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In addition to possessing fractional statistics, anyon excitations of a 2D topologically ordered state can
realize symmetry in distinct ways, leading to a variety of symmetry-enriched topological (SET) phases.
While the symmetry fractionalization must be consistent with the fusion and braiding rules of the anyons,
not all ostensibly consistent symmetry fractionalizations can be realized in 2D systems. Instead, certain
“anomalous” SETs can only occur on the surface of a 3D symmetry-protected topological (SPT) phase. In
this paper, we describe a procedure for determining whether a SET of a discrete, on-site, unitary symmetry
group G is anomalous or not. The basic idea is to gauge the symmetry and expose the anomaly as an
obstruction to a consistent topological theory combining both the original anyons and the gauge fluxes.
Utilizing a result of Etingof, Nikshych, and Ostrik, we point out that a class of obstructions is captured by
the fourth cohomology group H4ðG;Uð1ÞÞ, which also precisely labels the set of 3D SPT phases, with
symmetry group G. An explicit procedure for calculating the cohomology data from a SET is given, with
the corresponding physical intuition explained. We thus establish a general bulk-boundary correspondence
between the anomalous SET and the 3D bulk SPT whose surface termination realizes it. We illustrate this
idea using the chiral spin liquid [Uð1Þ2] topological order with a reduced symmetry Z2 × Z2 ⊂ SOð3Þ,
which can act on the semion quasiparticle in an anomalous way. We construct exactly solved 3D SPT
models realizing the anomalous surface terminations and demonstrate that they are nontrivial by computing
three-loop braiding statistics. Possible extensions to antiunitary symmetries are also discussed.
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I. INTRODUCTION

Recently, it has been realized that gapped phases can be
distinguished on the basis of symmetry even when that
symmetry is unbroken. Short-range entangled phases of
this form—dubbed “symmetry-protected topological”
(SPTs)—have been classified using group cohomology
[1,2]. However, in two and higher dimensions there are
also long-range entangled phases supporting fractionalized
excitations (anyons), and it is an interesting problem to
classify these phases in the presence of a symmetry [3–10].
In two dimensions, one approach is to distinguish such
“symmetry-enriched topological” (SET) phases on the
basis of symmetry fractionalization on the anyons (note
that this approach applies only when the symmetry does not
permute the anyons) [3,5]. For example, a Z2 spin liquid
with the gauge charge excitations carrying spin-1=2

represents a different SET phase from the one where the
gauge charge carries no spin. In two dimensions, all
possible ways of assigning fractional symmetry quantum
numbers to anyons that are compatible with their fusion and
braiding rules can be enumerated [5,9], and one may use
this as a basis for classifying SETs.
However, it is not clear that just because a certain

assignment of fractional symmetry representations is com-
patible with all fusion and braiding rules, it must neces-
sarily be realizable by a two-dimensional Hamiltonian.
Previous works have put forward several putative SETs
whose assignments are in fact anomalous, and incompat-
ible with any 2D symmetric physical realization [11–18]. In
these examples, time-reversal symmetry is involved and the
anomaly is usually exposed by showing that the SET must
be chiral when realized in 2D, which necessarily breaks
time-reversal symmetry. In this paper, we focus on SETs
with unitary discrete symmetries and discuss a general way
to detect anomalies in them. We start with the simplest
example of this type, based on the topological order of a
ν ¼ 1=2 bosonic fractional quantum Hall effect (or chiral
spin liquid), namely, Uð1Þ2, and symmetry G ¼ Z2 × Z2.
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While these choices certainly allow for a nonanomalous
2D SET, namely, the Kalmeyer-Laughlin chiral spin liquid,
with Z2 × Z2 thought of as the subgroup of 180° spatial
rotations around the principal axes in SO(3), we show that
they also allow three anomalous SETs, which we dub
“anomalous projective semion” theories.
The inconsistency in the anomalous projective semion

theory is exposed when we try to gauge the Z2 × Z2

symmetry. If such a SET can be realized in a purely 2D
symmetric model, this gauging process should result in a
consistent larger topological theory that includes, in addi-
tion to the semion, gauge charges and gauge fluxes of
Z2 × Z2. However, as we show, such an extension fails for
the anomalous projective semion theories because braiding
and fusion rules cannot be consistently defined for the
gauge fluxes and the semion. As we describe in more detail
below, this failure can be seen as an irreparable violation of
the pentagon equations for the gauge fluxes. Thus, the
anomalous projective semion theories are impossible in 2D.
On the other hand, we show, by constructing an exactly

solved model, that they can be realized at the surface of a
3D SPT with Z2 × Z2 symmetry. Our exactly solved 3D
lattice model is based on a general prescription due to
Walker and Wang (WW) [19], which essentially bootstraps
a given 2D topological order into a 3D bulk Hamiltonian
that realizes this topological order at its surface. The
original “Walker-Wang” models of Refs. [19,20] have a
trivial 3D bulk, which is a prerequisite for a 3D SPT. To
construct an actual SPT from these models, we must
include additional degrees of freedom that transform as
certain (linear) unitary representations of Z2 × Z2, in such
a way that the surface semion excitation transforms in the
desired projective representation of the symmetry. This
“decorated”Walker-Wang model must be a nontrivial SPT,
since it realizes a surface that cannot exist on its own in 2D.
To explicitly identify the SPTorder in a way independent of
the surface, we compute the three-loop braiding statistics
introduced in Refs. [21,22] as a diagnostic of 3D SPT
phases, and find it to be nontrivial. The Walker-Wang
construction has been used in our previous studies of SET
surface states for 3D SPT phases [13,14,18]. However, this
is the first time that we are able to identify the SPT order
with a pure bulk probe and hence firmly establish the
connection between surface anomaly and bulk SPT order.
The anomalous projective semion theories represent

only the simplest examples of anomalous SETs, but the
method discussed in this paper is generally applicable
to any topological order and discrete unitary on-site global
symmetry. The mathematics underlying this method of
anomaly detection, developed by Etingof et al. [23],
studies the problem of G extensions of fusion categories.
Such G extensions are constructed in stages by specifying
certain data relating to how the anyons transform under
the symmetry, and at each stage there is a potential
obstruction to being able to continue the process. It is

gratifying that the same H4ðG;Uð1ÞÞ used to classify 3D
SPTs arises in a purely algebraic way as just such an
obstruction—specifically, an obstruction to the pentagon
equation for flux fusion rules. We give some details about
how to connect this algebraic approach to the physics
(see also Refs. [9,10]).
In Refs. [24,25], methods for detecting anomalies in

SET phases are also discussed. On the other hand,
anomalies on the surface of 3D SPT phases can also
manifest in the form of gapless modes or symmetry-
breaking states with nontrivial defect. To detect anomalies
in these situations, different methods have been proposed
(see, for example, Refs. [26–30]).
The main result of this paper is hence twofold. (1) Based

on the result in Ref. [23], we present a general way to
detect anomalies in SETs with unitary discrete symmetries.
(2) We establish a firm connection between anomalous
SETs on the surface and nontrivial SPT orders in the bulk.
We illustrate the basic idea using the projective semion

example, but the idea can be applied more generally to
other SETs. Figure 1 provides an illustration of these two
parts of the discussion.
The paper is structured as follows. In Sec. II, we

introduce the anomalous projective semion theories and
show that gauging the Z2 × Z2 symmetry leads to incon-
sistencies; in Sec. III, we present solvable 3D lattice models
that realize the 3D bulk SPT with an anomalous projective
semion surface state; in Sec. IV, we make a connection
to other 3D SPT approaches, in particular, computing
the three-loop braiding in our exactly solved model and
giving a nonlinear sigma model 3D SPT construction of our
anomalous surfaces; in Sec. V, we give a nonlinear sigma
model construction of our SPT and surface; in Sec. VI,
we summarize our findings and discuss future directions,
including the incorporation of time-reversal symmetry into
this formalism.

Surface anomaly 

Detection: Gauging obstruction 

Bulk SPT order 

Detection: 

Three-loop braiding statistics 

FIG. 1. In this paper, we study 2D anomalous SETs as surface
state of nontrivial 3D SPT phase. On the one hand, we detect
anomaly in surface SET from gauging obstruction; on the other
hand, we construct the bulk model and detect the nontrivial SPT
order with three-loop braiding statistics.
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II. ANOMALY OF THE PROJECTIVE SEMION
MODEL IN 2D

A. “Projective semion’ model

The anomalous projective semion model we consider
is a variant of the Kalmeyer-Laughlin chiral spin liquid
(CSL) [31]. The Kalmeyer-Laughlin CSL can of course be
realized in 2D with the explicit construction of Ref. [31].
However, by slightly modifying the way spin rotation
symmetry acts on the semion, we obtain an anomalous
theory.
The setup for the Kalmeyer Laughlin CSL. The

degrees of freedom are spin-1=2’s on a lattice. We are
not concerned with the precise form of the Hamiltonian, but
only note that it is spin rotation [SO(3)] invariant. Thus,
we can think of the CSL as an SO(3) symmetry-enriched
topological phase. The chiral topological order is the
same as the ν ¼ 1=2 bosonic fractional quantum Hall state,
which can be described by the K ¼ 2 Chern-Simons gauge
theory:

L ¼ 2
ϵμνλ
4π

aμ∂νaλ: ð1Þ

There is one nontrivial anyon, a semion s, which
induces a phase factor of −1 when going around another
semion. Two semions fuse into the a trivial quasipar-
ticle, which we denote as I. Moreover, each semion
carries a spin-1=2 under the SO(3) symmetry. The CSL
is then a nontrivial SET because s carries a projective
representation of SO(3) [32]. The precise definition of
projective representation is given in Appendix A. Such a
SET theory is of course realizable in 2D and thus not
anomalous.
In order to get an anomalous theory, we reduce the

symmetry to the discrete subgroup of 180° rotations about
the x; y, and z axes, which form a Z2 × Z2 subgroup of
SOð3Þ. We denote the group elements as gx, gy, and gz. The
CSL is of course also a SET of this reduced symmetry
group. Each semion carries half-charge for all three Z2

transformations, because 360° rotation of a spin-1=2 always
results in a phase factor of −1. Moreover, the three Z2

transformations anticommute with each other and can be
represented as

CSL∶ gx ¼ iσx; gy ¼ iσy; gz ¼ iσz: ð2Þ

However, now there are other possible SETs, because
the semion can now carry arbitrary half-integral charges
of the Z2 symmetries. For example, the semion can
carry integral charge under gx and gy but half-integral
charge under gz. Indeed, we can have three variants of
the CSL, which we call the anomalous projective
semion models, where the Z2 × Z2 on the semions
can be represented as

anomolous projective semionX∶ gx¼ iσx;gy¼σy;gz¼σz;

anomolous projective semionY∶ gx¼σx;gy¼ iσy;gz¼σz;

anomolous projective semionZ∶ gx¼σx;gy¼σy;gz¼ iσz:

ð3Þ

If we take σx and σy as the generators of Z2 × Z2, then
theories X, Y, and Z are simply ones where the semion
carries a half-charge under either the first, second, or both
of these generators, respectively. The addition of such half-
charges to the CSL seems completely harmless. Indeed,
note that it is compatible with the fusion rule of the semion:
two semions fuse to a trivial quasiparticle, and two identical
copies of any combination of half-charges and spin-1=2’s
always fuse to an integral (nonfractionalized) represen-
tation of Z2 × Z2. In fact, topological theories with the
semion carrying half-charges (in ν ¼ 1=2 fractional
quantum Hall states) and spin-1=2’s (in CSL) have both
been identified in explicit models in 2D. However, as we
show in the next section, the anomalous projective semion
theories defined through Eq. (3) are not realizable in purely
2D systems with Z2 × Z2 symmetry.

B. Projective fusion rules of symmetry defects

The anomaly in the theories defined by Eq. (3) will be
exposed when we try to gauge the Z2 × Z2 symmetry.
Since this is a discrete symmetry, this amounts to intro-
ducing gauge fluxes Ωx, Ωy, and Ωz and the corresponding
gauge charges. Here, we examine the first step in such a
gauging process, in which symmetry defects, i.e., confined
versions of the gauge fluxes, are introduced. (We, none-
theless, refer to these defects as fluxes.) The nontrivial
projective action of Z2 × Z2 on the semion overconstrains
the fusion rules of the fluxes, leading to an inconsistency, as
we show in this section. Specifically, we show that the
gauge fluxes have a “projective” fusion rule up to a semion.
First, note that we can always bind a semion to any flux

Ω, so each Ω actually contains two topological super-
selection sectors. One might try to label one of the sectors
as the “vacuum” flux sectorΩ and the other as the “semion”
flux sector sΩ, although there is no canonical way to
choose which one should be labeled as the vacuum; it is
only the difference between the two sectors that matters.
Interesting things happen when we consider the fusion
rules of the fluxes. Normally, one would expect, for
example, Ωi ×Ωi ¼ I (I denotes the vacuum) and
Ωx ×Ωy ¼ Ωz, due to the structure of the symmetry group.
However, due to the existence of two sectors, we might
actually get Ωi × Ωi ¼ s and Ωx ×Ωy ¼ sΩz. That is, the
gauge fluxes must fuse in the expected way only up to an
additional semion.
These projective fusion rules can be determined from

the action of the symmetry on the semion. Consider, for
example, the anomalous projective semion X state. One
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important observation is that bringing a gauge flux around
the semion is equivalent to locally acting with the corre-
sponding symmetry on it, as shown in Fig. 2(a). Because
the semion carries a half-charge of gx, bringing two Ωx’s
around it gives rise to a −1 phase factor, which can be
reproduced by braiding an auxilliary semion around it.
Therefore, if we imagine fusing the two Ωx fluxes before
bringing them around the semion—a distinction that should
not change the global phase factor—we are led to the
conclusion that two Ωx’s fuse into a semion:

Ωx ×Ωx ¼ s: ð4Þ

Similarly, we find

Ωy ×Ωy ¼ I; Ωz ×Ωz ¼ I; Ωx ×Ωy ¼ sΩz;

Ωy ×Ωx ¼ Ωz; Ωy × Ωz ¼ Ωx; Ωz × Ωy ¼ sΩx;

Ωz ×Ωx ¼ sΩy; Ωx ×Ωz ¼ Ωy: ð5Þ

The fusion rules involving the sΩ fluxes can be corre-
spondingly obtained by adding s to both sides. For
example, sΩx ×Ωx ¼ I. Though the distinction between
Ωx and sΩx is arbitrary, the distinction between Ωx ×Ωx
and sΩx ×Ωx is not, since the two act differently on the
semion.
In this way, we establish a projective fusion rule for the

Z2 × Z2 gauge fluxes in the theory X. The fusion rule is
projective in the sense that it only obeys the Z2 × Z2

group relations up to a semion. It can be compactly
expressed as a mapping ω from two group elements to
the set f1; sg∶ Ωg × Ωh ¼ ωðg; hÞΩgh. Explicitly, for the
theory X:

ωðgx;gxÞ ¼ s; ωðgy;gyÞ ¼ I; ωðgz;gzÞ ¼ I;

ωðgx;gyÞ ¼ s; ωðgy;gxÞ ¼ I; ωðgy;gzÞ ¼ I;

ωðgz;gyÞ ¼ s; ωðgz;gxÞ ¼ s; ωðgx;gzÞ ¼ I: ð6Þ

The mapping ω obeys certain relations. The fusion of
three gauge fluxes Ωg, Ωh, and Ωk. The result should
not depend on which pair we fuse first: we can choose
to fuse Ωg, Ωh together first and then fuse with Ωk, or
we can choose to fuse Ωh, Ωk together first and then
fuse with Ωg. The equivalence between these two proce-
dures leads to the following relation among the semion
coefficients:

ωðg; hÞωðgh; kÞ ¼ ωðh; kÞωðg; hkÞ: ð7Þ

It is straightforward to check that this relation is satisfied
by the ω given in Eq. (6), and we use this relation in our
discussion in the next section.
For the other two projective semion states, similar fusion

rules can be derived, also with coefficients taking semion
values. In fact, in a SET phase (anomalous or not) with
discrete unitary symmetries that do not change anyon types,
it is generally true that when the symmetry is gauged, the
(putative) gauge fluxes must satisfy a projective fusion rule
with coefficients in the Abelian anyons. We discuss the
general situation—including the meaning of gauge fluxes
in anomalous theories—in Sec. VI.
Note that the fusion product of two Ω’s is order

dependent. For example, Ωx×Ωy¼ sΩz, while
Ωy×Ωx¼Ωz, which is very different from the usual fusion
rules we see in a topological theory. This is because the Ω’s
discussed here are not really quasiparticles, but rather the
end points of symmetry defect lines introduced in the
original SET. Because the Ω’s are all attached to defect
lines, they are actually confined. We can still define fusion
between them, but because of the existence of defect lines,
their fusion need not be commutative. If the SET is not
anomalous, the gauged theory is obtained in two steps.
First, the (confined) Ω’s should form what is called a
“fusion category,” whose properties are discussed in, for
example, Refs. [9,33]. The fusion product between objects
in a fusion category can be noncommutative, but it does
have to be associative, and the pentagon relation [34],
illustrated in Fig. 4, must still be satisfied. If the Ω’s form a
valid fusion category (as occurs for the CSL), the SET is
nonanomalous. In this case, as a second step, a gauge field
can be introduced and the Ω’s can be promoted to
deconfined quasiparticles. However, as we see in the
following, the Ω’s in the anomalous projective semion
theories do not even admit consistent fusion rules that
satisfy the pentagon equation, and cannot be promoted to
real quasiparticles with extra braiding structure [35].

FIG. 2. The fusion rule Ωx ×Ωx ¼ s derived from the sym-
metry action on the semion in theory X [defined in Eq. (3)].
(a) Bringing a gauge flux Ωx around the center semion is
equivalent to acting locally on it with the corresponding sym-
metry gx. (b) Bringing two Ωx gauge fluxes around the center
semion gives rise to a −1 phase factor, because in theory X a
semion carries half of the corresponding gx charge. This −1 can
be reproduced by bringing another semion around the center one,
giving rise to the s on the right-hand side of the fusion rule.
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It is worth emphasizing at this point that a projective
fusion rule for the fluxes is not in itself an indication of a
surface anomaly. Indeed, a projective fusion rule for the
gauge fluxes exists in many SETs, in particular, the CSL.
Also, if we had considered the toric code instead of the
semion topological order, we could make the spinon or
vison carry the sort of fractionalZ2 × Z2 charges that make
the semion theory anomalous, but not have any problem
realizing it in a Z2 × Z2 symmetric way in 2D. To expose
the anomaly in the projective semion model, we have to do
more work.

C. Anomaly in the statistics of gauge fluxes

In this section, we derive the anomaly using only the
statistics of the anyons and gauge fluxes. The argument
given here is a physical interpretation of the obstruction
calculation in Sec. 8.6 of Ref. [23].
First, recall the information that goes into defining the

anyon topological order: it is encoded in two sets of data,
the statistics of exchanging anyon a with anyon b (R
matrix) and the fusion “statistics” in the associativity of
fusing anyons a, b, and c (F matrix’). In an Abelian theory,
the fusion statistics are the phase differences between the
following two processes: one that first fuses a with b and
then fuses the product with c [i.e., ða × bÞ × c] and the one
that first fuses b, c, and then fuses a with the result [i.e.,
a × ðb × cÞ] (in non-Abelian theories they are isomor-
phisms between direct sums of tensor products of the
corresponding fusion spaces).
For example, in the semion theory discussed here, the

only braiding statistics happen when two semions are
exchanged, as shown diagrammatically in Fig. 3(a). The
exchange of two semions leads to a phase factor of i.
Denoting the exchange statistics by Rω;ω0, we have

Rs;s ¼ i; Rω;ω0 ¼ 1 otherwise: ð8Þ

The only nontrivial fusion statistics occur when three
semions are fused together in different orders, as shown
in Fig. 3(b). The two orders of fusion differ by a phase
factor of −1. Denoting the fusion statistics as Fω;ω0;ω00 , we
have

Fs;s;s ¼ −1; Fω;ω0;ω00 ¼ 1 otherwise: ð9Þ

Now, if the symmetry in the projective semion theory can
be consistently gauged, then we should similarly be able to
define for the gauge fluxes not only the projective fusion
rules but also the braiding and fusion statistics involved
with exchanging two fluxes or fusing three of them in
different orders. These statistics cannot be chosen arbitrar-
ily, but have to satisfy certain consistency conditions, one
of which is called the pentagon equation, shown in Fig. 4.
The pentagon equation relates different orders of fusing

four gauge fluxes, Ωf, Ωg, Ωh, and Ωk. For example, in the
configuration on the top left-hand corner of Fig. 4, Ωf and
Ωg are fused together first, then with Ωh, and finally with
Ωk. In moving from this configuration to the next con-
figuration through step 1, we change the associativity in the
fusion of the first three fluxes. Such a step is related to the
fusion statistics of the first three gauge fluxes, analogous to
the phase factor shown for three semions in Fig. 3(b). The
pentagon equation then states that upon traversing all 5
steps and ending up at the original configuration, the total
phase factor gained should be equal to 1. This is simply
because each configuration represents a choice of basis in
the space of local operators that fuse the four fluxes to
Ωfghk, and each step is a change of basis.
For the gauge fluxes, there is a direct way to check

whether this pentagon equation (involving four fluxes)
can be satisfied by using the projective fusion rules of the
fluxes. The key point, explained more carefully in the
following section, is that the dependence of the three
flux F matrix Ff;g;h on the topological superselection
sector of each flux (i.e., on Ωf versus sΩf) is uniquely
determined (modulo gauge equivalence) by consistency
requirements once the projective fusion rules for the fluxes
have been chosen, up to an overall phase factor βðf; g; hÞ.
The strategy then is to fix βðf; g; hÞ arbitrarily and compute
the resulting product of three flux F matrices in the
pentagon equation. The result actually turns out to be an
overall phase νðf; g; h; kÞ that depends only on f; g; h; k,
and in our case is not equal to 1 regardless of the choice of
βðf; g; hÞ. We discuss this more carefully below. For now,
let us just provide an intuition for how to calculate this
overall phase. The key result, Theorem 8.10 in Ref. [23],
is that for some choice of βðf; g; hÞ, νðf; g; h; kÞ can be
computed, as shown in Fig. 4.
Repeated use of the projective fusion rule, the fusion

results of each of the five configurations in Fig. 4, starting
from the top left one, can be reduced to

f½ωðf; gÞωðfg; hÞ�ωðfgh; kÞgΩfghk;

f½ωðg; hÞωðf; ghÞ�ωðfgh; kÞgΩfghk;

f½ωðg; hÞωðgh; kÞ�ωðf; ghkÞgΩfghk;

f½ωðh; kÞωðg; hkÞ�ωðf; ghkÞgΩfghk;

f½ωðf; gÞωðh; kÞ�ωðfg; hkÞgΩfghk: ð10Þ
FIG. 3. Braiding and fusion statistics of the semion theory.
(a) The exchange of two semions leads to a phase factor of i.
(b) The two ways of fusing three semions differ by a sign.
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Comparing these, we see that the only difference
between the configurations arises because of the different
anyon coefficients (i.e., the product of ω’s in front of
Ωfghk), whose braiding and fusion statistics are already
known. Therefore, we can derive all of the associated phase
factors. Indeed, they all come from operations done on the
fusion product of the three ω’s done in between the five
pentagon steps, as illustrated in Fig. 4. These are all just
F-matrix moves that change the order in which the ω’s are
fused, except for one special case: between step 4 and
step 5, we also have an R-matrix move that exchanges
ωðh; kÞ and ωðf; gÞ. The total phase acquired is the product
of all the factors in the dotted boxes in Fig. 4. One can
check directly that this phase factor is not equal to 1 for
some choices of the fluxes in the anomalous projective
semion X, Y, and Z theories.
Of course, as discussed above, we still have the freedom

to deform the flux F matrices by arbitrary phases that
depend only on the group elements: for example, the first
step would gain a phase factor βðf; g; hÞ, the second
βðf; gh; kÞ, etc. The fact that there is no choice of β that
simultaneously gauges away all the pentagon equation
phases is explained in the next section; it reflects the fact
that these pentagon phases form a nontrivial U(1) valued
4-cocycle of G.

D. Group cohomology structure of the anomaly

In order to explain the last point above, we make use of
group cohomology theory, reviewed in Appendix A. The
discussion in this section is somewhat formal and math-
ematical, but given the classification of SPT phases with
group cohomology, it allows us to make a direct connection
to 3D SPTs. This mathematical structure was explored in
the context of group extensions of fusion categories by
Etingof et al. [23], and we briefly explain the main ideas in
this section. This general structure applies not only to the
anomalous projective semion example, but to all SETs with
discrete unitary symmetries.
First, Eq. (7) implies that the gauge fluxes form a

projective representation of the symmetry group
Z2 × Z2, with semion-valued coefficients. Because the
semion has a Z2 fusion rule, namely, s × s ¼ 1, the
projective fusion rules of the gauge fluxes can be classified
by H2ðZ2 × Z2;Z2Þ. Direct calculation shows that
H2ðZ2 × Z2;Z2Þ ¼ Z2 × Z2 × Z2. One of the three Z2’s
on the right-hand side of this equation determines whether
or not the semion is a spin-1=2; among the theories where it
is a spin-1=2, the remaining Z2 × Z2 parametrizes the CSL
state and the three anomalous projective semion (X; Y; Z)
states (among the theories where the semion is not a spin-
1=2, the remaining Z2 × Z2 parametrizes nonanomalous

FIG. 4. Graphical representation of the pentagon equation involving four fluxes. According to Theorem 8.10 of Ref. [23], this
pentagon equation can fail by an overall phase νðf; g; h; kÞ, and the phase can be computed as a product of F and R matrices of the
original theory, applied to anyons determined by the fractionalization class ω. These F and R matrices can intuitively be thought of as
contributions coming from five additional steps in the pentagon equation, in which the various ω anyons are reassociated or exchanged
as required. We stress that this is just a mnemonic for the precise formula given in Theorem 8.10 of Ref. [23].
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theories where this semion can carry half-integral charges
of either Z2).
It is generally true that possible projective fusion rules,

hence, possible symmetry fractionalization patterns, in an
SET theory are classified by H2ðG;AÞ, where G is the
symmetry group and A denotes the (Abelian fusion group
of) Abelian anyons [5,9]. Notice that here the coefficients
of the projective fusion rule are valued only in the Abelian
sector of the topological theory. In more general situations,
the anyons can be permuted by the symmetry in the system.
Correspondingly, the G action on the coefficients A can be
nontrivial, but the H2ðG;AÞ classification as discussed in
Appendix A turns out to still apply [9,10].
With the symmetry fractionalization information enco-

ded in ω ∈ H2ðG;AÞ, we can then move on to determine
whether the SET theory is anomalous or not; i.e., do we
get a consistent extended topological theory involving
both the gauge charges, gauge fluxes, and the original
anyons, upon gauging the G symmetry? This is a
highly nontrivial process, but fortuitously a mathematical
framework has been developed in Ref. [23], concerning
group extensions of braided categories, which is precisely
equipped to deal with this issue. Specifically, this math-
ematical framework allows us to draw the following
important conclusions.
(1) In order to determine whether a SET theory is

anomalous or not, we need to look at only the
fusion and braiding statistics of the original anyons
and all the gauge fluxes. If a consistent topological
theory can be defined for the original anyons and all
the gauge fluxes, then gauge charges can always be
incorporated without obstruction.
Therefore, to detect an anomaly in a putative SET

theory, we need to look for possible ways to define
consistent fusion and braiding statistics for all the
gauge fluxes Ω and the original anyons α. We
already know the fusion and braiding statistics of
α—they are given by Rα;α0 and Fα;α0;α00 (for simplicity
of notation, we use the same label for the set of
anyons in α and Ω; also, we ignore the complication
in notation due to non-Abelian anyons as long as it
does not cause confusion). What we now need to
determine are the fusion and braiding statistics of the
Ω with α, and the Ω with Ω: Rα;Ω, RΩ;Ω0 , Fα;α0;Ω,
Fα;Ω;Ω0 , and FΩ;Ω0;Ω00 , and all permutations of these
indices.
The strategy is to bootstrap from the known data

(Rα;α and Fα;α;α) and solve for the unknowns using
the consistency equations they have to satisfy. The
consistency equations come in two types: pentagon
equation involving the fusion statistics F and hex-
agon equation involving both the braiding and the
fusion statistics R and F. (For a detailed discussion
of these equations, see Ref. [34].) There is one
pentagon equation for every combination of four

quasiparticles (including both the α andΩ) and there
are two hexagon equations for three quasiparticles
(including both the α and Ω). Of course, the
pentagon and hexagon equations involving only α
are all satisfied. The next step is to include oneΩ and
try to solve for the Rα;Ω and Fα;α;Ω that appear in
those equations, and so on. If the equations have
no solutions, then we have detected an anomaly.
Of course, this would be a lengthy process to follow
by brute force. Luckily, there are only two steps at
which the equations might have no solution; see
Refs. [9,10,23]

(2) The first such step results in an obstruction in
H3ðG;AÞ, which, when nonzero, signals a lack of
any solutions. However, this obstruction appears
only when the group G acts nontrivially on the
anyons by permutation (technically, this is true
only for an Abelian theory; in the general case, the
data are the action by braided autoequivalence
[9,10,23]), and essentially corresponds to the fact
that, when it is nonzero, it is impossible to define
an associative fusion product for the fluxes
(never mind requiring the associativity constraint
to satisfy the pentagon equation). Since we are
only concerned in this paper with a trivial permu-
tation by G on the set of anyons, we can safely
ignore this obstruction.

(3) When the first type of obstruction vanishes, there is
still a possibility that we run into a second type of
obstruction when we try to satisfy the pentagon
equation of four Ω’s, as is the case with the
projective semion example. Let us discuss this
obstruction in detail.

The F matrix involving three gauge fluxes, of symmetry
group elements f; g; h. It is important to note that the F
matrix does not depend on just f; g; h, but also on the
topological superselection sectors of these symmetry
fluxes, which can be changed by fusing in additional
semions. An important result of Ref. [23] is that this
dependence on superselection sectors is completely fixed,
up to an overall phase dependent on f; g; h, by demanding
pentagon equations involving three Ω’s and an anyon all be
satisfied. In fact, the inability to satisfy all of these is what
leads to the obstruction discussed in the previous point;
here, we assume this obstruction vanishes and these
equations (involving three Ω’s and an anyon) can all be
solved. All that remains is to solve the pentagon equation
involving four fluxes. The strategy now is to just fix the
one remaining phase degree of freedom in the F matrix
arbitrarily and compute the product of five F matrices
involved in the four Ω pentagon equation. Here, again
we make use of an important result of Ref. [23]
(Theorem 8.10), which states that, for some choice of this
phase fixing, the product of these five F matrices gives
the overall phase:
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νðf; g; h; kÞ ¼ Rωðh;kÞ;ωðf;gÞ
× Fωðg;hÞ;ωðf;ghÞ;ωðfgh;kÞF−1

ωðg;hÞ;ωðgh;kÞ;ωðf;ghkÞ
× Fωðf;gÞ;ωðh;kÞ;ωðfg;hkÞF−1

ωðf;gÞ;ωðfg;hÞ;ωðfgh;kÞ

× Fωðh;kÞ;ωðg;hkÞ;ωðf;ghkÞF−1
ωðh;kÞ;ωðf;gÞ;ωðfg;hkÞ;

ð11Þ

for f; g; h; k ∈ G. Some intuition for this seemingly com-
plicated equation is given in Fig. 4. Now, just because
νðf; g; h; kÞ is not identically 1 does not mean that the
pentagon equation cannot be solved, since we can still
change the three Ω F matrix by an arbitrary phase
βðf; g; hÞ. Multiplying out this phase for the five steps
of the pentagon equation gives an additional phase factor of

βðf; g; hÞβðf; gh; kÞβðg; h; kÞ
βðfg; h; kÞβðf; g; hkÞ : ð12Þ

It is precisely when there exits a βðf; g; hÞ such that the
resulting phase factor in Eq. (12) completely cancels
νðf; g; h; kÞ that the pentagon equation can be solved.
When there does not exist such a βðf; g; hÞ, we say that
there is an obstruction to the pentagon equation being
satisfied.
It was proved in Ref. [23] that νðf; g; h; kÞ is a 4-cocycle

of the group G with U(1) coefficients [where the unitary G
acts trivially on U(1)]. Furthermore, the ambiguity in
νðf; g; h; kÞ given by Eq. (12) amounts to redefining
νðf; g; h; kÞ by a coboundary. Therefore, this type of
obstruction is classified by H4ðG;Uð1ÞÞ, which corre-
sponds exactly to the classification of 3D SPT phases with
G symmetry.
The explanation in this section provides a very brief

physical interpretation of some of the results in Ref. [23]
(see Ref. [9] for more details). The upshot of this section is
the formula for the anomaly given in Eq. (11). For the
anomalous projective semion theories, we calculate this
νðf; g; h; kÞ, confirm that it is a 4-cocycle, and check that it
is indeed nontrivial both analytically (see Appendix B) and
numerically. We also confirm that for the nonanomalous
chiral spin liquid, νðf; g; h; kÞ is a trivial 4-cocycle. The
second main point of this section is the connection between
the SET anomalies and the SPT phases. They are both
classified by H4ðG;Uð1ÞÞ, and hence, one might expect a
close relation between the two, which we demonstrate in
the next section.

III. REALIZING THE ANOMALOUS
PROJECTIVE SEMION MODELS ON

THE SURFACE OF 3D SPTS

In Sec. II, we establish that a system with excitations that
have semionic statistics and transform under a Z2 × Z2

global symmetry projectively according to Eq. (3) cannot

be realized purely in two dimensions. In this section, we
present an exactly solvable ð3þ 1ÞD model that realizes
the projective semion theory at its ð2þ 1ÞD boundary. Our
approach is based on the Walker-Wang construction [19],
which gives a family of exactly solved lattice models
with trivial gapped bulk and surface topological order. Our
particular Hamiltonian is a decorated version of theWalker-
Wang model that describes a 3D loop gas of semion strings
[20]. Essentially, we decorate this Walker-Wang model
with unitary linear representations of G in such a way that
semion loops bind certain Haldane chains of G ¼ Z2 × Z2.
In this way, the surface semion excitation, which is just
an end point of an open semion string, transforms in the
required projective representations. Before delving into
the details of the decoration, however, we briefly review
the semion Walker-Wang model itself (for a more detailed
discussion readers should consult Ref. [20]).

A. Walker-Wang semion model: A brief review

The Walker-Wang models are most easily described on a
trivalent 3D lattice, obtained by starting with a cubic lattice
and “point splitting” each vertex into 3 trivalent vertices
[Fig. 6(a)]. The model can also be described on the cubic
lattice, but in this geometry the Hamiltonian requires
additional terms; here, we therefore discuss our model
on the more complicated point-split cubic lattice.
The Hilbert space consists of a hard-core boson with

occupation ni ¼ 0; 1 on each edge of the lattice. The
Hamiltonian is a sum of two commuting terms, one acting
on vertices in the lattice and one on plaquettes:

H ¼ −
X
V

AV −
X
P

BP: ð13Þ

We define

AV ¼
Y
i∈�V

τzi ; ð14Þ

where τzi ¼ 1 − 2ni and �V is the set of 6 edges entering
the vertex V. These terms, all of which commute, favor
configurations in which the number of spin-down edges at
the vertex is even. The plaquette terms will also turn out to
commute with the vertex terms (and each other), so that
we can think of the model as a loop gas (Fig. 5): edges
on which ni ¼ 1 (blue in the figure) form closed loops if
AV ¼ 1 at each vertex.
BP is defined to simultaneously change occupation

numbers ni on all edges i around a plaquette and assign
a configuration-dependent phase to the result. Specifically,
introducing the operator τxi ¼ j0iih1ji þ j1iih0ji, we have

BP ¼ −CðPÞ
�Y

i∈∂P
τxi

�
ΘðPÞΦO;O0ΦU;U0 ; ð15Þ
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where ∂P is the set of all edges bordering P. Here, CðPÞ is
defined to be equal to 1 only for configurations which
satisfy the vertex terms at P, and 0 otherwise:

CðPÞ ¼
Y
V∈P

½ð1þ AVÞ=2�: ð16Þ

As in the 3D toric code [36,37], the product over τx ensures
that the ground state is a superposition of closed loops.
Their relative coefficients are determined by the rest of the
expression on the right-hand side of Eq. (15), which will be
a phase factor that depends only on fnig on edges on or
adjacent to the plaquette P.
Before defining the phase factors ΘðPÞ;ΦO;O0 ;ΦU;U0 , we

remark that they are chosen in such a way that the
coefficients of different loop configurations in the ground
state of the loop gas reproduce the Euclidean partition
function ZCS

fLg of a 3D Uð1Þ2 Chern-Simons theory (a

“semion loop gas”). To make this connection, one needs to
interpret the Walker-Wang model as a particular lattice
discretization of a theory of framed loops; every linking of
loops then incurs a factor of −1, while every counterclock-
wise (clockwise) 360° twist in a loop induces a factor of i
(−i), and furthermore, there is also a phase factor of
ð−1ÞNL , where NL is the number of loops. We refer the
interested reader to Refs. [19,20] for more details.
Returning to the definition of our plaquette term, we let

ΘðPÞ ¼
�Y

j∈�P

inj
�
; ð17Þ

where �P denotes the set of all edges entering the plaquette
P. The role of ΘðPÞ is in fact to reproduce the factor of
ð−1ÞNL mentioned above; indeed, ΘðPÞ ensures that ifQ

i∈∂Pτxi changes the number of loops in a particular loop
configuration, then −ΘðPÞ ¼ −1 for that configuration.

Furthermore, we define

ΦO;O0 ¼ inOð1þ2nO0 Þ; ΦU;U0 ¼ inUð1þ2nU0 Þ: ð18Þ

This definition is represented graphically in Fig. 6 and
involves a particular 2D projection of the cubic lattice.
Using this projection, for each plaquette we can define a set
of special edges O (for “over”) and U (for “under”) that
project into the plaquette from above and below, respec-
tively. O0 and U0 are neighboring edges in ∂P, as shown
in Fig. 6. Again, if we think of our model as a lattice
discretization of the theory of framed loops mentioned
above, the role of ΦO;O0 and ΦU;U0 is to reproduce the
factors of �i due to twisting and −1 due to linking loops.
Having defined the Hamiltonian, we now analyze it. First

of all, it is immediately clear that ½AV; AV 0 � ¼ ½BP; AV � ¼ 0
for all V; V 0; P. Though not as immediately apparent, it is
also true that ½BP; BP0 � ¼ 0 for all pairs of plaquettes P;P0
(to check this, note that the only nontrivial case is that of
edge sharing P and P0 intersecting at a 90° angle). Thus, the
ground state is a simultaneous eigenstate of all AV; BP.
Furthermore, these terms are unfrustrated, i.e., there exists a
ground state with all AV; BP ¼ 1; see, e.g., Ref. [19]. This

(a)

(b)

U O 

U 

O 

U 

O 

O’ 

U’ 

U’ 

O’ 

U’ 

O’ 

FIG. 6. (a) We define our model on the point-split cubic lattice,
because the Hamiltonian is simplest for a lattice with only
trivalent vertices. (b) The plaquette term is defined with respect
to a fixed angle of projection. In this angle, there are two edges (O
and U) that are projected into each plaquette from above and
below, respectively, shown in red. These (and their partner edges
O0 and U0, shown here in blue) are used to define the phase
factors ΦO;O0 ;ΦU;U0 in the plaquette operator.

FIG. 5. Some configurations in the semion ground state. The
vertex condition ensures that only configurations with an even
number of edges on which ni ¼ 1 (shown in blue) can meet at a
vertex, such that the ground state is a superposition of loops. The
relative amplitudes of these loop configurations are given by the
phase factor ΘðPÞΦO;O0ΦU;U0 in Eq. (15).
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ground state is precisely the semion loop gas described
above.
Having understood the ground state, let us study the

excitations. One may imagine that, as in the toric code,
the spectrum contains both closed-loop excitations, for
which BP ¼ −1, and point excitations AV ¼ −1, which are
violations of vertex terms. However, because of the phases
introduced in the plaquette term above, this guess is
incorrect: putative string operators that create such excita-
tions always violate a line of plaquettes, and all pointlike
excitations have a linear confining energy cost [20].
On the surface, however, vertex defects are deconfined:

if V1 and V2 are vertices on the boundary of our 3D system,
there exist surface string operators that create states in
which the eigenvalues obey AV1

¼ AV2
¼ −1, but BP ¼ 1

everywhere. The corresponding excited states will consist
of superpositions of closed loops, together with an open
string connecting the vertices V1 and V2. They are created
by the semion string operator

ŜC ¼
Y
i∈C

~τxð−1Þnið1−niþ1Þ
Y

R vertices

ineiþ2niþ1 ; ð19Þ

where C is any path connecting V1 and V2 (see Fig. 7).
These vertex defects are semions: exchanging them multi-
plies the excited-state wave function by a phase factor of�i
(Fig. 8). Both the bulk and the surface spectrum are derived
in detail in Ref. [20].

B. Decorating the model with a global symmetry

We now show how to decorate this model such that
the surface semion transforms projectively under a global
Z2 × Z2 symmetry. Here, we discuss a physically intuitive
decoration, which will be useful in understanding the

anomalous theory with a global symmetry. In Sec. IV,
we introduce a more abstract decorated model, which
behaves identically to the model discussed here when
the symmetry is global but is more straightforwardly
gauged; this will be useful to compute the three-loop
braiding statistics.
We begin by enlarging our Hilbert space by adding three

auxiliary degrees of freedom at each vertex (one associated
with each edge). For the sake of illustration, we first
consider the case of the nonanomalous chiral spin liquid
surface, corresponding to a trivial SPT, in which each
auxiliary degree of freedom can be either a spin-1=2
(transforming projectively under Z2 × Z2) or a spinless
particle b (transforming in the singlet representation of
Z2 × Z2). (We describe how to modify this construction to
obtain a projective semion model at the end of this section.)
We further impose the constraint that, within this enlarged
Hilbert space, only states with an even number of spin-
1=2’s at each vertex are allowed. This ensures that the
vertex degree of freedom transforms in a linear represen-
tation of Z2 × Z2.
Within this enlarged Hilbert space, it is convenient to

define the modified edge variables,

j~0i ¼ j0ijbibji;
j~1i ¼ j1iðj↑i↓ji − j↓i↑jiÞ=

ffiffiffi
2

p
; ð20Þ

where ↑;↓ represent the physical spin states, b are the
spinless states, and i; j index the spin variables associated
with the two ends of the edge. (We refer to j↑i; j↓i, and jbi
collectively as auxiliary states.) j~1i describes an edge in
which a hard-core boson—representing semion occupation
on the edge—occurs in conjunction with two spin degrees
of freedom, which combine to form a singlet. j~0i is an edge
with no boson, i.e., no semion, and where the auxiliary
degrees of freedom are both spinless.
We can express our Hamiltonian in terms of the

decorated spin operators:

~τzi ¼ j~0iih~0ij − j~1iih~1ij;
~τxi ¼ j~0iih~1ij þ j~1iih~0ij: ð21Þ

These act like Pauli spin operators within the Hilbert
space [Eq. (20)]: by construction, ð~τxÞ2 ¼ ð~τzÞ2 ¼ 1, and

V1 

V2 

FIG. 7. The semion string operator on the surface. The curve C
connecting the surface vertices V1 and V2 is shown in red. A
second copy ofC (shown in dashed blue), displaced from C along
the ð−1;−1; 1Þ direction, determines the set of R vertices. These
are vertices where the dashed blue curve crosses over an edge ei
(shown in green) of the surface. The edge iþ 1 is the edge in C
that shares a vertex with ei and is crossed second when following
C such that C turns to the right at these crossings.

(a) (b)

FIG. 8. Beginning with the configuration shown in (a), we
exchange two open string ends at the surface. Returning the
strings to their original configuration (b) multiplies the eigenstate
of the Walker-Wang model by �i, demonstrating that these
defects have semionic statistics.
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~τx~τz ¼ −~τz ~τx. Importantly, they act only on the set of
auxiliary vertex variables associated with the edge in
question, so that decorated spin operators acting on
adjacent edges commute. Note also that ~τx conserves the
total spin, since it replaces a singlet-bonded pair of spin-
1=2’s at adjacent vertices with a pair of spin-0 particles.
The Hamiltonian is

H ¼ H0 −
X
V

~AV −
X
P

~BP; ð22Þ

where ~AV; ~BP are as in Eqs. (15) and (14), with τx;zi replaced
by ~τx;zi and ni by ~ni ¼ 1

2
ð1 − ~τzi Þ. H0 is a potential term

favoring the edge states j~0i and j~1i:

H0 ¼ −j~0ih~0j − j~1ih~1j: ð23Þ
We now discuss the spectrum of this new Hamiltonian.

By construction, any configuration in which all loops are
closed will have lowest energy if all edges are in one of the
two states j~0i; j~1i. This is possible when

Q
τz ¼ 1 about

each vertex: in this case, each hard-core boson can have an
associated spin-1=2 at the vertex without violating the
constraint; the possibilities are shown in Fig. 9(a). At
vertices where

Q
τz ¼ −1, it is not possible for all edges to

be in one of the two states j~0i; j~1i without violating the
constraint, as shown in Fig. 9(b). Hence, whenever a string
ends, the constraint that the total number of spins at each
vertex must be even ensures that an unpaired spin-1=2
remains at or near the vertex. Moving this unpaired spin
away from the vertex in question produces a series of edges
along which H0 is not minimized (Fig. 10). In other words,
the unpaired spin is confined by a linear energy penalty to
be close to the violated vertex. Therefore, an unpaired spin-
1=2 is bound (by a linear confining potential) to each end
point of an open string. The corresponding semion string
operator is obtained from Eq. (19) by substituting τx → ~τx

and creating an extra spin-1=2 in the state j↑i at each string
end point such that the total spin at each vertex remains
integral.
Defects in the original semion model involving only

plaquette violations are unaffected by the decoration. In
particular, semions on the surface remain deconfined.

Because they are also bound by a confining potential to
a spin-1=2, these deconfined surface semions transform
projectively under the global symmetry, exactly as in the
Kalmeyer-Laughlin spin liquid. In contrast, excitations
involving only plaquette violations in the undecorated
Walker-Wang model transform linearly under the sym-
metry [38].
The construction given thus far realizes a system with a

Kalmeyer-Laughlin spin liquid state on its surface, by
associating an open spin-singlet chain with the semion
excitation. Our main objective, however, is to obtain
surface states that are not possible in two dimensions.
We can do this with a very minor modification of the
construction given above: it suffices to take the spin-1=2
degrees of freedom to transform under Z2 × Z2 according
to Eq. (3). In this case, our spins are not really spins since
we have assumed that SO(3) spin rotation invariance is
broken; however, a spin singlet will still transform as a
net singlet under symmetry. Hence, the operator ~σx still
interchanges two different trivial representations, and thus
does not violate the symmetry.

C. Global symmetries at the surface

Let us now verify that the surface of our 3D model
behaves according to the expectations set out in Sec. II.
Specifically, we wish to understand how the fusion rules
[Eq. (5)] arise at the surface of our model.
Our starting point is the action of the symmetry g (in the

ungauged model) on a semion loop, which carries a singlet
chain. The singlet chain is essentially an AKLT [39] chain
in which we do not project onto spin-1 at each site; like the
AKLT chain, it has an exact matrix product ground state.
For a chain with N sites and periodic boundary conditions,
this has the form

jΨi ¼ Tr½Aðsz
1
Þ…AðszNÞ�js1;…; sNi; ð24Þ

where si ¼ 1; 0;−1 for the three triplet states, or b for the
spin-singlet state. Here,

FIG. 9. (a) Low-energy and (b) high-energy configurations at
each vertex. Dotted lines represent links without strings, while
solid lines represent links with strings. Empty circles represent
spinless vertex particles, while solid circles represent spin-1=2’s.
Two connected circles form a singlet.

FIG. 10. Possible configuration where no isolated spin-1=2’s
appear near the end of strings, showing that such excitations are
confined. The solid lines have a semion label, and dashed lines
have a trivial label. The violated vertices are indicated with green
arrows, and red arrows indicate edges that are not in a ground
state of H0.
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Að1Þ ¼ 1ffiffiffi
2

p σþ; Að−1Þ ¼ −
1ffiffiffi
2

p σ−; ð25Þ

Að0Þ ¼ −
1

2
σz; AðbÞ ¼ −

1

2
1; ð26Þ

where σ� ¼ σx � iσy, with σx;y;z the Pauli matrices.
The projective action of the symmetry can be unveiled

using the approach of Ref. [40]. Consider the effect of the
Z2 × Z2 symmetry operations

Rα ¼ eiπŜα ; α ¼ x; y; z: ð27Þ

These act according to

Ryjbi ¼ jbi;
Ryjmz ¼ 1i ¼ jmz ¼ −1i;

Ryjmz ¼ −1i ¼ jmz ¼ 1i;
Ryjmz ¼ 0i ¼ −jmz ¼ 0i; ð28Þ

and similarly for Rx; Rz. In terms of our matrix product
state, acting with Ry on all sites in the chain must therefore
take

Ry∶ Að1Þ → Að−1Þ; Að−1Þ → Að1Þ;

Að0Þ → −Að0Þ; AðbÞ → AðbÞ: ð29Þ

These transformations are carried out by taking

AðsÞ → UyAðsÞU†
y; ð30Þ

withUy ¼ σy. Similarly, Rz acts on the matrix product state
by conjugating all matrices AðsiÞ by Uz ¼ σz. For an open
singlet chain, the first and last matrices are row and column
vectors, respectively. These transform via

Aðs1Þ → Aðs1ÞU†
y; AðsNÞ → UyAðsNÞ: ð31Þ

Since the matrices U;U† appear in pairs, we are free to
redefineUy andUz by arbitrary factors of i. (Unlike in a 1D
system, here we must require that both end points of the
chain transform in the same projective representation, so
that U2

g must be real.) It is natural to take these phases such
thatU2

y ¼ U2
z ¼ 1. As Ref. [40] emphasizes, however, once

we have fixed the matrices Uy;Uz, Ux is fixed by the
requirement that it be the product UyUz. Specifically, since
ðUyUzÞ2 ¼ −1,

Ux ¼ �iσx: ð32Þ

To see how the states in our 3D model are affected by
symmetry transformations, consider creating a domain wall
on the 2D surface by applying the transformation g at all
sites inside the 3D region shown in Fig. 11(a). Suppose that
an N-site singlet chain enters and exits this region, such
that domain walls are created between sites ði − 1; iÞ and
between ðiþ n − 1; iþ nÞ. After the symmetry transfor-
mation, the new matrix product state for the singlet chain is

(a)

(c)

(b)

(d)

FIG. 11. Symmetry action and surface semion strings. (a) Acting with the symmetry operator Rx on all spins inside the gray region
creates a bulk domain surface (the boundaries of the gray box) that ends on a surface domain wall (shown in red). This operation twists
each singlet-chain link piercing the domain surface by Ux (or U

†
x). Performing this transformation twice multiplies the wave function by

a phase factor ð−1Þns, where ns is the number of edges piercing the domain surface that carry semion labels. (b) Diagrammatically, this
can be represented by encircling each edge with a small semion loop. (c) Acting with a product of plaquette operators on the shaded
plaquettes reproduces this operator in the bulk but leaves a large loop running below the surface along the domain wall. (d) To obtain the
correct phase factor, an additional semion string (shown here in blue) must be added at the surface along the domain wall. Note that, for
simplicity, we suppress the point splitting of the cubic lattice in this figure.
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Tr½A1…Ai−1UgAi…Aiþn−1U
†
gAiþn…AN �js1;…; sNi;

where A1 ≡ Aðs1Þ, A2 ≡ Aðs2Þ, etc. Hence, the first domain
wall is associated with an insertion of U, and the second
with an insertion of U†.
Similarly, if a singlet chain ends inside the region, after

the transformation its wave function is

Tr½A1…AiU
†
gAiþ1Aiþ2…AN �js1;…; sNi;

where the domain wall occurs between sites i and iþ 1.
Importantly, in this case U†

g appears on only one link in
the chain.
If we act with g ¼ y; z twice on the same region, the

resulting operator is simply the identity. However, if we act
twice with g ¼ x, the result is

½Rxð RÞ�2 ¼
Y
i∈ �R

ð−1Þni ≡ ΦsðRÞ: ð33Þ

Here, R is the 3D region in which the symmetry acts,
and �R is the set of edges that connect sites inside R to
those outside (i.e., the set of edges bisected by the surface
bounding R).
The operator Φs can be expressed in a more illuminating

form: on any surface S [20],

Y
S

BP ¼ −W∂S
Y
e∈�S

ð−1ÞnsðeÞ; ð34Þ

where �S is the set of edges that stick out of the surface
S, but are not on the boundary of the 3D system. ∂S is
the curve where S intersects this boundary, and W∂S is
an operator creating a closed loop along this curve
[Fig. 11(c)]. [41]
To turn this into the operator we want, we multiply it

by a surface semion string operator Ŝ that runs along ∂S
[Fig. 11(d)]:

Φs ¼ −Ŝ∂S
Y
P∈S

BP; ð35Þ

where S is the 2D surface bounding R [42].
If we restrict our attention to situations where there are

no defects in the 3D bulk of our model, then the product
over plaquette operators acts as the identity, and acting with
Φs is equivalent to acting with the surface semion string
operator. In this way, we see that acting twice with Rx in R
is equivalent to acting with a semion string that encircles
the intersection of the boundary of region R with the
surface of the 3D system. Since acting with the symmetry
is equivalent to braiding with an appropriate defect, this
implies that two Ωx defects will fuse to a semion string.
Similar arguments can be used to deduce the appearance of
the other coefficients in the fusion relations [Eq. (5)].

D. Intersecting domain walls

Next, consider the effect of creating first a pair of g
domain walls, and then a pair of h domain walls in an
orthogonal plane [Fig. 12(a)]. After making the pair of g
domain walls, the edges bisecting each domain wall have
been “g twisted”: if a semion loop crosses the g domain
wall on edges ði − i; iÞ and ðj; jþ 1Þ, the spin component
of the wave function on this loop is now

Tr½A1…Ai−1UgAi…AjU
†
gAjþ1…AN �js1;…; sNi: ð36Þ

Next, we create a pair of h domain walls. This does two
things. First, it twists a second set of edges by Uh. Second,
it acts on the g-twisted edges between the h domain walls
to send

Ug → UhUgU
†
h: ð37Þ

For h ≠ g, this gives an extra phase factor of −1 for each
g-twisted edge in the region acted on by h. This reflects
the fact that these edges are no longer singlets and therefore
carry (integer) charge under the remaining generators
of Z2 × Z2.
If g ≠ h, we thus obtain an overall phase factor

Qð−1Þns,
where the product runs over all links twisted by g and then
acted on by h. Exactly as in the case of the domain surface,

FIG. 12. Intersecting pairs of domain walls. (a) Here, we first
act with g on all spins inside the blue-shaded region, twisting all
singlet chains along the set of red edges by g. We next act with h
on all spins inside the mauve-shaded region. This will twist the
singlet chains on a second set of bonds (shown in green) by h, and
also generate a phase factor of ð−1Þns for each red edge inside the
mauve region. (b) When acting on states where BP ≡ 1, this is
equivalent to running a semion string (thick blue line) around the
boundary.

ANOMALOUS SYMMETRY FRACTIONALIZATION AND … PHYS. REV. X 5, 041013 (2015)

041013-13



this phase can be represented by a product of plaquette
terms, combined with a semion string running along the
boundary of the intersection between the domain walls
[Fig. 12(b)].
Hence, in our exactly solvable model, the action of

symmetry is intertwined with the topological degrees of
freedom in two ways. First, appropriate combinations
of global symmetries in 3D regions that end on the surface
are (provided the bulk is in its ground state) equivalent to
semion string operators, as anticipated from the discussion
of Sec. II. Second, such semion strings also appear at
intersections of different types of domain walls. In the next
section, we use the second result—rederived there in a
slightly different way in the context of the gauged theory—
to show that gauging the symmetry results in three-loop
braiding statistics.

IV. NONTRIVIAL NATURE OF OUR 3D SPT
VIA THREE-LOOP BRAIDING

In the previous section, we construct a 3D Hamiltonian
invariant under the symmetry G ¼ Z2 × Z2 with a trivial
bulk and a surface state that is anomalous, by the criterion
of Sec. II. We can thus conclude that this must be a
nontrivial 3D SPT, for otherwise we could decouple the
bulk and have the anomalous surface state exist as a stand-
alone 2D theory, an impossibility. However, it is nice to
have a direct verification of the nontrivial SPT nature of our
3D bulk, especially since robust diagnostics of nontrivial
3D SPT order have been developed [21,22]. In this section,
we show that (a slight modification of) our 3D model is
indeed a nontrivial 3D SPT according to these criteria.
Specifically, we gauge G in the 3D SPT model and show
that flux insertion operators in the gauged theory satisfy a
nontrivial algebra [22]. The nontrivial algebraic relation
we show can also be interpreted in terms of three-loop
braiding [21].
In order to gauge the theory, it is convenient to introduce

a more abstract (but more general) variant of the decorated
WW model discussed above. It can easily be checked that
when G is global, this alternative model reproduces the
phenomena discussed in Secs. III C and III D: namely,
semion lines appear at the boundaries of domain surfaces
and encircle the intersections of pairs of domain walls of
different types. Because of this, we give only a schematic
description of the features that we require.
Our new Hamiltonian is again that of a generalized spin

system, with generalized spins at each vertex of the cubic
lattice. The spin Hilbert space at a vertex V is

HV ¼ HG
V ⊗ HWW

V ; ð38Þ

where HWW
V is the Hilbert space of all possible semion

labelings of the edges adjacent to V that satisfy the vertex
term AV ¼ 1, and HG

V is a tensor product of “parton”
Hilbert spaces CjGj ¼ C4 over these edges (G ¼ Z2 × Z2).

Note that in a general state, adjacent vertex Hilbert spaces
may have disagreeing labels for the edge they share; the
first term we impose in the Hamiltonian is an energetic
penalty for this scenario, with the rest of the terms in the
Hamiltonian acting as 0 unless this label-matching con-
dition is satisfied. From now on, we implicitly work in this
constrained Hilbert space—but note that surface semion
quasiparticle excitations are violations of this constraint.
Each site Hilbert space HV is a linear unitary represen-

tation of G, with f ∈ G acting by UVðfÞ, defined by

UVðfÞjV;g; si ¼ χðf;g; sÞjV; fg; si; ð39Þ
where the phase factor is defined in terms of our 2-cocycle
ω:

χðf;g; sÞ ¼
Y
V 0 ~V

ωðgðV 0Þf; fÞsðV 0Þ: ð40Þ

Here, gðV 0Þ ∈ G represents the parton degree of freedom at
site V corresponding to the edge hVV 0i, and sðV 0Þ ¼ 0; 1 is
the semion occupation of link hVV 0i. This can be seen to be
a linear representation thanks to AV ¼ 1.
We now define the Hamiltonian

H ¼ Hconstr þHG þHWW ð41Þ
as a sum of local terms as follows. Hconstr contains the
constraint that semion labels for vertices V and V 0 at either
end of the edge hVV 0i should agree. The rest of the terms
are defined to act as 0 unless the labeling constraints are
satisfied in their vicinity. If they are satisfied,HG is defined
as follows. It acts purely on the parton degrees of freedom,
and is a decoupled sum over edges hVV 0i of projectors onto
the state ð1= ffiffiffiffiffiffiffijGjp ÞPg jgi ⊗ jgi, where the two tensor
factors correspond to the G partons associated to V and V 0,
respectively. We can again think of these projectors as
constraints. Furthermore,HWW is precisely the undecorated
Walker-Wang Hamiltonian discussed above, with the ca-
veat that the vertex and plaquette terms in it act as 0 unless
both the labeling and parton constraints are satisfied in
their vicinity. This definition makes it easy to check that
all terms commute, and a ground state satisfying all
constraints exists. Indeed, this ground state is clearly just
the ground state of the original Walker-Wang model,
tensored with the state where the G partons are entangled
as ð1= ffiffiffiffiffiffiffijGjp ÞPg jgi ⊗ jgi along all the links. Note that
the only coupling between HG and HWW is through the
definition of the action of G, and specifically the phase χ
defined above.

A. Membrane algebra: Generalities

To extract the membrane algebra invariant of Ref. [22],
we couple our model to a G gauge field. We do this by
introducingG-valued variables living on links (note that we
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do not need an orientation because everything isZ2 valued)
and minimal coupling. The precise meaning of minimal
coupling is as follows. First, we give an energetic penalty
for nontrivial G flux through any plaquette. Second, we
define G-coupled versions of the local terms in HG and
HWW by having them act as 0 unless there is no G flux
through any of the plaquettes in the vicinity of the local
term in question, and in the case when there is no such G
flux, we define them by having them act in the unique way
dictated by G gauge invariance. Finally, we add terms for
the G gauge field variables that perform G gauge trans-
formations on vertices, i.e., vertex terms for the G electric
flux. The entire model stays exactly solvable and is in the
deconfined phase of the G gauge theory. Our goal is to
study the algebra of membrane flux insertion operators in it.
For now, we write everything in terms of the 2-cocycle ω

defining our model; later, we specialize to a particular ω.
Following Ref. [22], our geometry is a three-torus whose
dimensions we refer to as x; y; z (note the lower case
letters). Let us first construct a membrane flux insertion
operator Zxy that inserts Z flux in the xy plane. Recall our
notation fI; X; Y; Zg for the group G ¼ Z2 × Z2. The
requirements for Zxy are that it act only on the degrees
of freedom (in the gauged model) in the vicinity of the xy
plane, that it map the jGj3 ¼ 64-fold degenerate ground-
state space of the model on the three-torus to itself while
inserting flux Z in the z direction, and that ðZxyÞ2 act as the
identity on this ground-state space. Note that these con-
ditions do not uniquely determine the action of Zxy in the
ground-state space: we can always multiply any valid Zxy

by operators that measure G flux along the x and y
directions. The criterion of Ref. [22], which is constructed
in terms of such membrane flux insertion operators and
determines whether we have a nontrivial SPT or not, is of
course insensitive to such ambiguities.
We now construct a particular Zxy:

Zxy ¼ Zgf
xyẐxy; ð42Þ

where Zgf
xy will act only on the gauge field degrees of

freedom and Ẑxy will act on the original spin degrees of
freedom and depend on but not change the gauge field
degrees of freedom. Zgf

xy is defined by taking a given gauge
field configuration and changing by Z the gauge field
variables living on the vertical links hVV 0i, where V is a
link of the xy plane and V 0 ¼ V þ ẑ; see Fig. 13. As for Ẑxy,
we define it as follows. For each of the 42 ¼ 16 x and y
direction G flux sectors, we pick a particular G gauge field
configuration and define Ẑxy in that sector by a particular
operator written out below. We then extend it uniquely to an
operator in the full gauge theory using the requirement of
gauge invariance. Note that we can define Ẑxy arbitrarily in
each x and y (but not z) flux sector, since Ẑxy can measure

the G holonomy in the x and y directions. The requirement
of gauge invariance is sufficient to guarantee that Zxy will
map ground state to ground state in the gauged theory,
provided that Ẑxy does so for the ungauged model.
Now, the criterion of Ref. [22] states that the zero flux

ground state expectation value of

Z−1
xyZ−1

xz X−1
yz ZxzXyzZxy ð43Þ

is equal to �i in the anomalous theories and �1 in the
nonanomalous theory. To compute this for our models, we
look for the phase difference between

ZxzXyzZxyjψ0i ð44Þ

and

XyzZxzZxyjψ0i; ð45Þ

where jψ0i is the zero flux ground state. Note that in this
computation we can ignore many signs, since we can
tolerate sign errors in looking for a phase difference
of �i. By the discussion above, this amounts to evaluating
the corresponding products of operators Ẑxy, X̂yz. in the
ungauged theory, while separately keeping track of the
gauge field dictated by the definition of our bold-faced
operators in a particular gauge. A convenient gauge choice
is to allow the gauge field configurations to be nonzero only
on the hVV 0i links where V is in one of the cardinal planes
and V 0 is in a fixed normal direction away from it; see
Fig. 13. It is for these specific gauge field configurations
that we define the X̂; Ẑ operators, as described above. Since
the gauge field configurations end up the same regardless of
whether we pick order (44) or order (45), we just need to

FIG. 13. The operator Zxy acts on the gauge field by changing
by Z ∈ G the values of the gauge field variables on the indicated
links; in other words, it inserts a Z flux in the z direction.
Similarly, operators that insert flux in the other directions act in
the other planes.
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focus on the X̂; Ŷ; Ẑ operators in figuring out the phase
difference.

B. Membrane algebra for the anomalous and
nonanomalous projective semion models

We now focus on the Y anomalous projective semion
model, defined by the 2-cocycle ωY , as well as the non-
anomalous projective semion theory with 2-cocycle ωI .
For completeness, recall that both of these 2-cocycles are
valued in �1, with ωY ¼ −1 on ðY; YÞ; ðX; YÞ; ðY; ZÞ;
ðX; ZÞ, and ωI ¼ −1 on ðX;XÞ; ðY; YÞ; ðZ; ZÞ; ðX; YÞ;
ðY; ZÞ; ðZ; XÞ.
According to our discussion above, we have to define

five distinct operators in the ungauged theory: Ẑxy in the
zero flux sector, X̂yz and Ẑxz in the sector with Z flux in the
z direction and zero flux elsewhere, Ẑxz in the sector with Z
flux in ẑ and X flux in x̂, and X̂yz in the sector with Z flux in
ẑ and Z flux in ŷ. Each of these will split into a product of
two operators: one that just acts on the G degrees of
freedom and one that acts on the Walker-Wang degrees
of freedom while depending on the G degrees of freedom:
Â ¼ ÂGÂWW. Let us first describe the case of Ẑxy, where
only Ẑxy;G is nontrivial, and then see why in the other cases
a portion that acts nontrivially on the WW degrees of
freedom is necessary.
We define Ẑxy ¼ Ẑxy;G by having it introduce twists

along the links hVV 0i, where V is in the xy plane and
V 0 ¼ V þ ẑ. Specifically, it acts only on the parton Hilbert
space CjGj associated to vertex V in the hVV 0i direction by

jgi → ωðgZ; ZÞjgi; ð46Þ

where ω ¼ ωY in the anomalous projective semion Y
theory and ω ¼ ωI in the nonanomalous CSL. It is
straightforward to check that Ẑxy;Gjψ0i is the ground state
of the Hamiltonian with a Z twist in the xy plane: one just
needs to check that it satisfies the twisted plaquette and
HG terms.
The remaining operators will have a nontrivial Walker-

Wang part, as one might expect from the discussion of
intersecting domain wall pairs in Sec. III D. The reason is
much the same as in the global case: a semion string
passing through a Z flux carries X charge, so that applying
X globally in between two offset yz planes results in an
extra factor of ð−1Þ raised to the power of the number of
semion strings passing the Z plane between these two offset
planes (Fig. 12). This sign can be accounted for, using the
linking sign property of semion strings, by running extra
semion strings along the y-axis direction at the intersections
of the offset planes with the xy plane.
In the gauged model, when we act, say, with a Z flux

insertion operator in the xy plane, followed by an X flux
insertion operator in the yz plane, applying the above twist

operators in succession produces a state that satisfies all
terms in the Hamiltonian except a line of xz plaquette terms
along the y axis. To get an operator that maps ground
state to ground state, we need to get rid of these violated
plaquettes, and we do so by including an extra semion
string operator threading the line of violated plaquettes,
illustrated in Fig. 14. This is the extra Walker-Wang part of
the flux insertion operators. The existence of this line of
violated plaquettes is, of course, another manifestation
of the result of the previous section.
We can think of such a string insertion operator heuris-

tically as follows: we take an extra semion string threading
the line of violated plaquettes and fuse it into the y axis
using the picture calculus rules that define the Walker-
Wang model. This is simply the product of operators τx

along the links of the y axis (τx is the Pauli operator that
changes the semion occupation number), dressed by a sign
depending on the occupation of the nearby links. To satisfy
the HG part of the Hamiltonian, there is also a sign that
depends on the parton variables.
We actually do not need an explicit expression for

the semion string insertion operator, but only one key
property: namely, two such string insertion operators along
perpendicular directions must anticommute. This just
follows from the pictorial Walker-Wang rules: the order
of operations can be switched by sliding one semion line
past the other, incurring a −1 from the linking. It can also
be seen from an explicit expression for the operators.

C. Explicit computation

Armed with these flux insertion operators, we can now
analyze the two models. The form of the flux insertion
operators is actually the same in the two cases of the
anomalous Y projective semion model and the nonanom-
alous CSL model. The only difference is in the cocycles,

FIG. 14. The Walker-Wang part of the membrane operator that
inserts a flux of X on a state that already has a flux of Z in a
perpendicular direction. Naive successive application of the twist
operators defined in the text leave a line of violated plaquettes at
the intersection of the two fluxes. These are satisfied by running a
semion string operator (blue line) through them. This blue semion
string is glued into the lattice skeleton of our model using the
local Walker-Wang graphical rules.
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which enter the twist, and overall phase factors. These
overall phase factors turn out to be crucial, and can be
obtained, up to sign, from the condition that all the flux
insertion operator square to þ1.
In Fig. 15, we illustrate the two orderings of flux

insertion operators. Let us focus on the operator Xyz in
the lower sequence in the figure. It inserts two semion
strings, one along the y axis and one along the z axis, in
that order. We claim that its coefficient must be �i. To see
this, note that without it, the operator would square to −1.
This −1 comes entirely from the Walker-Wang part of the
operator, which involves inserting a semion string along y,
then along z, then along y, and then along z again. These
strings all cancel, but in doing so, acquire a −1 when a
string along z moves past the string along y. Hence, we
need a factor of i in front of this operator.
In the anomalous projective semion model, this factor

of i is the whole story: doing the flux insertion the other
way (X̂yz first, then Ẑxz) results in a wave function whose
amplitudes are all real (assuming a choice of overall phase
that makes jψ0i have all real amplitudes), so the two
orderings yield wave functions—which must be the
same up to phase due to uniqueness of the SPT ground
state—that differ by a factor of �i.
In the nonanomalous projective semion theory, there is,

however, another factor of i in addition to the one discussed
above, so the ultimate phase difference between the two
states is �1, as expected. This is the overall phase factor in
front of Ẑxz acting on the state with Zxy and Xyz fluxes in
place—that is, the operator corresponding to Zxz in the
upper sequence of Fig. 15. While in the anomalous Y model
this phase factor is simply �1, in the nonanomalous model
it must be �i. This is because without it the square of Ẑxz
would be −1, owing to the semion string running along the
y axis of the state on which it is acting (middle frame of
upper sequence in Fig. 15). More precisely, it is because
there is an odd number of such semion strings intersecting

the xz plane—the semion string, of course, is not pinned in
any way to the y axis. The square of Ẑxz on a state with an
odd number of semion lines is −1 due to the form of the
cocycle ωI—it is just the statement that Z2 ¼ −1 at the end
point of a semion string in the nonanomalous model. Thus,
we need a factor of �i in front of this operator to have
something that squares to þ1, and so finally the phase
difference between the two expressions Eqs. (44) and (45)
is just a sign, as expected in a nonanomalous theory.

V. O(5) NONLINEAR SIGMA MODEL
CONSTRUCTION OF OUR SPT
AND ANOMALOUS SURFACE

An alternative approach to constructing SPTs is to use
nonlinear sigma models with a theta term. In particular,
Refs. [11,43] argue that a wide class of 3D SPTs can be
described by the following action:

S3D ¼
Z

d3xdτ
1

g
ð∂μ~nÞ2 þ Sθ;

where

Sθ ¼
2πi
64π2

Z
d3xdτϵabcdeϵμνρδna∂μnb∂νnc∂ρnd∂δne:

Specifically, for G ¼ ZA
2 × ZB

2 , Ref. [43] argues that the
following action of G realizes a nontrivial G SPT:

ZA
2∶ n1;2 → −n1;2; na → na ða ¼ 3; 4; 5Þ;

ZB
2 ∶ n1 → n1; na → −na ða ¼ 2; 3; 4; 5Þ:

We will see how to construct one of our anomalous semion
surface states as a symmetric termination of this 3D SPT.
Before we do this, let us first consider an alternative

action of this symmetry group, corresponding to a trivial
3D SPT. For clarity, we denote this group by ~ZA

2 × ~ZB
2 . Its

action is

~ZA
2∶ n1;2 → −n1;2; na → na ða ¼ 3; 4; 5Þ;

~ZB
2∶ n2;3 → −n2;3; na → −na ða ¼ 1; 4; 5Þ:

Now, this is simply the subgroup of 180° rotations inside
the SO(3) that rotates n1; n2; n3, and since we know that
there is no nontrivial 3D SPT of SO(3) in 3D, the
corresponding ~ZA

2 × ~ZB
2 SPT must be trivial as well. But

let us examine its surface anyway. To do this, consider the
effective action for the complex field n4 þ in5 on the 2D
surface, after having integrated out n1;2;3. According to the
arguments of Refs. [11,43], the theta term ensures that a
single vortex of n4 þ in5 carries a spin-1=2. Now, we can
add fluctuations and proliferate doubled vortices bound to
single charges, i.e., we think of this as a system with U(1)

FIG. 15. Graphical illustration of the two orderings, Eqs. (44)
and (45). They result in two states that differ by �1 in the
nonanomalous model, but�i in the anomalous projective semion
model Y theory, as explained in the text.
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charge conservation symmetry that acts on n4 þ in5, and
drive it to a ν ¼ 1=2 bosonic Laughlin state, while main-
taining the SO(3) symmetry that acts on n1; n2; n3. We have
then constructed a chiral spin liquid at the surface—the
nontrivial quasiparticle is a semion, and because it descends
from a single vortex, it carries spin-1=2. The chiral spin
liquid is of course a perfectly valid 2D symmetry-enriched
phase, which we expect since the bulk SO(3) SPT is trivial.
Having understood this trivial case, we turn to G ¼

ZA
2 × ZB

2 defined above, which corresponds to the non-
trivial SPT. The analysis is in fact completely the same,
with the only difference being that ZB

2 differs from ~ZB
2 by

the transformation n4;5 → −n4;5, i.e., a π rotation of the
U(1): n4 þ in5 → −n4 − in5. Once we drive the system
into the ν ¼ 1=2 bosonic Laughlin state, this extra π
rotation causes ZB

2 to pick up an extra phase factor, equal
to π times the charge of the semion (which is 1=2); i.e.,
eiπ=2 ¼ i. In other words, the semion now carries an extra
half-charge of ZB

2 , compared to the case of the chiral spin
liquid. This is precisely our anomalous surface state. The
other anomalous surface states can be constructed by
changing the roles of the generators of Z2 × Z2.
We note that the nonlinear sigma model has also been

used to verify braiding statistics in, for example, Ref. [44].

VI. DISCUSSION AND FUTURE DIRECTIONS

In this paper, we study in detail a set of symmetry-
enriched topological states—the projective semion states—
which cannot be realized in 2D symmetric models even
though the fractional symmetry action on the anyons is
consistent with all the fusion and braiding rules of the chiral
semion topological order. The anomaly is exposed when
we try to gauge the Z2 × Z2 symmetry and fail to find a
solution for the fusion statistics of the gauge fluxes that
satisfies the pentagon equation. On the other hand, we
demonstrate that the projective semion state can be realized
on the surface of a 3D system and prove that the anomaly
determines the SPT order of the 3D bulk.
The projective semion state is the simplest example of

an anomalous SET state with discrete unitary symmetries.
Our discussion in Sec. II illustrates a general procedure for
detecting anomalies in a large class of such SET states. In
particular, we want to emphasize two points.
(1) The fractional symmetry action on the anyons gives

rise to a projective fusion rule of the gauge fluxes
once the symmetry is gauged, with the Abelian
anyon in the original topological theory as the
coefficient.

(2) For SETs with discrete unitary symmetries, when
gauging the symmetry, the possible obstruction
comes in two types: the H3 type and the H4 type.
Equation (11) gives the general formula to detect
the H4 type. If the νðf; g; h; kÞ in Eq. (11) forms a
nontrivial 4-cocycle of G with U(1) coefficients,

then the SET is anomalous. Furthermore,
νðf; g; h; kÞ is a 4-cocycle representing the SPT
order in the 3D bulk.

Thus far, we have focused on discrete unitary symmetry
groups G and identifying whether a given SET is anoma-
lous. We also believe that there should be a constructive
procedure similar to the one utilized here to realize a
particular anomalous SET, given an element of H4, which
is the surface topological order of the corresponding 3D
bosonic SPT phase, at least for discrete unitary G. (A 3D
SPT with no consistent surface topological order was
recently discussed [45], although that involved bulk fer-
mions and a combination of continuous symmetry and time
reversal.) A construction similar to that of Sec. III for other
Abelian anyon models is discussed in Appendix C. Note
that even though the projective semion example involves
only Abelian symmetries, the anomaly detection procedure
and the construction of the bulk model work equally
well for non-Abelian (discrete unitary) symmetries. In
the process, we need the projective fusion rule of symmetry
fluxes, calculation of the pentagon equation violation, and
different representations of the symmetry group (for con-
structing the bulk model), all of which are straightforwardly
defined for both Abelian and non-Abelian symmetries.
With continuous symmetry groups, one has to be more

careful: even defining the group cohomology group
H4ðG;Uð1ÞÞ for continuous groups G is already subtle,
because there are different possible definitions depending
on whether or not one makes use of the topology of G
(namely, some definitions require cocycles to be continu-
ous with respect to this topology); this has been considered
before (e.g., in Ref. [2]) and it is understood which
definition is appropriate for classifying bulk 3D SPTs.
Likewise, we expect that a careful treatment of continuity
for the surface will result in a well-defined H4ðG;Uð1ÞÞ
coming from the surface, and then it is natural to expect that
a gauge invariance argument should relate the two. Thus,
we do not see a fundamental obstacle to applying our
approach for more general continuous symmetries, and in
fact, we believe that some version of our story should go
through at least for the kinds of symmetry groups that
appear in the classification of 3D SPTs (e.g., continuous
compact groups). However, such an investigation is beyond
the scope of the present paper.
For time-reversal symmetry, we conjecture that the same

formula [Eq. (11)] works in detecting the H4-type obstruc-
tion, although it is currently not known how to introduce
time-reversal fluxes at the same level as for a unitary
symmetry. This comes from the observation of the follow-
ing example: the Z2 gauge theory with both the gauge
charge e and gauge flux m transforming as T2 ¼ −1
(sometimes called eTmT). It is believed that this state is
anomalous and appears on the surface of the 3D SPT with
time-reversal symmetry [11], which is described by the
group cohomology classification, specifically by the
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nontrivial element in H4ðZT
2 ;Uð1ÞÞ ¼ Z2, where the time-

reversal symmetry acts nontrivially on the U(1) coefficients
by complex conjugation. Suppose that we can define in
some notion a time-reversal gauge flux. Then the projective
fusion rule would be

ΩT × ΩT ¼ f; ð47Þ

where f is the bound particle of e and m. Equivalently, we
can write

ωðT; TÞ ¼ f; ω ¼ I otherwise: ð48Þ

This reflects the fractional symmetry action where T2 ¼ −1
on e and m because f has a −1 braiding statistics with both
e and m. Now we can use this information to calculate
νðf; g; h; kÞ in Eq. (11). The Z2 gauge theory has trivial F.
Therefore, Eq. (11) reduces to

νðf; g; h; kÞ ¼ Rωðh;kÞ;ωðf;gÞ; ð49Þ

which is nontrivial only when f ¼ g ¼ h ¼ k ¼ T and
νðT; T; T; TÞ ¼ −1. This is exactly the nontrivial 4-cocycle
of time reversal [2].
Even though at this moment we are not sure what

gauging time reversal means in general, recent work
indicates that this notion can be formalized [24,46].
From this particular example, we expect that the procedure
and result discussed in Ref. [23] might be generalized to
treat antiunitary symmetries as well.
Recently, we learned of other works on anomalous SETs

with unitary discrete symmetries [24,25]. We also learned
about the interesting work of Ref. [21], classifying 3D
SPTs using flux loop braiding statistics; it would be nice to
relate this to our results.
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APPENDIX A: PROJECTIVE REPRESENTATION
AND GROUP COHOMOLOGY

The following definition works only for unitary sym-
metries because we are not dealing with time-reversal
symmetry in this paper.
Matrices uðgÞ form a projective representation of sym-

metry group G if

uðg1Þuðg2Þ¼ωðg1;g2Þuðg1g2Þ; g1;g2∈G: ðA1Þ

Here, ωðg1; g2Þ ∈ Uð1Þ and ωðg1; g2Þ ≠ 1, which is called
the factor system of the projective representation. The
factor system satisfies

ωðg2; g3Þωðg1; g2g3Þ ¼ ωðg1; g2Þωðg1g2; g3Þ; ðA2Þ

for all g1; g2; g3 ∈ G. If ωðg1; g2Þ ¼ 1; ∀ g1; g2, this
reduces to the usual linear representation of G.
A different choice of prefactor for the representation

matrices u0ðgÞ ¼ βðgÞuðgÞ leads to a different factor system
ω0ðg1; g2Þ:

ω0ðg1; g2Þ ¼
βðg1Þβðg2Þ
βðg1g2Þ

ωðg1; g2Þ: ðA3Þ

We regard u0ðgÞ and uðgÞ that differ only by a prefactor as
equivalent projective representations and the corresponding
factor systems ω0ðg1; g2Þ and ωðg1; g2Þ as belonging to the
same class ω.
Suppose that we have one projective representation

u1ðgÞ with factor system ω1ðg1; g2Þ of class ω1 and
another u2ðgÞ with factor system ω2ðg1; g2Þ of class ω2,
obviously u1ðgÞ ⊗ u2ðgÞ is a projective presentation with
factor system ω1ðg1; g2Þω2ðg1; g2Þ. The corresponding
class ω can be written as a sum ω1 þ ω2. Under such an
addition rule, the equivalence classes of factor systems
form an Abelian group, which is called the second
cohomology group of G and is denoted as H2ðG;Uð1ÞÞ.
The identity element 1 ∈ H2ðG;Uð1ÞÞ is the class that
corresponds to the linear representation of the group.
The above discussion on the factor system of a projective

representation can be generalized, which gives rise to a
cohomology theory of groups.
For a groupG, letM be aGmodule, which is an Abelian

group (with multiplication operation) on which G acts
compatibly with the multiplication operation (i.e., the
Abelian group structure) on M:

g · ðabÞ ¼ ðg · aÞðg · bÞ; g ∈ G; a; b ∈ M: ðA4Þ

For example,M can be the U(1) group and a a U(1) phase.
The multiplication operation ab is then the usual multi-
plication of the U(1) phases. The group action is trivial
g · a ¼ a for unitary symmetries considered here. OrM can
be a Z2 group and a is the semion or the vacuum sector in
the K ¼ 2 Chern-Simons theory. The multiplication ab is
then the fusion between anyons. The group action g · a ¼ b
encodes how the anyon sectors get permuted under the
symmetry, which is trivial for the projective semion
example discussed in this paper but can be nontrivial in
general.
Let ωnðg1;…; gnÞ be a function of n group elements

whose value is in the G module M. In other words,
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ωn∶ Gn → M. Let CnðG;MÞ ¼ fωng be the space of
all such functions. Note that CnðG;MÞ is an Abelian
group under the function multiplication ω00

nðg1;…; gnÞ ¼
ωnðg1;…; gnÞω0

nðg1;…; gnÞ. We define a map dn from
CnðG;Uð1ÞÞ to Cnþ1ðG;Uð1ÞÞ:

ðdnωnÞðg1;…; gnþ1Þ
¼ g1 · ωnðg2;…; gnþ1Þωð−1Þnþ1

n ðg1;…; gnÞ

×
Yn
i¼1

ωð−1Þi
n ðg1;…; gi−1; gigiþ1; giþ2;…; gnþ1Þ: ðA5Þ

Let

BnðG;MÞ ¼ fωnjωn ¼ dn−1ωn−1jωn−1 ∈ Cn−1ðG;MÞg
ðA6Þ

and

ZnðG;MÞ ¼ fωnjdnωn ¼ 1;ωn ∈ CnðG;MÞg: ðA7Þ

BnðG;MÞ and ZnðG;MÞ are also Abelian groups that
satisfy BnðG;MÞ ⊂ ZnðG;MÞ, where B1ðG;MÞ≡ f1g.
ZnðG;MÞ is the group of n-cocycles and BnðG;MÞ is
the group of n-coboundaries. The nth cohomology group of
G is defined as

HnðG;MÞ ¼ ZnðG;MÞ=BnðG;MÞ: ðA8Þ

When n ¼ 1, we find that ω1ðgÞ satisfies

ω1ðg1Þω1ðg2Þ ¼ ω1ðg1g2Þ: ðA9Þ
Therefore, the first cocycles of a group with U(1) coef-
ficient are the one-dimensional representations of the
group.
Moreover, we can check that the consistency and

equivalence conditions [Eqs. (A2) and (A3)] of factor
systems of projective representations are exactly the
cocycle and coboundary conditions of the second coho-
mology group. Therefore, second cocycles of a group with
U(1) coefficient are the factor systems of the projective
representations of the group. Similarly, we can check that if
we use the semion or vacuum sector as a Z2 coefficient,
then the projective fusion rule of the gauge fluxes discussed
in Sec. II B is a second cocycle of the symmetry group with
Z2 coefficient.
When n ¼ 3, from

ðd3ω3Þðg1; g2; g3; g4Þ

¼ ω3ðg2; g3; g4Þω3ðg1; g2g3; g4Þω3ðg1; g2; g3Þ
ω3ðg1g2; g3; g4Þω3ðg1; g2; g3g4Þ

; ðA10Þ

we see that

Z3ðG;Uð1ÞÞ ¼
�
ω3j

ω3ðg2; g3; g4Þω3ðg1; g2g3; g4Þω3ðg1; g2; g3Þ
ω3ðg1g2; g3; g4Þω3ðg1; g2; g3g4Þ

¼ 1

�
ðA11Þ

and

B3ðG;Uð1ÞÞ ¼
�
ω3jω3ðg1; g2; g3Þ ¼

ω2ðg2; g3Þω2ðg1; g2g3Þ
ω2ðg1g2; g3Þω2ðg1; g2Þ

�
; ðA12Þ

which give us the third cohomology group H3ðG;Uð1ÞÞ ¼ Z3ðG;Uð1ÞÞ=B3ðG;Uð1ÞÞ.
Similarly, when n ¼ 4, from

ðd4ω4Þðg1; g2; g3; g4; g5Þ ¼
ω4ðg2; g3; g4; g5Þω4ðg1; g2g3; g4; g5Þω4ðg1; g2; g3; g4g5Þ
ω4ðg1g2; g3; g4; g5Þω4ðg1; g2; g3g4; g5Þω4ðg1; g2; g3; g4Þ

; ðA13Þ

we see that

Z4ðG;Uð1ÞÞ ¼
�
ω4j

ω4ðg2; g3; g4; g5Þω4ðg1; g2g3; g4; g5Þω4ðg1; g2; g3; g4g5Þ
ω4ðg1g2; g3; g4; g5Þω4ðg1; g2; g3g4; g5Þω4ðg1; g2; g3; g4Þ

¼ 1

�
ðA14Þ

and

B4ðG;Uð1ÞÞ ¼
�
ω4jω4ðg1; g2; g3; g4Þ ðA15Þ

¼ ω3ðg2; g3; g4Þω3ðg1; g2g3; g4Þω3ðg1; g2; g3Þ
ω3ðg1g2; g3; g4Þω3ðg1; g2; g3g4Þ

�
; ðA16Þ
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which give us the third cohomology group
H4ðG;Uð1ÞÞ ¼ Z4ðG;Uð1ÞÞ=B4ðG;Uð1ÞÞ.

APPENDIX B: SHOWING THAT THE
4-COCYCLE WE GET IS NONTRIVIAL

Although we numerically verify that the 4-cocycle we
obtain from the pentagon anomaly argument corresponds to
a nontrivial cohomology class in H4ðG;Uð1ÞÞ, it is nice to
also have an analytic proof of this fact. This is what
we demonstrate in this Appendix. The notation is ½ν� is
the H4ðG;Uð1ÞÞ obstruction class and ½ω1�; ½ω2� are
H2ðZ2 × Z2;Z2Þ classes. The former is computed from
the latter, and in fact, Ref. [23] shows that

½ν�ð½ω1� þ ½ω2�Þ ¼ ½ν�ð½ω1�Þ½ν�ð½ω2�Þbð½ω1�; ½ω2�Þ;
where the “bilinear form” b is defined by taking the full
braid of ω1ðf; gÞ with ω2ðg; hÞ. For our purposes, ½ω1�
corresponds to the chiral spin liquid (which is not anoma-
lous) and ½ω2� corresponds to a theory where the semion
only binds a half-charge of some Z2 ⊂ Z2 × Z2. It is useful
to let u1 and u2 denote elements of H1ðZ2;Z2Þ that
correspond to the first and second Z2. Then (using
multiplication in the cohomology ring), we have ½ω2� ¼
u21; u

2
2, or u

2
1 þ u22, whereas ½ω1� is denoted v, the class of

the chiral spin liquid. We know that both the CSL and the
theory corresponding to ½ω2� are realizable in 2D, so their
obstructions vanish: ½ν�ðvÞ ¼ ½ν�ðu21Þ ¼ ½ν�ðu22Þ ¼ 1. So we
see that the obstruction corresponding to vþ α1u21 þ α2u22
is simply ðbðv; u21ÞÞα1ðbðv; u22ÞÞα2, where αi ¼ 0; 1. Now, in
the case of our semion theory, the full braid of two anyons
gives −1 only when both anyons are equal to s; if we view
the anyons Z2 ¼ f0; 1g, where 0 is the trivial anyon and 1
is s, then this is just multiplication in the field Z2. Hence,
bðv; u2i Þ is simply the product of u2i and v in the cohomol-
ogy ring with Z2 coefficients. This is u31u2 in the case i ¼ 1

and u1u32 in the case i ¼ 2. In particular, both of these are
nonzero when viewed as elements of H4ðG;Z2Þ: this is
because, according to the Kunneth formula, H4ðG;Z2Þ is
spanned as a Z2 vector space by fu41; u31u2; u21u22; u1u32; u42g.
The only thing we now need to check is that both u31u2

and u1u32 are nonzero as H
4ðG;Uð1ÞÞ cohomology classes.

In fact, H4ðG;Uð1ÞÞ ¼ Z2 × Z2, and the kernel of the
natural map H4ðG;Z2Þ → H4ðG;Uð1ÞÞ is precisely
fu41; u21u22; u42g. To prove this, first note that the map
H4ðG;Z2Þ → H4ðG;Uð1ÞÞ is equivalent to the coboundary
map H4ðG;Z2Þ → H5ðG;ZÞ from the long exact sequence
associated to Z → Z → Z2, under the natural identification
of H4ðG;Uð1ÞÞ and H5ðG;ZÞ. Then, we use the explicit
Kunneth formula for cohomology with Z coefficients,
which contains both the “normal” part that is already
visible with Z2 coefficients and the torsion part in one
degree higher, and the fact that the torsion part maps into

the normal part under the coboundary map, to conclude
that the kernel of H4ðG;Z2Þ → H4ðG;Uð1ÞÞ is precisely
fu41; u21u22; u42g.

APPENDIX C: GENERALIZATION OF THE
WALKER-WANG MODEL TO OTHER CASES

The Walker-Wang semion model discussed in Sec. III
is only one member of a family of models that have no
deconfined excitations in the bulk but are topologically
ordered on the surface [19,20]. When this topological order
is Abelian, we can use a construction analogous to the one
presented in Sec. III to decorate the model with global
symmetries such that the surface anyons transform projec-
tively. Such a construction can realize a surface state in
which anyons transform under any of the projective
representations consistent with their fusion rules, and
hence can realize both anomalous and nonanomalous
surface states. Here, we sketch the main features of this
construction.
A more general Walker-Wang model consists of an

n-state system on each edge of the (point-split) cubic
lattice. In the models of interest to us, each of these n states
can be associated with an anyon type that will appear at the
surface. In general, to fix the state on a particular edge, we
must also fix an orientation of this edge; the label a can then
be viewed as a flux along the edge in question, whose
direction is specified by this orientation. The flux in the
opposite direction is given by the conjugate anyon label ā.
The Walker-Wang Hamiltonian has the general form

Eq. (13), with commuting vertex and plaquette operators.
The plaquette term is discussed in detail in Refs. [19,20];
for our purposes, it is sufficient to know that (provided our
anyon model is modular) this plaquette operator confines
all open strings in the bulk, but allows deconfined anyons at
the surface. To specify the vertex operator, we must use the
fusion rules of the anyon model, which dictate how anyons
proximate in space can combine to give new anyons
(or possibly the trivial state j0i, with no anyons at all).
The vertices V that are allowed in the ground state are those
where the anyons entering V can be fused to each other to
give j0i. For example, a vertex with a entering on one edge,
ā entering (or equivalently, a exiting) on another edge, and
all other edges in the state j0i is always allowed. (For the
two-state model described above, this is the only allowed
vertex.) However, in general there will be other allowed
vertex types as well.
The simplest example of this is a Z3 model in which

0̄ ¼ 0; 1̄ ¼ 2; 2̄ ¼ 1, and 1 fuses with 2 to give 0. The
vertices allowed in the ground state (on the point-split
lattice, where all vertices are trivalent) are ones in which a 1
(or 2) anyon flux enters the vertex on one edge and exits on
another, or vertices at which 3 anyon fluxes of the same
type all enter.
How do we decorate this model such that each anyon

transforms in a particular representation of our global
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symmetry group at the surface? We first enlarge the Hilbert
space at each (trivalent) vertex by including three auxiliary
sites (one associated to each edge entering the vertex).
The Hilbert space of each auxiliary site contains a set of
objects transforming in different representations of G. In
our example above, this set contains an object b trans-
forming in the singlet representation and a spin-1=2 (trans-
forming, unsurprisingly, in the spin-1=2 representation).
More generally, let ra be the representation that we wish
to make the anyon a transform in. Then, our auxiliary
Hilbert space must contain an object transforming in ra for
every a. For notational simplicity, we call this object ra
from now on.
In order for our construction to work, we must impose

the condition that our choice of ra is consistent with the
fusion rules of the anyon model. Specifically, we require
that r0 is the trivial representation, and that conjugate anyon
types transform under conjugate representations in the
symmetry group:

r̄a ¼ rā: ðC1Þ

We also require that

a × b ¼ c ⇒ ra × rb ¼ rc × linear reps: ðC2Þ

(For non-Abelian anyons, c may contain more than one
anyon type. However, we require the projective part of the
symmetry action to be the same for all possible products of
fusion.)
The next step is to construct analogs of the states j~0i and

j~1i for this more general case. Because the edges are
oriented, it is natural to favor configurations in which the
edge starting at vertex V1 and ending at vertex V2, with
anyon label a, has auxiliary variables in ra at V1 and in ra at
V2. The analog of the two states j1i and j0i above are states
in which an edge with anyon label a has these two auxiliary
variables combining to the trivial representation (i.e., in
which ra and r̄a are in a “singlet” state):

j ~ai ¼ jaijPra×ra¼r0i: ðC3Þ

We may favor such configurations energetically by intro-
ducing a potential term

H0 ¼
X

e¼edges

Xn
a¼1

j ~aeih ~aej: ðC4Þ

We next impose the constraint that only linear repre-
sentations are allowed at vertices. In the ground state, the
tensor product of the representations associated with the
anyon types that meet at each vertex contains the identity,
so Eq. (C2) ensures that this constraint is compatible with
minimizing H0 on each edge. At vertices where the net
anyon flux is not zero, however, this constraint forces us to

include at least one edge on which H0 is violated. Let the
anyon types of the three edges (all oriented into the vertex)
be a, b, and c, and let them be fused at the vertex to create a
fourth anyon d. Let us choose the edge with label a to be an
excited state of H0. Then edges b and c contribute r̄b × r̄c
to the vertex; hence (up to a tensor product with linear
representations, which is not important for our purposes),
the auxiliary variable associated with a must carry a
representation of rb × rc. It follows that the edge a has
two auxiliary variables, which together transform in the
representation ra × rb × rc. (Recall that the other end of
our a-labeled edge had better carry ra, to avoid having
edges at adjacent vertices that are also in excited states.)
But we require that (up to a tensor product with linear
representations) ra × rb × rc ¼ rd. Hence, a vertex with
net anyon flux d necessarily has the correct projective
component of its symmetry transformation. (In cases where
this leaves the representation under which d transforms
ambiguous, it is possible to add additional potential terms
to remove this ambiguity.)
Evidently, with this construction it is possible to define

operators that mix the j ~ai variables in a manner consistent
with the symmetry, since for all states j ~ai the edge carries
a trivial representation of the symmetry. We may thus, as
above, construct the plaquette term of the Walker-Wang
Hamiltonian in the ~a variables to obtain a model in which
anyons are confined in the bulk and transform in the desired
projective representations on the surface.
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