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For closed quantum systems driven away from equilibrium, work is often defined in terms of projective
measurements of initial and final energies. This definition leads to statistical distributions of work that
satisfy nonequilibrium work and fluctuation relations. While this two-point measurement definition of
quantum work can be justified heuristically by appeal to the first law of thermodynamics, its relationship to
the classical definition of work has not been carefully examined. In this paper, we employ semiclassical
methods, combined with numerical simulations of a driven quartic oscillator, to study the correspondence
between classical and quantal definitions of work in systems with 1 degree of freedom. We find that a
semiclassical work distribution, built from classical trajectories that connect the initial and final energies,
provides an excellent approximation to the quantum work distribution when the trajectories are assigned
suitable phases and are allowed to interfere. Neglecting the interferences between trajectories reduces the
distribution to that of the corresponding classical process. Hence, in the semiclassical limit, the quantum
work distribution converges to the classical distribution, decorated by a quantum interference pattern. We
also derive the form of the quantum work distribution at the boundary between classically allowed and
forbidden regions, where this distribution tunnels into the forbidden region. Our results clarify how the
correspondence principle applies in the context of quantum and classical work distributions and contribute
to the understanding of work and nonequilibrium work relations in the quantum regime.
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I. INTRODUCTION

Work is a familiar concept in elementary mechanics and
a central one in thermodynamics. In recent years, interest in
the nonequilibrium thermodynamics of small systems [1–4]
has motivated careful examinations of how to define
quantum work [5–50]. In this context one often considers
a process in which a quantum system evolves under the
Schrödinger equation as its Hamiltonian is varied in time—
for instance, a quantum particle in a piston undergoing
compression or expansion [51]. It is typically assumed that
the system is initialized in thermal equilibrium, and the
question becomes, how do we appropriately define the
work performed on the system during a single realization of
this process?
One answer involves two projective measurements of the

system’s energy, at the start of the process (t ¼ 0) and at the

end (t ¼ τ). If the system Hamiltonian is varied from
Ĥð0Þ ¼ ĤA to ĤðτÞ ¼ ĤB, then the measurement out-
comes will be eigenvalues of these operators. The work
performed during the process is then defined to be the
difference between these two values, e.g.,

W ¼ EB
n − EA

m; ð1Þ

if the measurements produce the mth and nth eigenvalues
of the initial and final Hamiltonians. In this definition, work
is inherently stochastic, with two sources of randomness:
the statistical randomness associated with sampling an
initial energy EA

m from the canonical equilibrium distribu-
tion [Eq. (21)] and the purely quantal randomness asso-
ciated with the “collapse” of the final wave function jψτi
upon making a projective measurement of the final energy
[Eq. (22)] [52].
In an analogous classical process, a system is prepared

in thermal equilibrium, then it evolves under Hamilton’s
equations as the Hamiltonian function is varied from
HAðzÞ to HBðzÞ, where z denotes a point in the system’s
phase space. Since the system is thermally isolated, it is
natural to define the work as the change in its internal
energy:
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W ¼ HBðzτÞ −HAðz0Þ; ð2Þ

for a realization during which the system evolves from z0 to
zτ. As in the quantum case, W is a stochastic variable, but
here the randomness arises solely from the sampling of the
initial microstate z0 from an equilibrium distribution.
Much of the recent interest in quantum work has been

stimulated by the discovery and experimental verification
of classical nonequilibrium work relations [53–58], which
have provided insights into the second law of thermody-
namics, particularly as it applies to small systems where
fluctuations are important [2]. For thermally isolated
systems, the quantal counterparts of these relations follow
directly from the definition of work given by Eq. (1)
[6,7,9,15]. Moreover, experimental tests of quantum non-
equilibrium work relations have recently been pro-
posed [59–62] and implemented [63,64], providing direct
verification of the validity of these results.
Despite the evident similarity between Eqs. (1) and (2),

and despite the relevance of Eq. (1) to nonequilibrium work
relations, the definition of quantum work given by Eq. (1)
might seem ad hoc. Indeed, given the absence of a broadly
agreed-upon “textbook” definition of quantum work, one
might reasonably suspect that Eq. (1) has been introduced
precisely because it leads to quantum nonequilibrium work
relations. Furthermore, the wave function collapse that
occurs upon measuring the final energy has no classical
counterpart. Because of this collapse, the quantum work
has no independent physical reality until the measurement
is performed at t ¼ τ. By contrast, the classical work can be
viewed as a well-defined function of time, namely, the net
change in the value of the time-dependent Hamiltonian
along the trajectory zt. Our aim in this paper is to use the
tools of semiclassical mechanics, together with numerical
simulations, to investigate the relationship between Eqs. (1)
and (2), and specifically to clarify how the correspondence
principle applies in this context.
We restrict ourselves to systems with 1 degree of

freedom, for which there exist explicit semiclassical
approximations of energy eigenstates. We focus on the
transition probability PQðnjmÞ from the mth eigenstate of
ĤA to the nth eigenstate of ĤB, and on its classical analog,
PCðnjmÞ, defined in Sec. II. In Sec. III, we investigate both
quantities numerically for the example of a forced quartic
oscillator. For high-lying initial energies PQ oscillates
rapidly with n, whereas PC is a smooth function over a
finite range nmin < n < nmax (Fig. 2). After integrating over
the oscillations, the two quantities are nearly identical
(Fig. 3), which provides some justification for viewing
Eq. (1) as the quantal counterpart of Eq. (2). In Sec. IV, we
derive PSCðnjmÞ, a semiclassical approximation for PQ

expressed as a sum over classical trajectories. Each
trajectory in this sum carries a quantal phase, giving rise
to coherent interferences between trajectories. When these
interferences are neglected, PSC agrees with PC; when they

are included, PSC accurately captures the oscillations in PQ

(Fig. 5). Thus, the oscillations in PQ can be understood as a
quantum interference pattern superimposed on a classical
background. This picture breaks down around nmin and
nmax, where PQ exhibits tails that tunnel into classically
forbidden regions. In Sec. V, we derive a semiclassical
approximation, expressed in terms of the Airy function, that
accurately describes these tails (Fig. 9).
The analyses in Secs. IV and V rely on theoretical tools

that are familiar in the field of semiclassical mechanics. To
the best of our knowledge, these tools have not previously
been applied to study the relationship between classical and
quantum work distributions, although similar analyses have
been performed in the context of molecular scattering
theory [65–67] and laser-pulsed atoms [68,69], among
other examples. In particular, our calculations in Sec. IV B
closely parallel those of Schwieters and Delos [69].

II. CLASSICAL AND QUANTUM
TRANSITION PROBABILITIES

Here, we introduce notation and specify the problem we
plan to study. In Sec. II A, we define a discretized classical
work distribution, Eq. (17), that can be compared directly to
the quantum work distribution, Eq. (20). These distribu-
tions involve classical and quantum transition probabilities,
PCðnjmÞ and PQðnjmÞ, which are the central objects of
study throughout the rest of the paper.

A. Classical setup

Consider a system with 1 degree of freedom, described
by a Hamiltonian

Hðz; λÞ ¼ p2

2M
þ Vðq; λÞ; ð3Þ

where z ¼ ðq; pÞ denotes a point in phase space and λ is an
externally controlled parameter. We assume that the energy
shells (level surfaces) of the Hamiltonian form simple,
closed curves in phase space. We consider the evolution
of this system under the time-dependent Hamiltonian
Hðz; λtÞ, where λ is varied from λ0 ¼ A to λτ ¼ B. For
compact notation, we define HAðzÞ≡Hðz; λ0Þ and
HBðzÞ≡Hðz; λτÞ.
Suppose that prior to the start of the process the system

has come to equilibrium with a thermal reservoir at
temperature T and the reservoir has been removed.
Therefore, at t ¼ 0 the microstate of the system will be
treated as a random sample from a canonical distribution
corresponding to the HamiltonianHA. From t ¼ 0 to t ¼ τ,
the system is described by a trajectory zt evolving under
Hamilton’s equations, and the work performed on the
system is given by the difference between its initial and
final energies, as per Eq. (2):
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W ¼ Eτ − E0 ≡HBðzτÞ −HAðz0Þ: ð4Þ

For an ensemble of realizations of this process, the
distribution of values of work performed on the system is

PCðWÞ¼
Z

dEτ

Z
dE0P̄CðEτjE0ÞP̄C

AðE0ÞδðW−EτþE0Þ;

ð5Þ

where P̄C
AðE0Þ is the probability distribution of initial

energies, sampled from equilibrium, and P̄CðEτjE0Þ is
the conditional probability distribution to end with a final
energy Eτ, given an initial energy E0. Let us consider these
factors separately.
P̄C
A is simply the classical equilibrium energy distribution:

P̄C
AðE0Þ ¼

1

ZC
A
e−βE0gAðE0Þ; ð6Þ

where

ZC
λ ¼ 1

h

Z
dz exp ½−βHðz; λÞ� and

gλðEÞ ¼
1

h

Z
dzδ½E −Hðz; λÞ� ð7Þ

are the classical partition function and density of states,
β ¼ ðkBTÞ−1, and h is Planck’s constant. We include the
factors h−1 [which cancel in Eq. (6)] for later convenience.
Let us also define

ΩðE; λÞ ¼
Z

dzθ½E −Hðz; λÞ� ¼
I
E
pdq; ð8Þ

which is the phase space volume enclosed by the energy shell
E of the Hamiltonian H, equivalently the integral of pdq
around this energy shell. We then have

gλðEÞ ¼
1

h
∂Ω
∂E : ð9Þ

The conditional probability distribution P̄CðEτjE0Þ is
given by the expression

P̄CðEτjE0Þ ¼
R
dz0δ½E0 −HAðz0Þ�δ½Eτ −HBðzτðz0ÞÞ�R

dz0δ½E0 −HAðz0Þ�
;

ð10Þ
where zτðz0Þ denotes the final conditions of a trajectory that
evolves from initial conditions z0. It is useful to imagine an
ensemble of initial conditions sampled microcanonically
from the energy shell E0 of the Hamiltonian HA [see
Fig. 1(a)]. The swarm of trajectories that evolves from these
initial conditions defines a time-dependent, closed curveAt
in phase space. At t ¼ τ, the points of intersection between
Aτ and the energy shell Eτ of the Hamiltonian HB [black
dots in Fig. 1(b)] represent the final conditions of those
trajectories that end with energy Eτ, having begun with
energy E0. If we consider two nearby energy shells Eτ and
Eτ þ dE, then P̄CðEτjE0ÞdEτ is the fraction of trajectories
whose final energies fall within this energy interval.
Let us define the mth energy interval of the Hamiltonian

HA to be the range of energy values E satisfying

mh ≤ ΩðE; AÞ < ðmþ 1Þh; ð11Þ
where m ¼ 0; 1; 2;…. Furthermore, let us use a midpoint
rule to assign a particular energy value EA

m to each interval:

ΩðEA
m; AÞ ¼

I
EA
m

pdq ¼
�
mþ 1

2

�
h: ð12Þ

Analogous definitions apply to the nth energy interval of
the Hamiltonian HB and the corresponding energy EB

n.
From Eqs. (9) and (11), the width of the mth energy

interval of HA is

FIG. 1. An energy shellA0 of the initial Hamiltonian [panel (a), t ¼ 0] evolves underHðtÞ to the curveA≡Aτ [panel (b), t ¼ τ]. The
curve B is an energy shell of the final Hamiltonian.
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δEA
m ≈

1

gAðEA
mÞ

: ð13Þ

For a smooth function of energy fðEÞ, Eq. (13) leads to
Z
m
dE0fðE0Þ ≈

fðEA
mÞ

gAðEA
mÞ

; ð14Þ

where the integral is taken over the mth interval.
Readers will recognize Eq. (12) as the semiclassical

quantization condition
H
pdq ¼ ½mþ ð1=2Þ�h, which pro-

vides an excellent approximation for the mth eigenvalue of
the quantum Hamiltonian ĤA [Eq. (18)] when m ≫ 1. For
convenience, we later use the notation EA

m to denote this
eigenvalue, without making a distinction between the exact
eigenvalue and its semiclassical approximation.
The probability to obtain initial conditions z0 within the

mth interval of HA, when sampling from equilibrium, is

PC
AðmÞ ¼

Z
m
dE0P̄C

AðE0Þ ≈
1

ZC
A
e−βE

A
m; ð15Þ

using Eq. (14). Similarly, the conditional probability to end
in the nth energy interval, given a representative initial
energy in the mth interval, is

PCðnjmÞ ¼
Z
n
dEτP̄CðEτjE0 ¼ EA

mÞ ≈
P̄CðEB

n jEA
mÞ

gBðEB
n Þ

:

ð16Þ
We refer to this as the classical transition probability. The
interpretation of PCðnjmÞ is straightforward. Imagine a
swarm of trajectories evolving from initial conditions
sampled from a microcanonical ensemble with energy
EA
m [see Fig. 1]. At the end of the process, t ¼ τ, the

fraction of these trajectories that fall into the energy
window ½EB

n ; EB
nþ1� is equal to PCðnjmÞ [69]. The classical

work distribution can now be rewritten as a sum over initial
and final energy intervals:

PCðWÞ

¼
X
n;m

Z
n
dEτ

Z
m
dE0P̄CðEτjE0ÞP̄C

AðE0ÞδðW − Eτ þ E0Þ

≈
X
n;m

Z
n
dEτ

Z
m
dE0P̄CðEτjEA

mÞP̄C
AðE0ÞδðW − EB

n þ EA
mÞ

¼
X
m;n

PCðnjmÞPC
AðmÞδðW − EB

n þ EA
mÞ: ð17Þ

Finally, we point out that the approximations appearing
in Eqs. (13)–(17) assume that the width of the mth energy
interval δEm is very small on a classical scale. Formally,
this assumption can be justified by taking the semiclassical
limit ℏ → 0 with all classical quantities held fixed. In this

limit the density of states increases, as does the quantum
number at a given energy. In practice, the semiclassical
limit is often simply identified with the condition m ≫ 1.

B. Quantum setup

In the quantum version of this problem, Hðz; λÞ is
replaced by the Hermitian operator

ĤðλÞ ¼ −
ℏ2

2M
∂2

∂q2 þ Vðq; λÞ: ð18Þ

A wave function ψðq; tÞ ¼ hqjψ ti evolves under the
Schrödinger equation as ĤðλtÞ is varied from Ĥðλ0Þ ¼
ĤA to ĤðλτÞ ¼ ĤB. The eigenstates and eigenvalues of ĤA
are specified as follows:

ϕA
mðqÞ ¼ hqjϕA

mi; ĤAjϕA
mi ¼ EA

mjϕA
mi; ð19Þ

with similar notation for ĤB. Evolution in time is repre-
sented by the unitary operator Ût satisfying ĤðλtÞÛt ¼
iℏ∂Ût=∂t and Û0 ¼ Î, where Î is the identity operator.
Using Eq. (1) and assuming thermal equilibration at

t ¼ 0, the work distribution is [15]

PQðWÞ ¼
X
n;m

PQðnjmÞPQ
A ðmÞδðW − EB

n þ EA
mÞ: ð20Þ

PQ
A ðmÞ is the probability of obtaining the mth eigenstate of

ĤA when making the initial energy measurement:

PQ
A ðmÞ ¼ e−βE

A
m

ZQ
A

; ð21Þ

with ZQ
A ¼ P

m expð−βEA
mÞ. The quantum transition prob-

ability PQðnjmÞ is the conditional probability to obtain the
nth eigenstate of ĤB upon making the final measurement,
given the mth eigenstate of ĤA at the initial measurement:

PQðnjmÞ ¼ jhϕB
n jÛτjϕA

mij2 ¼ jhϕB
n jψτij2: ð22Þ

The classical and quantum work distributions given by
Eqs. (17) and (20) can now be compared directly. We note
that

ZC
A ¼

Z
dEe−βEgAðEÞ ≈

X
m

e−βE
A
m ¼ ZQ

A ; ð23Þ

hence, PC
AðmÞ ≈ PQ

A ðmÞ [see Eqs. (15) and (21)]. Thus,
what remains is to clarify the relationship between the
classical and quantum transition probabilities, PCðnjmÞ and
PQðnjmÞ. In the following section, we compare these
transition probabilities in a model system for which both
the classical and quantum dynamics are simulated
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numerically. We find that PC and PQ are manifestly
different (Fig. 2), but these differences mostly vanish after
appropriate smoothing (Fig. 3). In Secs. IV and V, we
develop a semiclassical theory to explain these features.

III. NUMERICAL CASE STUDY:
THE FORCED QUARTIC OSCILLATOR

We begin with a model system, the forced quartic
oscillator:

Hðz; λÞ ¼ p2

2M
þ λq4: ð24Þ

We setM ¼ 1=2 and ℏ ¼ h=2π ¼ 1, and we vary the work
parameter at a constant rate, λt ¼ λ0 þ vt, from λ0 ¼ 1 ¼ A
to λτ ¼ 5 ¼ B, taking v ¼ 50 and therefore τ ¼ 0.08.
A number of groups have previously compared quantum

and classical work distributions for a driven harmonic

oscillator, for which analytical solutions are available.
Specifically, Deffner et al. [70,71] have studied an oscil-
lator with a time-varying stiffness; Talkner et al. [72] have
obtained the work distribution for an oscillator driven by
time-dependent perturbations that are linear in q and p;
Campisi [73] has studied changes in the Boltzmann entropy
for forced quantum and classical oscillators; Ford et al. [74]
have investigated a harmonic oscillator with a cyclically
driven stiffness; and Talkner et al. have considered the
sudden quench of a two-dimensional oscillator [26]. While
the harmonic oscillator has the advantage of being ana-
lytically tractable, it is somewhat special in that its quantum
dynamics can be reduced to its classical dynamics [75].
Here, we choose the more “generic” quartic oscillator,
which requires numerical simulations.
To evaluate PCðnjmÞ we simulate 104 Hamiltonian

trajectories evolving under Hðz; λtÞ. Initial conditions are
sampled microcanonically, and final conditions are binned
according to the energy intervals of HBðzÞ, as defined in
Sec. II A. For our initial microcanonical ensemble, we
choose m ¼ 150, corresponding to E0 ¼ EA

m ¼ 1749.23.
The results are shown by the dashed line in Fig. 2. The
transition probability is a smooth function of n from
nmin ¼ 105 to nmax ¼ 215, and zero outside this range.
These sharp cutoffs reflect the fact that our initial

conditions are sampled from a microcanonical distribution:
nmin and nmax correspond to the minimal and maximal final
energies that can be reached by trajectories launched with
initial energies E0 ¼ EA

m, as illustrated in Fig. 7. The
characteristic U shape of the classical work distribution
within the allowed region is related to the fact that the
curves A and B shown in Fig. 1(b) become tangent to one
another at E ¼ Emin and E ¼ Emax (again, see Fig. 7). For
an exactly solvable model in which the same U shape
appears, see Fig. 1 of Ref. [73].
For the quantum system, we expand a wave function

evolving under ĤðλtÞ ¼ p̂2=2M þ λtq̂4 as follows:

ψðq; tÞ ¼
X
n

cnðtÞhqjϕnðλtÞie−iγnðtÞ;

γnðtÞ ¼
1

ℏ

Z
t

0

Enðλt0 Þdt0: ð25Þ

Here, Ĥjϕni ¼ Enjϕni and the cn’s are expansion coef-
ficients. The time-dependent Schrödinger equation iℏ _ψ ¼
Ĥψ then produces the set of coupled ordinary differential
equations,

_cn ¼ −_λ
X
k

�
ϕn

���� ∂ϕk

∂λ
�
eiðγn−γkÞck

¼ −_λ
X
k≠n

hϕnjq4jϕki
Ek − En

eiðγn−γkÞck: ð26Þ

100 120 140 160 180 200 220

0.01

0.02

0.03

0.04

0.05

0.06

PQ n 150 ,PC n 150

n

FIG. 2. Quantum [Eq. (22)] and classical [Eq. (16)] transition
probabilities for the forced quartic oscillator. The solid black
curve shows PQðnjmÞ, while the dashed red curve shows
PCðnjmÞ, for m ¼ 150.

0.2

0.4

0.6

0.8

1.0

100 150 200 250

k 0

n

PQ k 150 ,
k 0

n

PC k 150

n

FIG. 3. Accumulated transition probabilities for the forced
quartic oscillator. The jagged black curve represents the quantum
case,

P
n
k¼0 P

QðkjmÞ, while the smooth red curve represents the
classical case,

P
n
k¼0 P

CðkjmÞ.
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We integrate these equations numerically, from initial
conditions cnð0Þ ¼ δmn, to obtain

PQðnjmÞ ¼ jcnðτÞj2: ð27Þ
In Fig. 2 we plot the quantum transition probability as a

function of the final quantum number n (solid line).
Although a correspondence between PQðnjmÞ and
PCðnjmÞ is visually evident, the quantum and classical
cases differ in two distinct ways: (i) the quantum proba-
bility oscillates rapidly with n and (ii) PQðnjmÞ shows tails
that “tunnel” into the classically forbidden regions n < nmin
and n > nmax. Both features trace their origin to the wave
nature of the quantum system. We also see in Fig. 2 that
PQðnjmÞ ¼ 0 when n −m is odd. This result follows from
the fact that hϕnjq4jϕki ¼ 0 when the parities of n and k
differ; hence, only transitions between states of the same
parity occur under Eq. (26).
In Fig. 3 we plot the accumulated transition probabilitiesP
n
k¼0 P

QðkjmÞ andPn
k¼0 P

CðkjmÞ, thereby smoothing out
the rapid oscillations in the quantum transition probability.
The close agreement observed in Fig. 3 suggests that
Eq. (1) is indeed the appropriate quantum counterpart of
Eq. (2), though distinctly nonclassical features are visible in
the interference and tunneling effects in Fig. 2.
In Secs. IV and V, we investigate these issues analyti-

cally. We find that both the agreement seen in Fig. 3 and the
quantum effects evident in Fig. 2 can be understood
quantitatively, within a semiclassical interpretation in
which quantum dynamics are approximated by classical
trajectories bearing time-dependent phases.

IV. SEMICLASSICAL THEORY

In Sec. IVA, we rewrite the classical transition proba-
bility PCðnjmÞ [Eq. (16)] as a sum over trajectories that
begin and end with energies EA

m and EB
n , respectively

[Eq. (39)]. In Sec. IV B we use time-dependent WKB
theory to derive a semiclassical approximation PSCðnjmÞ
for the quantum transition probability PQðnjmÞ. Our main
result, Eq. (49), is expressed as a sum over the same
trajectories that contribute to PCðnjmÞ, only now each of
these trajectories carries a phase, resulting in interference
effects between different trajectories. When these interfer-
ences are ignored, we recover the classical transition
probability [Eq. (50)]. When they are included, the inter-
ferences give rise to the oscillations observed in the
quantum transition probability. In particular, interferences
between symmetry-related trajectories account for the
fastest oscillations observed in Fig. 2, as we discuss in
Sec. IV C.

A. Classical transition probabilities

We begin with the conditional probability distribution
P̄CðEjE0Þ [Eq. (10)], where we drop the subscript τ from

the final energy, for convenience. As discussed in Sec. II,
we imagine a swarm of trajectories evolving in time under
Hðz; λtÞ, with initial conditions sampled from the micro-
canonical phase space distribution,

ηAðz;E0Þ ¼
δ½E0 −HAðzÞ�R
dzδ½E0 −HAðzÞ�

¼ δ½E0 −HAðzÞ�
hgAðE0Þ

; ð28Þ

where E0 is a parameter of the distribution. The quantity
P̄CðEjE0ÞdE is the fraction of these trajectories that end
with a final energy in the infinitesimal range ðE;Eþ dEÞ.
As in Fig. 1, let At denote the time-dependent curve that

evolves from the initial energy shell HA ¼ E0, and let B
denote an energy shell of the final Hamiltonian HB ¼ E.
The evolving curve At can be described by a multivalued,
time-dependent momentum field pAt

b ðqÞ, where the index b
labels the branches of At at the coordinate value q. For
example, in Fig. 1(b), the momentum field for Aτ has two
branches at q ¼ q1. Similarly, the multivalued momentum
field pB

b ðqÞ describes the fixed energy shellHB ¼ E, whose
two branches are

pB
b ðqÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M½E − Vðq;BÞ�

p
ðb ¼ �Þ: ð29Þ

For convenience, we henceforth use the notation A (with-
out a subscript) to indicate the surface Aτ. The points of
intersection between A and B, highlighted by dots in
Fig. 1(b), represent the trajectories that contribute
to P̄CðEjE0Þ.
Our swarm of trajectories at time t is described not only

by the evolving surfaceAt but also by a probability density
on that surface. If we project this density onto the q axis,
the projected density ρAtðqÞ is a sum over the branches of
the surface At:

ρAtðqÞ ¼
X
b

ρAt
b ðqÞ: ð30Þ

The fixed microcanonical ensemble corresponding to
HB ¼ E can similarly be projected onto a density

ρBðqÞ ¼ 1

hgBðEÞ
Z

dpδ½E −HBðq; pÞ�

¼ 1

hgBðEÞ
X
b

���� ∂HB

∂p
����−1
b

≡X
b

ρBb ðqÞ; ð31Þ

with ∂HB=∂p ¼ p=M evaluated at p ¼ pB
b ðqÞ.

Let l ¼ 1; 2;…; K be an index labeling the inter-
section points of A and B (e.g., K ¼ 4 in Fig. 1), and
let bl denote the branch corresponding to the lth inter-
section point:

ðql; plÞ ¼ ðql; pA
bl
ðqlÞÞ ¼ ðql; pB

bl
ðqlÞÞ: ð32Þ
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With some abuse of notation, we write bl rather than bAl
and bBl , though in general the l’th intersection point may
occur at differently indexed branches of the two surfaces.
To evaluate P̄CðEjE0Þ, we begin with the contribution

P̄C
l ðEjE0Þ from a single intersection point l. Figure 4

depicts this intersection, together with an intersection
point involving an infinitesimally displaced energy shell
HB ¼ Eþ δE. The highlighted line segment connecting
these two points represents a set of trajectories with final
energies between E and Eþ δE; hence,

ρAðqlÞ · jδqj ¼ P̄C
l ðEjE0Þ · jδEj: ð33Þ

Since we focus here on the contribution from a single
intersection between A and B, we suppress the subscripts
bl indicating the branches of these surfaces. By construc-
tion, the ratio δE=δq is the rate of change of HB with
respect to q along the curve A:

δE
δq

¼ d
dq

HB½q; pAðqÞ�jq¼ql : ð34Þ

Since pBðqÞ specifies a surface of constant HB, we have

∂pB

∂q ¼ ∂p
∂q

����
HB

¼ −
∂HB=∂q
∂HB=∂p ; ð35Þ

hence,

d
dq

HB½q; pAðqÞ� ¼ ∂HB

∂q þ ∂HB

∂p
∂pA

∂q
¼ ∂HB

∂p
�∂pA

∂q −
∂pB

∂q
�
: ð36Þ

Combining Eqs. (31), (33), (34), and (36), we get

P̄C
l ðEjE0Þ ¼ ρAðqlÞ ·

���� δEδq
����−1

¼ hgBðEÞρAðqlÞρBðqlÞ
���� ∂pA

∂q −
∂pB

∂q
����−1
q¼ql

:

ð37Þ
Summing over all intersection points gives us

P̄CðEjE0Þ ¼ hgBðEÞ
XK
l¼1

ρAblðqlÞρBblðqlÞ
���� ∂p

A
bl

∂q −
∂pB

bl

∂q
����
−1

q¼ql

:

ð38Þ

If we now set E0 ¼ EA
m and E ¼ EB

n , then Eq. (16) gives us

PCðnjmÞ ¼ h
XK
l¼1

ρAblðqlÞρBblðqlÞ
���� ∂p

A
bl

∂q −
∂pB

bl

∂q
����
−1

q¼ql

: ð39Þ

This is the main result of this subsection.
We use the term classically allowed region to denote

the range Emin ≤ E ≤ Emax within which the function
P̄CðEjE0Þ does not vanish, representing all final energies
that can be attained by trajectories with initial energy E0.
In the coarse-grained function PCðnjmÞ, the classically
allowed region is bracketed by the values nmin and nmax,
denoting the energy intervals of HB containing Emin and
Emax. As illustrated in Fig. 7, the values Emin and Emax
correspond, respectively, to the largest energy shell of HB
that fits entirely within the closed curve A and the smallest
energy shell of HB that surrounds the entire curve A. At
these two energies, the curves A and B become tangent to
one another, ∂pA

bl
=∂q ¼ ∂pB

bl
=∂q, leading to divergences

in Eq. (38), which are reflected in the two sharp peaks in
PCðnjmÞ in Fig. 2. Similar divergences appear in a more
familiar context, namely, the density ρBðqÞ that describes
the projection of a fixed microcanonical ensemble HB ¼ E
onto the coordinate axis [see Eq. (31)]. In this case, the
divergences occur at classical turning points at which the
velocity ∂HB=∂p vanishes.
In the example introduced in Sec. III, the reflection

symmetry of the quartic potential implies that trajectories
come in symmetry-related pairs: if ðqt; ptÞ is a solution
of Hamilton’s equations under the time-dependent
Hamiltonian Hðq; p; λtÞ, then so is ð−qt;−ptÞ. This means
that for every intersection point ðql; plÞ between A and B
there will be another intersection point at ð−ql;−plÞ, and
the two will contribute equally to PCðnjmÞ.

B. Semiclassical transition probabilities

Let us now evaluate P̄QðnjmÞ in the semiclassical
limit. Appendix A provides a brief introduction to time-
dependent WKB theory, and for further details we refer the
reader to the reviews by Delos [76] and Littlejohn [77].

FIG. 4. The filled circle indicates an intersection between the
closed curves A and B; see Fig. 1. The open circle is an
intersection point between A and a nearby energy shell,
HB ¼ Eþ δE.
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Using Eq. (A5), the wave function ψðq; tÞ ¼ hqjÛtjϕA
mi

and the nth eigenstate of ĤB can be written as

ψðq; tÞ ¼
X
b

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρAt
b ðqÞ

q
exp

�
i
ℏ
SAt
b ðqÞ − iμAt

b
π

2

	
; ð40aÞ

ϕB
n ðqÞ ¼

X
b

ffiffiffiffiffiffiffiffiffiffiffiffi
ρBb ðqÞ

q
exp

�
i
ℏ
SBb ðqÞ − iμBb

π

2

	
; ð40bÞ

where the actions SAt
b ðqÞ and SBb ðqÞ generate the momen-

tum fields

pAt
b ðqÞ ¼ ∂SAt

b

∂q ; pB
b ðqÞ ¼

∂SBb
∂q ; ð41Þ

and the integers μAt
b and μBb are Maslov indices (see

Appendix A). The densities and momentum fields in
Eqs. (40) and (41) are the same as those appearing in
Sec. IVA.
From Eq. (40) we get

hϕB
n jψτi ¼

X
b;b0

Z
dq

ffiffiffiffiffiffiffiffiffiffiffi
ρAb ρ

B
b0

q

× exp

�
i
ℏ
ðSAb − SBb0 Þ − iðμAb − μBb0 Þ

π

2

	
; ð42Þ

which appears as Eq. (37b) in Ref. [69]. Using the
stationary phase approximation to evaluate the integral,
we obtain a sum of contributions from points ql satisfying
the condition

∂SAb
∂q ðqlÞ ¼

∂SBb0
∂q ðqlÞ; ð43Þ

which is equivalent to

pA
b ðqlÞ ¼ pB

b0 ðqlÞ≡ pl: ð44Þ

Hence, hϕB
n jψτi reduces to a sum of contributions arising

from the K intersection points of the surfaces A and B,
representing trajectories with initial and final energies EA

m

and EB
n , just as in the classical case [Eq. (32)].

To determine the contribution from the lth intersection
point, we perform a quadratic expansion around q ¼ ql:

SAblðqÞ − SBblðqÞ ≈ ΔSl þ
1

2
κlðq − qlÞ2; ð45Þ

with ΔSl ¼ SAblðqlÞ − SBblðqlÞ and

κl ¼
∂2SAbl
∂q2 ðqlÞ −

∂2SBbl
∂q2 ðqlÞ ¼

∂pA
bl

∂q ðqlÞ −
∂pB

bl

∂q ðqlÞ:
ð46Þ

Performing the stationary phase integral then gives us

hϕB
n jψτi ≈

XK
l¼1

ffiffiffiffiffiffiffiffiffiffiffi
ρAblρ

B
bl

q
exp

�
i
ℏ
ΔSl − iΔμl

π

2

�

×
Z

dq exp

�
iκl
2ℏ

ðq − qlÞ2
	

¼
XK
l¼1

ffiffiffiffiffiffiffiffiffiffiffi
ρAblρ

B
bl

q
exp

�
i
ℏ
ΔSl − iΔμl

π

2

� ffiffiffiffiffiffiffiffi
2πℏ
jκlj

s
eiσlπ=4

¼
X
l

aleiθl ; ð47Þ

where ρA;B
bl

are evaluated at q ¼ ql; Δμl ¼ μAbl − μBbl ; and
σl ¼ sgnðκlÞ ¼ �1. In Ref. [69], where similar calculations
are performed, a quantity equivalent to our πσl=4 is
identified as a Maslov-like phase (Ref. [69], p. 1037).
Equation (47) expresses hϕB

n jψτi as a sum over trajecto-
ries, each contributing an amplitude and a phase:

al¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πℏ

ρAblρ
B
bl

jκlj

s
; θl¼

1

ℏ
ΔSl−

π

2
Δμlþ

π

4
σl: ð48Þ

The semiclassical transition probability PSCðnjmÞ ≈
jhϕB

n jψτij2 is then given by

PSCðnjmÞ ¼
����XK
l¼1

aleiθl
����2: ð49Þ

The general form of Eq. (49) is not surprising. The path
integral formulation of quantum mechanics tells us that
solutions of the time-dependent Schrödinger equation can
be represented in terms of sums over classical paths
decorated by phases expðiS=ℏÞ, and when ℏ → 0 the
dominant contributions to the sums come from those paths
that are solutions of the classical equations of motion [78].
We expect the semiclassical transition probability func-

tion PSCðnjmÞ to provide a good approximation to the
quantum transition probability PQðnjmÞ, for large quantum
numbers. For the forced quartic oscillator, Fig. 5 compares
these functions, taking m ¼ 150. PQ is computed as
described in Sec. III, and PSC is evaluated directly from
classical simulations of trajectories evolving from an initial
microcanonical ensemble. (The evolution of the multi-
valued action SAt is obtained by integrating pdq −Hdt
along each trajectory; see, e.g., Sec. 3.5 of Ref. [77].) We
observe that the agreement is excellent, except in the
vicinity of the boundaries between the classically allowed
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and forbidden regions. We examine these boundaries in
more detail in Sec. V.
Now let us simplify Eq. (49) by simply ignoring the cross

terms in the double sum. This is the so-called diagonal
approximation [79–81], and it leads to

PSCðnjmÞ ≈diag
XK
l¼1

a2l ¼ 2πℏ
XK
l¼1

ρAblρ
B
bl

���� ∂p
A
bl

∂q −
∂pB

bl

∂q
����
−1

q¼ql

;

ð50Þ

which is identical to the expression for the classical
transition probability, PCðnjmÞ [Eq. (39)].
The agreement between PQ and PSC ¼ jP aleiθl j2 seen

in Fig. 5 suggests that the rapid oscillations of the quantum
probability distribution can be understood in terms of phase
interference between different trajectories. When these
interferences are ignored, we recover the classical proba-
bility distribution, as we see in Eq. (50). Hence, PSC acts as
a bridge between the quantum and classical transition
probabilities,

PQðnjmÞ ≈ PSCðnjmÞ ≈diagPCðnjmÞ; ð51Þ

and thus between the quantum and classical work distri-
butions [Eqs. (20) and (17)]. The first approximation in
Eq. (51) involves time-dependent WKB theory together
with a stationary phase evaluation of integrals, and the
second is the diagonal approximation in which interfer-
ences are ignored.

C. Interferences and symmetries

Let us now examine the interferences in more detail.
Recall from Sec. IVA that the trajectories contributing to
Eq. (49) come in symmetry-related pairs. This allows us to
write

hϕB
n jψτi ¼

XK
l¼1

aleiθl ¼
XJ
l¼1

ðaleiθl þ alþJeiθlþJÞ; ð52Þ

where J ¼ K=2 is an integer, and the lth and ðlþ JÞth
trajectories are related by symmetry:

ðqlþJ; plþJÞ ¼ ð−ql;−plÞ: ð53Þ

Here, we index the points ðql; plÞ from l ¼ 1 to K,
according to the order in which they appear as we proceed
clockwise around the energy shell B, first rightward along
the upper branch and then leftward along the lower branch.
Equation (53) implies

alþJ ¼ al; σlþJ ¼ σl: ð54Þ

Using the fact that the points l and lþ J are located directly
opposite one another on the closed curves A and B
[Eq. (53)], we obtain

SAlþJ − SAl ¼ 1

2

I
A
pdq ¼

�
mþ 1

2

�
πℏ;

SBlþJ − SBl ¼ 1

2

I
B
pdq ¼

�
nþ 1

2

�
πℏ; ð55Þ

and

μAlþJ − μAl ¼ μBlþJ − μBl ¼ 1; ð56Þ

hence,

ΔSlþJ ¼ ΔSl þ ðm − nÞπℏ; ΔμlþJ ¼ Δμl: ð57Þ

[In Eq. (55) we invoke the semiclassical quantization
condition, Eq. (12), together with Liouville’s theorem,
which guarantees that

H
At
pdq remains constant with time.

In Eq. (56) we use the fact that the Maslov index is
incremented by þ2 as one proceeds around the closed
curveA or B; see, e.g., Fig. 1 of Ref. [69].] Equations (48),
(52), (54), and (57) give us

hϕB
n jψτi ¼

XJ
l¼1

aleiθl ½1þ eiðm−nÞπ�: ð58Þ

When m − n is even, the symmetry-related trajectories
interfere constructively, but when m and n have opposite
parities, they interfere destructively and we get
PSCðnjmÞ ¼ 0. This provides a semiclassical explanation

n 150 ,PSC n 150

100 120 140 160 180 200 220
n

0.01

0.02

0.03

0.04

0.05

0.06

0.07

PQ n 150 ,PSC n 150

0.01

0.02

0.03

0.04

200 210 220

QP

FIG. 5. A comparison of quantum and semiclassical transition
probabilities for our model system. The black solid curve shows
PQðnjmÞ, while the red dashed curve shows PSCðnjmÞ, as given
by Eq. (49). All of the parameters are the same as those in Fig. 2.
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for the observation, noted in Sec. III, that the quantum
transition probability vanishes whenm − n is odd: the most
rapid oscillations in PQðnjmÞ arise from interference
between symmetry-related trajectories. The same interpre-
tation was given by Miller to explain angular momentum
selection rules in the scattering matrix describing an atom
impinging on a homonuclear diatomic molecule (see
Sec. III C of Ref. [67]).
The interference effects in PSC, due to cross terms in

Eq. (49), include contributions not only from pairs of
trajectories that are related by symmetry [Eq. (53)] but also
from those that are not related by symmetry:

PSCðnjmÞ ¼
XK
l¼1

a2l þ
Xs
l≠k

alakeiðθl−θkÞ þ
Xn
l≠k

alakeiðθl−θkÞ;

ð59Þ

where
P

s denotes a sum of symmetry-related pairs of
trajectories, ðqk; pkÞ ¼ −ðql; plÞ, and

P
n is a sum over

nonsymmetry-related pairs, ðqk; pkÞ ≠ −ðql; plÞ. To illus-
trate these contributions separately, we construct the
quantity PSC

sym by omitting the sum
P

n on the right-hand
side of Eq. (59), and we similarly construct PSC

nosym by
omitting

P
s. The results are shown in Fig. 6. PSC

sym displays
a regular oscillation, as the symmetry-related trajectories
are either exactly in phase or exactly out of phase,
according to the parity of m − n. The oscillations in
PSC
nosym are less regular, as the phases θl − θk are not

necessarily integer multiples of π. When all cross terms
are included, both sets of oscillations combine to give
the pattern in Fig. 5. For instance, the gap observed near
n ¼ 200 in Fig. 5 reflects the corresponding minimum in
PSC
nosym seen in Fig. 6(b).

V. AIRY TAILS

In Fig. 5 we see that our semiclassical approximation
fails around the boundaries of the classical allowed region
at nmin and nmax. Although the semiclassical transition
probability derived in Sec. IV vanishes identically outside
the classically allowed region (since only classical trajec-
tories contribute to PSC), the quantum transition probability
tunnels into the classically forbidden region, as seen in
Fig. 5. In this section, we construct a semiclassical
approximation that describes this behavior. Our central
results are given by Eqs. (64) and (69) and illustrated
in Fig. 9.
Similar tunneling behavior is observed in the wave

functions of energy eigenstates, which exhibit tails that
reach into classically forbidden regions [82], as well as in
semiclassical treatments of the S matrix in molecular
collisions [66]; in both cases the tails are approximated
by Airy functions. The expressions that we obtain in this
section are also expressed in terms of Airy functions.
The failure of PSCðnjmÞ in the boundary regions

originates in the fact that the curves A and B become
tangent to one another at E ¼ Emin and E ¼ Emax. In the
example we study numerically, the curves are tangent
simultaneously at two points, due to the symmetry of
the quartic potential, as shown in Fig. 7(b). However, it is
useful first to discuss the generic case, where there exists
only a single point of tangency, depicted in Fig. 7(a). For
specificity, we discuss the upper boundary of the classically
allowed region at Emax, but similar comments apply to the
lower boundary at Emin.
Let us consider the function

ΔSðq; EÞ ¼ SAðqÞ − SBðq; EÞ ð60Þ

that appears inside the exponent in Eq. (42) and its
derivative

Psym
SC n 150 ,PC n 150 Pnosym

SC n 150 ,PC n 150

0.01

0.02

0.03

0.04

0.05

0.01

0.02

0.03

0.04

0.05

100 120 140 160 180 200 220 100 120 140 160 180 200 220
n n

FIG. 6. Contributions to the interference pattern in PSCðnjmÞ. Panel (a) includes only interferences between symmetry-related
trajectories, while (b) includes only interferences between nonsymmetry-related trajectories.
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Δpðq; EÞ ¼ pAðqÞ − pBðq; EÞ ¼ ∂
∂qΔSðq; EÞ: ð61Þ

We suppress the subscripts b and b0, and we explicitly
indicate that SB and pB depend on the final energy shell E.
In Sec. IV, we evaluate the integral

R
dq expðiΔS=ℏÞ by

performing a quadratic expansion of ΔS around a single
intersection point ql between the curves A and B, where
Δp vanishes (Fig. 4). As the energy E approaches Emax
from below, two points of intersection between A and B
coalesce at a point ðqc; pcÞ, indicated in Fig. 7(a). Figure 8
illustrates the behavior of Δpðq; EÞ and ΔSðq; EÞ in the
vicinity of qc and Emax. In particular, ΔS has two stationary
points when E < Emax and none when E > Emax. The
stationary phase integration we perform in Sec. IV
[Eqs. (43)–(47)] implicitly assumes well-isolated stationary
points, but this assumption breaks down near E ¼ Emax. In
this situation, we evaluate the integral

R
dq expðiΔS=ℏÞ by

expanding ΔS to cubic rather than quadratic order. Leaving
the details of the calculation to Appendix B, here we
present the result:

Z
dq exp

�
i
ℏ
ΔSðq; EÞ

	

¼ 2π

�
2ℏ
jkj

�
1=3

exp

�
i
ℏ
ΔSðqc; EÞ

	

× Ai

�
−

21=3ν

k1=3ℏ2=3 ðE − EmaxÞ
	
; ð62Þ

where

k ¼ ∂2Δp
∂q2 ðqc; EmaxÞ; ν ¼ ∂pB

∂E ðqc; EmaxÞ; ð63Þ

and Aið·Þ denotes the Airy function. Combining this result
with Eq. (42), we obtain the following expression, which is
valid when EB

n ≈ Emax:

FIG. 7. Solid blue lines depict the surfaces A ¼ Aτ (as in Fig. 1). Dashed red lines are energy shells B of HB. Diamonds and dots
indicate the points of tangency betweenA and B at Emin and Emax, respectively. (a) In the absence of symmetries, we generically expect
a single tangent point at Emin and Emax. (b) For the Hamiltonian that we study numerically, Eq. (24), the symmetry of the quartic
potential implies that both A and the energy shells B are symmetric under ðq; pÞ → ð−q;−pÞ; thus, points of tangency come in
symmetry-related pairs.

FIG. 8. Behavior of Δp and ΔS for E ≈ Emax. The open circles correspond to intersection points between A and B when E < Emax.
These coalesce into a single point of tangency at E ¼ Emax (solid circle), and for E > Emax, A and B do not intersect.
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PSC;tail
1 ðnjmÞ
¼ jhϕB

n jψτij2

¼ 4π2ρAc ρ
B
c

�
2ℏ
jkj

�
2=3

����Ai
�
−

21=3ν

k1=3ℏ2=3 ðEB
n − EmaxÞ

	����2;
ð64Þ

where ρA;B
c ¼ ρA;BðqcÞ, and the subscript 1 emphasizes

that we assume only a single point of tangency between A
and B. At the lower boundary of the classically allowed
region, we obtain the same result but with Emax replaced by
Emin in Eqs. (63) and (64).
The Airy function decays rapidly for positive values of

its argument, and oscillates for negative values:

AiðζÞ ∼ 1

2
ffiffiffi
π

p ζ−1=4 exp

�
−
2

3
ζ3=2

�
;

Aið−ζÞ ∼ 1ffiffiffi
π

p ζ−1=4 sin
�
2

3
ζ3=2 þ π

4

�
; ð65Þ

for real ζ ≫ 1. One can establish by inspection that
ν > 0 > k when E > Emax and ν; k > 0 when E < Emin;
therefore, the argument of the Airy function in PSC;tail

1 is
positive outside the classically allowed region. As a
result, the transition probability decays monotonically,
penetrating the classically forbidden region over a charac-
teristic skin depth jk1=3ℏ2=3ν−1j.
Let us now consider the situation corresponding to the

example of Sec. III, in which there are simultaneously two
points of tangency between the curves A and B at
E ¼ Emax, and these two points are related by symmetry
[Fig. 7(b)]. Using the subscripts c and d to distinguish these
two points, we have

ðqc; pcÞ ¼ ð−qd;−pdÞ; νc ¼ −νd ≡ ν;

kc ¼ −kd ≡ k; ρA;B
c ¼ ρA;B

d : ð66Þ

Summing the contributions from these two points gives us

hϕB
n jψτi ¼ 2π

ffiffiffiffiffiffiffiffiffiffiffi
ρAc ρ

B
c

q �
2ℏ
jkj

�
1=3

Ai

�
−

21=3ν

k1=3ℏ2=3 ðE − EmaxÞ
	

× ½eiðΔSc=ℏ−Δμcπ=2Þ þ eiðΔSd=ℏ−Δμdπ=2Þ�; ð67Þ

where ΔSc;d are evaluated at E ¼ Emax. Following argu-
ments similar to those leading to Eq. (58), we obtain

eiðΔSc=ℏ−Δμcπ=2Þ þ eiðΔSd=ℏ−Δμdπ=2Þ

¼ eiðΔSc=ℏ−Δμcπ=2Þ½1þ eiðm−nÞπ�: ð68Þ

Equations (67) and (68) lead to a result identical to Eq. (64),
apart from a factor that captures the interference between
the two parity-related trajectories:

PSC;tail
2 ðnjmÞ ¼ PSC;tail

1 ðnjmÞ · 4cos2
�ðm − nÞπ

2

	
; ð69Þ

with the subscript indicating two points of tangency
between A and B.
Figure 9 compares the quantum transition probability PQ

with our semiclassical approximations given by PSC

[Eq. (49)] and PSC;tail
2 [Eq. (69)], in the central and

boundary regions, respectively. The agreement is excellent,
illustrating that the entire quantum work distribution can be
understood in terms of contributions from individual
classical trajectories and the interferences between them.

VI. DISCUSSION AND CONCLUSION

The correspondence principle broadly states that
classical mechanics is recovered from quantum mechanics
in the limit of large quantum numbers. In textbook
discussions, this principle is often illustrated in terms of
static properties, typically by comparing the coordinate
space probability distribution of a harmonic oscillator
eigenstate with the classical, microcanonical distribution
at the same energy [82,83]. Here, by contrast, we consider
the correspondence principle in a dynamic setting,
comparing classical and quantum transition probabilities
under a time-dependent Hamiltonian. In this setting, time-
dependent WKB theory provides a set of tools for using
classical trajectories to construct approximate solutions of
quantum dynamics.
We apply these tools to study the relationship between

the definitions of quantum and classical work given by
Eqs. (1) and (2). Focusing on the transition probabilities
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0.04

0.05

0.06

100 120 140 160 180 200 220

200 210 220
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0.010
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0.035

PQ n 150 ,PSC n 150

PQ n 150 ,PSC n 150

n

FIG. 9. Comparison between the quantum transition probabil-
ities evaluated by numerical integration of the Schrödinger
equation (black, solid line) and the semiclassical approximations
given by Eq. (49) in the central region 110 < n < 200 (red,
dashed line) and by Eq. (69) in the boundary regions 90 < n <
110 and 200 < n < 230 (green, dashed line).
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PQðnjmÞ and PCðnjmÞ for systems with 1 degree of
freedom, we obtain three main conclusions, and illustrate
them with simulations of a driven quartic oscillator:

(i) In the classically allowed region, the quantum
transition probability can be approximated in terms
of interfering classical trajectories [Eq. (49), Fig. 5].

(ii) When the interferences between these trajectories
are ignored, the classical transition probability is
obtained [Eq. (50), Fig. 3].

(iii) The tunneling of the quantum transition probability
into the classically forbidden region is accurately
described by a decaying Airy function, whose
arguments are expressed in terms of classical quan-
tities [Eqs. (64) and (69), Fig. 9].

The second conclusion, and Fig. 3 in particular, clarifies the
sense in which classical mechanics is “recovered” in the
limit of large quantum numbers (in this context), whereas
the first and third conclusions describe inherently quantal
effects—interference, tunneling—that can nevertheless be
understood and approximated in terms of classical trajec-
tories. In view of similar analyses in atomic and molecular
contexts (see, e.g., Refs. [65–69]), these conclusions are
not surprising. However, given recent interest in quantum
nonequilibrium work relations, our results provide a timely
investigation of the correspondence principle as it applies
to the work performed on a system driven away from
equilibrium. As we show, semiclassical mechanics provides
a bridge between classical and quantal work distributions,
and our conclusions provide some justification for the two-
point measurement definition of quantum work [Eq. (1)].
It will be interesting to study whether our results

generalize to systems with more than 1 degree of freedom.
For N-particle systems with N ≫ 1, we generically expect
that the classical transition probability PCðnjmÞ will be bell
shaped rather than U shaped, with nmin and nmax found deep
in the tails of PCðnjmÞ. In this situation the quantum
tunneling into the forbidden regions will be negligible,
since both PCðnjmÞ and PQðnjmÞ will be very small at nmin
and nmax. An obstacle to studying N particle systems
analytically is the lack of semiclassical representations
of energy eigenstates, analogous to Eq. (40b), for generic
systems with multiple degrees of freedom. Progress might
be made by studying two limiting cases: integrable and
fully chaotic systems [84]. For systems whose classical
dynamics are integrable, semiclassical expressions for
energy eigenstates can be constructed using classical
action-angle variables [see, e.g., Eq. (11) of Ref. [85],
Eq. (3.5) of Ref. [86], or Eq. (37) of Ref. [87]]. At the other
extreme, for fully chaotic systems, Berry’s conjecture [88]
suggests that energy eigenstates can be treated as Gaussian
random functions of the configuration q. In either case, the
expression for the energy eigenstate might be combined
with time-dependent WKB theory as a first step toward
generalizing Eq. (42) and subsequent results to multidi-
mensional systems.
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APPENDIX A: BRIEF REVIEW OF
TIME-DEPENDENT WKB THEORY

In time-dependent WKB theory, approximate solutions
of the time-dependent Schrödinger equation are expressed
in terms of classical constructions in phase space. In this
brief summary, we restrict ourselves to a single degree of
freedom and a Hamiltonian of the form Hðq; p; tÞ ¼
p2=2M þ Vðq; tÞ.
Awave function ψðq; tÞ is said to be in WKB form when

written as the product of a slowly varying amplitude and a
rapidly oscillating phase,

ψðq; tÞ ¼ Aðq; tÞ exp
�
i
ℏ
Sðq; tÞ

	
; ðA1Þ

or else as a sum of such terms, as in Eq. (A5). Locally,
Eq. (A1) describes a wave train ψ ∝ expðikqÞ, with wave
number k ¼ ℏ−1∂S=∂q. This implies a local momentum

pðq; tÞ ¼ ℏk ¼ ∂S
∂q ðq; tÞ; ðA2Þ

and the Born rule implies a probability density

ρðq; tÞ ¼ jAðq; tÞj2: ðA3Þ

These functions inherit their time dependence from ψðq; tÞ.
A standard calculation, in which Eq. (A1) is substituted
into the Schrödinger equation and ℏ is treated as a small
parameter [77] produces the equations of motion

∂S
∂t þH

�
q;
∂S
∂q ; t

�
¼ 0; ðA4aÞ

∂ρ
∂t þ

∂
∂q

�
p
M

ρ

�
¼ 0; ðA4bÞ

where terms of order ℏ2 are neglected. Equation (A4a) is
the Hamilton-Jacobi equation. Equation (A4b) is the
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continuity equation for evolution under a velocity
field pðq; tÞ=M.
To interpret these equations, let the function pðq; 0Þ

describe a curve A0 in phase space, at an initial time t ¼ 0.
If the wave function ψ is represented as a sum of terms of
the form given by Eq. (A1), then pðq; 0Þ is multivalued,
and the curveA0 has multiple branches, but for the moment
we focus on a single branch. A0 is a Lagrangian manifold,
determined by its generating function, Sðq; 0Þ, via
Eq. (A2). Now imagine that this curve carries a probability
density whose projection onto the coordinate axis is
ρðq; 0Þ. It is convenient to picture a swarm of particles,
sprinkled along A0 so that the fraction of particles between
q and qþ dq is given by ρðq; 0Þdq. From these initial
conditions, each particle in the swarm evolves under
Hamilton’s equations, giving rise to a time-dependent
curveAt and density ρðq; tÞ. The Hamilton-Jacobi equation
governs the evolution ofAt, through its generating function
Sðq; tÞ, and the continuity equation governs the evolution
of the projected density ρðq; tÞ.
With these considerations in mind, approximate solu-

tions of the time-dependent Schrödinger equation are
written in the form

ψðq; tÞ ¼
X
b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρbðq; tÞ

p
exp

�
i
ℏ
Sbðq; tÞ − iμb

π

2

	
: ðA5Þ

The sum is taken over the branches of a Lagrangian
manifold At whose generating function Sðq; tÞ satisfies
the Hamilton-Jacobi equation [Eq. (A4a)], and the pro-
jected probability density for each branch satisfies the
continuity equation [Eq. (A4b)].
The quantities μb are Maslov indices. These determine

the relative quantum phases of the various branches of At,
and they differ from one another by integer values. (By
convention, the overall phase of ψ is adjusted so that the
μb’s themselves are integers.) See Ref. [77] for a more
detailed discussion of Maslov indices, as well as a careful
treatment of caustic points, where two branches ofAt meet
and the manifold becomes “vertical” in the ðq; pÞ plane.
At the semiclassical level of approximation, Eq. (A5)

connects the evolution of a quantum wave function to that
of a swarm of classical particles “surfing” on a Lagrangian
manifold. This perspective provides a natural starting point
for a comparison between quantum and classical work
distributions.
As an important example of a WKB wave function,

consider a manifold A0 that is a single energy shell E of a
fixed Hamiltonian Hðq; pÞ, and consider a microcanonical
distribution of initial conditions on this manifold. Under
time evolution, neither the manifold nor the probability
distribution changes, as each trajectory merely goes around
the energy shell. The solution of Eq. (A4a) in this case is

Sbðq; tÞ ¼ Sbðq; 0Þ − Et; ðA6Þ

hence, by Eq. (A5), the wave function simply acquires a
phase e−iEt=ℏ. Thus, in the semiclassical limit, energy
eigenstates correspond to microcanonical ensembles.
Indeed, Eq. (A5) in this case leads to the WKB approxi-
mation for energy eigenstates that is familiar from under-
graduate textbooks on quantum mechanics, where it is
typically derived in a different manner. Moreover, a proper
treatment of the Maslov indices leads to the quantization
condition

H
pðqÞdq ¼ ½mþ ð1=2Þ�h.

APPENDIX B: SEMICLASSICAL TRANSITION
PROBABILITIES IN THE BOUNDARY AREA

Expanding the function ΔSðq; EÞ defined by Eq. (60) to
cubic order, we get

ΔSðq; EÞ ≈ ΔScðEÞ þ ΔS0cðEÞðq − qcÞ

þ 1

2
ΔS00cðEÞðq − qcÞ2 þ

1

6
ΔS000c ðEÞðq − qcÞ3; ðB1Þ

where ΔScðEÞ ¼ ΔSðqc; EÞ and primes indicate deriva-
tives with respect to q. Note that here we expandΔS around
the coalescence point q ¼ qc, where the surfaceA becomes
tangent to the surface B (see Fig. 8). We now evaluate the
integral

R
dq expðiΔS=ℏÞ, using Eq. (B1).

Let us first consider the integral

I ¼
Z þ∞

−∞
dq exp

�
i
ℏ
fðqÞ

	
;

fðqÞ ¼ α0 þ α1qþ 1

2
α2q2 þ

1

6
α3q3: ðB2Þ

Rewriting fðqÞ as

fðqÞ ¼ β0 þ β1ðq − cÞ þ 1

3
β3ðq − cÞ3; ðB3Þ

where

c ¼ −
α2
α3

; β0 ¼ α0 −
α1α2
α3

þ α32
3α23

;

β1 ¼ α1 −
α22
2α3

; β3 ¼
α3
2
; ðB4Þ

we obtain

I ¼ eiβ0=ℏ
Z þ∞

−∞
dy exp

�
i
ℏ

�
β1yþ

β3
3
y3
�	

¼ 2πeiβ0=ℏ
�

ℏ
jβ3j

�
1=3

Ai

�
β1

ℏ2=3β1=33

�
; ðB5Þ

using the integral representation of the Airy function,
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AiðζÞ ¼ 1

2π

Z þ∞

−∞
dt exp

�
i

�
ζtþ t3

3

�	
: ðB6Þ

We now use this result to evaluate

IðEÞ ¼
Z

dq exp

�
i
ℏ
ΔSðq; EÞ

	
ðB7Þ

for small ℏ, applying the stationary phase approximation
and treating E as a parameter of the integral.
The cubic expansion for ΔS given by Eq. (B1) gives us

the coefficients

α0ðEÞ ¼ ΔSðqc; EÞ; ðB8Þ

α1ðEÞ ¼ ΔS0ðqc; EÞ ¼ Δpðqc; EÞ; ðB9Þ

α2ðEÞ ¼ ΔS00ðqc; EÞ ¼ Δp0ðqc; EÞ; ðB10Þ

α3ðEÞ ¼ ΔS000ðqc; EÞ ¼ Δp00ðqc; EÞ; ðB11Þ

with Δp ¼ pA − pB ¼ ΔS0 [Eq. (61)]. Note that

α1ðEcÞ ¼ α2ðEcÞ ¼ 0; ðB12Þ

since A and B are tangent at qc when E ¼ Ec. The integral
IðEÞ is now given by Eq. (B5), with β0, β1, and β3 obtained
from α0, α1, α2, and α3 via Eq. (B4). This result simplifies if
we consider how the β’s behave in the vicinity of E ¼ Ec
as ℏ → 0.
Let us define

pc ¼ pAðqcÞ ¼ pBðqc; EcÞ; ðB13Þ

p0
c ¼

∂pA

∂q ðqcÞ ¼
∂pB

∂q ðqc; EcÞ; ðB14Þ

k ¼ ∂2pA

∂q2 ðqcÞ −
∂2pB

∂q2 ðqc; EcÞ ¼ α3ðEcÞ; ðB15Þ

ν ¼ ∂pB

∂E ðqc; EcÞ; ðB16Þ

Now look at the argument of the Airy function in
Eq. (B5),

ζðE;ℏÞ ¼ β1ðEÞ
ℏ2=3β3ðEÞ1=3

; ðB17Þ

and consider a fixed range of ζ values, ζ− < 0 < ζþ,
chosen so that the asymptotic approximations for the
Airy function [Eq. (65)] are accurate at both ζ− and ζþ.
Noting that ζðEc;ℏÞ ¼ 0 and expanding ζðE;ℏÞ to first
order in ðE − EcÞ, we see that as ℏ → 0, the fixed range
½ζ−; ζþ� translates to a range of energies whose width scales

like ℏ2=3. Thus, we are interested in energies that have the
following scaling relation:

ϵ ∼ ℏ2=3; ðB18Þ

where ϵ ¼ E − Ec. To leading order in ℏ, and expressing
quantities in terms of ϵ rather than E, we have

ζ ¼ aϵ

ℏ2=3b1=3
; where a ¼ ∂β1

∂ϵ ðϵ ¼ 0Þ;
b ¼ β3ðϵ ¼ 0Þ: ðB19Þ

Now recall that β1 ¼ α1 − α22=2α3. In the vicinity of
ϵ ¼ 0 (where α1 ¼ α2 ¼ 0), we have α1 ∼ ϵ ∼ ℏ2=3 and
α22=2α3 ∼ ϵ2 ∼ ℏ4=3; hence, the latter term can be ignored.
We thus write

a ¼ ∂α1
∂ϵ ð0Þ ¼ −ν; b ¼ 1

2
α3ð0Þ ¼

k
2
; ðB20Þ

therefore,

ζ ¼ −
�

2

kℏ2

�
1=3

νϵ: ðB21Þ

Combining results and discarding terms that vanish as
ℏ → 0, Eq. (B5) finally gives us

IðϵÞ¼2π

�
2ℏ
jkj

�
1=3

exp
�
i
ℏ
α0ðϵÞ

	
Ai
�
−

21=3νϵ

k1=3ℏ2=3

�
; ðB22Þ

which is equivalent to Eq. (62).
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