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Noise caused by fluctuations at the molecular level is a fundamental part of intracellular processes.
While the response of biological systems to noise has been studied extensively, there has been limited
understanding of how to exploit it to induce a desired cell state. Here we present a scalable, quantitative
method based on the Freidlin-Wentzell action to predict and control noise-induced switching between
different states in genetic networks that, conveniently, can also control transitions between stable states in
the absence of noise. We apply this methodology to models of cell differentiation and show how predicted
manipulations of tunable factors can induce lineage changes, and further utilize it to identify new candidate
strategies for cancer therapy in a cell death pathway model. This framework offers a systems approach to
identifying the key factors for rationally manipulating biophysical dynamics, and should also find use in
controlling other classes of noisy complex networks.
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I. INTRODUCTION

Cellular systems are not entirely deterministic, but are
instead impacted by small, random fluctuations in the
number and activity of molecules of intracellular species
[1,2]. Such fluctuations lead to macroscopic effects in a
diverse array of processes. In differentiation, the resulting
noise plays a central role in cell fate determination and can
allow clonal populations of differentiating cells to achieve
distinct final states [3,4]. Noise can also produce sponta-
neous transitions, whereby it causes a system to switch from
one stable state to another, often producing a significant
change of phenotype or function. Such stochastic state
switching occurs, for example, in the lac system, where rare,
brief transcription events in the “off” state cause largebursts in
LacYexpression,which in turncanbeamplifiedandstabilized
by a positive feedback loop [5]. Stochastically induced
transitions also underlie recent observations of spontaneous
dedifferentiation in cancer cells [6,7], in which cancer stem
cells arose de novo from nonstem cell populations.
The response to noise and the overall behavior of many

biophysical systems are determined by an underlying
epigenetic landscape [8]. In this landscape, the valleys

represent the distinct achievable states of the system and
the heights of the separating barriers determine their
robustness to noise. A benefit of this representation is that
bifurcation points—locations in the parameter space at
which one or more stable states suddenly cease to exist—
correspond precisely to the points where one or more of
such barriers first reach zero height as parameters change.
This landscape thus incorporates two distinct features of a
state, namely, its robustness to noise and its deterministic
stability, into one: the less robust a state is to noise, the
closer it is to being eliminated through a bifurcation, and
vice versa.
The landscape representation has been given a quanti-

tative foundation as the quasipotential of the deterministic
component of the system dynamics [9] and has been
explored in experiments, e.g., to show how two parameters
in the yeast galactose signaling network, the concentrations
of galactose and intracellular Gal80p, can alter the rates of
stochastic switching in this bistable circuit [10]. Despite
these advances, researchers’ ability to control this land-
scape in order to induce prespecified biological outcomes
has been generally limited to at most two parameters
[11,12], and no general method currently exists to system-
atically tune transitions between stable states and/or elimi-
nate undesired states altogether. The possibility of such
control would offer clear opportunities. For example, under
the widely supported stochastic model for induced pluri-
potent stem cell generation [13], a majority of cells have the
possibility of being reprogrammed, even though existing
technologies have achieved substantially smaller yields [14].
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The ability to control the response to noise of differentiated
and stem cell states (e.g., inhibiting transitions to the first
and promoting transitions to the second) could lead to
enhanced procedures to create induced pluripotent stem
cells. Similarly, in the context of the “cancer attractor”
hypothesis [15,16], in which normal and cancer cells
correspond to distinct coexisting stable states, identifying
interventions that destabilize, or eliminate, the cancerous
state could lead to new therapeutic strategies.
In this paper we propose a broadly applicable method,

here termed optimal least action control (OLAC), that can
predict and control the dynamical behavior and response to
noise in a wide class of biophysical networks. As sche-
matically illustrated in Fig. 1, the essence of our approach is
that to control a biophysical system it is sufficient to
identify interventions, e.g., changes to gene expression,
protein levels, or interaction rates, that can reshape the
topography of the underlying quasipotential in a desired
way. This approach ultimately leads to a network of state
transitions (NEST) describing the transitions between
stable states and that can be controlled by changing the
heights of the separating barriers without changing any
quality of the noise. For a given system, this is achieved by
determining the minimum action paths—those followed by
the most likely noise-induced transition trajectories—and
the corresponding transition rates between all pairs of
stable states, and then optimizing these transition rates
for a desired outcome. Furthermore, this general foundation
in a physical least action principle allows OLAC to be
applied broadly to many other complex networks as well.
In particular, while we focus our application of OLAC to
biophysical networks, applications to other networks where

noise and multistability play important roles, including
power-grid networks [17], polymer networks [18], and
food-web networks [19], among others, are immediate
within the formulation we establish here.
We apply OLAC to several gene network models and

illustrate how this method can be used to make biologically
realizable reprogramming predictions. In the limit of zero
noise intensity, OLAC automatically identifies bifurcations
that eliminate undesirable states and induce purely deter-
ministic transitions to the desired ones. The significance of
the latter is demonstrated by considering a third application,
to eliminate cancerous states in a cell death network model,
which concerns a time scale for which stochastic switches
can be neglected. As illustrated in these examples, the NEST
is a powerful yet simple representation that captures the
essence of the state switching dynamics and can inform
counterintuitive results, e.g., the possibility of transitions
through intermediate stable states when direct transitions
are essentially impossible (a behavior observed even in
high dimensions, where indirect transitions generally require
longer paths). The method proposed here is easily imple-
mentable and the computational effort scales linearly in the
number of control parameters and the dimension of the state
space, allowing our approach to be applied to large networks
and high-dimensional systems in general.

II. THEORY

A. Transition rates for small noise

We consider biophysical networks whose deterministic
components are described by nonlinear differential equa-
tions of the form d~X=dt ¼ ~Fð~X;ΩÞ, where ~X is a vector

FIG. 1. Control of the response to noise illustrated for a multiwell quasipotential. (a) Without noise the state of the system is fixed and
will not change over time. (b) In the presence of noise the state of the system wanders within the attraction basin and will be eventually
ejected into the attraction basin of another stable state. For small noise such transitions are exponentially more likely to occur through the
lowest barrier, even though other transitions are also possible in principle. (c) Using OLAC on a set of tunable parameters, we can alter
the quasipotential to produce a desired response to noise, in this case tailored to increase transitions from state 2 to state 1 and to reduce
transitions to state 3. (d) If desired, OLAC can also find combinations of tunable parameters that can alter the quasipotential in order to
eliminate a stable state through a bifurcation; in this illustration state 2 is eliminated, in favor of state 1. (e)–(h) NEST for each of
the quasipotentials in (a)–(d), respectively, where the nodes represent stable states and the continuous edges represent transition
rates. A wider continuous edge indicates a higher transition rate. The dotted edges in (e) indicate transitions that could occur
in the presence of noise.
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representing the activity of the relevant biological factors, ~F
is the function representing the rates of change of these
factors, andΩ is a set of tunable parameters, which we show
can be manipulated to drive cellular processes in advanta-
geous directions. We focus on the most prevalent case of
systems with two or more stable states and, although our
approach is general, for concreteness we first assume that
these states are time independent. Time-independent stable

states correspond to fixed points ~X� ¼ ~X�ðΩÞ, defined by
~Fð~X�

;ΩÞ ¼ ~0, towards which neighboring trajectories con-
verge over time. The set of all stable states represents the
possible long-term behaviors of the deterministic system.
Stochasticity is modeled here as additive Gaussian white

noise,

d~X ¼ ~Fð~X;ΩÞdtþ ffiffiffi
ε

p
d ~W; ð1Þ

where ε is the variance of the distribution (other cases are
discussed in the Supplemental Material [20]). With the
addition of this small noise term, trajectories no longer
approach the stable states asymptotically as in the deter-
ministic case. Instead, a trajectory close to a stable state will
oscillate stochastically within its basin of attraction, typ-
ically staying close to the fixed point for long periods of
time. The trajectory will also make rare but large excursions
from the stable state. After sufficiently long time an
excursion large enough to eject the trajectory from the
original basin of attraction will necessarily occur, at which
point it will transition to the neighborhood of another stable
state of the system. The time scales for the occurrence of
such transitions may be shorter or longer than the biologi-
cally relevant ones. The manipulation of these time scales
underlies much of the control approach introduced below.
For a given noise intensity ε, the transitions between two

stable states i and j occur as a Poisson process with a
certain rate Rε

i;jðΩÞ. These rates can be computed by
evolving Eq. (1), but, in general, at an unreasonably high
computational cost. As a way to reduce this effort, we
employ an asymptotic formula [21]:

~Rε
i;jðΩÞ ∝ exp

�
−
1

ε
S�i;jðΩÞ

�
; ð2Þ

where ~Rε
i;j serves as an excellent approximation to Rε

i;j for
ε small compared to S�i;j, which is typically the case for
noise associated with biophysical systems. Here, S�i;j is the
minimum of the Freidlin-Wentzell action S½·�, a functional
over all possible transition paths ~ϕi;j connecting the two

stable states in the state space. The path ~ϕ�
i;j minimizing

the action for the given pair of stable states is calculated
numerically employing an implementation of the adaptive
minimum action method [22], in which we determine
this minimum action path through the optimization of

a discretized version of the action functional using a
quasi-Newton method (see Appendix A). Conceptually,
S�i;j represents the cumulative height of all saddle points
traversed by the minimum action path between the states i
and j. It should be noted that a proportionality constant is
omitted in the expression for ~Rε

i;j. Although there is no
known formula for computing this constant in general
[23], the key condition for neglecting it is clear: as long as
the actions Si;j associated with two paths differ by more
than OðεÞ, the exponential term will dominate and the
omission of the proportionality constant will not affect the
result qualitatively.
The rate ~Rε

i;j represents the transition probability per unit
of time along the most likely direct path(s) between the
stable states i and j. The transition rates through inter-
mediate stable states can be determined by composing these
elementary transition rates. It is often expected that the
most likely transition path between two stable states would
be a direct path, but as we show below, in many cases it
passes through intermediate stable states. Moreover, the
transition paths and rates are generally asymmetric, with
~Rε
j;i ≠ ~Rε

i;j. In the limit of long time, these transitions lead to
an equilibrium probability distribution of occupied stable
states, which we refer to as the limiting occupancy of the
system and denote by ~vε. Given that we generally study
large populations of cells, in our applications it is conven-
ient to interpret the limiting occupancy as an ensemble
average over different realizations of noise.
To illustrate the minimum action paths and their use

in controlling cell behavior, we first consider a two-
dimensional model for the Caenorhabditis elegans vulval
precursor cell (VPC) differentiation [24]. The VPC differ-
entiation is representative of many other differentiation
processes and enjoys significant experimental characteri-
zation. The model describes the differentiation of VPCs into
one of three competent lineages, 1°, 2°, and 3°, correspond-
ing to stable states in the system and marked as nodes in
Fig. 2(a). These lineages depend on two dimensionless
parameters, l1 and l2, that determine the levels of epi-
dermal growth factor (EGF) and Notch signaling, respec-
tively (for the model equations, see Appendix B). It is
known experimentally that increasing EGF and decreasing
Notch signaling (relative to the base value of 0.1) will bias
cells towards lineage 1°, that decreasing EGF and increasing
Notch will bias cells towards lineage 2°, and that decreasing
both EGF and Notch will bias cells towards lineage 3° [25].
Figure 2(a) shows the state space for the VPC system with
equal, intermediate levels of EGF and Notch signaling
(l1 ¼ l2 ¼ 0.1) and a realistic level of noise (ε ¼ 0.007).
The calculated transition paths, transition rates, and limiting
occupancies are indicated by the edges, their width, and the
size of the nodes, respectively. For these parameters, our
calculations indicate that the limiting occupancy is compa-
rable for all three stable states, with lineage 2° having the
highest occupancy.
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B. Optimal least action control

We now turn to the manipulation of the tunable param-
eters Ω, which may include, for example, gene expression
levels, protein activity, and interaction rates. Specifically,
we seek to modify Ω to optimize either specific transition
rates ~Rε

i;j directly or the limiting occupancy ~vε through the
alteration of the transition rates, while recognizing that the
parameters can be modified only within specific ranges
determined by biophysical and experimental constraints.
The latter include sparsity constraints, which we can use to
effectively limit the number of targets in the control set
while avoiding a combinatorial explosion (see Appendix C).
The problem is formalized as the maximization of an
objective function of interest G (unique to each problem)
over the parameters Ω subject to the given constraints
fgkðΩÞ ¼ ζkgk and fhkðΩÞ ≤ ηkgk:

max
Ω

fgkðΩÞ¼ζkgkfhkðΩÞ≤ηkgk

GðfS�i;jðΩÞg; εÞ: ð3Þ

This procedure constitutes the central step of our imple-
mentation of OLAC. Note that this formulation is indepen-
dent of the dimension and complexity of the system.
Thus, given a well-defined model we can identify control
interventions able to alter the switching behavior and/or

the stability of the states in desired ways without the need to
know explicitly a priori how variations of the tunable factors
affect the system (beyond the implicit dependence defined
by the dynamical equations).
The objective function and the associated constraints do

not need to be linear, allowing a wide range of possible
dynamical behaviors to be optimized. For any set of such
constraints, Eq. (3) can be solved numerically through a
second quasi-Newton method step that nests the adaptive
minimum action method used to determined the minimum
action paths in connection with Eq. (2). Importantly, OLAC
is highly scalable, with the following computational cost:

cost ∼O½jΩjDðK þ γPÞ�; ð4Þ

whereD is the number of variables defining the state space,
jΩj is the number of tunable parameters under consider-
ation, P is the number of stable states, and K is the number
of transitions upon which G depends. This cost estimation
follows from noting that every optimization step of OLAC
relies on jΩj evaluations of G, each of which requiring K
runs of the nested optimization step, where each such run
has a cost that is linear in D when using the L-BFGS
optimization method [26]. Furthermore, for each top-level
optimization step [Eq. (3)], every one of the P stable states

FIG. 2. OLAC applied to a two-dimensional model of VPC differentiation. (a), (b) State space representation of stable states (nodes)
and optimal transition paths (edges) before intervention (a) and after OLAC is applied to maximize the limiting occupancy of lineage 1°
(b). Node size indicates occupancy and edge width indicates the (negative of the) log transition rate along the corresponding minimum
action path; the color code on the transition paths indicates the derivative of the quasipotential. The background shows the velocity field
for the given parameters. For equal EGF and Notch signaling (a), lineage 2° is the one with highest occupancy. The OLAC solution
(b) indicates that high EGF signaling and low Notch signaling will lead to the maximum occupancy of lineage 1°. (c) Trajectory in the
parameter space for one realization of the optimization procedure, where the contour plot indicates the limiting occupancy of lineage 1°.
Note that each step of the optimization routine increases the occupancy of this state. (d), (e) NESTs for the initial (d) and optimized
(e) systems. In all panels, the noise intensity is assumed to be ε ¼ 0.007 (as used previously [24]).
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has to be continued jΩj times, each time at an integration
cost that is linear in D if the average network’s degree is
approximately constant, as in most network models (it
would be at most quadratic in D in the most general case)
(see Appendix A). Parameter γ accounts for other constants
describing the relative cost between optimization and
integration. Because of this high scalability, our method
can be applied to complex high-dimensional multipara-
meter systems without excessive computational cost. In this
way, OLAC expands on previous foundational work that
demonstrated how barriers between stable states can be
altered to control the response to fluctuations and multi-
stability [27–32] to now address large networks with many
variables and many potential control parameters.
Before turning to high-dimensional systems, we consider

an illustrative example application of OLAC in which we
maximize the final occupancy of lineage 1° in the VPC
system. As an example constraint we stipulate that neither
of the other two stable states be lost to bifurcation. This
nonbifurcation constraint is intended to depict how the
presence of dosing and/or experimental limitations may
make complete elimination of undesired states infeasible.
This condition is imposed as the constraint that the states
~X�
k ¼ ~X�

kðΩÞ representing each lineage k remain stable

fixed points: ~gkðΩÞ≡ ~Fð~X�
k;ΩÞ ¼ ~0 and hkðΩÞ≡ReðλkÞ≤

−τ0. In this notation, λk ¼ λkðΩÞ is the eigenvalue of

the Jacobian matrix D~Fð~X;ΩÞj~X�
k
with largest real part,

and τ0 is a tolerance (set to be 0.1 in our simulations).
The objective function is GðΩ; εÞ ¼ vε1°ðΩÞ and the tunable
parameters are Ω ¼ fl1;l2g. The result, shown in
Fig. 2(b), indicates a substantial (threefold) increase in
the limiting occupancy of the lineage 1° state for the
optimal control intervention identified by OLAC. The
parameter-space path for a representative realization of
the optimization is shown in Fig. 2(c). The optimal
intervention, defined as an average over multiple realiza-
tions, is a combination of increased EGF signaling
(l1∶ 0.1 → 0.24) and reduced Notch signaling
(l2∶ 0.1 → 0.01), which has the net effect of lowering
the barrier for transitions from lineages 2° and 3° to lineage
1° while maintaining a high barrier for exiting this lineage.
This controlled state corresponds to signaling strengths
that have been observed experimentally to indeed bias cell
lineages towards lineage 1° [25]. As mentioned above, for
these results we utilize Eq. (2) with the proportionality
constants omitted to calculate transition rates between
states. The inclusion of these prefactors could potentially
alter the occupancy calculations of the stable states and in
turn invalidate the results of OLAC. In the Supplemental
Material [20], Sec. S1, we apply sensitivity analysis to
quantify the uncertainty associated with omitting prefactors
and show that doing so does not significantly alter the
results in this case. Therein we also discuss more generally
under which conditions prefactors can be omitted.

C. Network of state transitions

Our formulation leads to a succinct and intuitive NEST
representation for the transition dynamics, in which the
nodes are unique stable states and the weighted, directed
edges between nodes represent the rates of transition
between the stable states. The basis for this representation
is the observation that, for small ε, the trajectories of the
system in Eq. (1) are most often close to a stable state or
transitioning between stable states along a minimum action
path. The trajectories will rarely venture into other regions
of the state space, allowing us to focus on only this
“waiting-transition” dynamics without sacrificing informa-
tion about the system’s behavior. For a system with P stable
states we can write the P × P transition matrix

~Rε
i;j ¼

(
~Rε
i;j i ≠ j

−P
j
~Rε
i;j i ¼ j;

ð5Þ

which defines a (continuous-time) Markov process on the
stable states of the system. In our numerical calculations,
we use the fact that the limiting occupancy is described by
the equilibrium solution of this process. In fact, the Markov
process specifies all attributes of the associated NEST. The
NEST is conceptually similar to the state transition network
used in physical chemistry and biochemistry [33–36], as
well as to transition networks studied in mathematics [21].
There are, however, key differences between our approach
and those considered previously, in addition to the fact that
we focus on network systems. In particular, the NEST does
not assume the existence of a potential energy landscape
and is defined for nonvanishing levels of noise, which
requires us to develop a new formulation that accounts,
in particular, for long mixing times and for values of ε
larger than S�i;j (see Supplemental Material [20], Sec. S4).
Furthermore, unlike static state transition networks, the
transition rates in the NEST are malleable and can be
rationally manipulated with OLAC.
For the VPC model, the NESTs corresponding to the

unmodified signaling strengths [Fig. 2(a)] and to the
signaling strengths that optimize lineage 1° occupancy
[Fig. 2(b)] are shown in Figs. 2(d) and 2(e), respectively.
These networks represent a substantial distillation of the
dynamics of the underlying biophysical system and can be
used to simplify and explain the transition dynamics in a
high-dimensional system without the need to consider its
entire state space. In particular, for the range of edge widths
shown, the optimized NEST in Fig. 2(e) has edges between
all nodes except from lineage 3° to lineage 2°, indicating
that a direct transition between these two states is highly
unlikely, whereas an indirect transition is possible; indeed,
the two-step transition 3° → 1° → 2° has an overwhelm-
ingly higher rate (102 times higher). By comparing with the
NEST of the original system, shown in Fig. 2(d), this also
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demonstrates that direct transitions for one parameter
regime can become indirect for another.
The OLAC method can be implemented directly on

the NEST representation. Indeed, the objective function
GðfS�i;jg; εÞ is naturally defined in terms of the transition

matrix of the system, ~Rε. As our application to the VPC
system shows, the combined effect of optimizing this
objective function is to vary the height of the transition
barrier along the minimum action path between the stable
states. This shows that OLAC itself does not require
determining the full quasipotential of the system, which
would be computationally prohibitive in high dimensions.

III. APPLICATIONS

A. Controlling pancreas cell transdifferentiation

An important research problem in cellular reprogram-
ming concerns the induction of insulin-producing pancre-
atic β cells from noninsulin-producing cell lineages;
interventions capable of achieving this goal could lead
to new treatments for type I diabetes. In order to computa-
tionally identify an optimal intervention to induce the
desired reprogramming, we consider a ten-dimensional
model of the hierarchical pancreas cell (HPC) differentia-
tion [37]. The model has five stable fixed points—three
representing differentiated endocrine pancreas cell types
(α, β, and δ) and two representing intermediate states (α=β
and α=δ). The expression level of the ten regulatory genes
fxig are each assumed to be tunable independently through
a factor σi (details of the model are given in Appendix B).
We first consider the uncontrolled model, in which

σi ¼ 1 for i ¼ 1;…; 10. As shown in Fig. 3(a), in this
case the two intermediate states attract the majority (>99%)
of the occupancy. Furthermore, transitions to the β state
from the α and δ states occur at negligibly small rates
(<10−100), indicating that such lineage respecification
effectively never occurs spontaneously. We apply OLAC
to this model in order to identify the optimal combination
of control actions that maximize the occupancy of the β

state vεβ; the admissible interventions are limited to those
for which no bifurcations occur, which is imposed using the
same constraints as in the previous example. The optimal
intervention that maximizes vεβ is a three-gene one, con-
sisting of the downregulation of Brn4 and δ-gene combined
with the upregulation of MafA. The resulting NEST for
ε ¼ 0.01 is shown in Fig. 3(b). Under this optimal
intervention, the limiting occupancy of the β lineage goes
from less than 0.01 to more than 0.99.
The analysis specifically shows the reliance of some,

but not all, lineages on two-step transitions to reach the
desired β lineage [Fig. 3(c)]. Previous research has sug-
gested that indirect lineage respecifications might be
suboptimal reprogramming strategies [38]. This is clearly
the case for the δ → β reprogramming, which is optimized
through a direct transdifferentiation event. For the α
and α=δ lineages, however, with overwhelming likelihood
the transformation to the β state will pass through the
intermediate α=β state. Thus, which of the two cellular
reprogramming strategies (direct or indirect) is optimal is
context dependent and cannot be determined without
specification of the system, the initial state, and the final
state. Systematically accounting for such context depend-
ence could lead to new advances in the development of
cellular reprogramming technologies.

B. Predicting anticancer therapeutic targets

Evasion of apoptosis is one of the hallmarks of cancer
cells [39]. As such, identifying tunable factors in the cell
death pathway that effectively eliminate proliferative (or
abnormal survival) cell states without harming healthy cells
could lead to new therapeutic targets. To computationally
identify candidate targets, we employ OLAC to analyze a
reformulation of the Boolean model of the cell death
pathway proposed in Ref. [40]. This reformulation is a
continuous-variable model generated using the HillCube
methodology [41], which is more amenable to analysis and
preserves all relevant properties of the original model,
including the stable states. The model is comprised of

FIG. 3. Controlled stochastic lineage switching in a multidimensional model of HPC differentiation. (a), (b) NESTs of the model for
the unmodified parameters (a) and for OLAC applied to optimize the limiting occupancy of the β cell state (red) (b), for ε ¼ 0.01. In both
panels, node size indicates the limiting occupancy of the state and edge width indicates the (negative of the) log transition rate. OLAC
identifies that only three (out of ten) transcription factors need to be tuned in the model to optimize β-cell occupancy: MafA (increased),
Brn4 (decreased), and δ-gene (decreased). (c) Transition hierarchy into the β cell state for the optimized system. Two states (δ and α=β)
transition directly; two others (α and α=δ) require passage through an intermediate state—in this case α=β.
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22 genes central to the programmed cell death and 42
parameters representing kinetic constants of the different
reactions, which we denote by ci, i ¼ 1;…; 42 (see
Appendix B). It follows that two stable states form for
all values of the parameters: apoptosis and necrosis. For a
specific range of parameters representing healthy cells,
a third state is also stable: the so-called naive state. For a
different parameter range, however, a different stable state
arises, corresponding to a survival cell type that is resistant
to the apoptotic signal. This survival state represents cancer
and is the focus of our discussion.
Our goal is to predict therapeutic targets that can

induce transition from the survival state to the apoptotic
state, without increasing the rate of apoptotic death in
normal cell types or causing them to become survival
cells. Although noise can, in principle, induce switches
from the survival to the apoptotic state, only a fraction of
the cells would transform as desired when both stable
states exist. We therefore neglect the effect of noise
temporarily and show that even in this case OLAC can be
used to identify successful optimal interventions, which
under these conditions lead to a bifurcation that com-
pletely eliminates the undesired (survival) state. To avoid
inflammatory response, it is also desirable not to induce
transitions to the necrotic state. These conditions are
assured by taking GðΩÞ ¼ −S�ðsurvival → apoptosisÞ
as the objective function to be maximized, and by
imposing the constraints ΔS�ðnaive→ apoptoticÞ≥
−ϑ0, ΔS�ðnaive → necroticÞ ≥ −ϑ0, and S�ðsurvival →
necroticÞ ≥ ϑ0, where Δ indicates change under the
control intervention and ϑ0 is taken to be 0.05 in our
simulations. To encompass the largest possible set of
candidate targets, we assume that any of the 42 param-
eters of the model can be tuned in experiments, and
hence, we take Ω ¼ fcig42i¼1. However, since existing
experimental techniques cannot be easily used to manipu-
late a large number of targets, we further constrain each
control intervention to involve only a relatively small
number of all tunable parameters. This can be achieved
by stipulating that the sum of the absolute values of all
changes to the parameters must be equal to a prespecified
intervention strength χ0, as detailed in Appendix C.
We thus apply OLAC to the cell death model for the

objective function and constraints above. To account for
genetic heterogeneity between cancer cells, we analyze six
different survival cell types, represented here as six sets
of unique values for the parameters Ω. These parameters
represent nondimensional kinetic constants for each gene-
gene interaction. In our simulations the individual uncon-
trolled parameters for these cell types are on average
0.50� 0.03 and the intervention strength χ0 is taken to
be 0.1; 0.2;…; 0.9 (Fig. S3 in the Supplemental Material
[20] shows the breakdown of all cases). The number of
parameters modified by optimal interventions tends to
increase as χ0 increases, ranging from an average of

2.7 to 5.7 for χ0 varied from 0.1 to 0.9. For each cell
type, a successful intervention (eliminating the survival
state) is always achieved for large enough χ0 within this
interval. On average, approximately only 5 out of the 42
parameters need to be modified in the optimal successful
interventions. To put this result in perspective, we note that
if the sparsity constraint in Eq. (C1) is disabled, OLAC
leads to an average of no less than 40 modified parameters
for a successful intervention. This constraint, which gen-
eralizes immediately to any system, is therefore effective to
restrain the number of control parameters.
Figure 4 summarizes the results, showing that a unique

subset of only 10 parameters is needed to form the
(on average) five-parameter successful target sets for
any cell type. The biological functions and prevalence
of these targets are explicitly indicated in Table S1 of
the Supplemental Material [20]. Notably, only two targets
are included in interventions found for all six cell types,
namely, the parameters whose predicted increase will
decrease the activation of NFκB by IKK and the activation
of IKK by RIP1ub (Fig. 4, parameters 26 and 36,
respectively). The identification of these two targets is
not entirely surprising since NFκB is a central regulator of
the cell death pathway whose overactivation has been
implicated in the cellular transition to cancer [42]; the
consistent identification of both targets across all six cell
types is an indication of the robustness of our approach.
Aside from these global targets, OLAC also predicts
unique combinations of targets for each cell type, in
many cases indicating genes and interactions that have
only recently been identified as possible cancer targets,
e.g., the potential of suppressing the activation of cFLIP
by NFκB [43] (Fig. 4, parameter 9). The identification of
optimal target combinations that are unique to different
cell types illustrates the potential of OLAC to assist the
development of personalized therapeutic strategies as well
as of interventions to address various forms of cancer [44]
and to manipulate heterogeneous multistable cells in
general [45–47].
OLAC finds an optimal control action whether or not a

bifurcation has been reached, allowing its efficacy and
possible adverse effects to be monitored in experiments as
the strength of the intervention is increased. Theoretically,
the efficacy of an intervention can be defined as the relative
reduction of the action associated with the transition from
the survival state to the apoptotic state [Supplemental
Material [20], Fig. S3(c)]. Experimentally, the efficacy
can be more easily estimated by monitoring the predicted
gene expression changes induced by the interventions
[Supplemental Material [20], Fig. S3(b)]. As shown in
Fig. 4, for interventions that eliminate the survival state,
the sensitivity to the control interventions can vary widely
across different genes. For example, in every cell type
considered, the expressions of CASP3, SMAC, and CYT-c
(among others) are predicted not to change at all until the
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elimination of the survival state; in contrast, cFLIP, IKK,
and NFκB change expression in all cell types.

C. Biophysically relevant transition times

In cases where OLAC identifies an intervention to
induce a bifurcation to eliminate an undesired state, it is
expected from experimental work in deterministically
reprogramming somatic cells to a pluripotent state (a
prototypical example of an induced cell state transition)
that such a transition will occur on a relatively short time
scale, within approximately one week [48]. However, due
to constraints on parameter changes, it may not always be
possible to induce a bifurcation. To maintain biological
relevance, the time scale over which these nonbifurcative
interventions act should not be exceedingly long. Given a
noise strength ε and a barrier height S�i;j between two states,
the approximate mean first exit time ~T ε

i;jðΩÞ from that state
can be estimated as [21]

~T ε
i;jðΩÞ ∝ exp

�
1

ε
S�i;jðΩÞ

�
; ð6Þ

where the transition time increases for lower noise levels
and higher action barriers, as expected. Since ~T ε

i;j in Eq. (6)
is dimensionless, this quantity is best interpreted as a
relative increase in transition time over the case of S�i;j ¼ 0,
which from above we take to be one week.
Figure 5 shows the mean first transition time using as a

model application the cell death model considered in the
previous section. The figure shows the mean transition time
as a function of both noise level and barrier heights for a
single cell type [as defined by each intervention strength
in Fig. S3(c) of the Supplemental Material [20]]. It follows
that for cases where S�i;jðΩÞ ≤ 3ε, the average transition time
will be less than 20 weeks. This time scale is a reasonable
upper limit for the biological relevance of any intervention:
because transition times are exponentially distributed, inter-
ventions at this strength will cause a measurable fraction
of the population to transition in just a couple of weeks.
This benchmark thus provides a straightforward criterion to
determine if an identified intervention will be relevant in
practice. Figure 5 also demonstrates the important fact that
it is not the size of the dynamical system that determines the
switching time between states, but rather the ratio of the
barrier height to the strength of the noise.

FIG. 4. Optimal therapeutic interventions for the cell death regulatory network model. The network has 22 genes (circles), 3 input
parameters (top), and 42 target tunable parameters (edges), where the edge heads distinguish between excitatory (arrow) and inhibitory
(bar) regulatory interactions. OLAC is applied to induce a bifurcation transition from survival to apoptotic states. The parameters
involved in one or more optimal intervention are consistently upregulated (green) or downregulated (red) by the interventions; those not
recruited by any optimal intervention are shown in black. The edge width indicates the prevalence of that parameter in optimal
interventions for the various cell types and intervention strengths considered (up to the elimination of the survival state). The size of each
circle represents the sensitivity of the gene to proapoptotic interventions, defined as the change in gene expression between the
uncontrolled scenario and the smallest intervention scenario at which the survival state is eliminated; the color distinguishes up and
down expression. Genes in white are those that change expression substantially between the survival and apoptotic states. These results
are based on 6 simulated cell types and 9 different intervention strengths (see Supplemental Material [20], Fig. S3).
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We expand on this approach in the Supplemental Material
[20], Sec. S3, where we demonstrate that OLAC can be used
to identify constrained interventions that achieve a desired
limiting occupancy within a prespecified time frame.
Therein we also generalize OLAC to systems with (multi-
plicative) noise that depends on the system state and to
systems that are best modeled using a chemical kinetic
formulation [49–51].

IV. DISCUSSION

The method proposed here, optimal least action
control, represents a new direction in the control of
biophysical systems. Traditional control approaches for
biophysical systems are based on manipulating the trajec-
tories of the system, while our method is based instead on
manipulating the epigenetic landscape through which these
trajectories travel. This is achieved by effectively altering
the barriers between different stable states in the quasipo-
tential of the system, which could be achieved biologically
through, for example, a genome editing approach [52]. In
this way OLAC stands in contrast to other orthogonal
methods that seek to control cellular states by directly
modifying gene expression levels through, for example,
siRNA strategies [53–55]. As such, our method naturally
accounts for cellular noise and the incorporation of
constraints on the possible control actions. But in contrast
to previous work that has sought to construct the entire
quasipotential for a dynamical system [56], we utilize
the associated network of state transitions (NEST) to describe
and control the system at a substantially reduced computa-
tional cost, which renders the approach applicable to a wide
range of biophysical systems—including high-dimensional
networks.
The cell death model example illustrates one of the key

strengths of OLAC: its effectiveness when the problem

involves an explosion in the number of possible reprog-
ramming combinations. In practical applications to multi-
parameter systems, it is of interest to identify interventions
that are not only optimal but also sparse, i.e., that target
only a few out of many possible tunable factors. Such
sparsity is desired since most biologically realizable inter-
ventions are able to control only a few parameters and, for
example, would not be able to directly control all param-
eters in the cell death model. Because OLAC can benefit
from the framework of convex regularization, however, this
combinatorial increase in the number of possible inter-
ventions can be dealt with easily by incorporating a sparsity
constraint that has only marginal impact on the computa-
tional cost.
Another key property of the approach is its flexibility.

For example, previous modeling approaches to explain
reprogramming experiments have focused mainly on bifur-
cations that destabilize or eliminate states [57], which are
comparatively larger changes in the dynamics of the
system. These approaches do not benefit from the presence
of noise and tacitly assume that, to reach the desired state,
the initial state must become deterministically unstable or
disappear, which, as demonstrated for the cell death model,
may not be possible given a stringent enough set of
constraints on the possible set of interventions. On the
other hand, for being based on the Freidlin-Wentzell action,
our method is effective as a unified approach both (i) to
exploit the presence of noise for control in the absence of
any bifurcation (as shown for the pancreas model and the
cell death model with low intervention strengths) and (ii) to
identify control interventions mediated by bifurcations in
the absence of any noise (as shown for the cell death model
with large intervention strengths). Therefore, instead of
facing reduced performance in the presence of noise, which
is a common drawback of other control approaches [53],
OLAC benefits from the presence of noise, utilizing noise
as an additional control tool.
Through the use of the approach introduced here, we

have shown that, counterintuitively, the optimal lineage
respecification trajectory is often indirect; that is, they
correspond to cases in which the most likely trajectory for
an optimized transition between two states will pass
through one or more intermediate stable states. Such cases
cannot be anticipated by common sense, since for a
therapeutic intervention, for instance, an indirect path
may cause the cells to worsen before they improve. This
result suggests a new possible method for identifying
enhanced reprogramming strategies, namely, by system-
atically exploring combinations of intermediate transitions.
Our approach can also be applied to a much broader range

of biophysical problems than those discussed in detail here.
In particular, OLAC could be used in the context of synthetic
biology, as researchers seek to build ever more complex
synthetic systems and computer-aided design methods play
an increasingly important role [58]. In that context, OLAC

FIG. 5. Transition time for the cell death model as a function of
barrier height and noise strength. Transition time is calculated
using Eq. (6). The black line separates those barrier height–noise
strength combinations that occur over a therapeutically relevant
time scale (bottom right) and those that do not (top left).
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can identify optimal parameter tuning to reshape the
quasipotential for the rational design of systems with
prespecified dynamical behavior and response to noise.
The same approach can also be used to generate insights
into epigenetic diseases and the mechanisms that give rise to
them, including the possible dependence of their incidence
rate on external versus genetic factors, as well as insights into
potential preventive measures to reduce disease risks by
identifying conditions that increase the barriers for transi-
tions to disease states.
Furthermore, the foundation of OLAC in the Freidlin-

Wentzell action means that the applications of this method
need not be biophysical. In particular, our method can
easily be used to predict control interventions in other
noisy multistable networks and, along with NEST, to
characterize the basins of attraction of these systems [59].
For example, in the Supplemental Material [20], Sec. S4,
we construct the NEST for a dynamical system with more
than 100 attractors [60] and demonstrate that, even in a
system with such substantial multistability, noise can
effectively eliminate the occupancy of the majority
of attractors, leaving only a small fraction of them
occupied. Moreover, along with the already mentioned
applications to power grids, polymer networks, and food-
web networks, OLAC could also find use in controlling
spreading processes on social networks [61], in inducing
synchronization patterns in oscillator networks [62], in
manipulating associative memory networks [63], and
potentially in creating new attractors [64]. Further devel-
opment of this method could also expand its applications
to models of disease epidemics and population dynamics.
In particular, substantial foundational work has been
done on the modeling of extinction events in such
systems, which typically requires model-specific
mathematical analysis [65–67]. Because a white-noise
approximation, like in Eq. (1), cannot accurately approxi-
mate the dynamics of these systems [68], expanding
OLAC to apply to extinction events in larger networks
will require using situation-specific calculations of the
transition rates.
Ultimately, we believe that OLAC—together with

NEST—forms a flexible, scalable method that can be
used to understand and control the dynamical stability
and response to noise of a wide range of complex
networks, including those with large number of dynamical
variables, tunable parameters, and attractors. The method
is easily implementable, with a ready-to-use numerical
implementation included as supplemental files [20]. The
method requires no a priori information (beyond those
implicitly defined by the dynamical equations) about how
variations in the control parameters affect the system, and
it can be used in concert with rather general constraints on
the control actions. While OLAC can be applied to many
systems, as formulated here, application of the method
requires a quantitative dynamical model. Extending the

method to systems for which no model is available is an
important direction for future research. Future work is
also expected to expand on the applications of the
approach and to further demonstrate its experimental
efficacy.
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APPENDIX A: COMPUTING THE
MINIMUM ACTION VALUE

The minimum action S�i;j is determined using

S�i;j ¼ S½~ϕ�
i;j� ¼ min

~ϕðtÞ
~ϕðT1Þ¼~ai
~ϕðT2Þ¼~aj

ðS½~ϕ�Þ;

S½~ϕ� ¼ 1

2

Z
T2

T1

����
����d~ϕdt ðtÞ − ~Fð~ϕðtÞ;ΩÞ

����
����2dt; ðA1Þ

where ~ai and ~aj denote the coordinates of the initial and
final stable states, respectively. To solve this optimization
problem, we minimize the discretized version of the func-
tional [22], given by

St0;…;tms
½~Φ0;…; ~Φms

�

¼ 1

2

Xms

n¼1

����
���� ~Φn − ~Φn−1

Δtn
− ~Fð~Φn−1=2;ΩÞ

����
����2Δtn; ðA2Þ

where we use T1¼ t0<t1< ���<tms
¼T2, Δtn ¼ tn − tn−1,

~Φn¼ ~ϕðtnÞ, and ~Φn−1=2 ¼ ð~Φn þ ~Φn−1Þ=2. In our simula-
tions, we set T2 ¼ −T1 ¼ 20 and ms ¼ 100, and verified
that larger values of T2 − T1 and ms would not improve
accuracy noticeably.
To maximize efficiency, we regularly remesh the path

from the time domain to the space domain and adaptively
redefine tn according to

WELLS, KATH, AND MOTTER PHYS. REV. X 5, 031036 (2015)

031036-10



Δαn
Z

T2

T1

wðtÞdt ¼ wðtn−1=2ÞΔtn; ðA3Þ

where Δαn ¼ 1=ms, tn−1=2 ¼ ðtn þ tn−1Þ=2, and wðtÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ C∥ðd~ϕ=dtÞðtÞ∥2

q
is the monitor function measuring

the speed along the path. We use the initial tn evenly
spaced and C ¼ 1010. These calculations require an initial
path between the stable states. The numerical results we
report are obtained using a straight line as the initial
path. We have checked that by using different initial paths,
such as those generated through the Brownian bridge
approach [69], the simulation always converges to the
same optimal paths.
We note that, since the parameters of the system are

modified at each step of OLAC, robust numerical continu-
ation of the equilibria is necessary. We use a simple
homotopy method to continue the stable states from initial
parameters Ω0 to terminal parameters Ω00. Specifically, we
use linear interpolation between these parameter values
combined with a Newton step [70]. The latter includes
checking at each step that the desired states are not lost to
unintended bifurcations.
All optimization procedures are done employing

the interior-point algorithm in the fmincon function of
the optimization toolbox of MATLAB [71]. A MATLAB

implementation of OLAC is included as supplemental
files (see Supplemental Material [20], Sec. S2, for
details).

APPENDIX B: EQUATIONS OF THE
MODELS CONSIDERED

1. VPC differentiation model

The deterministic component of the VPC model [24] is
given by

d~r
dt

¼ 1

τ
ð~σ1 − ~rÞ; ðB1Þ

where ~r¼ðx;yÞT , ~σ1 ¼ tanhð∥~f þ ~m∥Þð~f þ ~m=∥~f þ ~m∥Þ,
~f¼ ½2x−2c2xy;2yþc2ðy2−x2Þ�T , and ~m¼ ~m0þl1 ~m1þ
l2 ~m2. This is an effective representation of the combined
effects of EGF and Notch signaling, whose signaling
strengths are determined by l1 and l2, respectively. The
other parameters are τ ¼ 2.18, ~m0 ¼ ð−0.86;−0.50ÞT ,
~m1 ¼ ð0.86;−0.50ÞT , and ~m2 ¼ ð0.0; 1.0ÞT .

2. HPC differentiation model.

The deterministic component of the HPC differentiation
model is [37]

Pdx1∶
dx1
dt

¼ σ1as
xn4 þ xh7 þ xh8 þ xh10

1þ xh4 þ xh7 þ xh8 þ xh10
− kdegx1;

ptf1a∶
dx2
dt

¼ σ2a
xh10

1þ xh10 þ xh3
− kdegx2;

Ngn3∶
dx3
dt

¼ σ3a
xh10

1þ xh10 þ xh2
− kdegx3;

Pax6∶
dx4
dt

¼ σ4a
μhxh3 þ xh4

1þ μhxh3 þ xh4
− kdegx4;

Pax4∶
dx5
dt

¼ σ5ae
μhmxh1μ

hxh3
1þ μhmxh1μ

hx43 þ xh6
− kdegx5;

Arx∶
dx6
dt

¼ σ6ae
μhmxh1μ

hxh3
1þ μhmxh1μ

hxh3 þ xh5
− kdegx6;

MafA∶
dx7
dt

¼ σ7a
μhmxh1μ

hxh3x
h
5 þ xh7

1þ μhmxh1μ
hxh3x

h
5 þ xh7 þ xh8

− kdegx7;

δ-gene∶
dx8
dt

¼ σ8a
μhmxh1μ

hxh3x
h
5 þ xh8

1þ μhmxh1μ
hxh3x

h
5 þ xh7 þ xh8

− kdegx8;

Brn4∶
dx9
dt

¼ σ9a
μhxh6 þ xh9

1þ μhxh6 þ xh9
− kdegx9;

Hnf6∶
dx10
dt

¼ −σ10kdegx10; ðB2Þ

where ðas; ae; a; kdeg; μ; μm; hÞ ¼ ð2.2; 6.0; 4.0; 1.0; 0.25;
0.125; 4.0Þ are the fixed parameters in these equations.
Each parameter σi represents a tunable factor to alter the
expression of the gene represented by xi.

3. Cell death model.

The cell death model was converted from the Boolean
model [40] (see Ref. [72]) into a continuous version using
the ODEFY package [41]. The system has 22 variables,
representing gene products, and 42 tunable parameters.
In addition, the model has 3 input parameters that do not
change in time and 3 output variables that indicate the
state of the cell (distinct combinations of which indicate
whether the cell is in the survival, apoptotic, necrotic, or
naive state).

APPENDIX C: IMPLEMENTING THE
SPARSITY CONSTRAINT

In many biological systems there are dozens or hundreds
of parameters that could potentially be changed, but in
general only a few of them can be changed in any one
intervention. To identify the few most promising targets
from a large field of possible ones we employ a sparsity
constraint. The constraint is implemented as

XjΩj
i¼1

jΔΩij ≤ χ0; ðC1Þ
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where, as above, Δ denotes the change due to the control
action. While the condition in Eq. (C1) is by itself
consistent with all parameters being altered, optimization
under this constraint (as the one invoked by OLAC) is
expected to lead to a reduced number of modified param-
eters. The basis for this conclusion is that this constraint
works similarly to well-established methods of convex
regularization, which are known to lead to sparsity under
general conditions [73]. The specific number of modified
parameters as well as success rate will generally depend on
χ0, and this dependence can be explored as an additional
control factor. This formulation has the remarkable advan-
tage of involving only one optimization step, and hence
avoids the combinatorial explosion that would be involved
in testing all jΩj!=k!ðjΩj − kÞ! combinations of possible
“jΩj choose k” tunable factors. Indeed, an exhaustive
strategy would be computationally prohibitive since testing
for all k would require 2jΩj − 1 optimization steps, which is
>1012 for jΩj ¼ 42. Naturally, if a particular parameter is
not targetable under the given conditions, such information
can be directly incorporated into our analysis.
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