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We examine models of fermions with infinite-range interactions that realize non-Fermi liquids with a
continuously variable U(1) charge density Q and a nonzero entropy density S at vanishing temperature.
Real-time correlators of operators carrying U(1) charge q at a low temperature T are characterized by a
Q-dependent frequency ωS ¼ ðqT=ℏÞð∂S=∂QÞ, which determines a spectral asymmetry. We show that the
correlators match precisely with those of the two-dimensional anti–de Sitter (AdS2) horizons of extremal
charged black holes. On the black hole side, the matching employs S as the Bekenstein-Hawking entropy
density and the laws of black hole thermodynamics that relate ð∂S=∂QÞ=ð2πÞ to the electric field strength
in AdS2. The fermion model entropy is computed using the microscopic degrees of freedom of a UV
complete theory without supersymmetry.
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I. INTRODUCTION

Holography provides us with powerful tools for inves-
tigating models of quantum matter without quasiparticle
excitations. The best understood among these are strongly
coupled conformal field theories (CFTs) in spatial dimen-
sions d ≥ 2. Our understanding of such models is built
upon the foundation provided by the solvable example
of maximally supersymmetric Yang-Mills theory, which is
known to be holographically dual to string theory on
anti–de Sitter (AdS) space [1].
However, many holographic studies [2–4] have focused

on experimentally important examples of strongly coupled
quantum matter that are not CFTs. Of particular interest
are compressible states without quasiparticles, or “strange
metals,” in dimensions d ≥ 2. Broadly defined, these are
quantum states without quasiparticles in which a conserved
U(1) charge density Q can be continuously varied at zero
temperature by a conjugate chemical potential, and the
U(1) and translational symmetries are not spontaneously
broken. Solvable examples of strange metals with holo-
graphic duals would clearly be of great interest.
Here, we consider the strange metal state introduced

by Sachdev and Ye (SY) [5] in a model of fermions with
infinite-range interactions. The fermion density Q is con-
served and continuously variable, and there is a nonzero
entropy density S at vanishing temperature [6,7]. The

fermion Green function is momentum independent and
so has no Fermi surface (but there is a remnant of the
Luttinger theorem, as discussed in Appendix A). The Green
function is divergent at low frequency (ω) and temperature
(T) with a known scaling function [6–8] [the explicit form
is in Eq. (3)] determined by the fermion scaling dimension
Δ, its U(1) charge q ¼ 1, and a spectral asymmetry
frequency we shall denote by ωS. This frequency deter-
mines the asymmetry between the particle and hole
excitations of the non-Fermi liquid. The values of Δ and
q are fixed and universal (as in traditional critical phenom-
ena), while that of ωS varies with the compressible density
Q in an apparently nonuniversal manner. However, the
same ωS , scaled by the value of q, appears in the correlators
of all operators.
One general way to fix the precise value of ωS , without

a priori knowledge of the full ω dependence of the
correlator, is the following. The product of the retarded
(GR) and advanced (GA) Green functions obeys

GRðωÞGAðωÞ ¼ Φeðω − ωSÞ; ð1Þ

where ΦeðωÞ is some even function of ω. So the content
of Eq. (1) is that GRGA becomes an even function of
frequency after the frequency shift ωS. With this definition,
it was found [6–8] that there is a surprising general
relationship between ωS and the zero-temperature entropy
S density:

ωS ¼ qT
ℏ

∂S
∂Q : ð2Þ
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Such a relationship was first found in the “multichannel
Kondo” problem of a local spin degree of freedom at the
boundary of a CFT2 (i.e., a CFT in 1þ1 spacetime
dimensions) [6], where S is the boundary entropy [9–11].
It was later extended [7,8] to the fermion model of SY, in
which we define S andQ per site, and there are no explicit
CFT2 degrees freedom; instead, each fermion site is
influenced by a self-consistent environment, and this
environment plays a role similar to that of the CFT2 in
the Kondo problem. Both S and ωS are nonuniversal
functions of the compressible density Q, but they are
related as in Eq. (2). It is quite remarkable to have a
dynamical frequency determined by a thermodynamic
property (which is also defined classically) divided by
ℏ; other notable instances of connections between observ-
ables characterizing low-frequency dissipation and static
thermodynamics or fundamental constants are in
Refs. [12,13]. For the SY state, this value of ωS relies
on emergent symmetries at low energies, but also requires
careful regularization of the single-site canonical fermions
present at high energies. Note that the entropy S density in
Eq. (2) counts all the degrees of freedom in an UV finite
fermion model, as does the charge density Q, while ωS
characterizes the low-frequency dynamics. Indeed, in this
context, Parcollet et al. [6] note, “It is tempting to
speculate that a deeper interpretation of these facts is still
to be found.”
As we demonstrate in this paper, the above properties of

the SY state match precisely with the quantum theory
holographically dual to extremal charged black holes with
two-dimensional anti–de Sitter (AdS2) horizons [14–17].
As a specific example, we work with the Einstein-Maxwell
theory of (planar or spherical) charged black holes
embedded in asymptotically AdSdþ2 space, with d ≥ 2
(the Reissner-Nordström-AdS solution); however, the
key features apply to a wide class of black hole solutions
[18–24]. The correlators of this gravitational theory have
the same functional dependence upon ω, T, q, Δ, and ωS as
those of the SY state, given in Eq. (3), and this agreement
can be understood by the common conformal and gauge
invariances of the two theories [25–27]. However, there is a
deeper correspondence between the two theories in that
Eq. (2) for the value of ωS also applies in the gravitational
theories. The holographic computation of correlators yields
the value of ωS [e.g., by using Eq. (1)], while the right-hand
side of Eq. (2) is obtained from a classical gravitational
computation of the Bekenstein-Hawking (or Wald) entropy.
The equality in Eq. (2) follows from the classical general
relativity of AdS2 horizons of charged black holes (see
Sec. III B), and this potentially provides the long-sought
interpretation for the value of ωS.
For a general black hole solution, the values of ωS and S

depend on Q in a manner different from the SY state, but
they all continue to obey Eq. (2). This difference is not
surprising, given that the Q dependence of S for the SY

state uses its canonical site-fermion structure in the UV, a
characteristic that is not expected to be captured by a
gravity dual. But the validity of Eq. (2) in the SY state, and
in a wide class of gravity theories, is evidence that there is a
gravity dual that captures all the universal low-energy
properties of the SY state.
The common two-point correlator of a fermionic oper-

ator with U(1) charge q, and scaling dimension Δ, in both
the SY and AdS2 theories is [6–8,16,28,29]

GRðωÞ ¼ GA�ðωÞ ¼ −iCe−iθ
ð2πTÞ1−2Δ

Γ
�
Δ − iℏðω−ωSÞ

2πkBT

�

Γ
�
1 − Δ − iℏðω−ωSÞ

2πkBT

� ;

ð3Þ

where Δ ¼ 1=4 for the q ¼ 1 fundamental fermion of the
SY state, the amplitude C is a real and positive, and the
angle −πΔ < θ < πΔ is given by

e2πqE ¼ sinðπΔþ θÞ
sinðπΔ − θÞ : ð4Þ

Here, we find it convenient to introduce a dimensionless,
T-independent, parameter E related to ωS by

E ¼ 1

2πq
ℏωS

kBT
: ð5Þ

We therefore introduce three parameters,ωS, E, and θ, all of
which characterize the spectral asymmetry, and they can be
determined from each other in Eqs. (4) and (5). The T → 0
limit of the Fourier transform of Eq. (3) shows that E also
defines a “twist” in the imaginary time fermionic correlator:

GðτÞ ∼
�−τ−2Δ τ > 0

e−2πqE jτj−2Δ τ < 0:
ð6Þ

It is easy to verify that Eq. (3) obeys Eq. (1). We show a plot
of Eq. (3) in Fig. 1, which illustrates the “shift” property
of GRðωÞGAðωÞ.
For the SY state, the previous work [6–8] establishes the

additional relation in Eq. (2), which now relates the spectral
asymmetry parameters ωS, E, and θ to ∂S=∂Q. The T ¼ 0
properties of the SY state reviewed above are summarized
in the left-hand panel of Fig. 2. For our subsequent
discussion, it is useful to combine Eqs. (2) and (5) in
the form

∂S
∂Q ¼ 2πE: ð7Þ

In the holographic computation of Eq. (3), the temper-
ature T is the Hawking temperature of the black hole
horizon [30], and the dimensionless spectral asymmetry
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parameter E appearing in Eq. (6) [and Eq. (3)] is determined
by the strength of the electric field [see Eq. (57)] supporting
the near-horizon AdS2 geometry [16,29,31] (see Fig. 2). A
key observation in the holographic framework is that E,
now related to the electric field, obeys an important identity
which follows from the laws of black hole thermodynamics

[32] (see Fig. 2) (we set ℏ ¼ kB ¼ 1 in the remaining
discussion):

∂SBH

∂Q ¼ 2πE; ð8Þ

where SBH is the Bekenstein-Hawking entropy density of
the AdS2 horizon. Indeed, Eq. (8) is a general consequence
of the classical Maxwell and Einstein equations and the
conformal invariance of the AdS2 horizon, as we show in
Sec. III B. Moreover, a Legendre transform of the identity
in Eq. (8) was established by Sen [18,19] for a wide class of
theories of gravity in the Wald formalism [20–24], in which
SBH is generalized to the Wald entropy.
The main result of this paper is the identical forms of the

relationship Eq. (7) for the statistical entropy of the SY state
and Eq. (8) for the Bekenstein-Hawking entropy of AdS2
horizons. This result is further evidence that the SY state
and a gravity dual with a AdS2 horizon share the same
low-energy properties. Assuming the existence of a gravity
dual, Eqs. (7) and (8) show that such a correspondence
is consistent only if the black hole entropy has the

FIG. 2. Summary of the properties of the SY state (Sec. II) and planar charged black holes (Sec. III) at T ¼ 0. The spatial coordinate ~x
has d dimensions. All results also apply to spherical black holes considered in Appendix B. The AdS2 × Rd metric has unimportant
prefactors noted in Eq. (55), which are not displayed in the figure. The fermion mass m has to be adjusted to obtain the displayed power
law. The spectral asymmetry parameter E appears in the fermion correlators and in the AdS2 electric field. As the chargeQ is increased,
the horizon moves closer to the boundary, and its area Ah increases. In black hole thermodynamics, the Bekenstein-Hawking entropy
density SBH is related to the area of the horizon via SBH ¼ Ah=ð4GNAbÞ, where GN is Newton’s constant.

FIG. 1. Plots of the Green functions in Eq. (3) for Δ ¼ 1=4,
q ¼ 1, T ¼ 1, A ¼ 1, E ¼ 1=4, with ℏ ¼ kB ¼ 1. Note that while
neither ImGRðωÞ nor ReGRðωÞ have any definite properties under
ω ↔ −ω, the product GRðωÞGAðωÞ becomes an even function of
ω after a shift by ωS ¼ 2πqET ¼ π=2.
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Bekenstein-Hawking value, and endow the black hole
entropy with a statistical interpretation [33].
It is important to keep in mind that (as we mentioned

earlier) the models considered here have a different
“equation of state” relating E to Q: this is specified for
the SY state in Eq. (A5), for the planar black hole in
Eq. (58), and for the spherical black hole in Eq. (B8).
The holographic link between the SY state and the AdS2

horizons of charged black branes has been conjectured
earlier [25–27], based upon the presence of a nonvanishing
zero-temperature entropy density and the conformal struc-
ture of correlators. The results above sharpen this link by
establishing a precise quantitative connection for the
Bekenstein-Hawking entropy [34,35] of the black hole
with the UV complete computation on the microscopic
degrees of freedom of the SY state.
It also worthwhile to note here that in the usual matrix

large-M limit of the AdS/CFT correspondence [1], S andQ
are both of orderM2 [16]. SoωS and E both remain of order
unity in this limit.
We present an infinite-range model and its solution in

Sec. II. An important result here is the emergent conformal
and gauge invariance in Eq. (26), which strongly constrains
the low-energy theory. We then turn to the Einstein-
Maxwell theory of charged horizons in Sec. III and show
that it also obeys Eqs. (1)–(8). We conclude with a
discussion of broader implications in Sec. IV.

II. INFINITE-RANGE MODEL

SY considered a model of SUðMÞ spins with Gaussian
random exchange interactions between any pair of N sites,
followed by the double limit N → ∞ and then M → ∞.
Their Hamiltonian is

H ¼ 1

ðNMÞ1=2
XN
i;j¼1

XM
α;β¼1

Jijc
†
iαciβc

†
jβcjα; ð9Þ

where the ciα are canonical fermions obeying

ciαcjβþcjβciα¼0; ciαc
†
jβþc†jβciα¼δijδαβ; ð10Þ

and there is a fermion number constraint,

1

M

X
α

c†iαciα ¼ Q; ð11Þ

on every site i, with 0 < Q < 1. The exchange interactions
Jij are independent Gaussian random numbers with zero
mean and equal variance.
Kitaev [27] recently pointed out that the SY state can

also be realized in a simpler model of Majorana fermions
in which only a single large-N limit needs to be taken,
and which also suppresses spin-glass order [7,36–38].
We present our results here using a complex fermion

generalization of Kitaev’s proposal, but we emphasize that
essentially all results below apply equally to the original
model of SY in Eq. (9). We consider the Hamiltonian of
spinless fermions ci,

H ¼ 1

ð2NÞ3=2
XN

i;j;k;l¼1

Jij;klc
†
i c

†
jckcl − μ

X
i

c†i ci; ð12Þ

with

cicj þ cjci ¼ 0; cic
†
j þ c†jci ¼ δij; ð13Þ

and the Jij;kl are complex, independent Gaussian random
couplings with zero mean obeying

Jji;kl ¼ −Jij;kl; Jij;lk ¼ −Jij;kl;
Jkl;ij ¼ J�ij;kl; jJij;klj2 ¼ J2: ð14Þ

Because there is only a fermion interaction term in H, and
no fermion hopping, Eq. (12) can be viewed as a “matrix
model” on Fock space, with a dimension that is exponen-
tially large N. The conserved U(1) densityQ is now related
to the average fermion number by

Q ¼ 1

N

X
i

hc†i cii; ð15Þ

which replaces the on-site constraint in Eq. (11). The value
of 0 < Q < 1 can be varied by the chemical potential μ.
The solution described below applies for any μ, and so
realizes a compressible state.
Note that we could equally have defined Q without the

1=N prefactor in Eq. (15); then we would have to define S
as the total entropy, and both Q and S would be propor-
tional to N in the large-N limit. The latter scaling would
then be similar to the M2 scaling of these quantities in the
usual matrix large-M limit of the AdS/CFT correspondence
[1]. But we choose to work here with an intensive definition
of Q and S and keep the 1=N in Eq. (15).
Introducing replicas cia, with a ¼ 1;…; n, we can

average over disorder and obtain the replicated imaginary
time (τ) action:

S ¼
X
ia

Z
1=T

0

dτc†ia

� ∂
∂τ − μ

�
cia

− J2

4N3

X
ab

Z
1=T

0

dτdτ0
���X

i
c†iaðτÞcibðτ0Þ

���4 ð16Þ

(here, we are neglecting normal-ordering corrections
which vanish as N → ∞). Following SY, we decouple
the interaction by two successive Hubbard-Stratonovich
transformations. First, we introduce the real field Qabðτ; τ0Þ
obeying
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Qabðτ; τ0Þ ¼ Qbaðτ0; τÞ: ð17Þ

In terms of this field,

S ¼
X
ia

Z
1=T

0

dτc†ia

� ∂
∂τ − μ

�
cia

þ
X
ab

Z
1=T

0

dτdτ0
�

N
4J2

½Qabðτ; τ0Þ�2

−
1

2N
Qabðτ; τ0Þ

���X
i
c†iaðτÞcibðτ0Þ

���2
�
: ð18Þ

A second decoupling with the complex field Pabðτ; τ0Þ
obeying

Pabðτ; τ0Þ ¼ P�
baðτ0; τÞ ð19Þ

yields

S ¼
X
ia

Z
1=T

0

dτc†ia

� ∂
∂τ − μ

�
cia

þ
X
ab

Z
1=T

0

dτdτ0
�

N
4J2

½Qabðτ; τ0Þ�2

þ N
2
Qabðτ; τ0ÞjPabðτ; τ0Þj2

−Qabðτ; τ0ÞPbaðτ0; τÞ
X
i

c†iaðτÞcibðτ0Þ
�
: ð20Þ

Now we can integrate out the fermions and obtain an action
that can be solved in the saddle-point approximation in the
limit of large N. The saddle-point equations are

Pabðτ; τ0Þ ¼ hc†aðτÞcbðτ0Þi;
Qabðτ; τ0Þ ¼ J2jPabðτ; τ0Þj2: ð21Þ

Note that we have dropped the site index on the fermions,
because all sites are equivalent and the saddle-point
equations are defined as a single-site problem.
We do not expect spin-glass solutions in this model, and

so we restrict our attention to replica diagonal solutions in
which

Pabðτ; τ0Þ ¼ δabGðτ0 − τÞ; ð22Þ

where GðτÞ is the usual fermion Green function. In the
operator formalism for the underlying Hamiltonian, this
Green function is defined in Euclidean time by

Gðτ1; τ2Þ ¼ − 1

N

X
i

hTτðciðτ1Þc†i ðτ2ÞÞi; ð23Þ

where Tτ denotes time ordering, andGðτ1−τ2Þ¼Gðτ1;τ2Þ.
Now, the large-N saddle-point equations become [5]

GðiωnÞ ¼
1

iωn þ μ − ΣðiωnÞ
;

ΣðτÞ ¼ −J2G2ðτÞGð−τÞ; ð24Þ

where ωn is a Matsubara frequency. Although they are
innocuously simple in appearance, these equations contain
a great deal of emergent scaling structure.
It was argued in Ref. [5] that physically sensible

solutions of Eq. (24) required Σðiωn ¼ 0Þ ¼ μ. Also, in
the low-energy scaling limit, ω; T ≪ J, the iωn is irrelevant
[5]. Then, it is useful to write these equations in imaginary
(Euclidean) time, separating the two time arguments of the
Green functions [and defining ~ΣðiωnÞ ¼ ΣðiωnÞ − μ]:

Z
dτ2Gðτ1;τ2Þ ~Σðτ2;τ3Þ¼−δðτ1−τ3Þ;

~Σðτ1;τ2Þ¼−J2½Gðτ1;τ2Þ�2Gðτ2;τ1Þ: ð25Þ

A crucial property of these equations is that they are
invariant under the time reparametrization τ → σ, under
which

τ ¼ fðσÞ;

Gðτ1; τ2Þ ¼ ½f0ðσ1Þf0ðσ2Þ�−1=4
gðσ1Þ
gðσ2Þ

Gðσ1; σ2Þ;

~Σðτ1; τ2Þ ¼ ½f0ðσ1Þf0ðσ2Þ�−3=4
gðσ1Þ
gðσ2Þ

~Σðσ1; σ2Þ; ð26Þ

where fðσÞ and gðσÞ are arbitrary functions, corresponding
to emergent conformal and U(1) gauge invariances. The
conformal symmetry of the low-energy Green functions has
been noted earlier [8,25–27], and in the form in Eq. (26) by
Kitaev [27] [without the gðσÞ factors]. The gauge trans-
formation gðσÞ is a real number in Euclidean time, but it
becomes a conventional U(1) phase factor in Minkowski
time. For the original model of SY [5], the gauge invariance
was explicitly present in the underlying Hamiltonian. In
contrast, our Hamiltonian here in Eq. (12) is not gauge
invariant, and only has a global U(1) symmetry; never-
theless, a U(1) gauge invariance emerges in the low-energy
theory.
Note that the iωn term in Eq. (24) breaks both the

conformal and gauge invariances. Although the iωn can
mostly be neglected in studying the scaling limit, it is
important in selecting the proper low-energy solution of
Eq. (25) from the highly degenerate possibilities allowed
by Eq. (26).

A. Low-energy Green function

We now show that the fermion Green function in Eq. (3)
follows directly from the conformal and gauge invariances
in Eq. (26), when combined with constraints from analy-
ticity and unitarity. This Green function was obtained
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earlier [5–8] by explicit solution of the integral equation in
Eq. (25) (and also, as discussed in Sec. III, by the solution
[16,29] of a Dirac equation on a thermal AdS2 background
with a nonzero electric field). Given our reliance on
conformal and gauge invariances, the computations below
are straightforwardly generalized to other operators with
different values of q.
At the Matsubara frequencies, the Green function is

defined by

GðiωnÞ ¼
Z

1=T

0

dτeiωnτGðτÞ; ð27Þ

and this is continued to all complex frequencies z via the
spectral representation

GðzÞ ¼
Z

∞

−∞
dΩ
π

ρðΩÞ
z −Ω

: ð28Þ

The spectral density ρðΩÞ > 0 for all real Ω and T. The
retarded Green function is GRðωÞ ¼ Gðωþ iηÞ, with η a
positive infinitesimal, while the advanced Green function
is GAðωÞ ¼ Gðω − iηÞ.
At T ¼ 0, given the scale invariance implicit in Eq. (26),

we expect GðzÞ to be a power law of z. More precisely,
Eq. (26) implies

GðzÞ ¼ C
e−iðπ=4þθÞffiffiffi

z
p ; ImðzÞ > 0;

jzj ≪ J; T ¼ 0: ð29Þ

Positivity of ρðΩÞ now implies C > 0 and
−π=4 < θ < π=4. An inverse Fourier transform yields

GðτÞ ¼
8<
:

− C sinðπ=4þθÞffiffiffiffi
πτ

p τ ≫ 1=J; T ¼ 0

C cosðπ=4þθÞffiffiffiffiffiffi−πτp −τ ≫ 1=J; T ¼ 0.
ð30Þ

We obtain the nonzero-temperature solution by choosing
the conformal map in Eq. (26) as

τ ¼ 1

πT
tanðπTσÞ; ð31Þ

where σ is the periodic imaginary time coordinate with
period 1=T. Applying this map to Eq. (30), we obtain

GðσÞ ¼
8<
:

−CgðσÞ sinðπ=4þ θÞ
�

T
sinðπTσÞ

�
1=2

0< σ < 1
T

CgðσÞ cosðπ=4þ θÞ
�

T
sinð−πTσÞ

�
1=2

0< −σ < 1
T :

ð32Þ

The function gðσÞ is so far undetermined apart from a
normalization choice gð0Þ ¼ 1. We can now determine
gðσÞ by imposing the Kubo-Martin-Schwinger (KMS)
condition

Gðσ þ 1=TÞ ¼ −GðσÞ; ð33Þ

which implies

gðσÞ ¼ tanðπ=4þ θÞgðσ þ 1=TÞ: ð34Þ

The solution is clearly

gðσÞ ¼ e−2πETσ; ð35Þ

where the new parameter E and the angle θ are related as in
Eq. (4) for Δ ¼ 1=4 and q ¼ 1. The final expression
determining GðσÞ is

GðσÞ ¼ −C e−2πETσffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e−4πE

p
�

T
sinðπTσÞ

�
1=2

; 0 < σ <
1

T
;

ð36Þ

and this can be extended to all real σ using the KMS
condition. The result in Eq. (3) now follows from a Fourier
transform.
For other fermionic operators with general charge q and

scaling dimension Δ, the above arguments show that the σ
dependence of Eq. (36) will be replaced by

GðσÞ∼−e−2πqETσ
�

T
sinðπTσÞ

�
2Δ
; 0<σ<

1

T
; ð37Þ

and its Fourier transform will have the frequency shift

ωS ¼ 2πqTE: ð38Þ

The T → 0 limit of Eq. (37) leads to Eq. (6).
The above analysis can be easily repeated for bosonic

operators of charge q and scaling dimension Δ. The result
in Eq. (3) continues to apply, while Eq. (4) is modified to

e2πqE ¼ − sinðπΔþ θÞ
sinðπΔ − θÞ : ð39Þ

The constraint on the allowed values of θ is now
πΔ < θ < πð1 − ΔÞ.
The constants C and θ (or E) appearing in Eq. (3) can

also be determined exactly for the microscopic model in
Eq. (12), as reviewed in Appendix A; however, their values
depend upon the specific UV completion used here, and do
not apply to the holographic model of Sec. III. In particular,
the equation of state forQ as a function of E is in Eq. (A5).
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B. Entropy

To complete our results for the SY state, we need to
establish the connection in Eq. (2) between ωS and the
zero-temperature entropy density S. This is connection is
the focus of our work, and it also relies on the conformal
and gauge invariances in Eq. (26). However, in addition, we
need information on the UV complete nature of the fermion
model and, in particular, the fact that the short-time
behavior of the fermion Green function is determined by
canonical fermions obeying the anticommutation relations
in Eq. (13).
The computation of the entropy follows Refs. [6,7] and

relies on the thermodynamic Maxwell relation

�∂S
∂Q

�
T
¼ −

�∂μ
∂T

�
Q
: ð40Þ

In the T → 0 limit, Parcollet et al. [6] (Sec. VI A 2) show
that the right-hand side of Eq. (40) can be evaluated using
the imaginary time Green function, and we review their
computation here. Their argument requires not only the
scaling behavior of the Green function at times τ ≫ 1=J
given in Eq. (37), but also the short-time behavior that is
beyond the conformal regime. First, we observe from
Eq. (24) the large frequency behavior

GðiωnÞ ¼
1

iωn
− μ

ðiωnÞ2
þ � � � ; ð41Þ

which implies, from Eq. (28),

μ ¼ −
Z

∞

−∞
dΩ
π

ΩρðΩÞ; ð42Þ

which makes it evident that μ depends only upon the
particle-hole asymmetric part of the spectral density. Next,
we can relate the Ω integrals to the derivative of the
imaginary time correlator:

μ ¼ −∂τGðτ ¼ 0þÞ − ∂τGðτ ¼ ð1=TÞ−Þ: ð43Þ

Making the analogy to Eq. (36), we pull out an explicitly
particle-hole asymmetric part of GðτÞ by defining [39]

GðτÞ≡ e−2πETτgðτÞ; 0 < σ <
1

T
: ð44Þ

Note that E was introduced as a parameter in Eq. (36), and
then it appears in Eq. (3) via Eq. (38). We proceed in our
computation of μ by inserting Eq. (44) into Eq. (43) to
obtain

μ ¼ 2πET½Gðτ ¼ 0þÞ þ Gðτ ¼ ð1=TÞ−Þ�
− ∂τgðτ ¼ 0þÞ − e−2πE∂τgðτ ¼ ð1=TÞ−Þ: ð45Þ

For the term in the first curly braces, we have

Gðτ ¼ 0þÞ þ G½τ ¼ ð1=TÞ−� ¼ Gðτ ¼ 0þÞ −Gðτ ¼ 0−1Þ
¼ −1; ð46Þ

which follows from the KMS condition and the fermion
anticommutation relation in Eq. (13); additionally, this is
related to the high-frequency behavior Gðjzj → ∞Þ ¼ 1=z.
Writing the second term in Eq. (45) in terms of a spectral
density ρgðΩÞ for gðτÞ, we obtain

μ ¼ −2πET −
Z

∞

−∞
dΩ
π

Ω½ρgðΩÞ − e−2πEρgð−ΩÞ�
1þ e−Ω=T

ð47Þ

[we note that there is a sign error on the right-hand side of
Eq. (65) in Ref. [6], and −ρgð−ΩÞ should be ρgð−ΩÞ]. At
this point, Ref. [6] argues that at low T and fixedQ, ρg must
be particle-hole symmetric with ρgðΩÞ ¼ ρgð−ΩÞ, and that
the T-dependent part of the integral above scales as T3=2.
We therefore have

�∂μ
∂T

�
Q
¼ −2πE; T → 0; ð48Þ

and then the Maxwell relation in Eq. (40) leads to Eq. (8).
Using the relationship between Q and E specified in

Appendix A in Eq. (A5), and the limiting value S ¼ 0 in
the empty state Q ¼ 0, we can integrate Eq. (8) to obtain
the full zero-temperature entropy [7].

III. CHARGED BLACK HOLES

This section (apart from Sec. III B) mainly recalls the
results of Faulkner et al. [16,29] on planar, charged black
holes in AdSdþ2 and makes the correspondence with the
properties of the SY state. We also largely follow their
notation, apart from the change d → dþ 1 required by our
definition of d as the spatial dimension (instead of the
spacetime dimension). The case of spherical black holes
in global AdS is more complicated and is considered in
Appendix B; it has a more complex equation of state, but
also obeys all results claimed in Sec. I. The discussion in
the latter part of Sec. III B shows how the needed features
of Faulkner et al. can be obtained in a more general class of
black hole solutions.
We consider the Einstein-Maxwell theory of a metric g

and a U(1) gauge flux F ¼ dA with action

S ¼ 1

2κ2

Z
ddþ2x

ffiffiffiffiffiffi−gp 

Rþ dðdþ 1Þ

R2
− R2

g2F
F2

�
; ð49Þ

where κ2 ¼ 8πGN , R is the Ricci scalar, R is the radius
of AdSdþ2, and gF is a dimensionless gauge coupling
constant. The equations of motion of this action have the
solution [14,15]
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ds2 ¼ r2

R2
ð−fdt2 þ d~x2Þ þ R2

r2
dr2

f
; ð50Þ

with

f ¼ 1þ Θ2

r2d
−
�
rdþ1
0 þ Θ2

rd−10

�
1

rdþ1
;

A ¼ μ

�
1 − rd−10

rd−1

�
dt: ð51Þ

This solution is expressed in terms of three parameters, Θ,
r0, and μ. These parameters are determined by the charge
densityQ and temperature T of the boundary theory via the
relations

μ ¼ gFΘ
cdR2rd−10

; Q ¼ 2ðd − 1Þ
cd

Θ
κ2RdgF

;

T ¼ ðdþ 1Þr0
4πR2

�
1 − ðd − 1ÞΘ2

ðdþ 1Þr2d0

�
;

cd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðd − 1Þ

d

r
: ð52Þ

The Bekenstein-Hawking entropy density [34,35] of this
solution is

SBH ¼ 2π

κ2

�
r0
R

�
d
: ð53Þ

We now turn to the holographic implications of this
solution at low energy [16,29,40], which is controlled by
the near-horizon geometry. At T ¼ 0, the horizon is at
r ¼ ½Θ2ðd − 1Þ=ðdþ 1Þ�1=ð2dÞ, and so we introduce the
coordinate ζ by

r − ½Θ2ðd − 1Þ=ðdþ 1Þ�1=ð2dÞ ¼ 1

ζ
: ð54Þ

We approach the horizon as ζ → ∞ (see Fig. 2). In terms of
ζ, the near-horizon geometry at T ¼ 0 is

ds2 ¼ R2
2

ð−dt2 þ dζ2Þ
ζ2

þ ½Θ2ðd − 1Þ=ðdþ 1Þ�1=d
R2

d~x2:

ð55Þ

The geometry has factorized to AdS2 ×Rd, where the
AdS2 radius is given by

R2 ¼
Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dðdþ 1Þp : ð56Þ

In the same low-energy limit, the gauge field is (see Fig. 2)

A ¼ E
ζ
dt; ð57Þ

which determines the strength of the AdS2 electric field in
terms of the dimensionless parameter E. Notice that the
value of E in Eq. (57) is invariant under any rescaling of the
coordinates, which preserves the ð−dt2 þ dζ2Þ=ζ2 structure
of the AdS2 metric. From the present near-horizon com-
putation, we find the value

E ¼ gFsgnðQÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2dðdþ 1Þp : ð58Þ

Equation (58) is the equation of state connecting Q to E,
and the analogous expression for the fermion model is in
Eq. (A5), and for the spherical black hole is in Eq. (B8); the
nonanalyticQ dependence in Eq. (58) becomes analytic for
the spherical black hole in Appendix B. We recall that gF is
a dimensionless coupling, and so E is also dimensionless,
and depends only upon gF and d; in particular, E is
independent of κ2, and so remains of order unity in the
matrix large-M limit of holography [1], as noted in Sec. I.
We also take the T ¼ 0 limit of Eq. (53) from Eq. (52),

and find

SBH ¼ 2πgFjQjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2dðdþ 1Þp ; T → 0: ð59Þ

Comparing Eqs. (58) and (59), we find that Eq. (8) is
indeed obeyed. Note that for the present case of a planar
black hole, we can combine Eqs. (58) and (59) into the
simple relationship [16]

SBH ¼ 2πQE: ð60Þ
Equation (60) does not hold for a spherical black hole, but
the more fundamental relation for ∂SBH=∂Q in Eq. (8) does
hold, and is verified in Appendix B, which also derives the
different equation of state relating E and Q for a spherical
black hole.

A. Fermion correlations

To confirm the link to the fermion model, we need to
show that the E obtained in Eq. (57) is the same as the E [or
the related ωS via Eq. (5)] appearing as the spectral
asymmetry parameter in the response functions in
Eqs. (3) and (6) (see Fig. 2). For this, we need the
Green function of matter fields moving on a thermal
AdS2 metric. The finite-temperature generalization of the
AdS2 factor in Eq. (55) is [16,29]

ds2 ¼ R2
2

ζ2



−ð1 − ζ2=ζ20Þdt2 þ

dζ2

ð1 − ζ2=ζ20Þ
�
; ð61Þ

and that of the gauge field is
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A ¼ E
�
1

ζ
− 1

ζ0

�
dt; ð62Þ

where

T ¼ 1

2πζ0
: ð63Þ

The action of a fermionic spinor ψ of charge q moving in
the backgrounds of Eqs. (61) and (62) is

S ¼ i
Z

d2x
ffiffiffiffiffiffi−gp ðψ̄ΓαDαψ −mψ̄ψÞ; ð64Þ

where m is a bulk fermion mass, Γα are the Dirac Gamma
matrices, and Dα is a covariant derivative with charge q.
The correlator of ψ in this thermal AdS2 [28] plus electric
field background has been computed in some detail by
Faulkner et al. [16,29], and their result was already
displayed in Eq. (3) in our notation. This computation
shows that E ¼ ωS=ð2πqTÞ [Eq. (5)] is indeed the same
parameter appearing in Eqs. (57) and (62). In this AdS2
computation, the scaling dimension Δ is related to the bulk
spinor mass by

Δ ¼ 1

2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2R2

2 − q2E2

q
: ð65Þ

B. Black hole thermodynamics

We close this section by noting a significant property of
the above solution of classical general relativity at all T and
Q. From the laws of black hole thermodynamics [32], we
deduce that the horizon area and the chemical potential
must obey a thermodynamic Maxwell relation,

�∂SBH

∂Q
�

T
¼ −

�∂μ
∂T

�
Q
; ð66Þ

which is the analog of that in the fermion model compu-
tation in Eq. (40). And indeed we do find from Eqs. (52)
and (53) that Eq. (66) is obeyed with

�∂μ
∂T

�
Q
¼ − 4πðd − 1ÞgFΘrd0

cdðdþ 1Þr2d0 þ cdðd − 1Þð2d − 1ÞΘ2
:

ð67Þ

In determining the value of ð∂μ=∂TÞQ as T → 0, rather
than explicitly evaluating Eq. (67), it is instructive to use a
more general argument that does not use the explicit form
of the solution in Eqs. (51) and (52). From the original
action in Eq. (49) and the metric in Eq. (50), Gauss’s law
for the scalar potential in the bulk is

2R2

κ2g2F

d
dr

�
rd

Rd

dAt

dr

�
¼ 0; ð68Þ

and the constant of integration is the boundary charge
density,

2R2

κ2g2F

�
rd

Rd

dAt

dr

�
¼ Q: ð69Þ

We can write the solution of Eq. (69) as

AtðrÞ ¼ μðTÞ −
�
Rd−2κ2g2F
2ðd − 1Þ

�
Q
rd−1

; ð70Þ

where the r-dependent term in Eq. (70) is independent of T
at fixed Q, and the chemical potential μ equals Atðr → ∞Þ
when we choose At ¼ 0 on the horizon. Now, we
transform to the near-horizon AdS2 geometry by making
a T-independent change of variables from r to ζ as in
Eq. (54), r ¼ r� þ 1=ζ, where r ¼ r� is the position of the
horizon at T ¼ 0, but we will not need the actual value of
r�. Then Eq. (70) implies that, as ζ → ∞, the near-horizon
scalar potential must be of the form in Eq. (62), where now
we define ζ ¼ ζ0 as the position of the horizon at nonzero
T, where E is a parameter independent of T, and

�∂μ
∂T

�
Q
¼ E

∂
∂T

�
− 1

ζ0

�
Q
: ð71Þ

The T dependence of ζ0 in Eq. (63) follows from the
conformal mapping between the T ¼ 0 AdS2 metric in
Eq. (55) and the T > 0 metric in Eq. (62) [29,41]. So we
find by this general argument that

�∂μ
∂T

�
Q
¼ −2πE; T → 0; ð72Þ

which is the same as the fermion model result in Eq. (48).
It can be verified that Eq. (72) holds also in the spherical
geometry of Appendix B. Combining Eq. (72) with Eq. (66),
we obtain Eq. (8), which is a special case of results obtained
from the Wald formalism [18–24].
We note that the above derivation of Eq. (72) relies only

on Gauss’s law and the conformal invariance of the AdS2
near-horizon geometry: this implies that such results hold
for a wide class of black hole solutions [18–24].

IV. DISCUSSION

In our discussion of the SY state of the infinite-range
fermion model in Eq. (12), we note that the fermion Green
function is almost completely determined by the emergent
conformal and gauge invariances in Eq. (26). These
conformal and gauge invariances also fairly uniquely
determine the holographic theory of matter moving in
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curved space in the presence of an electric field. So, with
the benefit of hindsight, we can understand the equivalence
of the fermion Green functions obtained in Secs. II and III.
However, we go beyond the identification of the Green

functions, and also show that the zero-temperature entropy
of the SY state can be mapped onto that of the AdS2 theory
(see Fig. 2). Specifically, we choose an appropriate combi-
nation of observables in Eqs. (1) and (2) to allow us to
generally define a common frequencyωS, and we show that
this frequency is related to precisely the same derivative of
the entropy both in the SY state and in charged black holes
(where the entropy is the Bekenstein-Hawking entropy). In
both cases, establishing this relationship requires an analy-
sis of the details of the model. For the SY state, the entropy
computation requires careful treatment of the manner in
which the emergent gauge and conformal invariances,
present at low energies, are broken by the on-site canonical
fermions at high energies, and this consistently removes the
cutoff-dependent terms in the chemical potential [39], as
discussed in Sec. II B. For the charged black hole, Gauss’s
law maps the T dependence of the chemical potential to the
near-horizon behavior, as discussed in Sec. III B.
This common relationship between ωS and the entropy

indicates an equivalence between the low-energy degrees
of freedom of the two theories in Secs. II and III, and is
evidence for the existence of a gravity dual of the SY state
with an AdS2 horizon. The present results also imply the ci
fermion, with q ¼ 1, of the theory in Eq. (12) is holo-
graphically dual to the ψ fermion, with q ¼ 1 [16,40] of
Eq. (64). As the microscopic ci fermion carries all of theQ
charge of the theory in Eq. (12), we expect that ψ also
carries a non-negligible fraction of the charge (in the large-
N limit) behind the AdS2 horizon. Both models likely also
have higher dimension operators, but these have not been
analyzed so far (see, however, Ref. [27]).
Note that the above discussion refers to the near-horizon

AdS2 geometry. The larger Reissner-Nordström-AdS sol-
ution is to be regarded here as a convenient (and nonuni-
versal) embedding space which provides an UV regulation
of the gravitational theory. With such an embedding, we
are able to compute well-defined values for S and Q.
Presumably, other gravitational UV embeddings will have
different equations of state between E and Q, but they will
nevertheless obey the fundamental relation in Eq. (8)
provided they contain an AdS2 horizon. We explicitly test
the independence on the UVembedding in Appendix B by
comparing the cases of planar and spherical black holes.
The above identification between the ci and ψ fermions

differs from that made previously by the author in
Refs. [25,26]. There, ψ was argued to be dual to a higher
dimension composite fermion operator of the original
model of SY [5]. This previous identification was based
upon the requirement that local bulk operators must be dual
to gauge-invariant operators on the boundary, and the
original model [5] had a microscopic gauge invariance

which did not allow the choice of ci as dual to ψ . However,
in the present model in Eq. (12), there is no microscopic
gauge invariance, and so we are free to use ci as the dual of
the bulk ψ field. It turns out that the low-energy boundary
theory for ci does have a gauge invariance [as in Eq. (26)],
but this is an emergent gauge invariance that is broken by
UV terms needed to regularize the theory. The present
situation is analogous to the theory of the Ising-nematic
quantum critical point in metals, where the regularized
model for the electrons is not gauge invariant, but the low-
energy theory defined on two Fermi surface patches does
have an emergent gauge structure [42,43]. And the present
situation is different from that in the “slave particle”
theories of condensed matter, where the gauge structure
emerges from fractionalizing particles into partons, which
influenced the reasoning of Refs. [25,26]. Instead, the same
particle can be gauge invariant in the underlying theory and
acquire an emergent gauge charge in the low-energy theory.
There is some similarity between this interpretation and
ideas in Ref. [44].
Finally, we note recent work [27,45,46] on “a bound on

chaos” that also related characteristic times of the real-time
dynamics of strongly coupled quantum systems to thermo-
dynamics ℏ and black hole horizons.
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APPENDIX A: NONUNIVERSAL CONSTANTS
OF THE FERMION MODEL

We compute the constants C and θ (or E) appearing in
Eq. (3) for the microscopic model in Eq. (12). The results
of this appendix do not apply to the holographic model of
Sec. III.
We can compute the self-energy from Eq. (30) and the

second equation in Eq. (24):

ΣðτÞ ¼
8<
:

− C3J2 cosð2θÞ sinðπ=4þθÞ
2ðπτÞ3=2 τ ≫ J; T ¼ 0

C3J2 cosð2θÞ cosðπ=4þθÞ
2ð−πτÞ3=2 −τ ≫ J; T ¼ 0.

ðA1Þ

A Fourier transform now leads to
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ΣðzÞ ¼ − J2C3 cosð2θÞ
π

eiðπ=4þθÞ ffiffiffi
z

p
;

ImðzÞ > 0; jzj ≪ J; T ¼ 0: ðA2Þ

We now see that Eqs. (29) and (A2) are consistent with the
first equation in Eq. (24), provided we choose the value of
C to be

C ¼
�

π

J2 cosð2θÞ
�

1=4
: ðA3Þ

Finally, the value of θ can be related to the densityQ by a
computation which parallels the Luttinger-Ward analysis
[47] for a Fermi liquid. The present model has no spatial
structure, and so no possibility of a Fermi surface.
However, if we apply the steps of the Luttinger-Ward
proof of the volume enclosed by the Fermi surface, we find
an expression relating density Q to the spectral asymmetry
angle θ. In other words, θ plays a role similar to the Fermi
wave vector in a Fermi liquid. And the relationship between
Q and θ is [7]

Q ¼ 1

2
− θ

π
− sinð2θÞ

4
: ðA4Þ

Note that the constraint −π=4 < θ < π=4 implies that
0 < Q < 1, as expected. In terms of E, this relationship is

Q ¼ 1

4
½3 − tanhð2πEÞ� − 1

π
tan−1ðe2πEÞ: ðA5Þ

The right-hand side is a monotonically decreasing function
of E that ranges between 1 and 0, as E increases from
−∞ to ∞.

APPENDIX B: SPHERICAL BLACK HOLES

We consider the case of spherical black holes in global
AdS, following the analysis of Ref. [15]. For simplicity, we
limit ourselves to the T ¼ 0 case.
Now, we choose a solution of the Einstein-Maxwell

equations of motion of Eq. (49) with metric

ds2 ¼ −VðrÞdt2 þ r2dΩ2
d þ

dr2

VðrÞ ; ðB1Þ

where dΩ2
d is the metric of the d sphere, and

VðrÞ ¼ 1þ r2

R2
þ Θ2

r2d−2
− M
rd−1

ðB2Þ

has a zero at r ¼ r0, so that

M ¼ rd−10

�
1þ r20

R2
þ Θ2

r2d−20

�
: ðB3Þ

The zero-temperature case has [15]

Θ2 ¼ r2d−20 ½ðd − 1ÞR2 þ ðdþ 1Þr20�
ðd − 1ÞR2

: ðB4Þ

In the near-horizon region, we introduce, as in Sec. III, the
coordinate ζ via

r − r0 ¼
R2
2

ζ
; ðB5Þ

where Eq. (56) is now replaced by

R2 ¼
Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dðdþ 1Þ þ ðd − 1Þ2R2=r20
p ; ðB6Þ

and the near-horizon metric becomes AdS2 × Sd, with

ds2 ¼ R2
2


−dt2 þ dζ2

ζ2

�
þ r20dΩ2

d: ðB7Þ

Turning to the gauge field sector, the charge density Q
and AdS2 electric field parameter E in Eq. (57) are

Q ¼ rd−10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2d½ðd − 1ÞR2 þ ðdþ 1Þr20�

p
κ2gF

;

E ¼ gFr0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2d½ðd − 1ÞR2 þ ðdþ 1Þr20�

p
2½ðd − 1Þ2R2 þ dðdþ 1Þr20�

: ðB8Þ

The equation of state obeyed by E and Q is obtained by
eliminating r0 between the equations in Eq. (B8). This
leads to a very lengthy expression which we shall not write
out explicitly.
Using the Bekenstein-Hawking entropy density,

SBH ¼ 2π

κ2
rd0; ðB9Þ

and

∂SBH

∂Q ¼ ∂SBH=∂r0
∂Q=∂r0 ; ðB10Þ

and evaluating the derivatives via Eq. (B8), we can now
verify that Eq. (8) is indeed obeyed. Note that SBH ≠ 2πQE
here, unlike Eq. (60) for the planar case.
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