)]. For all sets of data we turn
on the JPD amplifier and divide out its frequency-
dependent gain. For the measurements in Fig. 6(b), we
keep the qubit resonant with the cavity (A = 0) and vary g.
These measurements demonstrate the ability to tune the
system from the fast cavity (x> g>y) into the strong
coupling regime (g >y, k) [25].

3. Josephson parametric dimer amplifier

To measure higher-order correlation functions efficiently
while retaining a high level of linearity, we employ a
Josephson parametric dimer amplifier. For details about the
operational principles of the JPD, we refer the reader to
Ref. [30]. The gain G measured versus signal frequency f
is approximately described by a Lorentzian function
(Fig. 7). The amplifier bandwidth at full width half
maximum is approximately 35 MHz. In order to increase
dynamic range, we choose a moderate maximum gain of
17 dB. A measurement of the gain as a function of signal
power P;, results in a 1-dB compression point at about
—107 dBm, which corresponds to a photon flux of
3000 us~!; see Fig. 7(b). The largest photon flux that is
generated in the described experiments is less than 50 ps~'.
The JPD amplifier is thus far away from its compression

fitting, and readjusting the control parameters V; and V,.  point for all measured correlation functions. The
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FIG. 6. (a) Measurements and fits of the absolute square of
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the transmission coefficient |¢|*> for varying qubit frequency at

approximately constant coupling strength g/2z = 1.75 MHz. Individual data traces are offset from each other by one. (b) Transmission
coefficient |¢|> for varying coupling strength g at constant qubit frequency Wge R Wres.
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(a) Measured gain of the JPD amplifier (blue dots) and a Lorentzian fit (solid red line). (b) Measured JPD gain as a function of

signal power and equivalent photon flux. (c) Measured noise power spectral density S5 referenced back to the input of the JPD amplifier
in units of photons per Hz per second when the JPD is turned on (blue) and when it is turned off (red). The detuning § is relative to the
frequency of a coherent test tone applied to the JPD input at frequency 7.35 GHz. The dashed line indicates the quantum noise limit for

phase-preserving amplification and detection.

improvement in detection efficiency becomes apparent
when measuring the noise power spectral density S in
units of photons per Hz per second when the JPD amplifier
is turned on and when it is turned off. The effective noise
level, which is referenced back to the input of the JPD
amplifier, is decreased by more than an order of magnitude
when it is turned on. The scaling of S; is based on a
comparison between the frequency-dependent gain Gy
and the JPD amplifier noise [39]. The deviation from
the quantum limit is due to the additional noise from the
following HEMT amplifier, which is comparable to the
noise at the output of the JPD. The equivalent detection
efficiency of the amplification chain is 17,y,, = 1/S5 ~ 50%.

4. Calibration of drive rate and output power

We calibrate the total gain of the detection chain
including all cable losses in order to reference the measured
photon flux back to the output of the cavity.

Calibrating the total gain of the detection chain is
equivalent to calibrating its detection efficiency #,,. The
detection efficiency is typically limited by losses between
the cavity and the first amplifier () and by noise added
during the amplification process (17,mp); see Fig. 8. We
compare the nonlinear response of the coupled cavity-qubit
system with master equation simulations to perform this
calibration. We bias the qubit with parameters (A, g) /27 =
(3,5.7) MHz and apply a drive field to the input port of the

cavity at rate Q and resonant with the frequency w, =

Wy + A/2+\/¢* + A?/4 = 27 x 7.35 GHz of the upper
Jaynes-Cummings doublet state. For these settings we
measure the coherent photon flux «|(a)|*> and the total
photon flux x{a’a) emitted from the cavity for different
drive rates €. We fit these data sets to the results obtained

from master equation simulations leaving the total gain
factor of the measurement chain and the absolute drive
rate incident to the sample as free parameters [Fig. 8(b)].
The equivalent detection efficiency resulting from this
fit is equal to the inverse of the scaled noise level and
found to be 1 = Mosslamp = 0.27. Together with the

77 tot

77 loss

7/}amp

(b) 0.4
S 03
©
S 02
™
5 O [KayP
0.0 ‘ o
0 5 10 15

(©/Q0)? [dB]

FIG. 8. (a) The detection efficiency of the cavity output field is
typically limited by radiation loss, schematically represented
as a beam splitter with finite transmittivity 7., and by noise
Ss = I’]a_nllp added in the amplification chain. The total detection
efficiency is given by the product 77y = #iossHamp- (b) Measure-
ment (points) and fit (solid line) of the cavity photon number and
absolute square of the coherent amplitude for the coupled
cavity-qubit system driven through the cavity input port at rate
Q. The smallest drive rate is /27 = 0.37 MHz.
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estimate for the efficiency of the amplification chain 7,y
stated in the previous section, we extract a radiation loss of
1 — n1pss = 0.46 between the cavity and the JPD, which is
reasonable given the components and cables connecting the
two stages.

5. Drive scheme and variational parameters

In the original proposal for simulating the Lieb-Liniger
model with cavity QED it has been suggested to keep the
qubit resonant with the cavity and use the qubit drive power
€, and the coupling strength g as two variational param-
eters. We experimentally realize this scheme and find that
in the limit of small coupling strengths g the total emission
rate becomes extremely small, which in turn limits the
signal-to-noise ratio. This is because the effective emission
bandwidth scales like g?>/x when g < k and thus decreases
quadratically with g. We therefore develop an alternative
scheme for which the photon emission rate remains
proportional to « even in the limit of small g. We make
use of the ability to tune both the qubit frequency and the

coupling strength. Rather than keeping the qubit at fixed
frequency, we adjust for each value of g the detuning A
such that @, remains at constant frequency resonant with
the drive frequency w, = w,; = 2z x 7.35 GHz. The spec-
troscopy data for the qubit bias points used in the quantum
simulation experiment are shown in Fig. 9(a) and demon-
strate constant @, over the entire range of coupling
strengths. In order to keep w, constant, we compensate
the larger splitting when increasing g by tuning the qubit
further away from the cavity; see Fig. 9(b).

For this specific tuning scheme we find that the effective
anharmonicity a of the upper polariton ladder decreases
with increasing coupling strength g, as shown in Fig. 9(c).
To illustrate this effect we show a schematic drawing of the
energy levels |nt) of the Jaynes-Cummings model for the
resonant case (A = 0) and for the case of finite qubit
detuning A < 0. The inverse proportionality between
anharmonicity a and coupling strength ¢ illustrates the
appearance of antibunched behavior for the small values of
g and the observed coherent radiation for large g values for
this bias scheme; see Fig. 2. The drive rate € of a coherent

qubit spectroscopy res. spectroscopy coupling strength
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FIG. 9.

(a) Spectroscopy data for all values of g used in the quantum simulation experiment. The blue data points on gray background

are obtained using resonator transmission measurements. The red data points are obtained using qubit spectroscopy measurements. The
relative scaling and offsets are adjusted to display the data in the same plot. The inset shows the energy levels |n+) for the Jaynes-
Cummings model. (b) Pairs of (g, A) extracted from the data shown in (a) using the fitting routine described before. (c) Effective
anharmonicity of the upper branch of the Jaynes-Cummings ladder calculated from the pairs (g, A) shown in (b).
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field applied to the cavity input port acts as a second
variational parameter for the quantum simulation.

6. Measurement of correlation function and master
equation simulation

We employ fast real-time signal processing performed
with a FPGA at a clock rate of 100 MHz for the
measurement of time-resolved correlation functions. The
cavity output field is processed, as described in
Appendix A 1. After digitization we multiply the sampled
voltages with digital sine and cosine waves of frequency
wip/27 = 25 MHz to obtain the quadrature components
I(1) and Q(t), respectively. We then apply a finite impulse
response (FIR) filter with an effective bandwidth of
I'/2z = 10 MHz to the quadratures in time domain to
obtain the filtered quadratures 1(7) and Q(r), which in the
following we write as the single complex valued amplitude
S(1) = 1(1) 4 iQ(t). To measure the first-order correlation
function in S(z), we take the discrete Fourier transform (F)
of M time traces S;(¢) of length 10.24 us, multiply with
their complex conjugate, and average

) = 71 [ S A 0 0]
i=1

Similarly, we extract the second-order correlation function
by calculating the absolute square of S(z) before Fourier
transforming

roe =711 ZFS* 0L 5; (05,001

We record each of these quantities with the drive field
turned on, giving I" E,L) (), Fgl) (7), and with the drive turned
off, giving F(();z(r), th) (7). To avoid effects due to slow
drifts, we alternate between all four measurements every
12.5 pus. As explained in detail in Ref. [31] and as
demonstrated in many experiments since then [29,40,41],
we can use these four measurements to extract the
correlation functions G (7) = x(a'(7)a(0)) and g? () =
(a’(0)a’(r)a(z)a(0))/(a’a)? of the output field of the
cavity. In these expressions, a (a') is the annihilation
(creation) operator of the intracavity field. For the cases in
which the average photon number is small ({a'a)) < 1, we
find g(2)(0) values that are systematically smaller than the
corresponding master equation simulation. We attribute this
to a weak thermal background radiation during the off
measurements which we correct for [42]. Good agreement
between the measured and simulated correlation functions
is found when correcting for a thermal photon flux of ny, &

0.03 us~! in the detection band.

We compare these measurements with correlation func-
tions obtained from master equation simulations. For these
simulations, we describe the system by the Hamiltonian

Hyg/h = wg)a'a+ (v, —wg)b'h

(wres -

(b7)b* + g(aTb +ab") (A3)

_‘1

2
expressed in a frame rotating at the drive frequency
w,/2n = 7.35 GHz. Here, b and b' are annihilation and
creation operators for an excitation of the transmon. In
addition to that, we account for qubit decay y, qubit
dephasing y,, and resonator emission « with standard
Lindblad terms. Simulations are run in a Hilbert space
including 6 resonator and 3 transmon levels. In order to
account for the finite detection bandwidth when simulating
the second-order correlation function, we employ the
techniques described in Ref. [43]. In this approach, we
introduce an ancillary mode ¢ of frequency @, which is
weakly coupled with rate ¢/2z = 20 kHz to the cavity and
decays with a rate equal to the detection bandwidth I'. The
second-order correlation function in ¢ is then simulated
based on the total Liouvillian and taken as an estimate for
the filtered correlation function of mode a.

APPENDIX B: THEORETICAL ASPECTS
AND DATA ANALYSIS

1. Calculation of the Lieb-Liniger energy from
correlation functions

The expectation value to be minimized (H)y =(T) +
< V) + (N) is composed of the kinetic energy of the bosons
(1 ) its interaction energy (W), and the potential energy
(N). According to the correspondence between the field
operator iy, and the time-dependent radiation field

a(t) = v/sfry—y, each of these expectation values is propor-
tional to a specific measured correlation function:

(B1)

Here, GV (w) = F[GY(z)] is the Fourier transform of the
first-order correlation function normalized such that
[ dw G (@) = GM(0). The energy terms in Eq. (B1)
thus explicitly depend on the scaling parameter s, which is
to be treated as an additional variational parameter. We
explicitly minimize (H) with respect to s by solving

2 (H) = 0, which results in
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3 [dw ém(a))w2

(B2)

—vG

(0) + /(G

Correspondingly, we obtain an explicit expression for
E, = (H), which only depends on the measured correlation
functions and the model parameters u, v. We find the
variational ground state for a given set of model parameters
(v, ) by minimizing E; with respect to @ and Q.

2. Scaling transformation

We follow the usual convention and study the Lieb-
Liniger ground state subject to the constraint that its particle
density p is equal to one. Using the procedure described in
Appendix B 1, we find a ground state that generally does
not obey this property. We therefore apply a scale trans-
formation by adjusting the chemical potential y such that
p — 1. Under the following transformation,

(1, v) = (1, 0) =

the ground state remains invariant up to a change in the
parameter s — § = s/y, which immediately follows from
Eq. (B2). Any variational ground state can therefore be
transformed into another ground state satisfying p = 1, by
choosing y appropriately. We apply the following pro-
cedure to perform this scale transformation:
(i) Chose parameter v, set 4 = 1, and find the set of
variational parameters (Suyin, Qumins @min) Minimiz-
ing E;.

(ii) Evaluate the particle density p = G{!
minimum.

(iii) Calculate the new chemical potential ji = u/p* and
the new interaction parameter v = v/p. The new
scaling parameter becomes 5, = Smin2 = GV (0).

(iv) The variational parameters (5 pins min» ®min) SPECify
the variational ground state for the model with
interaction strength » and unit particle density.

Ground states for different interaction parameters are
obtained by starting the above procedure with a different
value for ». The Lieb-Liniger energy Ej; at interaction
strength v [Fig. 4(a)] is given by

(uy*, vy),

)(0)/ $min at this

Ey = <’fr

== / dw G
mll’l mln

0)@* + —— 2
D 0))—3/ dow G

Correlation functions for the Lieb-Liniger model are
directly obtained from the measured correlation functions
by identifying

g2 (0)(G1(0))?

w* + 9g?(0). (B3)

0))*v? + 3uGW

0) [ do GV (w)a? ‘

G(l)(T = x/gmin)
e ™Y

and analogously for the second-order correlation function,

(wiwdwow.) = ¢ (t = x/5min)- (B5)

3. Numerically exact solution

The exact solution [22,44], via the Bethe ansatz, of the
Lieb-Liniger model at unit density is possible for only one
specific value of the interaction parameter, namely, v = 2.
In order to calculate properties of the model at unit density
for other values of v, it is necessary to take recourse to
numerical methods. We exploit a variational method over
translation invariant continuous matrix product states
(cMPS) [10,11,45],

[W[Q.R]) = tr<7>exp[/ 0®I+R® *de|@>,
(B6)

where Pexp denotes the path ordering of the argument
from left to right for increasing values of x. The operators Q
and R act on an auxiliary space CP, and |Q) is the Fock
vacuum. The variational parameters specifying the cMPS
are precisely the two D x D matrices Q and R. The Lieb-
Liniger Hamiltonian A (in the presence of a chemical
potential) is composed of three terms H =T + W + N,
and the expectation values of these three terms can be
readily computed [45] in terms of the variational param-
eters according to

(P[0, R)|T|¥[Q. R]) = w([Q. R]"[Q. Rlps,).  (BT)
(P[0, R||W|¥[Q. R]) = vtr(R7R%py),  (BS)
and
(P[Q, R|T|W[Q, R]) = —utr(R"Rp),  (BY)
where py, is the solution of the matrix equation
0 = —i[K,p|] + RpR" — % {R'R.p}. (B10)

and K =iQ +4R'R. In order to find the variational
minimum of
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Elv.p; Q. R| = <‘I’ )| W[Q. R])

} =+ UR‘2R2 - ﬂR1R}pss)
(BI11)

with respect to Q and R, a tangent-plane method using the
time-dependent variational principle in imaginary time is
exploited [46]. This method proceeds as follows. First, v
and p are selected. Then, a value D as large as possible is
chosen. An initial guess |¥[Qg, Ry]) for the ground state
results from random choice of Q, and R,. Also, a tolerance
n and a step size 0 is selected. Set j = 0 and perform the
following sequence of operations until the desired con-
vergence is reached.

(1) Calculate the gradient V_[¥[Q;, R;]), where z is a
2D? vector containing the entries of Q; and R; in,
say, lexicographic order. Thus, V [¥[Q; R)]) is a
vector of 2D* cMPS states.

(2) Calculate the gradient V_E[Q;, R
expecation value.

3) Calculate the inverse G~! of the Gram matrix

G.o = (V.| [0, R ) V. [U[0;, Ry)).

(4) Set zj4, —11—5221) G_LV.E[Q;,R)].

(5) Set j=j+1, unpack ZJH into the two matrices
Qj+1 and R, and repeat step (1) until convergence
of the energy expectation values reaches the pre-
specified tolerance 7.

After the above algorithm has terminated, the cMPS
corresponding to unit density (and at the rescaled inter-
action parameter) is obtained via the rescaling procedure
described in the previous section. This method is used to
calculate a cMPS representation for the Lieb-Liniger
ground state across a range of interaction parameters from
v =0 to v = 1000. The value D = 14 is used throughout
as the results so obtained are indistinguishable from the
known exact solutions at v = 0, 2, co. For the other values
of the interaction parameter, the accumulated errors are
estimated and found to be negligible.
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