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We propose a universal, on-chip quantum transducer based on surface acoustic waves in piezoactive
materials. Because of the intrinsic piezoelectric (and/or magnetostrictive) properties of the material, our
approach provides a universal platform capable of coherently linking a broad array of qubits, including
quantum dots, trapped ions, nitrogen-vacancy centers, or superconducting qubits. The quantized modes of
surface acoustic waves lie in the gigahertz range and can be strongly confined close to the surface in
phononic cavities and guided in acoustic waveguides. We show that this type of surface acoustic excitation
can be utilized efficiently as a quantum bus, serving as an on-chip, mechanical cavity-QED equivalent of
microwave photons and enabling long-range coupling of a wide range of qubits.
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I. INTRODUCTION

The realization of long-range interactions between
remote qubits is arguably one of the greatest challenges
towards developing a scalable, solid-state spin-based quan-
tum information processor [1]. One approach to address
this problem is to interface qubits with a common quantum
bus that distributes quantum information between distant
qubits. The transduction of quantum information between
stationary and moving qubits is central to this approach. A
particularly efficient implementation of such a quantum bus
can be found in the field of circuit QED where spatially
separated superconducting qubits interact via microwave
photons confined in transmission line cavities [2–4]. In this
way, multiple qubits have been coupled successfully over
relatively large distances of the order of millimeters [5,6].
Fueled by dramatic advances in the fabrication and
manipulation of nanomechanical systems [7], an alternate
line of research has pursued the idea of coherent, long-
range interactions between individual qubits mediated by
mechanical resonators, with resonant phonons playing the
role of cavity photons [8–13].
In this paper, we propose a new realization of a quantum

transducer and data bus based on surface acoustic waves
(SAWs). SAWs involve phononlike excitations bound to

the surface of a solid and are widely used in modern
electronic devices, e.g., as compact microwave filters
[14,15]. Inspired by two recent experiments [16,17], where
the coherent quantum nature of SAWs has been explored,
here we propose and analyze SAW phonon modes in
piezoactive materials as a universal mediator for long-
range couplings between remote qubits. Our approach
involves qubits interacting with a localized SAW phonon
mode, defined by a high-Q resonator, which in turn can be
coupled weakly to a SAW waveguide (WG) serving as a
quantum bus; as demonstrated below, the qubits can be
encoded in a great variety of spin or charge degrees of
freedom. We show that the Hamiltonian for an individual
node (for a schematic representation see Fig. 1) can take on
the generic Jaynes-Cummings form ðℏ ¼ 1Þ,

Hnode ¼
ωq

2
σz þ ωca†aþ gðσþaþ σ−a†Þ; ð1Þ

where ~σ refers to the usual Pauli matrices describing the
qubit with transition frequency ωq and a is the bosonic
operator for the localized SAW cavity mode of frequency
ωc=2π ∼ GHz [18]. The coupling g between the qubit and
the acoustic cavity mode is mediated intrinsically by the
piezoproperties of the host material, it is proportional to the
electric or magnetic zero-point fluctuations associated with
a single SAW phonon and, close to the surface, can reach
values of g ∼ 400 MHz, much larger than the relevant
decoherence processes and sufficiently large to allow for
quantum effects and coherent coupling in the spin-cavity
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system as evidenced by cooperativities [19] of C ∼ 10–100
(see Sec. IV and Table I for definition and applicable
values). For ωq ≈ ωc, Hnode allows for a controlled map-
ping of the qubit state onto a coherent phonon super-
position, which can then be mapped to an itinerant SAW
phonon in a waveguide, opening up the possibility to
implement on-chip many quantum communication proto-
cols well known in the context of optical quantum
networks [13,20].
The most pertinent features of our proposal can be

summarized as follows. (1) Our scheme is not specific
to any particular qubit realization, but—thanks to the
plethora of physical properties associated with SAWs in
piezoactive materials (strain and electric and magnetic
fields)—provides a common on-chip platform accessible
to various different implementations of qubits, comprising
both natural (e.g., ions) and artificial candidates, such as
quantum dots (QDs) or superconducting qubits. In particu-
lar, this opens up the possibility to interconnect dissimilar
systems in new electroacoustic quantum devices.
(2) Typical SAW frequencies lie in the gigahertz range,
closely matching transition frequencies of artificial atoms
and enabling ground-state cooling by conventional
cryogenic techniques. (3) Our scheme is built upon an
established technology [14,15]: Lithographic fabrication
techniques provide almost arbitrary geometries with high
precision as evidenced by a large range of SAW devices
such as delay lines, bandpass filters, resonators, etc.
In particular, the essential building blocks needed to
interface qubits with SAW phonons have already been
fabricated, according to design principles familiar from

electromagnetic devices: (i) SAW resonators, the mechani-
cal equivalents of Fabry-Perot cavities, with low-temper-
ature measurements reaching quality factors of Q ∼ 105

even at gigahertz frequencies [22–24], and (ii) acoustic
waveguides as analog to optical fibers [14]. (4) For a given
frequency in the gigahertz range, due to the slow speed of
sound of ∼103 m=s for typical materials, device dimen-
sions are in the micrometer range, which is convenient
for fabrication and integration with semiconductor compo-
nents, and about 105 times smaller than corresponding
electromagnetic resonators. (5) Since SAWs propagate
elastically on the surface of a solid within a depth of
approximately one wavelength, the mode volume is
intrinsically confined in the direction normal to the surface.
Further surface confinement then yields large zero-point
fluctuations. (6) Yet another inherent advantage of our
system is the intrinsic nature of the coupling. In piezo-
electric materials, the SAW is accompanied by an electrical
potential ϕ, which has the same spatial and temporal
periodicities as the mechanical displacement and provides
an intrinsic qubit-phonon coupling mechanism. For exam-
ple, recently, qubit lifetimes in GaAs singlet-triplet qubits
were found to be limited by the piezoelectric electron-
phonon coupling [25]. Here, our scheme provides a new
paradigm, where coupling to phonons becomes a highly
valuable asset for coherent quantum control rather than a
liability.
In what follows, we first review the most important

features of surface acoustic waves, with a focus on the
associated zero-point fluctuations. Next, we discuss the
different components making up the SAW-based quantum
transducer and the acoustic quantum network it enables:
SAW cavities, including a detailed analysis of the achiev-
able quality factor Q, SAW waveguides, and a variety of
different candidate systems serving as qubits. Lastly, as
exemplary application, we show how to transfer quantum
states between distant nodes of the network under realistic
conditions. Finally, we draw conclusions and give an
outlook on future directions of research.

II. SAW PROPERTIES

Elastic waves in piezoelectric solids are described by

ρüi − cijkl∂j∂luk ¼ ekij∂j∂kϕ; ð2Þ

ϵij∂i∂jϕ ¼ eijk∂i∂kuj; ð3Þ

where the vector uðx; tÞ denotes the displacement field (x
is the Cartesian coordinate vector), ρ is the mass density,
and repeated indices are summed over ði; j ¼ x; y; zÞ; c, ϵ,
and e refer to the elasticity, permittivity, and piezoelectric
tensors, respectively [26]: they are largely defined by
crystal symmetry [27]. For example, for cubic crystals
such as GaAs, there is only one nonzero component for the
permittivity and the piezoelectric tensor, labeled as ϵ and

FIG. 1. SAW as a universal quantum transducer. Distributed
Bragg reflectors made of grooves form an acoustic cavity for
surface acoustic waves. The resonant frequency of the cavity is
determined by the pitch p, fc ¼ vs=2p. Reflection occurs
effectively at some distance inside the grating; the fictitious
mirrors above the surface are not part of the actual experimental
setup, but are shown for illustrative purposes only. Red arrows
indicate the relevant decay channels for the cavity mode: leakage
through the mirrors, internal losses due to, for example, surface
imperfections, and conversion into bulk modes. Qubits inside and
outside of the solid can be coupled to the cavity mode. In more
complex structures, the elastic medium can consist of multiple
layers on top of some substrate.
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e14, respectively [26]. Since elastic disturbances propagate
much slower than the speed of light, it is common practice
to apply the so-called quasistatic approximation [27],
where the electric field is given by Ei ¼ −∂iϕ. When
considering surface waves, Eqs. (2) and (3) must be
supplemented by the mechanical boundary condition that
there should be no forces on the free surface (taken to
be at z ¼ 0 with ẑ being the outward normal to the surface),
that is Tzx ¼ Tzy ¼ Tzz ¼ 0 at z ¼ 0 (where Tij ¼
cijkl∂luk þ ekij∂kϕ is the stress tensor), and appropriate
electrical boundary conditions [26].
If not stated otherwise, the term SAW refers to the

prototypical (piezoelectric) Rayleigh wave solution as
theoretically and experimentally studied, for example,
in Refs. [16,17,26,28] and used extensively in different
electronic devices [14,15]. It is nondispersive, decays
exponentially into the medium with a characteristic pen-
etration depth of a wavelength, and has a phase velocity
vs ¼ ω=k that is lower than the bulk velocities in that
medium, because the solid behaves less rigidly in the
absence of material above the surface [27]. As a result, it
cannot phase match to any bulk wave [14,29]. As usual, we
consider specific orientations for which the piezoelectric
field produced by the SAW is strongest [14,29], for
example, a SAW with a wave vector along the [110]
direction of a (001) GaAs crystal (cf. Refs. [16,26] and
Appendixes A and B).

A. SAWs in quantum regime

In a semiclassical picture, an acoustic phonon associated
with a SAW creates a time-dependent strain field,
skl ¼ ð∂luk þ ∂kulÞ=2, and a (quasistatic) electrical
potential ϕðx; tÞ. Upon quantization, the mechanical dis-
placement becomes an operator that can be expressed
in terms of the elementary normal modes as ûðxÞ ¼P

n½vnðxÞan þ H:c:�, where anða†nÞ are bosonic annihila-
tion (creation) operators for the vibrational eigenmode n
and the set of normal modes vnðxÞ derives from the
Helmholtz-like equationWvnðxÞ ¼ −ρω2

nvnðxÞ associated
with Eqs. (2) and (3). The mode normalization is given byR
d3xρv�nðxÞ · vnðxÞ ¼ ℏ=2ωn [25,30]. An important figure

of merit in this context is the amplitude of the mechanical
zero-point motion U0. Along the lines of cavity QED [2], a
simple estimate for U0 can be obtained by equating the
classical energy of a SAW ∼

R
d3xρ _u2 with the quantum

energy of a single phonon, that is, ℏω. This leads directly to

U0 ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=2ρvsA

p
; ð4Þ

where we used the dispersion relation ω ¼ vsk and the
intrinsic mode confinement V ≈ Aλ characteristic for
SAWs. The quantity U0 refers to the mechanical amplitude
associated with a single SAW phonon close to the surface.
It depends on only the material parameters ρ and vs and

follows a generic ∼A−1=2 behavior, where A is the effective
mode area on the surface. The estimate given in Eq. (4)
agrees very well with more detailed calculations presented
in Appendix C. Several other important quantities that are
central for signal transduction between qubits and SAWs
follow directly from U0: The (dimensionless) zero-point
strain can be estimated as s0 ≈ kU0. The intrinsic piezo-
electric potential associated with a single phonon derives
from Eq. (3) as ϕ0 ≈ ðe14=ϵÞU0 [31]. Lastly, the electric
field amplitude due to a single acoustic phonon is
ξ0 ≈ kϕ0 ¼ ðe14=ϵÞkU0, illustrating the linear relation
between electric field and strain characteristic for piezo-
electric materials [8]. In summary, we typically find
U0 ≈ 2 fm=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A ½μm2�

p
, yielding U0 ≈ 2 fm for micron-

scale confinement (cf. Appendix D). This is comparable
to typical zero-point fluctuation amplitudes of localized
mechanical oscillators [32]. Moreover, for micron-scale
surface confinement and GaAs material parameters, we
obtain ξ0 ≈ 20 V=m, which compares favorably with typ-
ical values of ∼10−3 and ∼0.2 V=m encountered in cavity
and circuit QED, respectively [2].
For the sake of clarity, we have focused on piezoelectric

materials so far. However, there are also piezomagnetic
materials that exhibit a large magnetostrictive effect. In
that case, elastic distortions are coupled to a (quasistatic)
magnetic instead of an electric field [33,34]; for details, see
Appendix D. For typical materials, such as Terfenol-D, the
magnetic field associated with a single phonon can be
estimated as B0 ≈ ð2–6Þ μT=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A ½μm2�

p
. Finally, we note

that composite structures comprising both piezoelectric
and piezomagnetic materials can support magnetoelectric
surface acoustic waves [35,36].

III. SAW CAVITIES AND WAVEGUIDES

A. SAW cavities

To boost single-phonon effects, it is essential to increase
U0. In analogy to cavity QED, this can be achieved by
confining the SAW mode in an acoustic resonator. The
physics of SAW cavities has been theoretically studied and
experimentally verified since the early 1970s [14,37]. Here,
we provide an analysis of a SAW cavity based on an
on-chip distributed Bragg reflector in view of potential
applications in quantum information science; for details,
see Appendix E. SAW resonators of this type can usually be
designed to host a single resonance fc ¼ ωc=2π ¼ vs=λc
(λc ¼ 2p) only and can beviewed as an acoustic Fabry-Perot
resonator with effective reflection centers, sketched by
localized mirrors in Fig. 1, situated at some effective
penetration distance into the grating [14]. Therefore, the
total effective cavity size along the mirror axis is Lc > D,
where D is the physical gap between the gratings. The total
cavity linewidth κ ¼ ωc=Q ¼ κgd þ κbd can be decomposed
into desired (leakage through the mirrors) and undesired
(conversion into bulk modes and internal losses due to
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surface imperfections etc.) losses, labeled as κgd and κbd,
respectively; for a schematic illustration, compare Fig. 1. For
the total quality factor Q, we can typically identify three
distinct regimes (cf. Fig. 2): For very small groove depths
h=λc ≲ 2%, losses are dominated by coupling to SAW
modes outside of the cavity, dubbed as the Qr regime
ðκgd ≫ κbdÞ, whereas for very deep grooves, losses due to
conversion into bulk modes become excessive (Qb regime,
κgd ≪ κbd). In between, for a sufficiently high number of
grooves N, the quality factorQ can ultimately be limited by
internal losses (surface cracks, defects in the material, etc.),
referred to as the Qm regime ðκgd ≪ κbdÞ. For N ≈ 300, we
find that the onset of the bulk-wave limit occurs for
h=λc ≳ 2.5%, in excellent agreement with experimental
findings [37,38]. With regard to applications in quantum
information schemes, the Qr regime plays a special role in
that resonator phonons leaking out through the acoustic
mirrors can be processed further by guiding them in acoustic
SAW waveguides (see below). To capture this behavior
quantitatively, we analyze κgd=κbd (cf. Fig. 2): for
κgd=κbd ≫ 1, leakage through the mirrors is the strongest
decay mechanism for the cavity phonon, whereas the
undesired decay channels are suppressed. Our analysis
shows that, for gigahertz frequencies fc≈3GHz, N≈100,
and h=λc≈2%, a quality factor of Q ≈ 103 is achievable,
together with an effective cavity confinementLc ≈ 40λc (for

D≲ 5λc) and κgd=κbd ≳ 20 (illustrated by the circle in
Fig. 2); accordingly, the probability for a cavity phonon to
leak through themirrors (rather than into thebulk for example)
is κgd=ðκgd þ κbdÞ ≳ 95%. Note that the resulting total cavity
linewidth of κ=2π ¼ fc=Q ≈ ð1–3Þ MHz is similar to the
ones typicallyencountered incircuitQED[6].Tocompare this
to the effective cavity-qubit coupling, we need to fix the
effective mode area of the SAW cavity. In addition to the
longitudinal confinement by the Bragg mirror (as discussed
above), a transverse confinement length Ltrans (in direction ŷ)
can be provided, e.g., using waveguiding, etching, or (similar
tocavityQED) focusing techniques [14,39,40].For transverse
confinement Ltrans ≈ ð1–5Þ μm and a typical resonant cavity
wavelength λc ≈ 1 μm, the effective mode area is then
A ¼ LtransLc ≈ ð40–200Þ μm2. In the desired regime
κgd=κbd ≫ 1, this is largely limited by the deliberately low
reflectivity of a single groove; accordingly, the cavity mode
leaks strongly into the grating such that Lc ≫ D
(cf. Appendix E for details). While up to now we have
focused on this standard Bragg design (due to its experimen-
tally validated frequency selectivity and quality factors), let us
briefly mention potential approaches to reduce A and thus
increase single-phonon effects even further. (i) The most
straightforwardstrategy(that is still compatiblewith theBragg
mirror design) is to reduce λc asmuch as possible, down to the
maximum frequency fc ¼ vs=λc that can still be made
resonant with the (typically highly tunable) qubit’s transition
frequency ωq=2π; note that fundamental Rayleigh modes
with fc ≈ 6 GHz have been demonstrated experimentally
[41]. (ii) In order to increase the reflectivity of a single groove,
one could use deeper grooves. To circumvent the resulting
increased losses into the bulk [cf. Fig. 2(b)], freestanding
structures (where the effect of bulk phononmodes is reduced)
couldbe employed. (iii) Lastly, alternative cavity designs such
as so-called trapped energy resonators make it possible to
strongly confine acoustic resonances in the center of plate
resonators [42].

B. SAW waveguides

Not only can SAWs be confined in cavities, but they can
also be guided in acoustic waveguides [14,43]. Two
dominant types of design are (i) topographic WGs, such
as ridge-type WGs, where the substrate is locally deformed
using etching techniques, and (ii) overlay WGs (such as
strip- or slot-type WGs), where one or two strips of
one material are deposited on the substrate of another to
form core and clad regions with different acoustic veloc-
ities. If the SAW velocity is slower (higher) in the film than
in the substrate, the film acts as a core (cladding) for the
guide, whereas the unmodified substrate corresponds to the
cladding (core). An attenuation coefficient of ∼0.6 dB=mm
has been reported for a 10 μm-wide slot-type WG, defined
by Al cladding layers on a GaAs substrate [39,40]. This
shows that SAWs can propagate basically dissipation free
over chip-scale distances exceeding several millimeters.

1 2 3 4 5
1

10

15

20

25

(a) (b)

FIG. 2. Characterization of a groove-based SAW cavity.
(a) Quality factor Q for N ¼ 100 (dashed blue curve) and
N ¼ 300 (red solid curve) grooves as a function of the normal-
ized grove depth h=λc. For shallow grooves, Q is limited by
leakage losses due to imperfect acoustic mirrors (Qr regime, gray
area), whereas for deep grooves conversion to bulk modes
dominates (Qb regime); compare asymptotics (dash-dotted lines).
(b) Ratio of desired to undesired decay rates κgd=κbd. The stronger
Q is dominated by Qr, the higher κgd=κbd. Here, w=p ¼ 0.5,
D ¼ 5.25λc, and fc ¼ 3 GHz; typical material parameters for
LiNbO3 are used (cf. Appendix E).
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Typically, one-dimensional WG designs have been inves-
tigated, but—to expand the design flexibility—one could
use multiple acoustic lenses in order to guide SAWs around
a bend [29].

IV. UNIVERSAL COUPLING

A. Versatility

To complete the analogy with cavity QED, a nonlinear
element similar to an atom needs to be introduced. Here,
we highlight three different exemplary systems, illustrating
the versatility of our SAW-based platform. We focus on
quantum dots, trapped ions, and nitrogen-vacancy (NV)
centers, but similar considerations naturally apply to other
promising quantum information candidates such as super-
conducting qubits [7,8,17,44], Rydberg atoms [45], or
electron spins bound to a phosphorus donor atom in silicon
[41]. In all cases considered, a single cavity mode a, with
frequency ωc close to the relevant transition frequency,
is retained. We provide estimates for the single-phonon
coupling strength and cooperativity (cf. Table I), while
more detailed analyses go beyond the scope of this work
and are subject to future research.

1. QD charge qubit

A natural candidate for our scheme is a charge qubit
embedded in a lithographically defined GaAs double
quantum dot (DQD) containing a single electron. The
DQD can well be described by an effective two-level
system, characterized by an energy offset ϵ and interdot
tunneling tc yielding a level splitting Ω ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2 þ 4t2c

p
[46].

The electron’s charge e couples to the piezoelectric
potential; the deformation coupling is much smaller than
the piezoelectric coupling and can therefore safely be
neglected [47]. Since the quantum dot is small compared
to the SAW wavelength, we neglect potential effects
coming from the structure making up the dots (hetero-
structure and metallic gates); for a detailed discussion, see
Appendix I. Performing a standard rotating-wave approxi-
mation (RWA) (valid for δ; gch ≪ ωc), we find that the
system can be described by a Hamiltonian of Jaynes-
Cummings form,

Hdot ¼ δSz þ gch
2tc
Ω

ðSþaþ S−a†Þ; ð5Þ

where δ ¼ Ω − ωc specifies the detuning between the qubit
and the cavity mode, and S� ¼ j�ih∓j (and so on) refer to
pseudospin operators associated with the eigenstates j�i of
the DQD Hamiltonian (cf. Appendix F). The Hamiltonian
Hdot describes the coherent exchange of excitations
between the qubit and the acoustic cavity mode. The
strength of this interaction gch ¼ eϕ0F ðkdÞ sin ðkl=2Þ is
proportional to the charge e and the piezoelectric potential
associated with a single phonon ϕ0. The decay of the SAW
mode into the bulk is captured by the function F ðkdÞ (d is
the distance between the DQD and the surface; see
Appendix B for details), while the factor sin ðkl=2Þ reflects
the assumed mode function along the axis connecting the
two dots, separated by a distance l. For (typical) values of
l ≈ λc=2 ¼ 250 nm and d ≈ 50 nm ≪ λc, the geometrical
factor F ðkdÞ sin ðkl=2Þ then leads to a reduction in cou-
pling strength compared to the bare value eϕ0 (at the
surface) by a factor of ∼2 only. In total, we then obtain
gch ≈ 2 GHz=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A ½μm2�

p
. For lateral confinement Ltrans≈

ð1–5Þ μm, the effective mode area is A ¼ LtransLc≈
ð20–100Þ μm2. The resulting charge-resonator coupling
strength gch ≈ ð200–450Þ MHz compares well with values
obtained using superconducting qubits coupled to localized
nanomechanical resonators made of piezoelectric material,
where g ≈ ð0.4–1.2Þ GHz [7,8], or superconducting reso-
nators coupled to Cooper pair box qubits ðg=2π ≈ 6 MHzÞ
[3], transmon qubits ðg=2π ≈ 100 MHzÞ [48], and indium
arsenide DQD qubits ðg=2π ≈ 30 MHzÞ [49]. Note that, in
principle, the coupling strength gch could be further
enhanced by additionally depositing a strongly piezoelec-
tric material such as LiNbO3 on the GaAs substrate [16].
Moreover, with a LiNbO3 film on top of the surface,
nonpiezoelectric materials such as Si or Ge could also be
used to host the quantum dots [50]. The level splitting ΩðtÞ
and interdot tunneling tcðtÞ can be tuned in situ via external
gate voltages. By controlling δ one can rapidly turn on and
off the interaction between the qubit and the cavity: For an
effective interaction time τ ¼ π=2geff ðgeff ¼ 2gchtc=ΩÞ on
resonance ðδ ¼ 0Þ, an arbitrary state of the qubit is
swapped to the absence or presence of a cavity phonon;

TABLE I. Estimates for single-phonon coupling strength g and cooperativity C. We use A ¼ ð1–5Þ μm × 40λc,
T ¼ 20 mK [17], (conservative) quality factors of Q ¼ ð1; 1; 3; 1Þ × 103, and frequencies of ωc ¼ 2πð6; 1.5; 2 ×
10−3; 3Þ GHz for the four systems listed. For the spin qubit T⋆

2 ¼ 2 μs [21], and for the trapped ion scenario,
gionðCionÞ is given for d ¼ 150 μm due to the prolonged dephasing time farther away from the surface (Cion
improves with increasing d, even though gion decreases, up to a point where other dephasing start to dominate).
Further details are given in the text.

Charge qubit (DQD) Spin qubit (DQD) Trapped ion NV center

Coupling g (200–450) MHz (10–22.4) MHz (1.8–4.0) kHz (45–101) kHz
Cooperativity C 11–55 21–106 7–36 10–54
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i.e., ðαj−i þ βjþiÞj0i → j−iðαj0i − iβj1iÞ, where jni
labels the Fock states of the cavity mode. Apart from this
SWAP operation, further quantum control techniques known
fromcavityQEDmaybe accessible [51].Note that belowwe
generalize our results to spin qubits embedded in DQDs.

2. Trapped ion

The electric field associated with the SAW mode
does not only extend into the solid, but, for a free surface,
in general there will also be an electrical potential
decaying exponentially into the vacuum above the surface
∼ exp ½−kjzj� [26]; cf. Appendix B. This allows for cou-
pling to systems situated above the surface, without any
mechanical contact. For example, consider a single ion of
charge q and mass m trapped at a distance d above the
surface of a strongly piezoelectric material such as LiNbO3

or AlN. The electric dipole induced by the ion motion
couples to the electric field of the SAW phonon mode. The
dynamics of this system are described by the Hamiltonian

Hion ¼ ωca†aþ ωtb†bþ gionðab† þ a†bÞ; ð6Þ

where b refers to the annihilation operator of the ion’s
motional mode and ωt is the (axial) trapping frequency.
The single-phonon coupling strength is given by
gion ¼ qx0kcϕ0FðkcdÞ ¼ qϕ0FðkcdÞηLD. Apart from the
exponential decay FðkdÞ ¼ exp ½−kd�, the effective cou-
pling is reduced by the Lamb-Dicke parameter ηLD ¼
2πx0=λc, with x0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=2mωt

p
, since the motion of the

ion is restricted to a region small compared with the SAW
wavelength λc. For LiNbO3, a surface mode area of
A ¼ ð1–5Þ μm × 40λc, the commonly used 9Beþ ion,
and typical ion trap parameters with d ≈ 30 μm and
ωt=2π ≈ 2 MHz [52], we obtain gion ≈ ð3–6.7Þ kHz.
Here, gion refers to the coupling between the ion’s motion
and the cavity. However, based on Hion, one can, in
principle, generalize the well-known protocols operating
on the ion’s spin and motion to operations on the spin and
the acoustic phonon mode [53].

3. NV center

Yet another system well suited for our scheme are NV
centers in diamond. Even though diamond itself is not
piezoactive, it has played a key role in the context of high-
frequency SAW devices due to its record-high sound
velocity [14]; for example, high-performance SAW reso-
nators with a quality factor of Q ¼ 12 500 at ωc ≳ 10 GHz
were experimentally demonstrated for AlN/diamond
heterostructures [54,55]. To make use of the large
magnetic coupling coefficient of the NV center spin
γNV ¼ 2π × 28 GHz=T, here we consider a hybrid device
composed of a thin layer of diamond with a single
(negatively charged) NV center with ground-state spin S
implanted a distance d ≈ 10 nm away from the interface

with a strongly piezomagnetic material. Equivalently,
building upon current quantum sensing approaches
[56,57], one could use a diamond nanocrystal (typically
∼10 nm in size) in order to get the NV center extremely
close to the surface of the piezomagnetic material and
thus maximize the coupling to the SAW cavity mode;
compare Fig. 3(a) for a schematic illustration. In the
presence of an external magnetic field Bext [58], the
system is described by

HNV ¼ DS2z þ γNVBext · Sþ ωca†a

þ gNV
X

α¼x;y;z

ηαNVS
αðaþ a†Þ; ð7Þ

where D ¼ 2π × 2.88 GHz is the zero-field splitting,
gNV ¼ γNVB0 is the single-phonon coupling strength,
and ηαNV is a dimensionless factor encoding the ori-
entation of the NV spin with respect to the magnetic
stray field of the cavity mode. For d ≪ λc, a rough
estimate shows that at least one component of ηαNV is of
order unity [34]. For a NV center close to a Terfenol-D
layer of thickness h ≫ λc, we find gNV ≈ 400 kHz=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A ½μm2�

p
. Thus, as compared to direct strain coupling

≲200 Hz=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A ½μm2�

p
, the presence of the piezomagnetic

layer is found to boost the single-phonon coupl-
ing strength by 3 orders of magnitude; this is in
agreement with previous theoretical results for a static
setting [34].

(a)

(b)

FIG. 3. (a) Schematic illustration for coupling to a NV center
via a piezomagnetic (PM) material (see text for details); surface
grooves (not shown) can be used to provide SAW phonon
confinement. (b) SAWs can be generated electrically based on
standard interdigital transducers (IDTs) deposited on the surface.
Typically, an IDT consists of two thin-film electrodes on a
piezoelectric material, each formed by interdigitated fingers.
When an ac voltage is applied to the IDT on resonance (defined
by the periodicity of the fingers as ωIDT=2π ¼ vs=pIDT, where vs
is the SAW propagation speed), it launches a SAW across the
substrate surface in the two directions perpendicular to IDT
fingers [14,15,17].
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B. Decoherence

In the analysis above, we ignored the presence of
decoherence, which in any realistic setting will degrade
the effects of coherent qubit-phonon interactions. In this
context, the cooperativity parameter, defined as C ¼
g2T2=½κðn̄th þ 1Þ�, is a key figure of merit. Here, T2 refers
to the corresponding dephasing time, while n̄th ¼
ðexp ½ℏωc=kBT� − 1Þ−1 gives the thermal occupation num-
ber of the cavity mode at temperature T. The parameter
C compares the coherent single-phonon coupling strength
g with the geometric mean of the qubit’s decoherence rate
∼T−1

2 and the cavity’s effective linewidth ∼κðn̄th þ 1Þ; in
direct analogy to cavity QED, C > 1 marks the onset of
coherent quantum effects in a coupled spin-oscillator
system, even in the presence of noise, cf. Ref. [10] and
Appendix H for a detailed discussion. To estimate C, we
take the following parameters for the dephasing time T2.
For system (i), T2 ≈ 10 ns is measured close to the charge
degeneracy point ϵ ¼ 0 [46]. In scenario (ii), motional
decoherence rates of 0.5 Hz are measured in a cryogeni-
cally cooled trap for an ion height of 150 μm and 1 MHz
motional frequency [52]. Since this rate scales as ∼d−4
[53,59], we take T2½s� ≈ 2ðd ½μm�=150Þ4. Lastly, for the
NV center (iii), T2 ≈ 0.6 s is demonstrated for ensembles
of NV spins [60] and we assume an optimistic value of
T2 ¼ 100 ms, similarly to Ref. [61]. The results are
summarized in Table I. We find that C > 1 should be
experimentally feasible, which is sufficient to perform a
quantum gate between two spins mediated by a thermal
mechanical mode [9].

C. Qubit-qubit coupling

When placing a pair of qubits into the same cavity,
the regime of large single spin cooperativity C ≫ 1 allows
for coherent cavity-phonon-mediated interactions and
quantum gates between the two spins via the effective
interaction Hamiltonian Hint ¼ gdrðSþ1 S−2 þ H:c:Þ, where
gdr ¼ g2=δ ≪ g in the so-called dispersive regime [4].
For the estimates given in Table I, we restrict ourselves
to the Qr regime with Q ≈ 103, where leakage through the
acoustic mirrors dominates over undesired (nonscalable)
phonon losses ðκgd ≫ κbdÞ. However, note that small-scale
experiments using a single cavity only (where there is no
need for guiding the SAW phonon into a waveguide for
further quantum information processing) can be operated in
the Qm regime (which is limited only by internal material
losses), where the quality factor Q ≈Qm ≳ 105 is maxi-
mized (and thus overall phonon losses minimal).
As a specific example, consider two NV centers, both

coupled with strength gNV ≈ 100 kHz to the cavity and
in resonancewith each other, but detuned from the resonator.
Since for large detuning δ the cavity is only virtually
populated, the cavity decay rate is reduced to κdr¼
ðg2=δ2Þκ≈10−2κ≈1kHz (for fc ¼ 3 GHz, Q ¼ 2 × 105),

whereas the spin-spin coupling is gdr ≈ 0.1gNV ≈ 10 kHz.
Therefore, T2 ¼ 1 ms is already sufficient to approach the
strong-coupling regime, where gdr ≫ κdr; T−1

2 .

D. Coherent driving

Finally, we note that, in all cases considered above, one
could implement a coherent, electrical control by pumping
the cavity mode using standard interdigital transducers
(IDTs) [14,15,17]; compare Fig. 3(b) for a schematic
illustration. The effect of the additional Hamiltonian
Hdrive ¼ Ξ cos ðωIDTtÞ½aþ a†� can be accounted for by
replacing the cavity state by a coherent state; that is,
a → α. For example, in the case of Eq. (5), one could
then drive Rabi oscillations between the states jþi and j−i
with the amplified Rabi frequency ΩR ¼ gα.

V. STATE TRANSFER PROTOCOL

The possibility of quantum transduction between SAWs
and different realizations of stationary qubits enables a
variety of applications including quantum information
achitectures that use SAW phonons as a quantum bus to
couple dissimilar and/or spatially separated qubits. The
most fundamental task in such a quantum network is the
implementation of a state transfer protocol between two
remote qubits 1 and 2, which achieves the mapping
ðαj0i1 þ βj1i1Þ ⊗ j0i2 → j0i1 ⊗ ðαj0i2 þ βj1i2Þ. In anal-
ogy to optical networks, this can be accomplished via
coherent emission and reabsorption of a single phonon in a
waveguide [13]. As first shown in the context of atomic
QED [20], in principle perfect, deterministic state transfer
can be implemented by identifying appropriate time-
dependent control pulses.
Before we discuss a specific implementation of such a

transfer scheme in detail, we provide a general approximate
result for the state transfer fidelity F. As demonstrated in
detail in Appendix H, for small infidelities one can take

F ≈ 1 − ε − CC−1 ð8Þ
as a general estimate for the state transfer fidelity. Here,
individual errors arise from intrinsic phonon losses ∼ε ¼
κbd=κgd and qubit dephasing ∼C−1 ∼ T−1

2 , respectively; the
numerical coefficient C ∼Oð1Þ depends on the specific
control pulse and may be optimized for a given set of
experimental parameters [62]. This simple, analytical result
holds for a Markovian noise model where qubit dephasing
is described by a standard pure dephasing term leading
to an exponential loss of coherence ∼ exp ð−t=T2Þ and
agrees well with numerical results presented in Ref. [62].
For non-Markovian qubit dephasing an even better scaling
with C can be expected [9]. Using experimentally achiev-
able parameters ε ≈ 5% and C ≈ 30, we can then estimate
F ≈ 90%, showing that fidelities sufficiently high for
quantum communication should be feasible for all physical
implementations listed in Table I.
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In the following, we detail the implementation of a
transfer scheme based on spin qubits implemented in
gate-defined double quantum dots [63]. In particular, we
consider singlet-triplet-like qubits encoded in lateral QDs,
where two electrons are localized in adjacent, tunnel-
coupled dots. As compared to the charge qubits discussed
above, this system is known to feature superior coherence
time scales [64–67] which are largely limited by the
relatively strong hyperfine interaction between the elec-
tronic spin and the nuclei in the host environment [65],
resulting in a random, slowly evolving magnetic
(Overhauser) field for the electronic spin. To mitigate this
decoherence mechanism, two common approaches are
(i) spin-echo techniques, which allow us to extend spin
coherence from a time-ensemble-averaged dephasing time
T⋆
2 ≈ 100 ns to T2 ≳ 250 μs [67], and (ii) narrowing of the

nuclear field distribution [65,68]. Recently, real-time adap-
tive control and estimation methods (that are compatible
with arbitrary qubit operations) have allowed to narrow the
nuclear spin distribution to values that prolong T⋆

2 to T⋆
2 >

2 μs [21]. For our purposes, the latter is particularly
attractive as it can be done simply before loading and
transmitting the quantum information, whereas spin-echo
techniques can be employed aswell, however, at the expense
of more complex pulse sequences (see Appendix G for
details). In order to couple the electric field associated with
the SAW cavity mode to the electron spin states of such a
DQD, the essential idea is tomake use of an effective electric
dipole moment associated with the exchange-coupled spin
states of the DQD [69–72]. As detailed in Appendix G, we
then find that in the usual singlet-triplet subspace spanned by
the two-electron statesfj⇑⇓i; j⇓⇑ig, a singlenode canwell
be described by the prototypical Jaynes-Cummings
Hamiltonian given in Eq. (1). As compared to the direct
charge coupling gch, the single phonon coupling strength
g is reduced since the qubit states jli have a small admixture
of the localized singlet hS02jli ðl ¼ 0; 1Þ only. Using typical
parameters values, we find g ≈ 0.1gch ≈ 200 MHz=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A ½μm2�

p
[73]. In this system, the coupling gðtÞ can be

tuned with great flexibility via the tunnel-coupling tc and/or
the detuning parameter ϵ.
The state transfer between two such singlet-triplet qubits

connected by a SAW waveguide can be adequately
described within the theoretical framework of cascaded
quantum systems, as outlined in detail, for example, in
Refs. [13,20,74,75]: The underlying quantum Langevin
equations describing the system can be converted into an
effective, cascaded master equation for the system’s density
matrix ρ. For the relevant case of two qubits, it can be
written as _ρ ¼ Lidealρþ Lnoiseρ, where

Lidealρ ¼ −i½HSðtÞ þ iκgdða†1a2 − a†2a1Þ; ρ�
þ 2κgdD½a1 þ a2�ρ; ð9Þ

Lnoiseρ ¼ 2κbd
X
i¼1;2

D½ai�ρ − i
X
i

δi½Szi ; ρ�: ð10Þ

Here, D½a�ρ ¼ aρa† − 1
2
fa†a; ρg is a Lindblad term with

jump operator a and HSðtÞ ¼
P

iHiðtÞ, where HiðtÞ ¼
giðtÞ½Sþi ai þ S−i a

†
i � describes the coherent Jaynes-

Cummings dynamics of the two nodes. The ideal
cascaded interaction is captured by Lideal, which contains
the nonlocal coherent environment-mediated coupling
transferring excitations from qubit 1 to qubit 2 [76],
while Lnoise summarizes undesired decoherence proc-
esses: We account for intrinsic phonon losses (bulk-mode
conversion, material imperfections, etc.) with a rate κbd
and (nonexponential) qubit dephasing. Since the nuclear
spins evolve on relatively long time scales, the electronic
spins in quantum dots typically experience non-
Markovian noise leading to a nonexponential loss of
coherence on a characteristic time scale T⋆

2 given by the
width of the nuclear field distribution σnuc as T⋆

2 ¼ffiffiffi
2

p
=σnuc [21,65]. Recently, a record-low value of

σnuc=2π ¼ 80 kHz has been reported [21], yielding an
extended time-ensemble-averaged electron dephasing
time of T⋆

2 ¼ 2.8 μs. In our model, to realistically account
for the dephasing induced by the quasistatic, yet unknown
Overhauser field, the detuning parameters δi are sampled
independently from a normal distribution pðδiÞ with
zero mean (since nominal resonance can be achieved via
the electronic control parameters) and standard deviation
σnuc [68]; seeAppendixGfordetails. InAppendixJ,wealso
provide numerical results for standard Markovian dephas-
ing, showing that non-Markovian noise is beneficial in
terms of faithful state transfer.
Under ideal conditions where Lnoise ¼ 0, the setup is

analogous to the one studied in Ref. [20] and the same time-
symmetry arguments can be employed to determine the
optimal control pulses giðtÞ for faithful state transfer: if a
phonon is emitted by the first node, then, upon reversing
the direction of time, one would observe perfect reabsorp-
tion. By engineering the emitted phonon wave packet such
that it is invariant under time reversal and using a time-
reversed control pulse for the second node g2ðtÞ ¼ g1ð−tÞ,
the absorption process in the second node is a time-reversed
copy of the emission in the first and therefore in principle
perfect. Based on this reasoning (for details, see Ref. [20]),
we find the explicit, optimal control pulse shown in
Fig. 4(c).
To account for noise, we simulate the full master

equation numerically. The results are displayed in
Fig. 4(a), where for every random pair δ ¼ ðδ1; δ2Þ the
fidelity of the protocol is defined as the overlap between the
target state jψ tari and the actual state after the transfer ρðtfÞ;
that is,F δ ¼ hψ tarjρðtfÞjψ tari. The average fidelity F̄ of the
protocol is determined by averaging over the classical
noise in δ; that is, F̄ ¼ R

dδ1dδ2pðδ1Þpðδ2ÞF δ. Taking an
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effective mode area A ≈ 100 μm2 as above andQ ≈ 103 to
be well within the Qr regime where κbd=κgd ≈ 5%, we
have g ≈ κgd ≈ 20 MHz. For two nodes separated by
millimeter distances, propagation losses are negligible
and κbd=κgd ≈ 5% captures well all intrinsic phonon
losses during the transfer. We then find that for realistic
undesired phonon losses κbd=κgd ≈ 5% and σnuc=2π ¼
80 kHz (such that σnuc=κgd ≈ 2.5%) [21], transfer fidel-
ities close to 95% seem feasible. Notably, this could be
improved even further using spin-echo techniques, such
that T2 ≈ 102T⋆

2 [67]. Therefore, state transfer fidelities
F > 2=3 as required for quantum communication [77]
seem feasible with present technology. Near-unit fidel-
ities might be approached from further optimizations of
the system’s parameters, the cavity design, the control
pulses, and/or from communication protocols that correct
for errors such as phonon losses [78–80]. Once the
transfer is complete, the system can be tuned adiabati-
cally into a storage regime that immunizes the qubit
against electronic noise, and dominant errors from
hyperfine interaction with ambient nuclear spins can be
mitigated by standard, occasional refocusing of the spins
[67,69]. Alternatively, one could also investigate silicon
dots: while this setup requires a more sophisticated
heterostructure including some piezoelectric layer (as
studied experimentally in Ref. [41]), it potentially bene-
fits from prolonged dephasing times T⋆

2 > 100 μs [81],

since nuclear spins are largely absent in isotopically
purified 28Si.

VI. SUMMARY AND OUTLOOK

In summary, we propose and analyze SAW phonons in
piezoactive materials (such as GaAs) as a universal
quantum transducer that allows us to convert quantum
information between stationary and propagating realiza-
tions. We show that a sound-based quantum information
architecture based on SAW cavities and waveguides is very
versatile, bears striking similarities to cavity QED, and can
serve as a scalable mediator of long-range spin-spin
interactions between a variety of qubit implementations,
allowing for faithful quantum state transfer between remote
qubits with existing experimental technology. The pro-
posed combination of techniques and concepts known from
quantum optics and quantum information, in conjunction
with the technological expertise for SAW devices, is likely
to lead to further, rapid theoretical and experimental
progress.
Finally, we highlight possible directions of research going

beyond our present work. First, since our scheme is not
specific to any particular qubit realization, novel hybrid
systems could be developed by embedding dissimilar
systems such as quantum dots and superconducting qubits
into a common SAW architecture. Second, our setup could
also be used as a transducer between different propagating
quantum systems such as phonons and photons. Light can be
coupled into the SAW circuit via (for example) NV centers
or self-assembled quantum dots, and structures guiding both
photons and SAW phonons have already been fabricated
experimentally [39,40]. Finally, the SAW architecture opens
up a novel, on-chip test bed for investigations reminiscent of
quantum optics, bringing the highly developed toolbox of
quantum optics and cavity QED to the widely anticipated
field of quantum acoustics [11,16,17,82]. Potential applica-
tions include quantum simulation of many-body dynamics
[83], quantum state engineering (yielding, for example,
squeezed states of sound), quantum-enhanced sensing,
sound detection, and sound-based material analysis.
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FIG. 4. (a) Average fidelity F̄ of the state transfer protocol for a
coherent superposition jψi ¼ ðj0i − j1iÞ= ffiffiffi

2
p

in the presence of
quasistatic (non-Markovian) Overhauser noise, as a function of
the root-mean-square fluctuations σnuc in the detuning parameters
δiði ¼ 1; 2Þ, for κbd=κgd ¼ 0 (solid line, circles) and κbd=κgd ¼
10% (dash-dotted line, squares). (b) After n ¼ 100 runs with
random values for δi, F̄ approximately reaches convergence. The
curves refer to σnuc=κgd ¼ ð0; 2;…; 10Þ% (from top to bottom)
for κbd=κgd ¼ 10%. (c) Pulse shape g1ðtÞ for first node.
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APPENDIX A: CLASSICAL DESCRIPTION
OF NONPIEZOELECTRIC SURFACE

ACOUSTIC WAVES

In this appendix, we review the general (classical)
theoretical framework describing SAW in cubic lattices,
such as diamond or GaAs. We derive an analytical solution
for propagation in the [110] direction. The latter is of
particular interest in piezoelectric systems. The classical
description of a SAW is explicitly shown here to make our
work self-contained, but follows standard references such
as Ref. [26].

1. Wave equation

The propagation of acoustic waves (bulk and surface
waves) in a solid is described by the equation

ρüiðx; tÞ ¼
∂Tij

∂xj ; ðA1Þ

where u denotes the displacement vector with ui being
the displacement along the Cartesian coordinate x̂i ðx̂1 ¼ x̂;
x̂2 ¼ ŷ; x̂3 ¼ ẑÞ, ρ gives the mass density, and T is the stress
tensor; Tij is the ith component of force per unit area
perpendicular to the x̂j axis. Moreover, x is the Cartesian
coordinate vector, where in the following we assume a
material with infinite dimensions in x̂; ŷ and a surface
perpendicular to the ẑ direction at z ¼ 0. The stress tensor
obeys a generalized Hooke law (stress is linearly propor-
tional to strain)

Tij ¼ cijklukl; ðA2Þ

where the strain tensor is defined as

ukl ¼
1

2

�∂uk
∂xl þ

∂ul
∂xk

�
: ðA3Þ

Using the symmetry cijkl ¼ cijlk, in terms of displacements
we find

Tij ¼ cijkl
∂uk
∂xl ; ðA4Þ

such that Eq. (A1) takes the form of a set of three coupled
wave equations,

ρüiðx; tÞ − cijkl
∂2uk
∂xj∂xl ¼ 0: ðA5Þ

The elasticity tensor c obeys the symmetries cijkl ¼ cjikl ¼
cijlk ¼ cklij and is largely defined by the crystal symmetry.

2. Mechanical boundary condition

The free surface at z ¼ 0 is stress free (no external forces
are acting upon it), such that the three components of stress
across z ¼ 0 shall vanish; that is, T13 ¼ T23 ¼ T33 ¼ 0.
This results in the boundary conditions

Tiẑ ¼ ciẑkl
∂uk
∂xl ¼ 0 at z ¼ 0: ðA6Þ

3. Cubic lattice

For a cubic lattice (such as GaAs or diamond), the elastic
tensor cijkl has three independent elastic constants, gen-
erally denoted by c11; c12, and c44; compare Table II.
Taking the three direct twofold axes as the coordinate
axes, the wave equations then read

ρ
∂2ux
∂t2 ¼ c11

∂2ux
∂x2 þ c44

�∂2ux
∂y2 þ ∂2ux

∂z2
�

þ ðc12 þ c44Þ
�∂2uy
∂x∂yþ

∂2uz
∂x∂z

�
ðA7Þ

(and cyclic permutations), while the mechanical boundary
conditions can be written as

T13 ¼ c44

�∂uz
∂x þ ∂ux

∂z
�

¼ 0; ðA8Þ

T23 ¼ c44

�∂uz
∂y þ ∂uy

∂z
�

¼ 0; ðA9Þ

T33 ¼ c11
∂uz
∂z þ c12

�∂ux
∂x þ ∂uy

∂y
�

¼ 0; ðA10Þ

at z ¼ 0. In the following, we seek solutions that propagate
along the surface with a wave vector k ¼ kðlx̂þmŷÞ,
where l ¼ cosðθÞ, m ¼ sinðθÞ, and θ is the angle between
the x̂ axis and k. Following Ref. [84], we make the ansatz0

B@ux
uy
uz

1
CA ¼

0
B@ U

V

W

1
CAe−kqzeikðlxþmy−ctÞ; ðA11Þ

TABLE II. Material properties [26] for both diamond and
GaAs. The elastic tensor c has three independent parameters,
given in units of ½1010 N=m2�, while the piezoelectric tensor e has
a single independent parameter e14 for cubic materials (units of
C=m2).

c11 c12 c44 ρ ½kg=m3� e14

Diamond 107.9 12.4 57.8 3515 0
GaAs 12.26 5.71 6.00 5307 0.157
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where the decay constant q describes the exponential decay of the surface wave into the bulk and c is the phase velocity.
Plugging this ansatz into the mechanical wave equations can be rewritten as MA ¼ 0, where

M ¼

0
B@ c11l2 þ c44ðm2 − q2Þ − ρc2 lmðc12 þ c44Þ lqðc12 þ c44Þ

lmðc12 þ c44Þ c11m2 þ c44ðl2 − q2Þ − ρc2 mqðc12 þ c44Þ
lqðc12 þ c44Þ mqðc12 þ c44Þ c11q2 − c44 þ ρc2

1
CA; ðA12Þ

and A ¼ ðU;V; iWÞ. Nontrivial solutions for this homo-
geneous set of equations can be found if the determinant
of M vanishes, resulting in the so-called secular equation
detðMÞ ¼ 0. The secular equation is of sixth order in q; as
all coefficients in the secular equation are real, there are, in
general, three complex-conjugate roots q21; q

2
2; q

2
3, with the

phase velocity c and propagation direction θ as parameters.
If the medium lies in the half-space z > 0, the roots with
negative real part will lead to a solution that does not
converge as z → ∞. Thus, only the roots that lead to
vanishing displacements deep in the bulk are kept. Then,
the most general solution can be written as a superposition
of surface waves with allowed qr values as

ðux; uy; iuzÞ ¼
X

r¼1;2;3

ðξr; ηr; ζrÞKre−kqrzeikðlxþmy−ctÞ;

ðA13Þ
where, for any qr ¼ qrðc; θÞ, the ratios of the amplitudes
can be calculated according to

Kr ¼
Ur

ξr
¼ Vr

ηr
¼ iWr

ζr
; ðA14Þ

where we introduce the quantities

ξr ¼
���� c11m2 þ c44ðl2 − q2rÞ − ρc2 mqrðc12 þ c44Þ

mqrðc12 þ c44Þ c11q2r − c44 þ ρc2

����;
ηr ¼

���� mqrðc12 þ c44Þ lmðc12 þ c44Þ
c11q2r − c44 þ ρc2 lqrðc12 þ c44Þ

����; ðA15Þ

and

ζr ¼
���� lmðc12 þ c44Þ c11m2 þ c44ðl2 − q2rÞ − ρc2

lqrðc12 þ c44Þ mqrðc12 þ c44Þ

����:
ðA16Þ

Note that for each root qr and displacement ui there is an
associated amplitude. The phase velocity c, however, is the
same for every root qr, and needs to be determined from
the mechanical boundary conditions as we describe below.
Similarly to the acoustic wave equations, the boundary
conditions can be rewritten as BðK1; K2; K3Þ ¼ 0, where
the boundary condition matrix B is

B ¼

0
B@ lζ1 − q1ξ1 lζ2 − q2ξ2 lζ3 − q3ξ3

mζ1 − q1η1 mζ2 − q2η2 mζ3 − q3η3
lξ1 þmη1 þ aq1ζ1 lξ2 þmη2 þ aq2ζ2 lξ3 þmη3 þ aq3ζ3

1
CA; ðA17Þ

with a ¼ c11=c12. Again, nontrivial solutions are found for
detðBÞ ¼ 0. The requirements detðMÞ ¼ 0, detðBÞ ¼ 0,
together with Eq. (A14) constitute the formal solution
of the problem [84]; detðMÞ ¼ 0 and detðBÞ ¼ 0 may be
seen as determining c2 and q2, and Eq. (A14) then gives
the ratios of the components of the displacement. In the
following, we discuss a special case where one can
eliminate the q dependence in detðBÞ ¼ 0, leading to an
explicit, analytically simple equation for the phase velocity
c, which depends only on the material properties.

4. Propagation in [110] direction

The wave equations simplify for propagation in high-
symmetry directions. Here, we consider propagation in the
[110] direction, for which l ¼ m ¼ 1=

ffiffiffi
2

p
; we define the

diagonal as x̂0 ¼ ðx̂þ ŷÞ= ffiffiffi
2

p
. Subtracting the second

row from the first in M, one finds that the common
factor ðc11 − c12Þ=2 − c44q2 − ρc2 divides through the first
row, which then becomes ð1;−1; 0Þ. Thus, U ¼ V and the
wave equations can be simplified to M110ðU; iWÞ ¼ 0,
where

M110 ¼
� c011 − ρc2 − c44q2

qffiffi
2

p ðc12 þ c44Þffiffiffi
2

p
qðc12 þ c44Þ c11q2 − c44 þ ρc2

�
;

ðA18Þ

with c011 ¼ ðc11 þ c12 þ 2c44Þ=2. Then, the secular equa-
tion detðM110Þ ¼ 0 is found to be
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ðc011−ρc2−c44q2Þðc44−ρc2−c11q2Þþðc12þc44Þ2q2¼0;

ðA19Þ

yielding the roots q21; q
2
2. We choose the roots commensu-

rate with the convergence condition yielding the general
ansatz

�
ux0

iuz

�
¼

X
r¼1;2

�
U0

r

iWr

�
e−kqrzeikðx0−ctÞ; ðA20Þ

with ux ¼ uy ¼ ux0=
ffiffiffi
2

p
. The amplitude ratios γ0r ¼

iWr=U0
r can be obtained from the kernel of M as

γ0r ¼ qr
c12 þ c44

c44 − c11ðX þ q2rÞ
; ðA21Þ

where X ¼ ρc2=c11. In the coordinate system fx̂0; ẑg, the
mechanical boundary conditions read

∂uz
∂x0 þ

∂ux0
∂z ¼ 0 ðz ¼ 0Þ; ðA22Þ

c12
∂ux0
∂x0 þ c11

∂uz
∂z ¼ 0 ðz ¼ 0Þ: ðA23Þ

For the ansatz given in Eq. (A20), they can be reformulated
as B110ðU0

1; U
0
2Þ ¼ 0, with

B110 ¼
� γ01 − q1 γ02 − q2
1þ c11

c12
q1γ01 1þ c11

c12
q2γ02

�
: ðA24Þ

The requirement detðB110Þ ¼ 0 can be written as

q1½c12 þ ρc2 þ c11q21�½c12ðc44 − ρc2Þ þ c11c44q22�
− q2½c12 þ ρc2 þ c11q22�½c12ðc44 − ρc2Þ þ c11c44q21� ¼ 0:

From the symmetry of this equation it is clear that one can
remove a factor ðq1 − q2Þ leading to

c12

�
c12
c11

þ X

��
c44
c11

− X

�
þ c44q21q

2
2 þ c12

�
c44
c11

− X

�

× ðq21 þ q22 þ q1q2Þ − c44q1q2

�
c12
c11

þ X

�
¼ 0:

Using simple expressions for q21q
2
2 and q21 þ q22 obtained

from Eq. (A19), one arrives at the following explicit
equation for the wave velocity c [26,84]:�

1 − c11
c44

X

��
c11c011 − c212

c211
− X

�
2

¼ X2

�
c011
c11

− X

�
;

ðA25Þ

which is cubic in X ¼ ρc2=c11. If not stated otherwise, we
consider the mode with the lowest sound velocity, referred
to as the Rayleigh mode; compare Fig. 5.
Using the secular equation given in Eq. (A19) and

the mechanical boundary conditions, the ansatz given in
Eq. (A20) can be simplified as follows: The roots com-
patible with convergence in the bulk are complex con-
jugate, i.e., q≡ q1 ¼ q�2, and therefore, γ ≡ γ01 ¼ γ�2. Then,
using the first row in the boundary condition matrix
[compare Eq. (A24)], we can deduce

U0
1 ¼ Ue−iφ; U0

2 ¼ Ueiφ; ðA26Þ

where

e−2iφ ¼ − γ� − q�

γ − q
: ðA27Þ

0.0 0.2 0.4 0.6 0.8 1.0
0
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15

20

k m
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z

FIG. 5. Dispersion relation ωn ¼ vnk of the three ðn ¼ 1; 2; 3Þ
Rayleigh-type SAW modes for propagation along x̂0∥½110�. If not
stated otherwise, we refer to the lowest frequency solution as the
SAW mode (solid line).

FIG. 6. Depth dependence of the (normalized) vertical dis-
placement uz=U along x̂0∥½110� for a Rayleigh surface acoustic
wave propagating on a (001) GaAs crystal. The acoustic
amplitude decays away from the surface into the bulk on a
characteristic length scale approximately given by the SAW
wavelength λ ¼ 2π=k ≈ 1 μm.
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In summary, we find the following solution [26]:

ux0 ¼ Uðe−qkz−iφ þ H:c:Þeikðx0−ctÞ;
iuz ¼ Uðγe−qkz−iφ þ H:c:Þeikðx0−ctÞ; ðA28Þ

where the material-dependent parameters c, q, γ, and φ are
determined by Eq. (A25), Eq. (A19), Eq. (A21), and
Eq. (A25), respectively. For the GaAs parameters given
in Table II, we get c ¼ 2878 m=s, q ¼ 0.5þ 0.48i,
γ ¼ −0.68þ 1.16i, and φ ¼ 1.05, respectively. The cor-
responding (normalized) transversal displacement is dis-
played in Fig. 6.

APPENDIX B: SURFACE ACOUSTIC WAVES
IN PIEZOELECTRIC MATERIALS

In a piezoelectric material, elastic and electromagnetic
waves are coupled. In principle, the field distribution can
be found only by solving simultaneously the equations of
both Newton and Maxwell. The corresponding solutions
are hybrid elastoelectromagnetic waves, i.e., elastic
waves with velocity vs accompanied by electric fields,
and electromagnetic waves with velocity c ≈ 105vs accom-
panied by mechanical strains. For the first type of wave, the
magnetic field is negligible, because it is due to an electric
field traveling with a velocity vs much slower than the
speed of light c; therefore, one can approximate Maxwell’s
equations as ∇ × E ¼ −∂B=∂t ≈ 0, giving E ¼ −∇ϕ.
Thus, the propagation of elastic waves in a piezoelectric
material can be described within the quasistatic approxi-
mation, where the electric field is essentially static com-
pared to electromagnetic fields [27]. The potential ϕ
and the associated electric field are not electromagnetic
in nature but rather a component of the predominantly
mechanical wave propagating with velocity vs.

1. General analysis

a. Wave equation

The basic equations that govern the propagation of
acoustic waves in a piezoelectrical material connect the
mechanical stress T and the electrical displacement D with
the mechanical strain and the electrical field. The coupled
constitutive equations are

Tij ¼ cijkl
∂uk
∂xl þ ekij

∂ϕ
∂xk ;

Di ¼ −ϵij
∂ϕ
∂xj þ eijk

∂uj
∂xk ; ðB1Þ

where e with ðeijk ¼ eikjÞ and ϵ are the piezoelectric and
permittivity tensor, respectively. Here, Hooke’s law is
extended by the additional stress term due to the piezo-
electric effect, while the equation for the displacement Di

includes the polarization produced by the strain. Therefore,
Newton’s law becomes

ρüi ¼ cijkl
∂2uk
∂xj∂xl þ ekij

∂2ϕ

∂xj∂xk : ðB2Þ

For an insulating solid, the electric displacement Di must
satisfy Poisson’s equation ∂Di=∂xi ¼ 0, which yields

eijk
∂2uj
∂xi∂xk − ϵij

∂2ϕ

∂xi∂xj ¼ 0; z > 0; ðB3Þ

Δϕ ¼ 0; z > 0: ðB4Þ

b. Mechanical boundary conditions

In the presence of piezoelectric coupling the mechanical
boundary conditions [compare Eq. (A6)] generalize to

Tiẑ ¼ ciẑkl
∂uk
∂xl þ ekiẑ

∂ϕ
∂xk ¼ 0 at z ¼ 0: ðB5Þ

Using the symmetries cijkl ¼ cjikl and ekij ¼ ekji, it is easy
to check that this is equivalent to Eq. (41) in Ref. [26].

c. Electric boundary condition

In addition to the stress-free boundary conditions,
piezoelectricity introduces an electric boundary condition:
The normal component of the electric displacement needs
to be continuous across the surface [39]; that is,

Dzðz ¼ 0þÞ ¼ Dzðz ¼ 0−Þ; ðB6Þ

where by definition Dz ¼ eẑjk∂uj=∂xk − ϵẑj∂ϕ=∂xj.
Outside of the medium ðz < 0Þ, we assume vacuum; thus,
Dz ¼ ϵ0Ez ¼ −ϵ0∂ϕout=∂z, where the electrical potential
has to satisfy Poisson’s equation Δϕout ¼ 0. The ansatz

ϕout ¼ Aouteikðx
0−ctÞeΩkz ðB7Þ

gives Δϕout ¼ ð−k2 þΩ2k2Þϕout ¼ 0. Thus, for proper
convergence far away from the surface z → −∞, we
take the decay constant Ω ¼ 1; accordingly, the electrical
potential decays exponentially into the vacuum above the
surface on a typical length scale given by the SAW
wavelength λ ¼ 2π=k ≈ 1 μm. Therefore, for the electrical
displacement outside of the medium, we findDz ¼ −ϵ0kϕ.
Lastly, the electrical potential has to be continuous across
the surface [26], i.e.,

ϕðz ¼ 0þÞ ¼ ϕoutðz ¼ 0−Þ; ðB8Þ

which allows us to determine the amplitude Aout. In
summary, Eq. (B6) can be rewritten as
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ðeẑjk∂uj=∂xk − ϵẑj∂ϕ=∂xj þ ϵ0kϕÞjz¼0
¼ 0: ðB9Þ

2. Cubic lattice

a. Specific analysis for cubic systems

For a cubic, piezoelectric system there is only one
independent nonzero component of the piezoelectric tensor
called e14 [26,27]. With this piezoelectric coupling, the
wave equations are given by four coupled partial differ-
ential equations,

ρ
∂2ux
∂t2 ¼ c11

∂2ux
∂x2 þ c44

�∂2ux
∂y2 þ ∂2ux

∂z2
�

ðB10Þ

þ ðc12 þ c44Þ
�∂2uy
∂x∂yþ

∂2uz
∂x∂z

�
þ 2e14

∂2ϕ

∂y∂z ;

ϵΔϕ ¼ 2e14

�∂2ux
∂y∂zþ

∂2uy
∂x∂zþ

∂2uz
∂x∂y

�
; ðB11Þ

and cyclic permutations for uy and uz. Here, Δ is the
Laplacian and ϵ is the dielectric constant of the medium.
For a cubic lattice, the mechanical boundary conditions at
z ¼ 0 explicitly read

T13 ¼ c44

�∂uz
∂x þ ∂ux

∂z
�
þ e14

∂ϕ
∂y ¼ 0; ðB12Þ

T23 ¼ c44

�∂uz
∂y þ ∂uy

∂z
�
þ e14

∂ϕ
∂x ¼ 0; ðB13Þ

T33 ¼ c11
∂uz
∂z þ c12

�∂ux
∂x þ ∂uy

∂y
�

¼ 0; ðB14Þ

while the electrical boundary condition [compare the
general relation in Eq. (B9)] leads to�

e14

�∂ux
∂y þ ∂uy

∂x
�
− ϵ

∂ϕ
∂z þ ϵ0kϕ

�
z¼0

¼ 0: ðB15Þ

In general, the wave equations can be formulated into a
4 × 4 matrixM; the condition detM ¼ 0 can then used to
find the four decay constants. In addition, the mechanical
and electrical boundary conditions can be recast to a 4 × 4
boundary condition matrix B, from which one can deduce
the allowed phase velocities of the piezoelectric SAW by
solving detB ¼ 0.

b. Perturbative treatment

For materials with weak piezoelectric coupling (such
as GaAs), the properties of surface acoustic waves are
primarily determined by the elastic constants and density of
the medium. Then, within a perturbative treatment of the

piezoelectric coupling, one can obtain analytical expres-
sions for the strain and piezoelectric fields. Here, we
summarize the results for SAWs propagating along
x̂0∥½110� of the ẑ∥½001� surface following Refs. [26,28].
Since the piezoelectric coupling e14 is small, it follows
from Eq. (B11) that ϕ will be order e14 smaller than the
mechanical displacements u; that is,

ϕ ∼
e14
ϵ

u: ðB16Þ

This results in additional terms in the wave equations that
are of order ∼e214=ϵ ≈ 108 N=m2. Since the elastic con-
stants are 2–3 orders of magnitude bigger than this piezo-
electric term, the wave equations [Eq. (B10)] and (cyclic
versions for uy; uz) will be solved by the nonpiezoelectric
solution with corrections only at order e214. The nonpiezo-
electric solution derived in detail in Appendix A can be
summarized as

ux0 ¼ 2URe½e−qkz−iφ�eikðx0−vtÞ;
uy0 ¼ 0;

uz ¼ −2iURe½γe−qkz−iφ�eikðx0−vtÞ; ðB17Þ

where the sound velocity v for the Rayleigh mode follows
from the smallest solution of

ðc44 − ρv2Þðc11c011 − c212 − c11ρv2Þ2
¼ c11c44ρ2v4ðc011 − ρv2Þ; ðB18Þ

with c011 ¼ c44 þ ðc11 þ c12Þ=2. The decay constant q is a
solution of

ðc011 − ρv2 − c44q2Þðc44 − ρv2 − c11q2Þ
þ q2ðc12 þ c44Þ2 ¼ 0: ðB19Þ

Lastly, the parameters γ, φ can be obtained from

γ¼ ðc12þc44Þq
c44−c11q2−ρv2

; e−2iφ¼−γ�−q�

γ−q
: ðB20Þ

Now, based on the nonpiezoelectric solution given in
Eq. (B17), the potential ϕ is constructed such that both
the wave equation in Eq. (B11) and the electrical boundary
condition in Eq. (B15) are solved. In the fx̂0; ŷ0; ẑg
coordinate system they read explicitly

ϵΔϕ ¼ e14

�
2
∂2ux0

∂x0∂zþ
∂2uz
∂x0∂x0

�
; ðB21Þ

0 ¼
�
ϵ0kϕþ e14

∂ux0
∂x0 − ϵ

∂ϕ
∂z

�����
z¼0

: ðB22Þ
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One can readily check that this is achieved by the form
proposed in Refs. [26,28],

ϕ ¼
�

iϕ0F ðkzÞeikðx0−vtÞ z > 0

Aoutekzeikðx
0−ctÞ z < 0;

ðB23Þ

where ϕ0 ¼ ðe14=ϵÞU and Aout ¼ iϕ0F ð0Þ. Here, we
introduce the dimensionless function F ðkzÞ, which deter-
mines the length scale on which the electrical potential
generated by the SAW decays into the bulk. It is given by

F ðkzÞ ¼ 2jA1je−αkz cos ðβkzþ φþ ξÞ þ A3e−kz;

ðB24Þ

with A1 ¼ jA1je−iξ, q ¼ αþ βi, and

A1 ¼
γ − 2q
q2 − 1

; A3

¼ −
2

ϵþ ϵ0
fϵ cosφþ ϵRe½A1qe−iφ� þ ϵ0Re½A1e−iφ�g:

ðB25Þ
For AlxGa1−xAs, we obtain the following parameter values
(compare Ref. [26]): jA1j ≈ 1.59, A3 ¼ −3.1, α ≈ 0.501,
β ≈ 0.472, φ ¼ 1.06, and ξ ¼ −0.33. The electric potential
for this parameter set is shown in Fig. 7.

APPENDIX C: MECHANICAL
ZERO-POINT FLUCTUATION

Here, we provide more detailed calculations and esti-
mates for the mechanical zero-point motion U0 of a SAW.

We show that they agree very well with the simple estimate
given in the main text. Finally, we provide details on the
material parameters used to obtain the numerical estimates.
Our first approach follows closely the one presented in

Ref. [32]. The analysis starts out from the mechanical
displacement operator in the Heisenberg picture:

ûðx; tÞ ¼
X
n

½vnðxÞane−iωnt þ H:c:�: ðC1Þ

To obtain the proper normalization of the displacement
profiles, we assume a single-phonon Fock state, that is,
jΨi¼a†njvaci¼ j0;…;0;1n;0.…i, where jvaci ¼ Q

nj0in
is the phonon vacuum, and compute the expectation
value of additional field energy above the vacuum Emech,
defined as twice the kinetic energy, since for a mechanical
mode half of the energy is kinetic, the other one potential
[32]. We find

Emech ¼ 2ω2
n

Z
d3rρðrÞv�nðrÞ · vnðrÞ ðC2Þ

¼ 2ρVω2
nmax½jvnðrÞj2�; ðC3Þ

where the last equality defines the effective mode volume
for mode n. Setting U0 ¼ max½jvnðrÞj�, and assuming the
phonon energy as Emech ¼ ℏωn, we arrive at the general
result for a phonon mode,U0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=2ρVωn

p
; this confirms

the simple estimate given in the main text.

1. Explicit example

Next, we provide a calculation based on the exact
analytical results derived in Appendixes A and B. In what
follows, we assume that, in analogy to cavity QED, cavity
confinement leads to the quantization kn ¼ nπ=Lc, where
A ¼ L2

c is the effective quantization area. In a full 3D
model, A ¼ LxLy, where Ly is related to the spread of the
transverse mode function as discussed (for example) in
Ref. [14]. For simplicity, here we take Lx ¼ Ly. Surface
wave resonators can routinely be designed to show only
one resonance k0 [14]. Within this single-mode approxi-
mation, based on results derived in Appendix A for a SAW
traveling wave, we take the quantized mechanical displace-
ment describing a SAW standing wave along the axis
x̂0 ¼ ð110Þ as

ûðx0; zÞ ¼ U0

0
B@ χ0ðzÞ cos ðk0x0Þ

0

ζ0ðzÞ sin ðk0x0Þ

1
CA½aþ a†�: ðC4Þ

Here, the functions χ0ðzÞ and ζ0ðzÞ describe how the SAW
decays into the bulk,

χ0ðzÞ ¼ 2e−Ωrk0z cos ðΩik0zþ φÞ; ðC5Þ
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0.0
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FIG. 7. The dimensionless function F ðzÞ determines the decay
of the electrical potential away from the surface into the bulk; the
characterisitc length scale is approximately set by the SAW
wavelength λ ¼ 2π=k ≈ 1 μm. Inset: Density plot of the (nor-
malized) electric potential Re½ϕ�=ϕ0 ¼ −F ðkzÞ sin ðkx0 − ωtÞ
along x̂0∥½110� for a Rayleigh surface acoustic wave propagating
on a (001) GaAs crystal at t ¼ 0.
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ζ0ðzÞ ¼ 2jγje−Ωrk0z cos ðΩik0zþ φþ θÞ; ðC6Þ

with material-dependent parameters Ω ¼ Ωr þ iΩi,
γ ¼ jγj exp ½−iθ�, and φ; numerical values are presented
in Table III. We note that for GaAs we find
ζð0Þ=χð0Þ ≈ 1.33. This is in very good agreement with
the numerical values of cx ¼ jux=ϕj ¼ 0.98 nm=V and
cz ¼ juz=ϕj ¼ 1.31 nm=V as given in Ref. [15].
Normalization of the mode function allows us to determine
the parameter U0. Performing the integration, we find

U0 ¼
ffiffiffiffiffiffi
Ωr

δ

r ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ

2ρvsA

s
; ðC7Þ

where the parameter δ depends on the material parameters;
see Table III. Using typical material parameters, we
obtain for GaAs (diamond)

ffiffiffiffiffiffiffiffiffiffi
Ωr=δ

p ¼ 0.64ð1.17Þ and

U0 ≈ 1.2ð1.36Þ fm=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A ½μm2�

p
. This is in very good agree-

ment with the numerical values presented in the main text.

2. Estimates derived from literature

In Ref. [26], it is shown that the SAW Rayleigh mode
studied in Appendix A has a classical energy density E
(energy per unit surface area) given by

E ¼ kU2H; ðC8Þ

where U is the amplitude of the wave, k the wave vector,
and H a material-dependent factor which is given as H ≈
28.2 × 1010 N=m2 for GaAs. By equating the classical
energy of the SAW given by EA, where A is the quantiza-
tion area, with its quantum-mechanical analog Nphℏω (Nph

is the number of phonons), we estimate the single-phonon
displacement U0 as

U0 ¼
ffiffiffiffiffiffiffiffiffiffi
ℏω
kHA

r
¼

ffiffiffiffiffiffiffi
ℏvs
HA

r
≈ 1.05 × 10−21 m

2ffiffiffiffi
A

p ; ðC9Þ

with U ¼ U0

ffiffiffiffiffiffiffiffi
Nph

p
. This estimate is also found to be in

very good agreement with a result given in Ref. [39], as

U0 ¼ C

ffiffiffiffiffiffiffiffiffiffi
2ℏ
ρvsA

s
≈ 1.7 × 10−21 m

2ffiffiffiffi
A

p ; ðC10Þ

where C is a normalization constant with numerical value
C ≈ 0.45 for GaAs [39]. Therefore, for an effective mode
area of Lc ¼

ffiffiffiffi
A

p ¼ 1 μm, we find a single-phonon dis-
placement of U0 ≈ 1 fm. This confirms the estimates given
in the main text.

APPENDIX D: ZERO-POINT ESTIMATES

In this appendix, we provide details on piezomagnetic
materials and numerical estimates of the zero-point quan-
tities for several relevant materials. The results are sum-
marized in Table IV. The underlying input parameters are
given below.
Theoretically, piezomagnetic materials with a large mag-

netostrictive effect are typically described in a 1:1 corre-
spondence to Eqs. (2) and (3), with the appropriate
replacements (using standard notation) E → H, D → B,
ϵij → μij, and eijk → hijk [33]. Coupling between mechani-
cal and magnetic degrees of freedom is described by the
piezomagnetic tensor h, which can reach values as high as
∼700 T=strain [36]; for our estimates we refer to terfenol-D,
where h15 ≈ 167 T=strain. The magnetic field associated
with a single phonon can then be estimated as B0 ≈ h15s0,
where h15 refers to a typical (nonzero) element of h.
For the piezoelectric materials GaAs, LiNbO3, and

quartz, all material parameters are obtained from
Ref. [27]. Phase velocities for typical cut directions are
used; that is, (100)[001] GaAs, Y-Z LiNbO3, and ST
quartz. For the piezomagnetic (magnetostrictive) materials
CoFe2O4 and terfenol-D, all material parameters are taken
from Ref. [35]. We use the phase velocities of the bulk
shear waves given there as vsh ¼ 3.02 × 103 m=s and vsh ¼
1.19 × 103 m=s for CoFe2O4 and terfenol-D, respectively.
This gives a conservative estimate for U0, since Rayleigh
modes have phase velocities that are lower than the ones of
bulk modes [14]. For example, in the case of CoFe2O4 in

TABLE IV. Estimates for zero-point fluctuations (mechanical
amplitude U0, strain s0, electrical potential ϕ0, electric field ξ0
and magnetic field B0) close to the surface ðd ≪ λÞ for typical
piezo-electric and piezo-magnetic (magnetostrictive) materials.
All values must be multiplied by the universal scaling factor
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A ½μm2�

p
; thus, they refer to an effective surface mode area

of size A ¼ 1 μm2. Lower (upper) bounds for ϕ0 and ξ0
comprise minimum (maximum) non-zero element of e with
maximum (minimum) non-zero element of ϵ. We have set
k ¼ 2π=μm. Details on cut-directions and material parameters
are given in the text.

U0 [fm] s0½10−9� ϕ0 ½μV� ξ0 [V/m] B0 ½μT�
GaAs 1.9 11.7 3.1 19.2 � � �
LiNbO3 1.8 11.3 0.9–25.8 5.8–162.2 � � �
Quartz 2.75 17.3 2.8–12.0 17.3–75.4 � � �
Terfenol-D 2.2 13.8 � � � � � � 2.3
CoFe2O4 1.8 11.4 � � � � � � 6.3
Diamond 1.17 7.4 � � � � � � � � �

TABLE III. Derived properties for Rayleigh surface waves, for
both GaAs and diamond.

Decay constant Ω γ ¼ jγje−iΘ φ vs ½m=s� δ

GaAs 0.50þ 0.48i −0.68þ 1.16i 1.05 2878 1.2
Diamond 0.60þ 0.22i −1.05þ 0.75i 1.26 11 135 0.44
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Ref. [36], wave velocities for Rayleigh-type surface waves
in a piezoelectric-piezomagnetic layered half-space are
found to be vs ≈ 2840 m=s < vsh.

APPENDIX E: SAW CAVITIES

In this Appendix, we present a detailed discussion of the
theoretical model describing the SAW resonator.
Typically, a SAW cavity is based on an on-chip distrib-

uted Bragg reflector formed by a periodic array of either
metal electrodes or grooves etched into the surface;
see Fig. 1. In such a grating, each strip reflects only
weakly, but, for many strips N ≫ 1, the total reflection jRj
can approach unity if the pitch p equals half the wave-
length, p ¼ λc=2. This Bragg condition defines the center
frequency

fc ¼ vs=2p: ðE1Þ
At f ¼ fc, the total reflection coefficient is given by

jRj ¼ tanh ðNjrsjÞ; ðE2Þ
where N is the number of strips and rs is the reflection
coefficient associated with a single strip [14,15]. The total
reflection coefficient jRj goes to unity in the limit
Njrsj ≫ 1; see Fig. 8. Typically, N ≳ 200 and jrsj ≈
ð1–2Þ% [14]. For f ≈ fc, jrsj increases with the normalized
groove depth as jrsj ¼ C1h=λc sin ðπw=pÞ þ C2ðh=λcÞ2
cos ðπw=pÞ, with material-dependent prefactors [38].
For LiNbO3, C1 ¼ 0.67 and C2 ¼ 42 [38]. As argued in
Ref. [38], the first term ∼C1 is due to a impedance
mismatch, while the second one ∼C2 is due to the stored
energy effect.
Because of the distributed nature of the mirror, strong

reflection occurs over a fractional bandwidth only, given by

δf=fc ≈ 2jrsj=π. In practice, the cavity formed by
two reflective gratings can be viewed as an acoustic
Fabry-Perot resonator with effective reflection centers,
sketched by localized mirrors in Fig. 1, situated at some
effective penetration distance into the grating, given
by Lp ¼ tanh ½ðN − 1Þjrsj�λc=ð4jrsjÞ ≈ λc=4jrsj [14,15,37].
Therefore, the total effective cavity size along the mirror axis
is Lc ≈Dþ 2Lp, where D is the physical gap between the
gratings; compare Fig. 1. For N ≈ 100–300, h=λc ≈ 2%, we
then obtain Lc ≈ 38λc and Lc ≈ 42λc for D ¼ 0.75λc and
D ¼ 5.25λc, respectively. In analogy to an optical Fabry-Perot
resonator, the mode spacing can then by estimated as
Δf=fc ¼ λc=2Lc ≈ jrsj. Since this is larger than δf=fc,
SAW resonators can be designed to host a single resonance
only [14].
The total decay rate of this resonance κ can be decom-

posed into four relevant contributions [38], κ ¼ κbk þ κdþ
κm þ κr, which includes conversion into bulk modes
∼κbk, diffraction losses ∼κd, internal losses due to material
imperfections ∼κm, and leakage (radiation) losses due to
imperfect mirrors ∼κr. The associated Q factors are given
byQi ¼ ωc=κi. The desired decay rate is κgd ¼ κr, whereas
the undesired one is κbd ¼ κbk þ κm þ κd. Here, κd is
associated with diffraction losses due to spillover beyond
the aperture of the reflector. It can be made negligible
by lateral confinement using, for example, waveguide
structures, focusing, or etching techniques [14,39,40].
Qm refers to losses due to interaction with thermal phonons,
losses due to defects in the material, and propagation
losses due to contamination [37,38]. These losses ulti-
mately limit Q: Low-temperature experiments on quartz
have demonstrated SAW resonators with Qm × f½GHz� >
105 [22,23]. Another source of losses is due to mode
conversion into bulk modes. Measurements show that
Qbk ¼ 2πNeff=½Cbðh=λcÞ2�, with Neff ¼ Lc=λc and a
material-dependent prefactor Cb [85]; for LiNbO3 (quartz),
Cb ¼ 8.7ð10Þ [85,86]. Typically, κbk is found to be
negligible for small groove depths, h=λc < 2% [38].
Finally, κr arises from leakage through imperfectly reflect-
ing gratings ðjRj < 1Þ; in direct analogy to optical Fabry-
Perot resonators, the associated Q factor is given by
Qr ¼ 2πNeff=ð1 − jRj2Þ. Assuming negligible diffraction
losses (that can be minimized via waveguidelike confine-
ment [14,43]) and cryostat temperatures, the total Q factor
is then given by

Q−1 ¼ Q−1
m þQ−1

bk þQ−1
r : ðE3Þ

APPENDIX F: CHARGE QUBIT COUPLED
TO SAW CAVITY MODE

We consider a GaAs charge qubit embedded in a tunnel-
coupled double quantum dot containing a single electron.
In the one-electron regime, the single-particle orbital level
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FIG. 8. Total reflection coefficient jRj as a function of the
normalized groove depth h=λc for N ¼ 100 (blue dashed curve)
and N ¼ 300 (red solid curve). Here, w=p ¼ 0.5, and material
parameters for LiNbO3 are used (see text).
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spacing is on the order of ∼1 meV. Therefore, the system is
well described by an effective two-level system: The state
of the qubit is set by the position of the electron in the
double-well potential, with the logical basis jLi; jRi cor-
responding to the electron localized in the left (right)
orbital. The Hamiltonian describing this system reads

Hch ¼
ϵ

2
σz þ tcσx; ðF1Þ

with the (orbital) Pauli operators defined as σz ¼ jLihLj −
jRihRj and σx ¼ jLihRj þ jRihLj, respectively. In Eq. (5),
ϵ refers to the level detuning between the dots, while tc
gives the tunnel coupling. The level splitting between the
eigenstates of Hch is given by Ω ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2 þ 4t2c

p
, with a pure

tunnel splitting of Ω ¼ 2tc at the charge degeneracy point
ðϵ ¼ 0Þ; typical parameter values are tc ∼ μeV and
ϵ ∼ μeV, such that the level splitting Ω ∼ GHz lies in the
microwave regime. At the charge degeneracy point, where
to first order the qubit is insensitive to charge fluctuations
ðdΩ=dϵ ¼ 0Þ, the coherence time has been found to be
T2 ≈ 10 ns [46].
We now consider a charge qubit as described above

inside a SAW resonator with a single resonance frequency
ωc close to the qubit’s transition frequency, ωc ≈Ω, that is
the regime of small detuning δ ¼ Ω − ωc ≈ 0; note that
single-resonance SAW cavities can be realized routinely
with today’s standard techniques [14]. Within this single-
mode approximation, the Hamiltonian describing the SAW
cavity simply reads

Hcav ¼ ωca†a; ðF2Þ

where a†ðaÞ creates (annihilates) a phonon inside the
cavity. The electrostatic potential associated with this
mode is given by ϕ̂ðxÞ ¼ ϕðxÞ½aþ a†�, where the mode
function ϕðxÞ can be obtained from the corresponding
mechanical mode function wðxÞ via the relation
ϵΔϕðxÞ ¼ ekij∂j∂kwiðxÞ; here, Δ is the Laplacian, ekij
the piezoelectric tensor, and ϵ the permittivity of the
material. The electron’s charge e couples to the phonon-
induced electrical potential ϕ̂. In second quantization, the
piezoelectric interaction reads Hint ¼ e

R
dxϕ̂ðxÞn̂ðxÞ,

where e is the electron’s charge, n̂ðxÞ ¼ P
σψ

†
σðxÞψσðxÞ

is the electron number density operator, and ψ†
σðxÞ creates

an electron with spin σ at position x [25]. Since ϕ̂ðxÞ varies
on a micron length scale which is large compared to the
spatial extension ∼40 nm of the electron’s wave function
in a QD [65], the electron density is approximately given
by a delta function at the center of the corresponding dots.
For the DQD system under consideration, Hint is then
approximately given byHint ¼ e

P
i ϕ̂ðxiÞni; here, xi refers

to the center of the electronic orbital wave function
ψ iðxÞ of dot i ¼ L; R. Note that this form of Hint becomes
exact if the overlap integral vanishes, that is, if

R
dxϕðxÞψ�

LðxÞψRðxÞ ¼ 0 is satisfied. As shown below,
for a mode function ϕðxÞ of sine form, this condition
maximizes the piezoelectric coupling strength between
the electronic DQD system and the phonon mode. For
the charge qubit system under consideration, coupling
to the cavity mode is then described by Hint ¼ eðaþ a†Þ
½ϕðxLÞjLihLj þ ϕðxRÞjRihRj�; here, xi refers to the center
of the electronic orbital wave function φiðxÞ of dot i ¼
L;R and the transverse direction ŷ has been integrated out
already. To obtain strong coupling between the qubit and
the cavity, we assume a mode profile ϕðxÞ ¼ φ0 sin ðkxÞ,
with a node tuned between the two dots, such that
ϕðxLÞ ¼ φ0 sin ðkl=2Þ ¼ −ϕðxRÞ; here, l gives the distance
between the two dots. Note that the single phonon
amplitude, defined as φ0 ¼ ϕ0F ðkdÞ, with F ðkdÞ ≈ 0
for d ≫ λ, accounts for the decay of the SAW into the
bulk. For λ ¼ ð0.5–1Þ μm and a 2DEG (where the DQD is
embedded) situated a distance d ¼ 50 nm below the sur-
face, however, the single-phonon amplitude is reduced by a
factor of ∼2 only, φ0 ≈ ð0.45–0.52Þϕ0; see Appendix B for
details. Then, the coupling between qubit and cavity reads

Hint ¼ gchðaþ a†Þ ⊗ σz; ðF3Þ
where the single-phonon coupling strength is

gch ¼ eϕ0F ðkdÞ sin ðkl=2Þ ≈ 1.5 μeVffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A ½μm2�

p : ðF4Þ

Here, we assume λ ≈ 2l, such that the geometrical factor
sin ðπl=λÞ ≈ 1 [47]. In principle, the coupling strength gch
could be further enhanced by additionally depositing a
strongly piezoelectric material such as LiNbO3 on the
GaAs substrate. Moreover, comparison with standard
literature shows that the piezoelectric electron-phonon
coupling strength can be expressed as gpe ¼

ffiffiffiffi
P

p
U0 ≈

eðe14=ϵÞU0 ¼ eϕ0, where P ¼ ðee14=ϵÞ2 is a material
parameter quantifying the piezoelectric coupling strength
in zinc-blende structures [87,88]. Using P ¼ 5.4 × 10−20
for GaAs, the single-phonon Rabi frequency can be
estimated as gpe ≈ 2.87 μeV=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A ½μm2�

p
. This corroborates

our estimate for gch.
In summary, the total system can be described by the

Hamiltonian H ¼ Hch þHcav þHint:

H ¼ ϵ

2
σz þ tcσx þ ωca†aþ gchðaþ a†Þ ⊗ σz: ðF5Þ

This corresponds to the generic Hamiltonian for a qubit-
resonator system [32]. It is instructive to rewrite H in the
eigenbasis of Hch, given by

jþi ¼ sin θjLi þ cos θjRi; ðF6Þ

j−i ¼ cos θjLi − sin θjRi; ðF7Þ
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where the mixing angle θ is defined via
tan θ ¼ 2tc=ðϵþΩÞ. In a rotating-wave approximation
ðδ; gch ≪ ωcÞ, H then reduces to the well-known
Hamiltonian of Jaynes-Cummings form

H ≈ δSz þ gch
2tc
Ω

ðSþaþ S−a†Þ; ðF8Þ

where δ ¼ Ω − ωc, Sz ¼ ðjþihþj − j−ih−jÞ=2, and
S� ¼ j�ih∓j.

APPENDIX G: SAW-BASED CAVITY QED WITH
SPIN QUBITS IN DOUBLE QUANTUM DOTS

In this appendix, we show in detail how to realize the
prototypical Jaynes-Cummings dynamics based on a spin
qubit encoded in a DQD inside a SAW resonator.
We consider a double quantum dot (in the two-electron

regime) coupled to the electrostatic potential generated by a
SAW. The system is described by the Hamiltonian

HDQD ¼ H0 þHcav þHint; ðG1Þ

where H0, Hcav, and Hint describe the DQD, the cavity,
and the electrostatically mediated coupling between them,
respectively. In the following, we discuss the different
contributions in detail.

1. Double quantum dot

The DQD is modeled by the standard Hamiltonian

H0 ¼ HC þHt þHZ: ðG2Þ

Here, HC gives the electrostatic energy

HC ¼
X
i;σ

ϵiniσ þ U
X
i¼L;R

ni↑ni↓ þULRnLnR; ðG3Þ

where (due to strong confinement) both the left and right
dot are assumed to support a single orbital level with energy
ϵiði ¼ L; RÞ only; U and ULR refer to the on-site and
interdot Coulomb repulsion, respectively. As usual, niσ ¼
d†iσdiσ and ni ¼ ni↑ þ ni↓ refer to the spin-resolved and
total electron number operators, respectively, with the
fermionic creation (annihilation) operators d†iσðdiσÞ creat-
ing (annihilating) an electron with spin σ ¼ ↑;↓ in the
orbital i ¼ L;R. We focus on a setting where an applied
bias between the two dots approximately compensates
the Coulomb energy of two electrons occupying the right
dot; that is, ϵL ≈ ϵR þ U −ULR. Thus, we restrict ourselves
to a region in the stability diagram where only (1,1) and
(0,2) charge states are of interest. All levels with (1,1)
charge configuration have an electrostatic energy of
Eð1;1Þ ¼ ϵL þ ϵR þ ULR, while the (0,2) configuration
has Eð0;2Þ ¼ 2ϵR þU. As usual, we introduce the detuning

parameter ϵ ¼ ϵL − ϵR þ ULR −U. In this regime, the
relevant electronic levels are defined as jTþi ¼ j⇑⇑i,
jT−i ¼ j⇓⇓i, jT0i ¼ ðj⇑⇓i þ j⇓⇑iÞ= ffiffiffi

2
p

, jS11i ¼
ðj⇑⇓i − j⇓⇑iÞ= ffiffiffi

2
p

, and jS02i ¼ d†R↑d
†
R↓j0i, with

jσσ0i ¼ d†Lσd
†
Rσ0 j0i.

Next, Ht describes coherent, spin-preserving interdot
tunneling,

Ht ¼ tc
X
σ

d†LσdRσ þ H:c:; ðG4Þ

where tc is the interdot tunneling amplitude. Lastly, HZ
accounts for the Zeeman energies,

HZ ¼ gμB
X
i¼L;R

Bi · Si; ðG5Þ

where g is the electron g factor and μB the Bohr magneton.
In the presence of a micromagnet or nanomagnet, the two
local magnetic fields Bi are inhomogeneous, BL ≠ BR. We
can then write Bi ¼ B0 þ BmðxiÞ, whereB0 is the external
homogeneous magnetic field, while BmðxiÞ is the micro-
magnet slanting field at the location of dot xi. In practice,
B0 is a few tesla, at least larger than the saturation field of
the micromagnet B0 ≳ 0.5 T, while the magnetic gradient
ΔB ¼ ∥BmðxRÞ −BmðxLÞ∥ can reach ΔB ≈ 100 mT, cor-
responding to an electronic energy scale of jgμBΔBj ≈
2 μeV [89]. Field derivatives realized experimentally are
∂Bm;z=∂x ≈ 1.5 mT=nm. Alternatively, the magnetic gra-
dient can be realized via the Overhauser field, as exper-
imentally demonstrated, for example, in Ref. [67].
Note that the Fermi contact hyperfine interaction

between electron and nuclear spins reads Hhf ¼
P

ihi ·Si.
Here, hi is the Overhauser field in QD i ¼ L;R. When
treating hi as a classical (random) variable, Hhf is equiv-
alent to HZ, and thus one can absorb hi into the definition
of the magnetic field Bi in Eq. (G5); also see Ref. [89].
To facilitate the discussion, we introduce the magnetic

sum field B ¼ ðBL þ BRÞ=2 and the difference field
ΔB ¼ ðBR −BLÞ=2. While B conserves the total spin,
that is, ½BðSL þ SRÞ; ðSL þ SRÞ2� ¼ 0, the gradient field
ΔB does not. We set the quantization axis ẑ along B ¼ Bẑ.
For sufficiently large magnetic field B, the electronic levels
with Sztot ¼ SzL þ SzR ≠ 0 are far detuned and can be
neglected for the remainder of the discussion. Therefore,
in the following, we restrict ourselves to the Sztot ¼ 0
subspace. The components ΔBx;y give rise to transitions
out of the (logical) subspace Sztot ¼ 0. Since these processes
are assumed to be far off resonance, they are neglected,
leaving us with the only relevant magnetic gradient
Δ ¼ gμBΔBz=2; compare also Refs. [66,67]. For a sche-
matic illustration, compare Fig. 9.
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In summary, in the regime of interest H0 simplifies to

H0 ¼
tc
2
ðjS02ihS11j þ H:c:Þ − ϵjS02ihS02j

− ΔðjT0ihS11j þ H:c:Þ: ðG6Þ

The eigenstates ofH0 within the relevant S
z
tot ¼ SzL þ SzR ¼

0 subspace can be expressed as

jli ¼ αljT0i þ βljS11i þ κljS02i; ðG7Þ

with corresponding eigenenergies ϵlðl ¼ 0; 1; 2Þ. The spec-
trum is displayed in Fig. 10. For large negative detuning
−ϵ ≫ tc, the level j2i is far detuned, and the electronic
subsystem can be simplified to an effective two-level
system comprising the levels fj0i; j1ig, that is,

H0 ≈
ω0

2
ðj1ih1j − j0ih0jÞ; ðG8Þ

which can be identified with a “singlet-triplet-like” logical
qubit subspace. Here, ω0 ¼ ϵ1 − ϵ0 refers to the qubit’s

transition frequency. Note that the magnetic gradient causes
efficient mixing between jT0i and jS11i for Δ≳ jt2c=ϵj. In
the regime of interest, the dominant character of the qubit’s
levels is j1i ≈ j⇓⇑i, j0i ≈ j⇑⇓i (or vice versa) [66] and
the transition frequency is approximately ω0 ≈ 2Δ. For
Δ ≈ 1 μeV, the transition frequency ω0 ¼ ϵ1 − ϵ0 ≈
2 μeV ≈ 3 GHz matches typical SAW frequencies ∼GHz.

2. Coupling to SAW phonon mode

Along the lines of Appendix F, again we consider a SAW
resonator with a single relevant confined phonon mode of
frequency ωc close to the qubit’s transition frequency ω0.
For a DQD in the two-electron regime, in the basis of
Eq. (G6) coupling to the resoantor mode can be written
as [47]

Hint ¼ g0½aþ a†� ⊗ jS02ihS02j; ðG9Þ

where g0 ¼ eφ0ηgeo. Here, ηgeo is a geometrical factor
accounting for the DQD’s position with respect to the
mode function ϕðxÞ, defined according to φ0ηgeo ¼
ϕðxRÞ − ϕðxLÞ. For example, taking a standing-wave
pattern along x̂ as demonstrated experimentally in
Ref. [90], together with a transverse mode function
restricting the spread in the ŷ direction [40,43], we obtain
ηgeo ¼ sin ð2πxR=λÞ − sin ð2πxL=λÞ. It takes on its maxi-
mum value ηopt when tuning a node of the standing wave at
the center between the two dots, that is, xR ¼ l=2,
xL ¼ −l=2; this gives ηopt ¼ 2 sin ðπl=λÞ, where l is the
distance between the two dots [47]. As compared to the
charge qubit described in Appendix F, there is an additional
factor of 2, since here we consider a DQD in the two-
electron regime, whereas the charge qubit consists of
one electron only. For typical parameters (l ¼ 220 nm,
λ ≈ 1.4 μm) as used in Ref. [47], we get ηopt ≈ 0.95, while
l ¼ 220 nm, λ ≈ 0.5 μm leads to the largest possible value
of ηopt ≈ 2.
In summary, within the effective electronic two-level

subspace fj0i; j1ig, the system is described by the
Hamiltonian

HDQD ¼
X
l¼0;1

ðϵl þ κ2l V̂peÞjlihlj þ κ0κ1V̂peðj0ih1j þ H:c:Þ

þ ωca†a; ðG10Þ

where V̂pe ¼ g0½aþ a†�. Applying a unitary transformation
to a frame rotating at the cavity frequency ωc according
to ~HDQD ¼ UHDQDU† þ i _UU†, with U ¼ exp ½iωctða†aþ
1
2
j1ih1j − 1

2
j0ih0jÞ�, performing a RWA, and dropping a

global energy shift ~ϵ ¼ ðϵ0 þ ϵ1Þ=2, we arrive at the
effective (time-independent) Hamiltonian of Jaynes-
Cummings form,

FIG. 9. Illustration of the relevant electronic levels under
consideration. The triplet levels with Sztot ≠ 1 can be tuned off
resonance by applying a sufficiently large homogeneous mag-
netic field.
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FIG. 10. Spectrum of H0 for tc ¼ 5Δ. The three eigenstates jli
are displayed in green dotted ðl ¼ 2Þ, red solid ðl ¼ 1Þ, and blue
dashed ðl ¼ 0Þ lines, respectively. The triplets jT�i are assumed
to be far detuned by a large external field and are not shown. For
large negative detuning ϵ > −tc, the hybridized levels fj0i; j1ig
can be used as qubit.
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~HDQD ¼ δ̄Sz þ gQD½Sþaþ S−a†�; ðG11Þ

where we introduce the spin operators Sþ ¼ j1ih0j and
Sz ¼ ðj1ih1j − j0ih0jÞ=2. Moreover, δ̄ ¼ ω0 − ωc is the
detuning between the qubit’s transition frequency ω0 and
the cavity frequency ωc, and the effective single-phonon
Rabi frequency is defined as

gQD ¼ κ0κ1ηgeoeϕ0F ðkdÞ ≈ 2κ0κ1gch: ðG12Þ

The coupling between the qubit and the cavity mode is
mediated by the piezoelectric potential; therefore, it is
proportional to the electron’s charge e and the single-
phonon electric potential ϕ0. Because of the prolonged
decoherence time scales, here we consider an effective
(singlet-triplet-like) spin qubit rather than a charge
qubit, such that the coupling gQD is reduced by the
(small) admixtures with the localized singlet κl¼hS02jli.
Increasing κ0κ1 leads to a stronger Rabi frequency
gQD, but an increased difference in charge configuration
jκ21 − κ20j makes the qubit more susceptible to charge noise.
For typical numbers ðtc≈5 μeV;ϵ≈−7 μeV;Δ≈1 μeVÞ,
we get κ0κ1 ≈ 5 × 10−2, jκ21 − κ20j ≈ 2 × 10−2; see
Fig. 11. For l ≈ 250 nm, λ ≈ 0.5 μm, and d ≈ 50 nm, we
can then estimate

gQD=ℏ ≈
200 MHzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A ½μm2�

p : ðG13Þ

We take this coupling strength as a conservative estimate,
since optimization against the relevant noise sources as
done in Ref. [69] yields an optimal point with κ0κ1 ≈ 0.3
and ω0=2π ≈ 1.5 GHz. Resonance ðδ ¼ 0Þ yields a SAW
wavelength of λ ≈ 2 μm; accordingly, for a fixed dot-to-
dot distance l ¼ 250 nm, ηgeo ≈ 0.76 (whereas a larger
DQD size l ¼ 400 nm, as used in Ref. [25], gives
ηgeo ≈ 1.18). For l ¼ 250 nm, d ¼ 50 nm, we then obtain

gQD=ℏ ≈ 600 MHz=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A ½μm2�

p
, which is a factor of 3

larger than the estimate quoted above.

3. Cooperativity

In this context, an important figure of merit is the single-
spin cooperativity [61], C ¼ g2QDT2=κðn̄th þ 1Þ, where
κ ¼ ωc=Q is the mechanical damping rate and n̄th ¼
1=ðeℏωc=kBT − 1Þ is the equilibrium phonon occupation
number at temperature T; here, since ℏωc ≫ kBT for
cryostatic temperatures, n̄th ≈ 0. For singlet-triplet qubits
in lateral QDs, T⋆

2 ≈ 100 ns [64]; using spin-echo tech-
niques, experimentally this has even been extended to
T2 ¼ 276 μs. Even in the absence of spin-echo pulses,
with a far-from-optimistic dephasing time T⋆

2 ≈ 100 ns
[21], for a moderately small cavity size A ≈ 100 μm2, a
quality factor of Q ¼ 900 is sufficient to reach C≈

g2QDT
⋆
2Q=ωc ≈ 3.8 (compare Table V). Note that C > 1

allows us to perform a quantum gate between two spins
mediated by a thermal mechanical mode [9].

4. Discussion of approximations

To arrive at the effective Hamiltonian given in Eq. (G11),
we make two essential approximations: (i) first, we neglect
the electronic level j2i yielding an effective two-level
system, and (ii) second, we apply a RWA leading to a
major simplification of HDQD; see Eq. (G11) as compared
to Eq. (G10). In order to corroborate these approximations,
we now compare exact numerical simulations of the full
system where none of the approximations have been
applied to the simplified, approximate description
described above. While the dynamics of the former is
described by the master equation,

_ρ ¼ −i½H0 þHcav þHint; ρ� þ κD½a�ρ; ðG14Þ

with H0, Hcav, and Hint given in Eqs. (G6), (F2), and (G9),
respectively, the latter is described by a similar master
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FIG. 11. The product κ0κ1 directly affects the effective single-
phonon Rabi frequency gQD=g0 ¼ κ0κ1 [69], while the difference
jκ21 − κ20j determines the robustness of the qubit against charge
noise. Here, tc ¼ 5Δ.

TABLE V. Estimates of the single-spin cooperativity C for a
DQD singlet-triplet qubit with T⋆

2 ≈ 100 ns, in a SAW cavity at
gigahertz frequencies ωc=2π ≈ 1.5 GHz and cryostat temper-
atures where n̄th ≈ 0 for both a small, low-Q and a large, high-Q
SAW resonator. The coupling strength gQD could be further
increased by additionally depositing a strongly piezoelectric
material such as LiNbO3 on the GaAs substrate, and spin-echo
(and/or narrowing) techniques allow for dephasing times ex-
tended by up to 3 orders of magnitude [21,64].

Cavity size A ½μm2� gQD [MHz] Q C

Small cavity 1 200 10 4.25
Large cavity 500 9 104 8.5
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equation with the coherent Hamiltonian term replaced by
the prototypical Jaynes-Cummings Hamiltonian,

_ρ ¼ −i½δ̄Sz þ gQDðSþaþ S−a†Þ; ρ� þ κD½a�ρ;
ðG15Þ

with ρ referring to the density matrix of the combined
system comprising the DQD and the cavity mode. Here, we
also account for decay of cavity phonons out of the
resonator with a rate κ, described by the Lindblad term
D½a�ρ ¼ aρa† − 1

2
fa†a; ρg. As a figure of merit to validate

approximation (i) we determine the population of the level
j2i, that is, Tr½ρj2ih2j�, describing the undesired leakage
out of the logical subspace; ideally, this should be zero.
Note that leakage into the triplet levels jT�i could be
accounted for along the lines, but they can be tuned far off
resonance by another, independent experimental knob, the
external homogeneous magnetic field. The results are
summarized in Fig. 12: We find very good agreement
between the exact and the approximate model, with a
negligibly small error Tr½ρj2ih2j� ∼Oð10−5Þ. This justifies
the approximations made above and shows that (in the
regime of interest) the system can simply be described
by Eq. (G15).

5. Noise sources for the DQD-based system

a. Charge noise

In a DQD device background charge fluctuations and
noise in the gate voltages may cause undesired dephasing
processes. In a recent experimental study [91], voltage
fluctuations in the interdot detuning parameter ϵ have been
identified as the main source of charge noise in a singlet-
triplet qubit. Charge noise can be treated by introducing a
Gaussian distribution in ϵ, with a variance σϵ; typically,
σϵ ≈ ð1–3Þ μeV [89]. The qubit’s transition frequency ω0,
however, turns out to be rather insensitive to fluctuations
in ϵ, with a (tunable) sensitivity of approximately
∂ω0=∂ϵ≲ 10−2; see Fig. 13. In agreement with experi-
mental results presented in Ref. [91], we find ∂ω0=∂ϵ ∼ ω0,
indicating ω0 to be an exponential function of ϵ. At very
negative detuning ϵ, dephasing due to charge noise is
practically absent, and T⋆

2 will be limited by nuclear noise
[91]. Fluctuations in the tunneling amplitude tc can be
treated along the lines: we find ω0 to be similarly
insensitive to noise in tc, ∂ω0=∂tc ≈ 10−2.

b. Nuclear noise: Spin echo

The electronic qubit introduced above has been defined
for a fixed set of parameters ðtc; ϵ;ΔÞ; compare Eq. (G6).
Now, let us consider the effect of deviations from these
fixed parameters, H0 → H0 þ δH, where δH can be
decomposed as δH ¼ δHel þ δHnuc, with

δHel ¼
δtc
2

ðjS02ihS11j þ H:c:Þ − δϵjS02ihS02j; ðG16Þ

δHnuc ¼ −δΔðjT0ihS11j þ H:c:Þ; ðG17Þ

(a) (b)

(c)

FIG. 12. Exact numerical simulations of the full (blue, solid
line) and approximate (cyan circles) master equations as given in
Eqs. (G14) and (G15), respectively. Plots are shown for (a) the
electronic inversion hSzit, (b) the cavity occupation hnit, and
(c) the error Tr½ρj2ih2j� quantifying the leakage to j2i. The latter
is found to be negligibly small ∼10−5. We set δ̄ ¼ ω0 − ωc ¼ 0.
Numerical parameters are tc¼10 μeV, ϵ ¼ −7 μeV, Δ ¼ 1 μeV,
ηgeoeφ0 ¼ 5.2 × 10−2 μeV, such that gQD ¼ 4 × 10−3 μeV ≈
6 MHz. The cavity decay rate is κ ¼ gQD=2, corresponding
to Q ≈ 103.
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FIG. 13. Transition frequency ω0 (blue solid line) and its
sensitivity against charge-noise-induced fluctuations in ϵ for
(a) intermediate and (b) large negative detuning; for large
negative detuning, ω0 ≈ 2Δ, and the sensitivity ∂ω0=∂ϵ practi-
cally vanishes, leaving nuclear noise as the dominant dephasing
process. By occasional refocusing of the spin states, this regime
can be used for long-term storage of quantum information [69].
Other numerical parameters: tc ¼ 5Δ.
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where δtc and δϵ can be tuned electrostatically and
basically in situ. In most practical situations this does
not hold for δΔ: The primary source of decoherence in
this system has been found to come from (slow) fluctua-
tions in the Overhauser field generated by the nuclear spins
[21,66,67]. In our model, this can be directly identified with
a random, slowly time-dependent parameter δΔ ¼ δΔðtÞ.
In the relevant subspace fj0i; j1ig, δHnuc is given by
δHnuc ¼ −δΔPk;lαkβl½jkihlj þ H:c:�. Typically, δΔ ≈
0.1 μeV ≪ ωc is fulfilled, such that we can apply a
RWA yielding δHnuc ≈ −2δΔPlαlβljlihlj; physically,
δHnuc is too weak to drive transitions between the elec-
tronic levels j0i and j1i, which are energetically separated
by ω0 ≈ ωc. Then, in the spin basis used in Eq. (G11),
we find

δHnuc ¼ δðtÞSz; ðG18Þ

where the gradient noise is given by δðtÞ ¼
2δΔðtÞðα0β0 − α1β1Þ. For ðtc; ϵ;ΔÞ ≈ ð5;−7; 1Þ μeV,
α0β0 − α1β1 ≈ 0.9. Therefore, when also accounting for
nuclear noise as described by Eq. (G18), the full model
[compare Eq. (G11)] reads

~HDQD ¼ ½δ̄þ δðtÞ�Sz þ gQD½Sþaþ S−a†�: ðG19Þ

Since the nuclear spins evolve on time scales much longer
than all other relevant time scales, ∼κ−1; g−1 [65], the
Overhauser noise term can be approximated as quasistatic;
that is, δðtÞ ¼ δ. As experimentally demonstrated in
Ref. [67], the slow (nuclear) noise term ∼δðtÞSz can
be neutralized by Hahn-echo techniques. Here, the dephas-
ing time of the electron spin qubit is extended by more
than 3 orders of magnitude from T⋆

2 ≈ ð10–100Þ ns to
T2 ¼ 276 μs.
In the following, assuming nominal resonance δ̄ ¼ 0, we

detail a sequence of Hahn-echo pulses that cancels the
undesired noise term and restores the pure, resonant
Jaynes-Cummings dynamics: We consider four short time
intervals of length τ, for which the unitary evolution is
approximately given by Ui ≈ 1 − iHiτ, interspersed by
three π pulses. First, we let the system evolve with
H1 ¼ δSz þ gQD½Sþaþ S−a†�, then we apply a π pulse
along x̂ ðSz → −Sz; Sx → Sx; Sy → −SyÞ such that S� →
S∓ and the system evolves in the second time interval with
H2 ¼ −δSz þ gQD½S−aþ Sþa†�. Next, we apply a π pulse
along ẑ ðSz → Sz; Sx → −Sx; Sy → −SyÞ such that S� →
−S� leading to H3 ¼ −δSz − gQD½S−aþ Sþa†�. Finally,
a π pulse along ŷ ðSz → −Sz; Sx → −Sx; Sy → SyÞ is
applied such that S� → −S∓, giving H4 ¼ δSzþ
gQD½Sþaþ S−a†�. In summary, the system evolves over
a time interval of 4τ according to Ueff ¼ U4U3U2U1 ≈
1 − iτ

P
iHi ¼ 1 − iHeff4τ with the effective Hamiltonian

Heff ¼
gQD
2

½Sþaþ S−a†�: ðG20Þ

Thus, in order to cancel the noise term, the effective single-
phonon coupling strength is lowered by only a factor
of 1=2.

6. Different spin-resonator coupling

In Appendix G, we show how to realize the prototypical
Jaynes-Cummings Hamiltonian for SAW phonons inter-
acting with a DQD; see Eq. (G11). Alternatively, if one
does not absorb the gradient Δ into the definition of the
qubit basis, one can identify the logical subspace with the
electronic states jT0i and jSi, where jSi is one of the two
hybridized singlets (while the other one jS0i is far detuned
and neglected) [21,66,67,91]. Here, the electronic
Hamiltonian reads H0¼−JðϵÞjSihSj− ~ΔðjT0ihSjþH:c:Þ,
where ~Δ ¼ hS11jSiΔ and JðϵÞ describes the exchange
interaction. In this regime, the spin-resonator interaction
takes on a form that is well known from other (localized)
implementations of mechanical resonators [9], namely,

Hint ¼ gQDðaþ a†Þ ⊗ jSihSj; ðG21Þ

which can be viewed as a phonon-state-dependent force,
leading to a shift of the qubit’s transition frequency
depending on the position x̂ ¼ ðaþ a†Þ= ffiffiffi

2
p

. Here, the
single-phonon Rabi frequency is gQD ¼ κ2Sηgeoeϕ0F ðkdÞ,
with κS ¼ hS02jSi. Based on the coupling of Eq. (G21), one
can envisage a variety of experiments known from quantum
optics: For example, in the limit of vanishing gradient
Δ ¼ 0, the x̂ quadrature of the phonon mode could serve as
a quantum nondemolition variable, as it is an integral of
motion of the coupled system of the phonon mode and
electronic meter.

APPENDIX H: GENERALIZED DEFINITION
OF THE COOPERATIVITY PARAMETER

Here, we provide a generalized discussion of the
cooperativity parameter C, which, in particular, accounts
for losses of the cavity mode other than leakage through the
nonperfect mirrors. Furthermore, we derive a simple,
analytical estimate for the state transfer fidelity F in terms
of the parameter C and undesired phonon losses with a
rate ∼κbd.
We consider a single qubit fj0i; j1ig coupled to a cavity

mode. The system is described by the master equation

_ϱ ¼ ðκgd þ κbdÞD½a�ϱ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
L0ϱ

−i½HJC; ϱ� þ ΓdephD½j1ih1j�ϱ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Vϱ

;

ðH1Þ

where D½a�ϱ ¼ aϱa† − 1
2
fa†a; ϱg. The first term describes

decay of the cavity mode. The corresponding decay rate
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can be decomposed into desired (leakage through the
mirrors) and undesired (bulk-mode conversion, material
imperfections, etc.) contributions, labeled as κgd and κbd,
respectively. Thus, we write κ ¼ κgd þ κbd. The second
term with (on-resonance) HJC ¼ gðSþaþ S−a†Þ refers to
the coherent interaction between qubit and cavity mode,
while the last term describes pure dephasing of the qubit
with a rate Γdeph.
In the bad cavity limit (where κ ≫ g;Γdeph), one can

adiabatically eliminate the cavity mode by projecting the
system onto the cavity vacuum, Pϱ ¼ Trcav½ϱ� ⊗ ρsscav ¼
ρ ⊗ jvacihvacj. Standard techniques (perturbation theory
up to second order in V, compare Ref. [92]) then yield
the effective master equation for the qubit’s density matrix
ρ ¼ Trcav½Pϱ� only,

_ρ ¼ ~κD½S−�ρþ ΓdephD½j1ih1j�ρ; ðH2Þ

with the effective decay rate ~κ ¼ 4g2=κ.
For comparison, the same procedure in standard cavity

QED, where κ ¼ κgd and ΓdephD½j1ih1j�ρ → γD½S−�ρ,
yields the effective master equation for the atom only,
_ρ ¼ ~κD½S−�ρþ γD½S−�ρ. Therefore, the atom decays with
an effective spontaneous emission rate γtot enhanced by the
Purcell factor, γtot ¼ γ þ ~κ ¼ ð1þ 4g2=κγÞγ. Comparing
good ∼~κ to bad ∼γ decay channels, here one defines
the cooperativity parameter in a straightforward way as
Catom ¼ g2=κγ. This is readily read as the cavity-to-free-
space scattering ratio, since the effective rate at which an
excited atom emits an excitation into the cavity is given by
~κ ∼ g2=κ. For Catom > 1, the atom is then more likely to
decay into the cavity mode rather than into another mode
outside the cavity. In cavity QED, large cooperativity
Catom ≫ 1 has allowed for a number of key experimental
demonstrations, such as an enhancement of spontaneous
emission [93], photon blockade [94], and vacuum-induced
transparency [95].
The master equation given in Eq. (H2) describes a

two-level system subject to purely dissipative dynamics.
The dynamics can be fully described in terms of a set of
three simple rate equations for the populations pk ¼
hkjρjki ðk ¼ 0; 1Þ and coherence ρ10 ¼ h1jρj0i, summa-
rized as ~p ¼ ðp1; p0; ρ10Þ,

d
dt

~p ¼

0
B@−~κ 0 0

þ~κ 0 0

0 0 −γeff=2

1
CA~p; ðH3Þ

where γeff ¼ ð~κ þ ΓdephÞ. This allows for a simple analyti-
cal solution: For example, for a system initially in the
excited state ρðt ¼ 0Þ ¼ j1ih1j, it reads p1ðtÞ ¼ exp ½−~κt�,
p0 ¼ 1 − exp ½−~κt�, and ρ10ðtÞ ¼ 0.

Here, we aim for a theoretical description that singles out
the desired trajectories, where phonon emission through the
mirrors happens first, from all others. To do so, we rewrite
Eq. (H2) as

_ρ ¼ −iHρþ iρH† þ J gdρþ J bdρ; ðH4Þ

where we define an effective (non-Hermitian) Hamiltonian
H and jump operators according to

H ¼ − i
2
γeff j1ih1j ¼ − i

2
ð~κ þ ΓdephÞj1ih1j; ðH5Þ

J gdρ ¼ ~κgdS−ρSþ; ðH6Þ

J bdρ ¼ ~κbdS−ρSþ þ Γdephj1ih1jρj1ih1j: ðH7Þ

Here, we decompose the effective decay rate ~κ as

~κ ¼ ~κgd þ ~κbd ¼
4g2

κ2
κgd þ

4g2

κ2
κbd: ðH8Þ

Formally solving Eq. (H4) gives

ρðtÞ ¼ UðtÞρð0Þ þ
Z

t

0

dτUðt − τÞJ ρðτÞ; ðH9Þ

with the total jump operator J ρ ¼ J gdρþ J bdρ and

UðtÞρ ¼ e−iHtρeiH
†t; ðH10Þ

The exact solution given in Eq. (H9) can be iterated, giving
an illustrative expansion in terms of the jumps J . It reads

ρðtÞ ¼ UðtÞρð0Þ þ
Z

t

0

dτ1Uðt − τ1ÞJUðτ1Þρð0Þ

þ
Z

t

0

dτ2

Z
τ2

0

dτ1Uðt − τ2ÞJUðτ2 − τ1Þ

× JUðτ1Þρð0Þ þ � � � :

Here, the nth-order term comprises n jumps J with free
evolution U between the jumps. Now, we can single out the
desired events where the first quantum jump is governed
by J gd. This leads to the definition

ρðtÞ ¼ UðtÞρð0Þ þ ρgdðtÞ þ ρbdðtÞ; ðH11Þ

where ρgdðtÞ subsumes all desired trajectories:
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ρgdðtÞ ¼
Z

t

0

dτ1Uðt − τ1ÞJ gdUðτ1Þρð0Þ

þ
Z

t

0

dτ2

Z
τ2

0

dτ1Uðt − τ2ÞJUðτ2 − τ1Þ

× J gdUðτ1Þρð0Þ þ � � � : ðH12Þ

We focus on a qubit, initially in the excited state,
i.e., ρð0Þ ¼ j1ih1j. Using the relations Uðτ1Þρð0Þ ¼
e−γeffτ1 j1ih1j, J gdUðτ1Þρð0Þ ¼ ~κgde−γeffτ1 j0ih0j, and

J gdUðτ2 − τ1ÞJ gdUðτ1Þρð0Þ ¼ 0; ðH13Þ

J bdUðτ2 − τ1ÞJ gdUðτ1Þρð0Þ ¼ 0; ðH14Þ

the qubit’s density matrix evaluates (to all orders in J ) to

ρðtÞ ¼ e−γeff tj1ih1j þ ρgdðtÞ þ ρbdðtÞ; ðH15Þ

ρgdðtÞ ¼
~κgd
γeff

ð1 − e−γeff tÞj0ih0j: ðH16Þ

In the long-time limit t → ∞, the system reaches the steady
state, ρðt → ∞Þ ¼ ρgd þ ρbd, where ρgd ¼ ð~κgd=γeffÞj0ih0j.
The associated success probability psuc ¼ Tr½ρgd� for
faithful decay through the mirrors is then

psuc ¼
~κgd

~κgd þ ~κbd þ Γdeph
¼ 1

κ
κgd

þ 1
4

κ2Γdeph

g2κgd

; ðH17Þ

which is a simple branching ratio comparing the strength of
the desired decay channel ∼~κgd to the undesired ones
∼~κbd þ Γdeph. In the limit where κbd ¼ 0, i.e., κ ¼ κgd, the
expression for psuc simplifies to

psuc ¼
1

1þ 1
4
1
C

!C≫1
1; ðH18Þ

with the usual definition found in the literature, C¼
g2=ðκΓdephÞ¼ g2T2=κ; here, κ¼ωc=Qeff ¼ðn̄thþ1Þωc=Q
is understood to account for thermal occupation of the
environment n̄th in terms of a decreased mechanical quality
factor (compare, for example, Refs. [10,61]).
It is instructive to rewrite the general expression for psuc

given in Eq. (H17) as

psuc ¼
1

ð1þ εÞ½1þ 1
4C�

; ðH19Þ

with ε ¼ κbd=κgd. Based on this definition, it is evident
that two conditions need to be satisfied in order to reach
psuc → 1 in the regime where κbd > 0: (i) a low undesired
loss rate, ε ¼ κbd=κgd ≪ 1, and (ii) high cooperativity,
C≡ ðg2=κΓdephÞ ¼ ðg2T2=κÞ ≫ 1, with κ ¼ κgd þ κbd.

For an illustration, compare Fig. 14. This shows that
the usual definition and interpretation of the cooperativity
C holds, provided that ε ≪ 1 is fulfilled. In order to
quantify the cooperativity C for SAW cavity modes in
both the ∼MHz ðn̄th ≫ 1Þ and the ∼GHz ðn̄th ≪ 1Þ
regime, in the main text we take a (conservative) estimate
as C≡ g2T2Q=½ωcðn̄th þ 1Þ�. For artificial atoms (quan-
tum dots, superconducting qubits, NV centers, etc.) with
resonant frequencies ∼GHz, at cryostatic temperatures
this definition reduces to C ≈ g2T2=κ, as discussed
above, whereas for a trapped ion with ωt=2π ≈ ωc=
2π ∼MHz, it correctly gives C ≈ g2T2Q=ðωcn̄thÞ with
a decreased effective quality factor Qeff ¼ Q=n̄th
[10,96,97].
For small errors, the expression given in Eq. (H19)

can be approximated as psuc ≈ 1 − ε − 1=ð4CÞ. Since the
absorption process is just the time-reversed copy of the
emission process in the state transfer protocol for two
nodes, we can estimate the state transfer fidelity as
F ≥ psuc × psuc. For small infidelities, we then find

F ≳ 1–2ε − 1

2C
; ðH20Þ

where the individual errors arise from intrinsic phonon
losses ∼ε and qubit dephasing ∼C−1 ∼ T−1

2 , respectively.
This simple analytical estimate agrees well with numerical
results presented in Ref. [62], where (except for noise
sources that are irrelevant for our problem) F ≈ 1 −
ð2=3Þε=ð1þ εÞ − CC−1 with a numerical coefficient
C ¼ Oð1Þ depending on the specific pulse sequence.
Since ε ≪ 1, this relation can be simplified to
F ≈ 1 − ð2=3Þε − CC−1. For the state transfer of the
coherent superposition jψi ¼ ðj0i − j1iÞ= ffiffiffi

2
p

as described
in detail in Appendix J, we explicitly verify the linear
scaling ∼ε and find numerically ∼1=2ε for intrinsic phonon
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p s
uc

FIG. 14. Success probability psuc for a qubit excitation to
leak through the mirror, as a function of the cooperativity
C for ε ¼ κbd=κgd ¼ 0 (black solid line) and ε ¼ 5% (blue
dashed line).
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losses (compare also Fig. 4, where F ≈ 95% for ε ≈ 10%
and σnuc ¼ 0) and take ∼ε as a simple estimate in Eq. (8).
Using experimentally achievable parameters ε ≈ 5% and
C ≈ 30, we can then estimate F ≈ 90%.

APPENDIX I: EFFECTS DUE TO THE
STRUCTURE DEFINING THE

QUANTUM DOTS

In our analysis of charge and spin qubits defined in
quantum dots, we neglect any potential effects arising due
to the structure defining the quantum dots, that is, (i) the
heterostructure for the 2DEG and (ii) the metallic top gates
for confinement of single electrons. In this appendix, we
give several arguments corroborating this approximate
treatment, showing that the QD structure does not neg-
atively influence the cavity or the coupling between qubit
and cavity.

1. Heterostructure

Following the arguments given in Ref. [26], the 2DEG is
taken to be a thin conducting layer a distance d away from
the surface of a homogeneous AlxGa1−xAs crystal with
typically x ≈ 30%. This treatment is approximately correct
since the relevant material properties (elastic constants,
densities, and dielectric constants) of AlxGa1−xAs and
GaAs are very similar [26]. The mode functions and speed
of sound are largely defined by the elastic constants [26],
which are roughly the same for both AlxGa1−xAs and pure
GaAs; for example, the speed of the Rayleigh SAW for
Al0.3Ga0.7As is vs ≈ 3010 m=s, which differs from that of
pure GaAs by only 5% [26]. Moreover, the numerical
values for the material-dependent parameter H entering the
amplitude of the mechanical zero-point motion U0 accord-
ing to Eq. (C9) differ by 2% only [26]; accordingly, the
estimate for our key figure of merit U0 should be rather
accurate. Also, the piezoelectric coupling constants are
rather similar, with e14 ≈ 0.15 C=m2 for pure GaAs and
e14 ≈ 0.145 C=m2 for Al0.3Ga0.7As [25,26], yielding an
accurate estimate for ϕ0 and ξ0, respectively. Lastly, the
heterostructure is not expected to severely affect the Q
factor, since very high Q values reaching Q > 104 have
been observed in previous SAW experiments on AlN/
diamond heterostructures [54,55], where the differences
in material properties are considerably larger than for the
heterostructure making up the 2DEG.

2. Top gates

For the following reasons, we disregard effects due to
the presence of the metallic top gates. (i) In Ref. [28], a
closed-form analytic solution for the piezoelectric potential
ϕðx; tÞ accompanying a SAW on the surface of a
GaAs=AlxGa1−xAs in the presence of a narrow metal gate
has been obtained. In particular, it is shown that ϕðx; tÞ is
screened right below the gate, but remains practically

unchanged with respect to the ungated case outside of
the edges of the gate. Since the QD electrons are confined
to regions outside of the metallic gates, they experience the
piezoelectric potential as calculated for the ungated case
(see Appendix B for details); therefore, our estimates—
where this screening effect has been neglected—remain
approximately valid. (ii) In Ref. [47], the coupling of a
traveling SAW to electrons confined in a DQD has been
experimentally studied. Here, in very good agreement with
the experimental results, the potential felt by the QD
electrons has been taken as Vpe ∼ sin ðklÞ (where l is the
lithographic distance between the dots) confirming the
sinelike mode profile as used in our estimates. Moreover,
with l ¼ 220 nm and λ ¼ 1.4 μm, the parameters used in
this experiment perfectly match the ones used in our
estimates. Intuitively (in the spirit of the standard electric
dipole approximation in quantum optics), since λ ≫ l, the
SAW mode cannot resolve the dot structure and thus
remains largely unaffected. (iii) In Ref. [16], single-phonon
SAW pulses have been detected via a single electron
transistor (SET) directly deposited on the GaAs substrate
with time-resolved measurements clearly identifying the
coupling as piezoelectric. Similarly to a QD, the SET is
defined by metallic gates. Here, a relation between vertical
surface displacement and surface charge induced on the
SET is theoretically derived. Using standard tabulated
parameter values for GaAs and neglecting any effects
due to the presence of the metallic gates, very good
agreement with the experimental results is achieved. In
particular, based on the results given in Ref. [16], a
straightforward estimate gives U0 ≈ 30 am for the rather
large cavity with A ≈ 106 μm2, whereas Eq. (4) yields a
smaller, conservative estimate U0 ≈ 2 am, due to the
averaging over the quantization area A. (iv) The Q factor
of the cavity is not expected to be severely affected by the
presence of the metallic gates since metallic Al cladding
layers have been used on a GaAs substrate to show
basically dissipation-free SAW propagation over millimeter
distances [39,40]. (v) Finally, there is a large body of
previous theoretical work on electron-phonon coupling in
gate-defined QDs (see, for example, Refs. [25,87,88,98])
where any effects due to the structure defining the QDs
have been neglected as well. As a matter of fact, our
description for the electron-phonon coupling emerges
directly from these previous treatments in the limit where
the continuum of phonon modes is replaced by a single
relevant SAW cavity mode (similar to cavity QED, other
bulk modes are still present and contribute to the
decoherence of the qubit on a time scale T2). For example,
the piezoelectric electron-phonon interaction is given in
Ref. [98] as

HGaAs ¼ β
X
k;μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ

2ρVvμk

s
Mk½ak;μ þ a†−k;μ�; ðI1Þ
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where a†k;μ creates an acoustic phonon with wave vector k
and polarization μ, and Mk refers to the matrix element
for electron-phonon coupling; for free bulk modes,
Mk ¼

P
i;j

P
σ hij exp ½ikr�jjid†iσdjσ . In agreement with

our notation, the coupling constant is β ¼ ee14=ϵ and
the square-root factor can be identified with U0.
Replacing the sum by a single relevant cavity mode a,
we recover the Hamiltonian describing the cavity-qubit
coupling with g ∼ βU0 ¼ eϕ0; compare Eq. (F1).

APPENDIX J: STATE TRANSFER PROTOCOL

Here, we provide further details on the numerical
simulation of the state transfer protocol as described by
Eqs. (9) and (10), in the presence of Markovian noise. In
line with previous theoretical studies [97], we show that the
simple approximate Markovian noise treatment results in a
pessimistic estimate for the noise transfer fidelity F.
We first provide results of the full time-dependent

numerical simulation of the cascaded master equation
given in Eqs. (9) and (10), including an exponential loss
of coherence for Γdeph > 0; see Fig. 15. In contrast to the
non-Markovian noise model discussed in the main text,
the qubits are assumed to be on resonance throughout the
evolution, that is, δi ¼ 0ði ¼ 1; 2Þ, but experience unde-
sired noise as described by

Lnoiseρ ¼ 2κbd
X
i¼1;2

D½ai�ρþ Γdeph

X
i¼1;2

D½Szi �ρ: ðJ1Þ
Here, the second term refers to a standard Markovian pure
dephasing term that leads to an exponential loss of
coherence ∼ exp ð−Γdepht=2Þ. As a reference, we also show
the results for the ideal, noise-free scenario ðLnoise ¼ 0Þ,
where perfect state transfer is achieved [20]. The results of
this type of time-dependent numerical simulations are then
summarized in Fig. 16. For optimized, but experimentally
achievable parameters T⋆

2 ≈ 3 μs [21], and accordingly
Γdeph=κgd ≈ 3%, we then obtain F ≈ 0.85, in the presence
of realistic undesired phonon losses κbd=κgd ¼ 5%.
This shows that our non-Markovian noise model yields

even higher state transfer fidelities than the Markovian
noise model. Intuitively, this can be readily understood
as follows: The simple Markovian noise model gives
a coherence decay ∼ exp ð−t=T2Þ, whereas our non-
Markovian noise model yields ∼ exp ð−t2=T2

2Þ.
Therefore, for Markovian noise, one can estimate the
dephasing-induced error on the relevant time scale for
state transfer ∼κ−1 as ∼κ−1=T2 ≈ Γdeph=κ ≪ 1, whereas
non-Markovian noise leads to a considerably smaller
error ∼ðT−1

2 =κÞ2.
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