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Information processing at the molecular scale is limited by thermal fluctuations. This can cause
undesired consequences in copying information since thermal noise can lead to errors that can compromise
the functionality of the copy. For example, a high error rate during DNA duplication can lead to cell death.
Given the importance of accurate copying at the molecular scale, it is fundamental to understand its
thermodynamic features. In this paper, we derive a universal expression for the copy error as a function of
entropy production and work dissipated by the system during wrong incorporations. Its derivation is based
on the second law of thermodynamics; hence, its validity is independent of the details of the molecular
machinery, be it any polymerase or artificial copying device. Using this expression, we find that
information can be copied in three different regimes. In two of them, work is dissipated to either increase or
decrease the error. In the third regime, the protocol extracts work while correcting errors, reminiscent of a
Maxwell demon. As a case study, we apply our framework to study a copy protocol assisted by kinetic
proofreading, and show that it can operate in any of these three regimes. We finally show that, for any
effective proofreading scheme, error reduction is limited by the chemical driving of the proofreading
reaction.
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I. INTRODUCTION

Copying information is a fundamental process in the
natural world: all living systems, as well as the vast
majority of manmade digital devices, need to replicate
information to function properly. The quality of a copy
relies on it being an accurate reproduction of the original
and can be quantified by the fraction η of wrongly copied
bits that it contains. Errors can be provoked by several
hardware-specific causes, such as imperfections in the
copying machinery. At the molecular scale, perfect copying
does not exist as thermal fluctuations constitute a funda-
mental source of error, regardless of the system. Since the
reliability of the copying process is ultimately limited by
thermal noise, it must be understood in terms of thermo-
dynamics, as recognized by von Neumann [1].
Therefore, a critical question is whether one can invoke

the second law of thermodynamics to establish a universal
connection between the error and physical quantities char-
acterizing the copy process. This issue should be addressed
in a general framework, incorporating two basic features of
copying machineries. First, copying protocols often involve

several intermediate discriminatory steps used to regulate
the accuracy and speed of the process. This is a characteristic
property of both natural and artificial error-correcting
protocols. For example, accurate copying of DNA occurs
via multistep reactions [2]. Second, due to the statistical
nature of the second law, one should consider cyclically
repeated copy operations rather than a single one [3]. This
cyclical operation is also consistent with the behavior of
polymerases when duplicating long biopolymers.
To understand the thermodynamics of copying, we

introduce a general framework where both the copying
protocol can be arbitrarily complex (as in models describ-
ing biochemical reactions [4–7]) and copy operations are
cyclically repeated (as in models inspired by the physics of
polymer growth [8–15]). Our framework describes
template-assisted growth of a copy polymer (or “tape,”
see Ref. [16]) aided by a molecular machine; see Fig. 1.
Gray and white circles represent two different monomer
types. The molecular machine, represented as a red circle in
the figure, is situated at the tip of the copy strand and tries to
match freely diffusing monomers with corresponding ones
on the template. When a free monomer arrives at the tip, the
machine transitions through a network of intermediate
states to determine whether to incorporate or to reject it.
Incorporation is more likely if the matching is right, i.e., the
color of the monomer matches that of the template, than if it
is wrong. On average, the copy strand elongates at a speed
v ≥ 0 and accumulates errors with probability η.
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Close to thermodynamic equilibrium the process becomes
very slow, v → 0. The error is then ηeq ≈ exp½−ðΔEw−
ΔErÞ=T�, determinedby the energy changesΔEr andΔEw of
right and wrong monomer incorporation and independently
of the copying protocol. In this case, the error can be reduced
by increasing the gap ðΔEw − ΔErÞ, in agreement with
Bennett’s idea that cyclic copying can be performed near
equilibrium with arbitrary precision [3,13]. This mechanism
is, however, unpractical, for example, due to the low speed
limitation. Instead, typicalmolecularmachines spend chemi-
cal energy to copy at a finite speed and out of thermodynamic
equilibrium. Nonequilibrium copying protocols can also
reduce the error far below its equilibriumvalue. For example,
the equilibrium estimate for the error in DNA duplication is
ηeq ∼ 10−2, where the actual observed error is η ∼ 10−9 [2].

An important nonequilibrium mechanism underlying error
correction is kinetic proofreading, which feeds on chemical
energy to preferentially undo wrong copies [4,5,8]. Other
nonequilibrium mechanisms, such as induced fit [17] and
kinetic discrimination [10,13], complement kinetic proof-
reading to underpin the high accuracy of replication in
biological systems.
In this work, we demonstrate that, for the broad class of

processes depicted in Fig. 1, a direct relation links copy
errors with nonequilibrium thermodynamic observables
characterizing incorporation of errors. In particular, at fixed
work budget, the error decreases exponentially with the
total entropy produced per wrongly copied bit. This relation
is completely general, in contrast with conditions setting
hardware-specific minimum errors ηmin that characterize
each particular copying protocol. When studying wrong
matches alone, three copying regimes can be identified:
error amplification, where energy is invested in increasing
the error rate; error correction, where energy is invested in
decreasing the error rate; and Maxwell demon, where the
information contained in the errors is converted into work.
We conclude by studying the specific copying protocol of
kinetic proofreading. We show that proofreading can
operate in all of these three regimes. Furthermore, for a
broad class of proofreading protocols, we show that error
reduction is limited by the chemical energy spent in the
proofreading reaction.
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FIG. 1. Template-assisted polymerization. The template strand
is a preexisting polymer made up of two different kinds of
monomers (gray and white circles). A molecular copying
machine (red circle) assists the growth of a copy strand by
incorporating freely diffusing monomers of two different types,
trying to match them with those of the template strand. Right and
wrong matches are noted r and w.
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FIG. 2. Transition network of template-assisted polymerization and examples. (a) State space of the template-assisted polymerization
model. Monomer incorporation occurs via a network of intermediate states represented inside the dashed circles. The two colors
distinguish networks leading to incorporation of right and wrong monomers. The structure is repeated in a tree-shaped structure as the
polymer grows by addition of more and more monomers. (b) Examples of networks of intermediate states. First example: template-
assisted polymerization without intermediate states (see, e.g., Refs. [8,11–13,15]). Second example: kinetic proofreading, where after an
intermediate state a backwards-driven pathway removes errors to improve the overall accuracy of the copy [4,13]. Third example:
messenger RNA translation, where the three copying steps represent initial binding, GTP hydrolysis, and final accommodation; a
proofreading reaction is also present [18].
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II. RESULTS

A. Template-assisted polymerization

We start our discussion by detailing the stochastic
dynamics of the template-assisted polymerization process
sketched in Fig. 1. Its transition network is represented in
Fig. 2(a). The rectangles correspond to the states of the
system after the copying machine finalizes incorporation of
a monomer. We denote them with a string such as …rrwr,
which refers to a particular sequence of right and wrong
matches (see also Fig. 1). Dashed circles enclose subnet-
works of n intermediate states, characteristic of the copying
protocol. The intermediate states, represented as blue
(green) circles for right (wrong) matches in Fig. 2(a), are
used by the machine to process a tentatively matched
monomer and decide whether to incorporate it or not. We
note intermediate states as …rrwrri, with 1 ≤ i ≤ n, and
analogously for wrong monomers. A copying protocol is
fully specified by the topology of the subnetworks,
assumed to be the same for right and wrong matches,
and the kinetic rates krij for right matches and kwij for wrong
ones. Differences in the rates are responsible for discrimi-
nation. Possible examples of subnetworks of increasing
complexity are represented in Fig. 2(b).
Because of thermal fluctuations induced by the envi-

ronment at temperature T, all kinetic transitions are
stochastic. The states are thus characterized by time-
dependent probabilities Pð…rÞ, Pð…wÞ, Pð…riÞ, and
Pð…wiÞ. Their evolution is governed by a set of master
equations that can be solved at steady state; see Sec. IV.
Key to the solution is to postulate that errors are uncorre-
lated along the chain, so that Pð…Þ ∝ ηN

wð1 − ηÞN−Nw
,

where N is the length of the chain and Nw is the total
number of incorporated wrong matches. The error η can
then be determined via the condition

η

1 − η
¼ vwðηÞ

vrðηÞ ; ð1Þ

where vr and vw are the average incorporation speeds of
right and wrong monomers, respectively. They represent
the average net rates at which right and wrong monomers
are incorporated in the copy. The net elongation speed v is
the sum of these two contributions, v ¼ vr þ vw.
Substituting the solution for Pð…Þ into the master equa-
tions leads to explicit expressions for vw and vr as a
function of the error and all the kinetic rates. In this way,
Eq. (1) becomes a closed equation for the only unknown η.
Note that Eq. (1) and the definition of v imply vr ¼
ð1 − ηÞv and vw ¼ ηv.

B. Thermodynamics of copying with errors

The kinetic rates krij and k
w
ij are determined by the energy

landscape of the system, the chemical drivings μij of the
reactions, and the temperature T of the thermal bath, as

represented in Fig. 3(a). The chemical drivings represent
the difference in chemical potential of reactions, such as
Adenosine Triphosphate hydrolysis, fueling the transitions
j → i. The energy difference between an intermediate state
i and the state before the candidate monomer incorporation
is ΔEr

i ¼ Eð…riÞ − Eð…Þ, and similarly for wrong incor-
poration; the energy change after finalizing incorporation of
a monomer is ΔEr ¼ Eð…rÞ − Eð…Þ and analogously for
wrong matches. Note that these energies are in a strict sense
free energies as they might depend, for example, on the
monomer concentrations in the cell. Energetic discrimina-
tion can be exploited when the wrong match is energetically
more unstable than the right one, ΔEw ≥ ΔEr. In addition,
wrong matches can also be discriminated kinetically, i.e.,
by exploiting different activation barriers δij in the tran-
sitions performed by the machine when a right monomer is
bound. In general, complex copying protocols can combine
both of these mechanisms [13,19]. Full expressions of the
rates are summarized in Fig. 3(b).
Given a steady-state elongation speed v, the chemical

drivings perform an average work per added monomer,
ΔW ¼ P

hijiμijðJrij þ JwijÞ=v, where Jrij and Jrij are prob-
ability fluxes (see also Sec. IV). Further, the free-energy
change per added monomer at equilibrium would be
ΔFeq ¼ −T logðe−ΔEr=T þ e−ΔEw=TÞ. In the limit v → 0,
the system approaches equilibrium and the population of all
states is determined by detailed balance. This implies that
the equilibrium error is ηeq ¼ exp ½ð−ΔEw þ ΔFeqÞ=T�.
When driving the dynamics out of equilibrium, the error
will, in general, depart from its equilibrium value, leading
to a positive total entropy production. In Sec. IV, we derive
that the total entropy production per copied monomer and
the error are linked by the relation

TΔStot ¼ ΔW − ΔFeq − TDðη∥ηeqÞ ≥ 0; ð2Þ

(a) (b)

j i

FIG. 3. Energy landscape and kinetic rates. (a) Energetic
diagram of a single transition in the reaction network. (b) Cor-
responding kinetic rates. The transition j → i can be driven by
energy differences and the chemical driving μij. Transitions
involving a right and a wrong monomer can be characterized
by different kinetic barriers δij, as well as different energetic
landscapesΔEw

j ≠ ΔEr
j. The bare rate ωij is the inverse character-

istic time scale of each reaction.
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where Dðη∥ηeqÞ¼ηlogðη=ηeqÞþð1−ηÞlog½ð1−ηÞ=ð1−ηeqÞ�
is the Kullback-Leibler distance between the equilibrium
and nonequilibrium error distribution, which is always non-
negative and vanishes only for η ¼ ηeq. Equation (2) states
that the average performed work is greater than the
equilibrium free-energy increase by a configurational
bound, ΔW − ΔFeq ≥ TDðη∥ηeqÞ ≥ 0. In this view, the
Kullback-Leibler term in Eq. (2) can be interpreted as the
additional free energy stored in a copy characterized by an
error different from its equilibrium value. This additional
free energy can be recovered by a spontaneous depolyme-
rization process that will stop once the system reaches its
equilibrium error [8].
Equation (2) relates the information content of the copy

with thermodynamics. However, in many relevant cases,
the entropy production is dominated by the “excess work”
ΔW − ΔFeq, so that in practice Eq. (2) reduces to the
traditional form of the second law. Consider, for example, a
case in which error correction is very effective, η ≪ ηeq. In
this limit, the Kullback-Leibler term tends to a constant,
Dðη∥ηeqÞ → − logð1 − ηeqÞ > 0. Since usually the equilib-
rium error is already small, this constant is also small,
Dðη∥ηeqÞ ≈ ηeq ≪ 1. The reason is that, since errors are
typically rare, their overall contribution will be small.
To better understand the link between errors and thermo-

dynamics, we consider the average entropy production
associated with an error incorporation, ΔSwtot ¼ _Swtot=vw,
where _Swtot is the entropy production rate coming from
incorporation of wrong monomers only. The quantity ΔSwtot
also obeys a second-law-like inequality,

TΔSwtot ¼ ΔWw − ΔFeq − T logðη=ηeqÞ ≥ 0; ð3Þ

where ΔWw ¼ P
hijiJwijμij=v

w is the average work per-
formed per wrong match (see Sec. IV). Rearranging terms
in Eq. (3) yields a general expression for the error in terms
of thermodynamic observables:

η ¼ ηeq exp ½−ΔSwtot þ ðΔWw − ΔFeqÞ=T�: ð4Þ

This result does not depend on microscopic details of the
copying protocol, such as the discrimination barriers δij.
Equation (4) provides a direct link between thermodynamic
irreversibility and accuracy of copying. It states that, given
a fixed work budget, reduction of the error beyond its
equilibrium value always comes at a cost in terms of
entropy production. However, the dependence of the error
on the thermodynamic quantities is nontrivial to derive
from Eq. (4), as varying the work also affects the entropy
production.
The inequality of Eq. (3) reveals the existence of three

possible copying regimes.
(1) Error amplification, ΔWw − ΔFeq > 0 and η > ηeq.

In this regime, a positive excess work for wrong
matches leads to an error higher than its equilibrium

value. While, in this case. dissipating energy is
counterproductive in terms of the achieved error,
it can be justified by the need of achieving a high
copying speed.

(2) Maxwell demon, ΔWw − ΔFeq < 0 and η < ηeq. In
this regime, the machine extracts work while low-
ering the information entropy of the chain with
respect to its equilibrium value, −η logðηÞ < −
ηeq logðηeqÞ. This regime is reminiscent of a Max-
well demon, since an apparent violation of the
second-law-like inequality, Eq. (3), occurs from
neglecting entropy production associated with in-
formation manipulation (see, e.g., Ref. [20]). Note,
however, that the excess work associated with right
matches compensates this term, so that growth of a
copolymer cannot result in ΔW − ΔFeq < 0;
see Eq. (2).
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FIG. 4. Template-assisted polymerization without intermediate
states. (a) Excess work ΔW − ΔFeq, entropy production, and
Kullback-Leibler term of Eq. (2) as a function of the error. Notice
that the excess work dominates over the information term.
(b) Same terms as in (a) but for wrong monomers only. In this
case, the information term dominates the entropy production.
(c) Relation between error and entropy production of wrong
monomers, together with thermodynamic (red dashed line) and
hardware-specific (black dashed line) bounds. In all panels, the
driving μ10 is varied to vary the error. Parameters are δ10 ¼ 10T,
ΔEr

1 ¼ 0, ΔEw
1 ¼ 3T.
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(3) Error correction, ΔWw − ΔFeq > 0 and η < ηeq.
This is an error-correction scenario in which work
is dissipated to achieve an error lower than the
equilibrium error. In this case, which is the most
common for biological machines, Eq. (4) implies a
simple bound on the error, η ≥ ηeq expð−ΔSwtotÞ.

Given the copying protocol and the kinetic rates, the
copying machinery will achieve a certain error η and
operate in one of these three regimes. Varying the kinetic
rates affects both the error and the thermodynamic observ-
ables, possibly shifting the operating regime of the
machine. To better scrutinize these aspects, we now move
to considering specific protocols.
In the simplest possible example, incorporation occurs in

a single step, as sketched in the top panel of Fig. 2(b) (see
also Refs. [8,11–13,15]). It can be shown that this protocol
is always dissipative, ΔWw − ΔFeq ≥ 0. In general, wrong
monomers can be discriminated by a kinetic barrier δ10 and
an energy difference ΔEw − ΔEr [13]. If the kinetic barrier
is larger than the energy difference, δ10 > ΔEw − ΔEr, it
can be shown that η < ηeq, corresponding to error correc-
tion. If it is lower, then η > ηeq, which corresponds to error
amplification [13]. In Fig. 4(a), we plot the different terms
of the total entropy production, Eq. (2), for the error
correction case. As discussed before, the information
contribution to the total entropy production is negligible
for small errors. Instead, note in Fig. 4(b) that the
information term of Eq. (3) dominates over the work
performed per wrong matches. This implies that the
universal expression for the error, Eq. (4), is very well
approximated by the lower bound of error correction, as
shown in Fig. 4(c). The error departs from this bound only
when it approaches its hardware-specific minimum
ηmin ≈ e−δ10=T . Note that increasing δ10 decreases both
ηmin and the dissipative cost ΔSwtot of copying at an error
rate η > ηmin.

C. Energetic bound to proofreading accuracy

In kinetic proofreading, a copying pathway that incor-
porates monomers at a speed vc ≥ 0 is assisted by a parallel
pathway that preferentially removes wrong matches at a
speed vp ≤ 0; see Fig. 5(a). Hereafter, the index “p”
indicates that quantities are computed only for the proof-
reading reaction. To maintain a negative speed, the proof-
reading reaction must be driven backward either by
performing a work per added monomer ΔWp or by
exploiting a high free-energy difference ΔFeq between
the final and the initial state. By means of proofreading, one
can achieve lower errors than those of the copying pathway
alone, at the cost of spending additional chemical driving
and reducing the net copying speed, v ¼ vc þ vp.
We consider a proofreading protocol consisting of a

copying pathway with one intermediate step in addition to
the proofreading reaction; see middle panel in Fig. 2(b). By
tuning the rates, this model can operate in all three regimes

described in the previous section, as shown in Fig. 5(b). In
particular, in the Maxwell demon regime, the error can be
reduced up to 1 order of magnitude below its equilibrium
value while at the same time extracting work from the
wrong copying reaction. Very small errors are achieved in a
strongly driven error correction regime, where the error rate
satisfies η ≥ ηeq expð−ΔSwtotÞ. However, at variance with
the example of the previous section, here the entropy

elongation
v = vc+vp > 0 
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proofreading, vp < 0
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FIG. 5. Regimes and bounds of kinetic proofreading.
(a) Scheme of a generic proofreading scheme. Copying occurs
at a net speed vc > 0 through an arbitrary reaction network of
intermediate states. After the copy is finalized, a proofreading
reaction removes errors at a speed vp < 0. The net average speed
is v ¼ vc þ vp ≥ 0. (b) Thermodynamic regimes of kinetic
proofreading. The model combines a copying scheme with
one intermediate state with kinetic proofreading, as represented
in Fig. 2(b). The shaded regions denote the three thermodynamic
regimes discussed in the Sec. II B. Parameters are δ10 ¼ 5T,
δ21¼0, δ02 ¼ 5T, ΔEw

2 ¼ΔEw
1 ¼2T, ΔEr

2¼ΔEr
1¼0. We remind

the reader that states 0, 1, and 2 represent the state before
monomer incorporation, the intermediate state, and the final state
where monomer has been incorporated, respectively [see also
Fig. 3(b)]. For each value of the error η, the other free parameters
(μ10, μ21, ω21, ω02) are determined by minimizing the entropy
production per copied wrong monomer ΔSwtot. (c) Minimum error
as a function of the proofreading work ΔWp ¼ μ02. For each
curve, energies and activation barriers are fixed parameters as in
(b) (except for δ02, which varies, as in the captions). For each
value of μ02, the other free parameters (μ10, μ21, ω21, ω02) are
determined by numerically minimizing the error η. Red dashed
and black dashed lines represent thermodynamic and hardware-
specific bounds, respectively.
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production quickly becomes much larger than this bound.
The reason is that effective proofreading requires a cycle
in the reaction pathway that fundamentally involves dis-
sipation of work. This dissipation, rather than the infor-
mation term, dominates the entropy production of wrong
matches at low errors. This is at variance with the single-
step model of the previous section, where no cycles are
present and the configurational entropy dominates over
dissipation.
To derive a better estimate of the error in proofreading,

we now focus on the rate of entropy production during the
proofreading of wrong matches, T _Swp;tot ¼ −vwpΔWw

p−
vwp½ΔFeq þ T log ðη=ηeqÞ�. Using that in proofreading vwp <
0 while _Swp;tot ≥ 0, we can derive the following bound for
the error:

η ≥ ηeq exp

�
−ΔWp þ ΔFeq

T

�
; ð5Þ

where we further use that ΔWp ¼ ΔWw
p (see Sec. IV for

details). This equation is one of the main results of this
paper. It shows that error reduction in proofreading is
limited by its energetic cost, either in the form of chemical
work in the proofreading pathway [19] or free energy of the
final state, which involves performing work in the copying
pathway [4]. Similarly to Eq. (4), this bound does not
depend on details of the copying protocol. In Fig. 5(c), we
show the error of the specific proofreading model of
Fig. 5(b) as a function of the proofreading work. One
can appreciate that the bound from Eq. (5) is tightly met for
a wide range of errors. For very small values ofΔWp, when
vp > 0 and no proofreading occurs, the bound is not
satisfied. Finally, for very large work values, the error
approaches the hardware-specific minimum ηmin.
In this case, the value of ηmin can be obtained from the

explicit solution of the model (see derivation in Sec. IV). In
the strongly driven regime, the error η decreases at
increasing proofreading work ΔWp. At the same time,
vp becomes more negative as more copies are proofread.
The minimum error is thus obtained in the limit of
vanishing elongation speed, when the proofreading speed
is negative enough to arrest copying, vp ¼ −vc. Imposing
this condition gives the hardware-specific minimum error

ηmin ≈ eð−δ10þδ02−ΔEwþΔErÞ=T: ð6Þ
This expression shows that the error of the first copying
step, approximately equal to e−δ10=T because of the large
kinetic barrier, is reduced by a factor eðδ02−ΔEwþΔErÞ=T due
to the additional discrimination of the proofreading
reaction.

III. DISCUSSION

In this paper, we analyze template-assisted polymeriza-
tion, where copies are cyclically produced by an arbitrary

complex reaction network. This broadly extends Bennett’s
original copolymerization model [8] and further studies
[9–15]) where monomer incorporation occurs in a single
step. In particular, the results we present here allow for
analyzing the thermodynamics of realistic biological copy-
ing protocols, where a complex reaction network is
responsible for error correction.
At variance with models for the copy of a single

monomer [4–7], in template-assisted polymerization the
number of possible states of the chain grows exponentially
at steady state. This exponential increase causes the
appearance of an information term in the formula for the
total entropy production, Eq. (2). A similar term appears in
the context of the Landauer principle out of equilibrium
[21], and was interpreted as the amount of information
necessary to shift from the equilibrium distribution to the
nonequilibrium one. Equation (2) should not be confused
with a formally similar one derived by Andrieux and
Gaspard [9], which represents a physically different quan-
tity, i.e., the entropy of the copy given the template. This
difference is physically important: the information term in
Eq. (2) can be thought of as a measure of distance from
equilibrium, as it is equal to zero at equilibrium and positive
otherwise. In contrast, the information term in the formula
given by Gaspard and Andrieux goes to zero only in the
limit of vanishing error rate.
The main result of this paper is that, thanks to the explicit

dependence on the error, the second law of thermodynam-
ics can be used to obtain general expressions and bounds on
the copy error. This allows us to identify three different
copying regimes: error amplification, error correction, and
Maxwell demon, all of which can be achieved by kinetic
proofreading.
Considering cyclic copying is analogous to considering

cyclic transformation when studying the efficiency of
thermodynamic engines. Besides being the natural choice
to properly describe the thermodynamics of the process,
template-assisted polymerization allows for out-of-
equilibrium copying regimes, which are absent in single-
monomer models. For example, a lower bound to the error
analogous to Eq. (5) is generally valid in closed networks
[22,23]. In template-assisted polymerization, this limit can
be broken when the proofreading reaction reverts its flux,
as seen in Fig. 5(d) for small values of the work.
We briefly discuss the relevance of our results for

interpreting experimental data. Many biological copying
pathways are driven by the hydrolysis of one single ganosine
triphosphate (GTP) molecule. The chemical work spent in
this process is Δμ ¼ Δμ0 þ kBT log½ð½GTP�Þ=ð½GDP�½Pi�Þ�,
where [GDP] is the concentration of guanosine diphosphate
and [Pi] the concentration of inorganic phosphate. Taking as
reference the bare potential of ATP, Δμ0 ¼ 14.5kBT, and
typical concentrations ½GTP� ¼ 1 mM, ½GDP� ¼ 0.01 mM,
and ½Pi� ¼ 1 mM, we obtain ΔμGTP ≈ 20kBT. In a protocol
involving proofreading, this information and Eq. (5) can be
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used to set a lower bound for the error. Assuming that the
energy of GTP is all spent to increase the free energy of the
chain, ΔF ≈ ΔμGTP, we obtain that the total error reduction
is η=ηeq ≥ 10−9. The value of this bound is smaller than
typically observed errors, which reasonably suggests that
not 100% of the energy of hydrolysis is utilized to increase
the free energy of the system.
Given the flexibility of our framework, many complex

copying mechanisms studied in the literature as noncyclic
processes [17–19] can be directly considered as template-
assisted polymerization problems and studied from the
point of view of thermodynamic efficiency. One limitation
of our treatment is the lack of long-term memory: while
processing a monomer, the machine does not keep track of
the past errors encountered along the chain. A more general
scheme could exploit correlations in the template sequence
to reduce the error. An example of this is backtracking
[24–26], where regions of the template containing many
errors are entirely reprocessed. Generalization of template-
assisted polymerization to these cases will be the subject of
a future study.
The thermodynamic relations derived in this paper

fundamentally limit the capabilities of stochastic machines
to reduce and proofread errors, and are reminiscent of
similar bounds derived for adaptation error in sensory
systems [27]. It will be of interest to understand whether
our results can be applied to error correction in sensing. For
example, it is known that sensory pathways exploit proof-
reading both in chemosensing by isolated receptors [28] or
cooperative ones [29]. Clarifying the links between these
problems will constitute an important step towards for-
mulating general thermodynamic principles [30] limiting
the accuracy of nonequilibrium information processing.

IV. METHODS

A. Steady-state solution of template-assisted
polymerization

In this section, we briefly outline how to solve the
template-assisted polymerization model. We start by writ-
ing the master equations governing the evolution of
probabilities of all main states Pð…Þ and those of the
intermediate states Pð…riÞ and Pð…wiÞ. The probability
flux between two arbitrary intermediate states …rj and
…ri is J r

ijð…Þ ¼ krijPð…rjÞ − krjiPð…riÞ, and analogous
for wrong matches [see Fig. 2(a)]. The master equations for
the intermediate states can be expressed in a compact form
in terms of these fluxes,

_Pð…riÞ¼
Xnþ1

j¼0

J r
ijð…Þ; _Pð…wiÞ¼

Xnþ1

j¼0

J w
ijð…Þ; ð7Þ

where the upper dot denotes time derivative. Note that the
sum extends to j ¼ 0 and j ¼ nþ 1, which with an abuse
of notation correspond to the main states neighboring the

network of intermediate states: …r0 ≡…w0 ≡…,
…rnþ1 ≡…r, and …wnþ1 ≡…w. Master equations for
main states are easily written by distinguishing states
ending with a wrong match from those ending with a right
match,

_Pð…wÞ ¼
Xnþ1

j¼0

½J w
nþ1jð…Þ − J r

j0ð…wÞ − J w
j0ð…wÞ�;

_Pð…rÞ ¼
Xnþ1

j¼0

½J r
nþ1jð…Þ − J r

j0ð…rÞ − J w
j0ð…rÞ�; ð8Þ

where the three sets of fluxes in each equation correspond
to finalized incorporation of the last monomer in the main
state and attempted incorporation of a right and wrong
monomer. Equation (7) is similar to that written for
biochemical models, while Eq. (8) is similar to that used
for polymer growth.
The system of equations (7) and (8) can be solved at

steady state, _P ¼ 0, by means of the ansatz that errors are
uncorrelated. Given an error η, to be determined a poste-
riori, we impose that the steady-state probability of a string
of length N with Nw errors is Pð…Þ ∝ ηN

wð1 − ηÞN−Nw
.

This implies

Pð…rÞ ¼ Pð…Þð1 − ηÞ and Pð…wÞ ¼ Pð…Þη: ð9Þ

For the intermediate states, we make the additional ansatz

Pð…riÞ ¼ Pð…Þpr
i and Pð…wiÞ ¼ Pð…Þpw

i ; ð10Þ

where pr
i and pw

i are the occupancies of the intermediate
states 1 ≤ i ≤ n, assumed to be independent of Pð…Þ.
Substituting Eqs. (9) and (10) in Eq. (7) yields a system

of 2n linear equations, from which the occupancies can be
expressed as functions of the kinetic rates and the error η,
still to be determined. It is now convenient to define the
occupation fluxes Jrij as

Jrij ¼ N ðkrijpj − krjipiÞ; ð11Þ

where N ¼ ½1þP
n
i¼1ðpr

i þ pw
i Þ�−1 is a normalization

constant such that
P

…iPð…riÞ þ Pð…wiÞ ¼ 1, and thusP
…Pð…Þ ¼ N . Occupation fluxes are related to the

probability fluxes via J r
ijð…Þ ¼ Pð…ÞJrij=N and analo-

gously for wrong matches. The speed of right and wrong
monomer incorporations can now be expressed as vr ¼P

iJ
r
nþ1i ¼

P
iJ

r
i0 and vw ¼ P

iJ
w
nþ1i ¼

P
iJ

w
i0. Replacing

the ansatz in Eq. (8) and using these definitions results in
Eq. (1), which can be finally used to determine the error.

B. Entropy production rate

To calculate the steady-state entropy production rate, we
start with the general expression [31]
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_Stot ¼
1

2

X
…;i;j

�
J r

ijð…Þ log
�
krijPð…rjÞ
krjiPð…riÞ

�

þJ w
ijð…Þ log

�
kwijPð…wjÞ
kwjiPð…wiÞ

��
: ð12Þ

We now factorize the sum into one over strings (noted
P

…)
and one over intermediate states (where hiji denotes links).
Using the definition of the occupation fluxes, Eq. (11), we
obtain

_Stot ¼
P

…Pð…Þ
N

X
hiji

�
Jrij log

�
krijp

r
j

krjip
r
i

�

þ Jwij log

�
kwijp

w
j

kwjip
w
i

��
: ð13Þ

Since the sum over all states is normalized to 1, we have
that

P
…Pð…Þ ¼ ½1þP

n
i¼1ðpr

i þ pw
i Þ�−1. Using the def-

inition of N in the previous section, the term outside the
brackets is equal to 1. Substituting the definition of the rates
of Fig. 3 into Eq. (13) yields

_Stot ¼
X
hiji

ðJrij þ JwijÞμij=T þ
X
hiji

Jrij log

�
pr
j

pr
i

�

þ
X
hiji

Jwij log

�
pw
j

pw
i

�
þ
X
hiji

JrijðΔEr
j − ΔEr

i Þ=T

þ
X
hiji

JwijðΔEw
j − ΔEr

i Þ=T: ð14Þ

For an isolated network at steady state, all terms but the first
one vanish by flux conservation [31]. However, in cyclic
copying the states i ¼ 0 and i ¼ nþ 1 receive a finite flux
from the rest of the transition network; see Fig. 2(a). UsingP

jJ
r
ij ¼ 0 for 1 ≤ i ≤ n, the definitions of vr and vw, and

Eq. (1), we obtain

_Stot ¼
X
hiji

ðJrij þ JwijÞμij=T − ηv½logðηÞ þ ΔEw=T�

− ð1 − ηÞv½log ð1 − ηÞ þ ΔEr=T�: ð15Þ

Using the definition of equilibrium error and free-energy
difference per step given in Sec. II, we arrive at

T _Stot ¼ v½ΔW − ΔFeq − TDðη∥ηeqÞ�: ð16Þ

Defining the entropy production per step as ΔStot ¼ _Stot=v
leads to Eq. (2).
Equation (4) can be derived following the same pro-

cedure, but considering the contribution to the entropy
production coming from incorporation of wrong matches,
_Swtot¼1

2

P
…;i;jJ

w
ijð…ÞlogfkwijPð…wjÞ=½kwjiPð…wiÞ�g, from

which we also define ΔSwtot ¼ _Swtot=vw. Note that _Swtot ≥ 0,
since all terms of the sum in its definition are non-negative.

C. Thermodynamic bound for proofreading

In copying schemes assisted by kinetic proofreading, the
proofreading reaction removes incorporated monomers at
an average speed vp ¼ Jwnþ1 0 þ Jrnþ1 0, where the index “p”
denotes quantities that correspond to the proofreading
reaction. The average proofreading speed can be written
as a sum of contributions coming from right and wrong
monomers, vp ¼ vrp þ vwp < 0. Proofreading is fueled by a
chemical driving μ0 nþ1, which is the same for right and
wrong matches (we remind the reader that the proofreading
reaction is driven backward). By direct substitution, one
can show that the average work per proofread monomer is
ΔWp ¼ ΔWw

p ¼ ΔWr
p ¼ μ0 nþ1. According to our conven-

tion, monomer removal corresponds to vp < 0. In an
effective proofreading scheme, errors are removed on
average, vwp ¼ Jwnþ1 0 < 0. Consider now the entropy pro-
duction rate of proofreading wrong monomers,
_Swp;tot ¼ Jwnþ1 0 log½ðpw

0 k
w
nþ1 0Þ=ðpw

nþ1k0nþ1Þ�. As every term
of _Stot, this quantity satisfies a second-law-like inequality
_Swp;tot ≥ 0. By means of this inequality, and using vwp < 0,
pw
0 ¼ 1, and pw

nþ1 ¼ η, we obtain the general proofreading
bound of Eq. (5).

D. Solution of the proofreading model

To solve the proofreading protocol in Fig. 5(a), we start
from Eq. (7), which at steady state implies Jr10 − Jr21 ¼ 0
and Jw10 − Jw21 ¼ 0. Solving for the probabilities of the
intermediate states yields pr

1¼½kr10þð1−ηÞkr12�=ðkr01þkr21Þ
and pw

1 ¼ ðkw10 þ kw12ηÞ=ðkw01 þ kw21Þ. The speed of incorpo-
ration of right and wrong monomers is vw¼N ½kw20þ
kw21p

w
1 −ηðkw12þkw02Þ� and vr¼N ½kr20þkr21p

r
1−ð1−ηÞðkr12þ

kr02Þ�, where N is the previously defined normalization
constant. Substituting these expressions in Eq. (1) yields

η

1 − η
¼ kw20 þ kw21p

w
1 − ηðkw12 þ kw02Þ

kr20 þ kr21p
r
1 − ð1 − ηÞðkr12 þ kr02Þ

; ð17Þ

which can be easily solved for the error η.
To scrutinize the effectiveness of proofreading, we

parametrize the rates as in Fig. 3(b). Considering the
strongly driven regime μ21, μ02 ≫ 1, Eq. (17) becomes

η

1 − η
¼ ω21pw

1 − ηω02eðμ02−μ21þΔEwÞ=T

ω21pr
1 − ð1 − ηÞω02eðμ02−μ21þΔErþδ02Þ=T : ð18Þ

From Eq. (18), one can deduce that the error η is a
decreasing function of the combination of parameters
K ¼ ðω02=ω21Þeðμ02−μ21Þ=T , which tunes the intensity of
proofreading. However, increasing K also increases the
absolute value of the proofreading speed, vp ¼
N ½kr20 þ kw20 − kr02ð1 − ηÞ þ kw02η�, so that K can be
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increased only up to a point where the net elongation speed
vanishes. Finding the maximum value of K by the con-
dition v ¼ 0 and substituting in Eq. (18) leads to Eq. (6). In
this case, η1 is determined by the large kinetic barrier
η1 ≈ e−δ10=T ; see, e.g., Refs. [10,13].
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