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The Jaynes-Cummings model with coherent drive is considered as an example of a nonlinear oscillator
exhibiting photon blockade, where blockade by one, two, three, etc., photons occurs at a sequence of
multiphoton absorption resonances. It is shown that with increasing drive strength, the blockade breaks
down by way of a dissipative quantum phase transition. The transition is first order, except at a critical point
in the space of drive amplitude and detuning, where a continuous transition is observed. Numerical
solutions to the quantum master equation in the steady state are presented and compared with mean-field
treatments based on Jaynes and Cummings’ semiclassical equations (strong coupling with conserved
pseudospin) and the Maxwell-Bloch equations (spontaneous emission included). The concept of a
“thermodynamic limit” in the absence of conserved particle number is explored. Contrasting the identity of
large photon number with weak coupling (large volume) in other dissipative quantum phase transitions for
photons (e.g., in the phase-transition analogy of laser threshold), the limit of large photon numbers is a
strong-coupling limit.
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I. INTRODUCTION

The unique
ffiffiffi
n

p
splitting of energy levels in the Jaynes-

Cummings model [1] (see also Ref. [2]) is a benchmark of
quantum optics and the target of beautiful experiments
seeking spectroscopic evidence for the quantization of the
electromagnetic field [3–8]. The same

ffiffiffi
n

p
splitting is seen

exchanging phonons with the center-of-mass motion of a
trapped ion through Raman coupling of its electronic
ground states [9]. There is more than a little irony to this
legacy of a paper, which, published under the title
“Comparison of Quantum and Semiclassical Radiation
Theories …,” lays more emphasis on the successes of
semiclassical theory than the need for something fully
quantum. Indeed, Jaynes and Cumming’s semiclassical
ideas were developed over the period of a decade as
neoclassical radiation theory [10] and viewed with enough
seriousness to be put to the experimental test [11,12].
I do not aim to revisit the quantum versus semiclassical

issue in this paper. Nonetheless, neoclassical radiation
theory is inevitably a subtext to a report of a quantum
phase transition of the Jaynes-Cummings model.
The notion of photon blockade was introduced by

Imamoǧlu et al. [13] as an analogue of Coulomb blockade

for quantum-well electrons. These authors treat an optical
cavity with Kerr nonlinearity and say, “To explain the
strong antibunching of transmitted photons, we introduce
the concept of photon blockade in close analogy with
the phenomenon of Coulomb blockade for quantum-well
electrons.” The essence of the blockade effect is that
harmonic energy levels are sufficiently shifted for a cavity
excited out of the ground state to behave as a two-state
system. Its realization as a result of the

ffiffiffi
n

p
splitting of the

Jaynes-Cummings model was anticipated by Tian and
Carmichael [14], who note in the abstract of their 1992
paper, “Under conditions of strong dipole coupling an
optical cavity containing one atom behaves as a two-state
system when excited near one of the ‘vacuum’ Rabi
resonances.” With just one two-level system coupled
to one radiation mode—i.e., for the Jaynes-Cummings
model—the vacuum Rabi resonance is highly anharmonic:
For dipole-coupling strength g, a coherent drive tuned
to one-photon resonance out of the ground state is detuned
by �ð ffiffiffi

2
p

− 2Þg from the second excited state; with this
detuning much larger than the cavity width, absorption of
one photon “blocks” absorption of a second.
Experiments in cavity and circuit QED have observed

the blockade effect by measuring photon antibunching
[15,16] and Mollow triplet spectra [16] in transmission
and “supersplitting” of the vacuum Rabi resonance as a
function of increasing drive strength [8]. Realization of
Gardiner’s squeezing-inhibited decay of atomic coherence
relies on photon blockade [17–19], and photon blockade in
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the Jaynes-Cummings model is key to proposals for phase
transitions of light in photonic cavity arrays [20–22] in
analogy to the superfluid-to-Mott-insulator quantum phase
transition of the Bose-Hubbard model [23,24].
With regard to the latter proposals, the analogy maps

Mott phases of exactly one-, two-, three-, etc., particle
occupancy per site to excited states of the Jaynes-
Cummings Hamiltonian occupied by one, two, three,
etc., quanta, with the one-quantum state corresponding
to the vacuum Rabi resonance where standard photon
blockade is observed. Higher excited states are accessed
as two-, three-, four-, etc., photon resonances [5,8,25], and,
in a generalization of one-photon blockade, each such
multiphoton resonance exhibits blockade, inhibiting the
absorption of additional photons [26].
Photon blockade is not, however, an absolute barrier

to the absorption of additional photons. It arises as an
excitation bottleneck caused by detuning when one tries to
drive monochromatic photons up an energy ladder of
unequal steps. In principle, it can be broken through, since
increasing drive strength both shifts and broadens energy
levels, increasing the probability for multiphoton absorp-
tion up many steps of the ladder. I show in this paper
that the breaking through—the breakdown of photon
blockade—is organized around a dissipative quantum phase
transition, an extension of what Alsing and Carmichael call
spontaneous dressed-state polarization [27].
In their 1991 paper, Alsing and Carmichael report a

symmetry-breaking transition of second order at a critical
value of drive strength for zero drive detuning. The
quasienergy spectrum of the driven Jaynes-Cummings
model shows a singularity at the critical point [28], where
the

ffiffiffi
n

p
splitting collapses to 0; a discrete spectrum below

the critical point gives way to a continuous one above.
In this paper, I show, more generally, that a first-order
transition occurs at nonzero drive detuning, evidenced by
the coexistence of the vacuum state with a state where the
cavity is filled with light [29,30]—photon numbers ranging
in the hundreds for a dipole couple strength of g=κ ¼ 50,
where 2κ is the cavity width. Fluctuations cause the cavity
transmission to “blink” on and off, with blink times on the
order of a thousand cavity lifetimes (critical slowing down).
By solving a quantum master equation numerically, I map
out the dependence of the mean steady-state photon
number on drive amplitude and detuning, and also the
domain of coexistent states, as defined by a bimodal steady-
state Q function.
I recover an outline of the physics behind the numerical

results from a mean-field treatment based on Jaynes and
Cumming’s semiclassical (neoclassical) radiation theory
[1,10], which serves as background to a discussion of
fluctuations. On resonance, the mean-field nonlinearity
diverges as the photon number goes to 0, contrasting the
more usual situation—e.g., a saturable nonlinearity—
where low photon numbers recover a linear limit.

Energy quantization removes the divergence. I show, thus,
that photon blockade breaks down, not through a mean-
field nonlinearity, but in a cascade of multiphoton tran-
sitions. Quantum fluctuations are central. I illustrate their
role by comparing mean-field theory with master equation
and quantum trajectory results.
In opposition, for example, to laser threshold [31–33]

where weaker coupling means a bigger photon number—
i.e., the “thermodynamic limit” is a weak-coupling limit
[34]—photon numbers beyond the critical point are larger
at stronger coupling and the “thermodynamic limit” is a
strong-coupling limit. Finally, I show how the weak-
coupling limit is restored by spontaneous emission, thus
converting the breakdown of photon blockade into optical
bistability for a saturable transition [35–38]. Although a
source of large fluctuations when its rate is small (see, e.g.,
Sec. 5 of Ref. [27]), spontaneous emission of higher and
higher rate restores a limit where fluctuations may be
neglected. Through the agency of disentangling quantum
jumps, distinguishable dressed-state ladders are replaced
by separated entities, a two-state system and a radiation
mode; environment-induced measurement transforms one
phase transition into another.
Background material is reviewed in Sec. II. In Sec. III, I

then survey the breakdown of photon blockade through
numerical solutions to a quantum master equation in steady
state: I map out the mean photon number and domain of
coexistent states (bimodalQ functions) in the plane of drive
amplitude and detuning; the broad features of a dissipative
quantum phase transition—critical point, bimodality, criti-
cal slowing down—are demonstrated and discussed. In
order to target the breakdown of photon blockade in a clear
and unambiguous way, spontaneous emission is omitted
in Secs. II and III. The full quantum results of Sec. III are
compared with mean-field theory in Sec. IV, where I also
contrast strong-coupling and weak-coupling “thermody-
namic limits”; spontaneous emission is introduced as the
agent that connects them. I return to the numerical solution
of the quantum master equation in steady state in Sec. V,
now with spontaneous emission included. I conclude with a
summary in Sec. VI, where I also discuss the potential
extension from zero dimensions to a driven lattice.

II. BACKGROUND

Experimental observation of the superfluid-to-Mott-
insulator transition in a gas of ultracold atoms [24]
stimulated wide interest in quantum phase transitions
beyond their traditional home in materials science. Such
transitions are now a target of quantum simulation, in
lattices of ultracold atoms and trapped ions, and photonic
cavity and superconducting circuit arrays [39–42].
Attention has focused for the most part on thermal
equilibrium transitions, where particle number is con-
served. Photon number is not conserved, so while photonic
models may imitate equilibrium predictions—e.g., those of
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the Bose-Hubbard model [20–22]—they lead more natu-
rally in the direction of nonequilibrium (dissipative) phys-
ics. Notable experiments are the realization of the Dicke
quantum phase transition [43–45] through photon scatter-
ing from a superfluid gas in an optical cavity [46] and the
observation of Bose-Einstein condensation of photons in an
optical microcavity [47]. Both address phase transitions
first met in thermal equilibrium but nevertheless employ
laser driving to overcome photon loss. The Dicke phase
transition is realized in an explicitly dissipative version,
with his “caricature”—to quote Refs. [44] and [48]—of
the minimal coupling Hamiltonian engineered, in the
interaction picture, from a coherently driven Raman
configuration [49].
There is a superficial similarity between the driven

Jaynes-Cummings Hamiltonian and the Hamiltonian of
the Bose-Hubbard model in its mean-field approximation
[50] (see Sec. II D). Beyond this, thermal equilibrium is set
aside in this paper. The breakdown of photon blockade is a
quantum phase transition in zero dimensions (one optical
cavity rather than a cavity array) far away from thermal
equilibrium. Phase transitions of this type have a long
history in quantum optics, most often encountered as a
rather elementary bifurcation at the mean-field (semiclass-
ical) level. The most familiar example is the laser, whose
threshold behavior was treated as a second-order phase
transition far from thermal equilibrium in the early 1970s
[31–33]. Lasers may also exhibit transitions of first order
[51,52], as in the much-studied example of optical bist-
ability for a saturable transition [36–38]. Cooperative
resonance fluorescence [53–55] is a driven version of
the Dicke system and exhibits a second-order transition.
The nonlinear physics upon which these and other exam-
ples rely is captured by mean-field equations; quantum
mechanics adds only a small level of noise, e.g., the
phase noise (Schawlow-Townes linewidth) of laser
light. The breakdown of photon blockade differs in the
interplay of mean-field nonlinearity and quantum noise,
since the

ffiffiffi
n

p
splitting of Jaynes-Cummings energy levels

corresponds to a mean-field nonlinearity that diverges at
zero photon number. The consequences of the difference
are presented in Secs. III and IV. I first review background
topics.

A. Photon blockade

Throughout, I treat the Jaynes-Cummings model with
the field mode and the two-state system on resonance, with
frequency ω0. The well-known Hamiltonian is

HJC ¼ ℏω0ða†aþ σþσ−Þ þ ℏgðaσþ þ a†σ−Þ; ð1Þ

where a† and a are creation and annihilation operators for
the field, σþ and σ− are raising and lowering operators
for the two-state system, and g is the dipole-coupling
strength. Diagonalization of the Hamiltonian yields the

ground state jE0i ¼ j0;−i, with energy E0 ¼ 0, and
excited-state doublets

jEn;Ui ¼
1ffiffiffi
2

p ðjn;−i þ jn − 1;þiÞ; ð2Þ

jEn;Li ¼
1ffiffiffi
2

p ðjn;−i − jn − 1;þiÞ; ð3Þ

n ¼ 1; 2;…, with energies

En;U ¼ nℏω0 þ
ffiffiffi
n

p
ℏg; ð4Þ

En;L ¼ nℏω0 −
ffiffiffi
n

p
ℏg: ð5Þ

Photon blockade enters the picture when an external
drive, frequency ωD, is tuned to a transition from the
ground to the first excited state, ℏωD ¼ ℏω0 � ℏg. From
the

ffiffiffi
n

p
splitting, the next step up the ladder is detuned by

E2;ðU;LÞ − E1;ðU;LÞ − ℏωD ¼ ∓ð2 − ffiffiffi
2

p Þℏg. Thus, for suf-
ficiently large dipole coupling compared to level widths,
the Jaynes-Cummings system behaves as a two-state
system when driven out of the ground state [14]. In a
straightforward extension, a multiphoton blockade occurs
if the drive is tuned to a multiphoton resonance out of
the ground state, nℏωD ¼ nℏω0 �

ffiffiffi
n

p
ℏg [26]. In this case,

the detuning from the next step up the ladder is
Enþ1;ðU;LÞ−En;ðU;LÞ−ℏωD¼∓½ðnþ1Þ= ffiffiffi

n
p

−
ffiffiffiffiffiffiffiffiffiffi
nþ1

p �ℏg.

B. Jaynes-Cummings Hamiltonian
with coherent drive

The Jaynes-Cummings Hamiltonian with drive is time
dependent—it is periodic with frequency ωD. By working
in an interaction picture, the time dependence is removed.
I consider driving of the cavity mode (a transformation
treats driving of the two-state system [27]) where the
interaction-picture Hamiltonian is

Hint
JCD ¼ −ℏΔωða†aþ σþσ−Þ þ ℏgðaσþ þ a†σ−Þ

þ ℏEða† þ aÞ; ð6Þ

with drive amplitude E and drive detuning

Δω ¼ ωD − ω0: ð7Þ

Eigenvalues of Hint
JCD have the status of quasienergies, and

their associated eigenkets are periodic solutions to the
Schrödinger equation [56]. For a drive on resonance, Hint

JCD
is diagonalized by a Bogoliubov transformation [28]. The
quasienergy spectrum comprises an e0 ¼ 0 and quasie-
nergy doublets

en;þ ¼ þ ffiffiffi
n

p
ℏg½1 − ð2E=gÞ2�3=4; ð8Þ
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en;− ¼ −
ffiffiffi
n

p
ℏg½1 − ð2E=gÞ2�3=4; ð9Þ

n ¼ 1; 2;…. Clearly, E=g → 0 recovers the usual Jaynes-
Cummings splitting. More generally, the quasienergy
splittings shift inward and all collapse to 0 at 2E ¼ g,
beyond which the quasienergy spectrum is continuous.
The singularity locates a critical point—at Δω ¼ 0 and
2E ¼ g—in the plane of drive amplitude and detuning. The
critical point is the organizing center of a dissipative
quantum phase transition (Secs. III and IV).

C. Jaynes and Cummings semiclassical
(neoclassical) equations

The equations of Jaynes and Cummings’ semiclassical
radiation theory are reached by taking expectation values in
Heisenberg equations of motion and factorizing the expect-
ations of operator products. For one cavity mode, with loss
at rate κ included, they read:

dα
dt

¼ −ðκ − iΔωÞα − igβ − iE; ð10Þ

dβ
dt

¼ iΔωβ þ igαζ; ð11Þ

dζ
dt

¼ 2igðα�β − αβ�Þ; ð12Þ

where α ¼ hai, β ¼ hσ−i, and ζ ¼ hσzi ¼ 2hσþσ−i − 1.
After Ref. [10], I call these neoclassical equations.
Although it is today more common to speak of
Maxwell-Bloch equations, I reserve that name for situa-
tions where the two-level system is also damped
(Sec. IVA). Equations (11) and (12) conserve the length
of the pseudospin 4jβj2 þ ζ2 ¼ 1. The neoclassical
equations are thus four rather than five equations, and
with no driving—E ¼ Δω ¼ 0—and the field adiabatically
eliminated—solving Eq. (10) in steady state—they are
reduced to an autonomous equation of motion for the
inversion:

dζ
dt

¼ −
g2

κ
ð1 − ζ2Þ: ð13Þ

In this fashion, the nonexponential decay of neoclassical
radiation theory [see Eq. (3.24c) in Ref. [57]] is recovered.
Section IV compares a mean-field theory based on the

neoclassical equations with the quantum treatment from
Sec. III. The mean-field theory is built around steady-state
solutions to Eqs. (10)–(12). Alsing and Carmichael [27]
discuss these for resonant driving. In that case, with
Δω ¼ 0, Eq. (11) requires either α ¼ 0 or ζ ¼ 0. Setting
α ¼ 0, Eq. (10) and the conserved value of pseudospin give

β ¼ −E=g; ζ ¼ ∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð2E=gÞ2

q
: ð14Þ

The solution holds so long as ζ remains real; thus, with
increasing drive amplitude, we meet once again with
the critical point at Δω ¼ 0 and 2E ¼ g. At higher drive
amplitudes,

β ¼ � α

2jαj ; ζ ¼ 0; ð15Þ

with α a solution to

α ¼ −iE
�
κ � i

g
2jαj

�
−1
: ð16Þ

Passing through the critical point, the semiclassical state
undergoes a parity-breaking transition: Above the critical
point, the pseudospin sits at the equator of the Bloch
sphere, where it adopts a phase either aligned or antialigned
with the phase of the cavity field and no longer slaved to the
phase of the drive. Alsing and Carmichael refer to sponta-
neous dressed-state polarization. When mapped onto the
Jaynes-Cummings energy ladder, the two phases corre-
spond to ascending the ladder either by its upper rungs
jEn−1;Ui→ jEn;Ui→ jEnþ1;Ui��� or lower rungs jEn−1;Li →
jEn;Li → jEnþ1;Li � � �.
When the drive detuning is not 0, Δω ≠ 0, steady states

of the neoclassical equations are given by

β ¼ �sgnðΔωÞ gαffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δω2 þ 4g2jαj2

p ð17Þ

and

ζ ¼ ∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4jβj2

q
; ð18Þ

where the field amplitude satisfies

α ¼ −iE
�
κ − i

�
Δω∓sgnðΔωÞ g2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δω2 þ 4g2jαj2
p

��−1
:

ð19Þ

Clearly, Eq. (19) represents the response of a Lorentzian
cavity resonance in the presence of a rather unusual—it
diverges as jαj2 → 0 at Δω ¼ 0—nonlinear dispersion.

D. Mean-field Hamiltonian of the photonic
Bose-Hubbard model

Before moving to results, it is important to draw a line
between the breakdown of photon blockade—a dissipative
quantum phase transition in zero dimensions—and the
photon analogue of the Mott-insulator-to-superfluid quan-
tum phase transition, which relates to a lattice of photonic
cavities and is fundamentally an equilibrium transition
[20–22]. Superficially, we appear to treat one lattice
site and thus embark on a mean-field treatment of the
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Jaynes-Cummings analogue of the Bose-Hubbard system;
this, in the mean-field decoupling approximation, has a
single-site Hamiltonian (in units of ℏ and suppressing the
site index) [20,50]

H ¼ ðω0 − μÞða†aþ σþσ−Þ þ gðaσþ þ a†σ−Þ
− ztψða† þ aÞ þ ztjψ j2; ð20Þ

with μ, z, and t the chemical potential, number of nearest
neighbors, and hopping frequency, respectively, and
ψ ¼ hai the mean field. This Hamiltonian and Hint

JCD do
read the same if we identify μ − ω0 with Δω, ztψ with E,
and add jEj2=zt to Hint

JCD; if we identify zt with κ, the added
term is the drive photon flux and coordinates with ztjψ j2
in Eq. (20). Nevertheless, despite the similarity, the two
Hamiltonians are put to very different uses. The drive field
ψ ¼ hai in Eq. (20) is a self-consistent field, determined by
minimizing the ground-state energy (see, e.g., the Methods
section of Ref. [20]). It is the superfluid order parameter,
which plotted as a function of μ − ω0 and t maps out the
photonic Mott-insulator-to-superfluid phase diagram. The
drive in Hint

JCD is an external field, held fixed as an input,
with steady-state quantities like hai or ha†ai determined by
a balance between this input and photon loss. An equation
like ztψ → κhai ¼ E does not generally hold. It holds if the
dipole coupling is 0, as the steady state for a coherently
driven single cavity or array of cavities is a cavity or
cavities in a coherent state of amplitude E=κ. On the other
hand, for a single driven cavity with fixed input and
nonzero dipole coupling, we must solve a master equation
to determine the steady state in the presence of fluctuations.

III. A DISSIPATIVE QUANTUM
PHASE TRANSITION

Alsing and Carmichael [27] solve the Lindblad master
equation (in the interaction picture)

dρ
dt

¼ 1

iℏ
½Hint

JCD; ρ� þ κð2aρa† − a†aρ − ρa†aÞ; ð21Þ

with ρ the reduced density operator, to verify the mean-field
prediction of Eqs. (14)–(19). Adopting a resonant drive,
and dipole-coupling strength g=κ ¼ 10, they plot the Q
function in steady state

Qðxþ iyÞ ¼ hxþ iyjρSSjxþ iyi: ð22Þ

jxþ iyi a coherent state, and they demonstrate how it
changes from a single peak below the critical point 2E=g ¼
0.96 to a double peak above 2E=g ¼ 1.04 (Fig. 2 of
Ref. [27]). They report what they call spontaneous
dressed-state polarization—phase bistability of the polari-
zation and cavity field for resonant driving above the
critical point (see also Ref. [58]).

By mapping out the photon-number mean and region of
bimodal Q function in the plane of drive amplitude and
detuning, their work is extended in this section to cast the
critical point at Δω ¼ 0 and 2E ¼ g as the organizing
center of the breakdown of photon blockade. All results are
for a dipole-coupling strength g=κ ¼ 50.

A. Mean photon number in steady state

I numerically solve Eq. (21) using a standard fourth-
order Runge-Kutta algorithm. The mean photon number in
the steady state is plotted as a function of drive amplitude
and detuning in Fig. 1. The three panels on the left show
detuning ranges −60 to 60, −16 to 16, and −4 to 4 (bottom
to top) for corresponding ranges of drive amplitude 0 to 10,
10 to 20, and 20 to 30. Each panel displays contours of the
surface plot shown to the right. A driven empty cavity
would yield a Lorentzian of half-width Δω=κ ¼ 1 and a
maximum of 900 photons at Δω=κ ¼ 0 for the largest drive
amplitude E=κ ¼ 30. The most prominent feature of the
figure is that the Lorentzian line is split in two, with no
significant growth of the on-resonance photon number until
the critical point (white dot in the upper contour plot) is
reached. The second-order transition at the critical point is
also prominent in the view down the channel formed by the
Lorentzian line in the surface plots (compare the top and
middle plots).
The physical origin of the split Lorentzian is clear

from the Jaynes-Cummings Hamiltonian written in diago-
nal form:

FIG. 1. Mean photon number in the steady state as a function of
drive detuning Δω=κ and amplitude E=κ for a dipole-coupling
strength g=κ ¼ 50. The white dot in the uppermost panel locates
the critical point at Δω=κ ¼ 0 and E=κ ¼ 25. Each panel on the
left shows contours of the surface plot on the right.
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HJC ¼ E0jE0i
D
E0j þ

X∞
n¼1

En;UjEn;U

E

×
D
En;Uj þ

X∞
n¼1

En;LjEn;L

E
hEn;Lj; ð23Þ

where E0 ¼ 0 is the ground-state energy, jE0i ¼ j0;−i, and
En;ðU;LÞ and jEn;ðU;LÞi are given in Eqs. (3)–(5). In response
to the coherent drive, transitions out of the ground state
have two available paths of excitation up the Jaynes-
Cummings ladder: an upper path and a lower path, which
step, respectively, between levels of the anharmonic oscil-
lators defined by the second and third terms of Eq. (23).
At large photon number (with strong dipole coupling),
the paths are largely independent of one another, as
matrix elements for transitions between them are extremely
small (see Sec. V). Considering each path separately,
the drive detuning at large n is approximated by
Enþ1;ðU;LÞ − En;ðU;LÞ − ℏωD ≈ −ℏΔω� ℏg=2

ffiffiffi
n

p
, which

yields, balancing the coherent driving against loss,

n ¼ E2

κ2 þ ðΔω∓g=2
ffiffiffi
n

p Þ2 : ð24Þ

The simple result is an approximation to Eq. (19), where
the minus sign applies to the upper excitation path—
brought to resonance by positive detuning—and the plus
sign to the lower—brought to resonance by a negative
detuning. The nonlinear dispersion is offset at Δω=κ ¼
�g=2E with photon number n ¼ ðE=κÞ2, i.e., the photon
number reached in an empty cavity driven on resonance.
This resonance condition locates the two peaks of the split
Lorentzian in the top panel of Fig. 1.
At the low photon numbers of the bottom panel of Fig. 1,

the steps of the Jaynes-Cummings ladder are far too
anharmonic for the approximation of Eq. (24) to hold.
This is the regime of strong multiphoton blockade; four or
five multiphoton resonances are seen in the figure, similar
to what is measured in the circuit QED experiment of
Bishop et al. [8]. The resonance at Δω=κ ¼ �50 corre-
sponds to one-photon blockade—photon blockade as it is
usually discussed [13,14,20–22]. Two-, three-, and four-
photon resonances appear for larger drive amplitude and
ever smaller detunings; each exhibits a similar multiphoton
blockade [26]. The multiphoton resonances merge beyond
the fourth or fifth, to ultimately accumulate in a broad
blockade region around cavity resonance. The accumula-
tion marks the entrance to a deep channel running between
the peaks of the split Lorentzian and leading up to the
critical point.
The steep walls of the channel leading to the critical

point correspond to a domain of coexistence, a region in the
drive-amplitude-detuning plane where the vacuum state and
a state of high photon number—with the blockade broken

through—coexist [29,30]. They evidence a dissipative
quantum phase transition of first order.

B. Bimodality and critical slowing down

I use bimodality of the steady-state Q function as an
indicator of coexistent states. The choice, of course, is not
unique; alternatively, the Wigner function, or even the
photon-number distribution, might be used. While different
measures will not agree in every detail—due, for example,
to the larger width of a Q relative to Wigner function—we
can nevertheless expect agreement on the main features of
the domain of coexistence. Differences will be limited to
boundaries where the two peaks of a bimodal distribution
coalesce.
The domain of coexistence corresponding to Fig. 1 is

mapped out with contours of equal peak-height ratio in
Fig. 2(a); examples of bimodal Q functions are shown in
Figs. 2(b)–2(e). The bimodal region below the critical point
consists of symmetric positive and negative detuning lobes.
The brown stripe running through the center of each
indicates a peak-height ratio close to one and the black
stripe along the edges a ratio close to 0.2. An abrupt
transition, from a bimodal to a single-peaked Q function,
terminates each lobe at the large detuning end; along this
boundary, the two peaks of a bimodal distribution coalesce.
The red lines, set apart from the contour plot, mark the
boundary of the bistable region predicted on the basis of a
mean-field treatment. The domain of coexistent states
determined from the master equation is contained within
this boundary but because of fluctuations is much reduced.
Clearly, fluctuations are important. We return to a com-
parison between mean-field theory and the full solution
including fluctuations in Sec. IV B.
Figure 3 adds detail to what we see in Fig. 2. Figure 3(a)

plots the mean photon number (red boxes) as a function of
detuning for a drive amplitude E=κ ¼ 18. The domain of
coexistent states is reduced at this drive amplitude to a pair
of narrow strips, one on either side of resonance; each strip
ranges from approximately jΔωj=κ ¼ 1.0, where the mean
photon number starts increasing from 0, to jΔωj=κ ¼ 1.5,
where a maximum photon number is reached. The two
narrow strips of bimodal states align with the steep walls of
the channel leading to the critical point in Fig. 1.
The blue and green triangles in Fig. 3(a) compare the

time-dependent approach of the mean photon number to the
steady state at the center of the range of bimodality (blue)
and outside that range (green); states of the same mean
photon number (circled in the figure) are compared. The
time axis along the top of the figure runs from 0 up to a very
large 8 × 103 cavity lifetimes (2κt ¼ 8 × 103). Clearly,
when the Q function is bimodal, there can be a dramatic
critical slowing down. The figure shows slowing by a factor
of 45 when the blue and green triangles are compared and
1000 against the empty-cavity filling-rate. The evolution
reflects a slow breaking through of the photon blockade in a
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cascade of multiphoton transitions, with, for drive detuning
jΔωj=κ ¼ 1.1, the photon number taken from 0 to approx-
imately 285. The coexistent states involved—vacuum state
and state of high photon number (mean amplitude
α ≈ 15.8þ i6)—are illustrated by the steady-state Q func-
tion plotted in Fig. 3(b), where the vertical scale is
expanded to reveal the path of excitation (upper half of
the contour plot) and deexcitation (lower half of the contour
plot). In the displayed case of a positively detuned drive,
excitation is via the upper Jaynes-Cummings ladder—

second term on the right-hand side of Eq. (23)—and
deexcitation via the lower Jaynes-Cummings ladder—third
term on the right-hand side of Eq. (23). We return to these
phase-space paths and the fluctuations that follow them
in Sec. V.

IV. QUANTUM FLUCTUATIONS AND THE
“THERMODYNAMIC LIMIT”

The critical point was identified in Sec. II B from
quantum mechanical quasienergies and from mean-field
steady states in Sec. II C. Figures 1 and 2 of Sec. III then
confirmed its role as the organizer of behavior in the
presence of quantum fluctuations, which neither quasie-
nergies nor mean-field steady states take into account. In
this section, we look more carefully at what mean-field
theory can tell us and ask, specifically, whether there exists
a “thermodynamic limit,” a limit of high photon number in
which quantum fluctuations vanish. I propose such a limit
as a strong-coupling limit, in sharp contrast to previously
discussed dissipative phase transitions for photons
[31,32,36,37] where the limit of large photon number is
a weak-coupling limit. Yet, for the breakdown of photon

FIG. 3. (a) Mean photon number in steady state versus drive
detuning Δω=κ for drive amplitude E=κ ¼ 18 (red squares).
Additional curves show the time evolution to the steady state for
Δω=κ ¼ �1.1 (blue triangles and blue circles) and Δω=κ ¼
�2.95 (green triangles and green circles); the time axis appears at
the top of the graph. (b) Surface plot and contours of the steady-
state Q function for Δω=κ ¼ þ1.1; peak heights are h1 ¼ 0.12
(left peak) and h2 ¼ 0.14 (right peak).

FIG. 2. (a) Region of drive-detuning-amplitude plane within
which the steady-state Q function corresponding to Fig. 1 is
bimodal. Contours of r ¼ 1 − jh1 − h2j=ðh1 þ h2Þ are shown,
with h1 and h2 the peak heights. Red lines outline the region
of bistability according to Eqs. (10)–(12), e.g., as in Fig. 4(b).
(b)–(e) Sample Q functions plotted, respectively, for
ðE=κ;Δω=κÞ ¼ ð10; 16Þ; (18,1.1); (25,0); (30,0).
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blockade, the vanishing of fluctuations does come with a
qualification [below Eq. (35)].
The words “thermodynamic limit” are set in quotes. It is

important to distinguish what is said for photons from the
standard thermodynamic limit in extended systems (e.g.,
lattices), where particle number is conserved, fixed a priori,
and scales in an obvious way with lattice size or number of
degrees of freedom. The common factor is the notion of a
large number limit. The question asked of Fig. 1 is what
governs the photon-number scale—0 to a maximum 900
photons for the parameters used? The peak photon number
in Fig. 3(a), for example, might be 30, 300, or 3000
photons, and the drop in number, sharp, sharper, or sharper
still. The sense of moving toward a “limit” captures these
trends, even though the strict limit to infinity may not be
physically relevant for experiments that respect the assump-
tions of the model.
In what follows, we recall first how a “thermodynamic

limit” for photons, far from thermal equilibrium, may be
defined by considering the number of photons required to
“activate” a mean-field nonlinearity, in the sense that
nonlinear terms cease to be a negligible perturbation.
We consider the saturable nonlinearity of Maxwell-Bloch
equations, i.e., a nonlinearity produced by saturating a
two-level system in the presence of excited-state decay,
e.g., spontaneous emission. The example introduces the
commonly met weak-coupling “thermodynamic limit” for
photons, prior to the strong-coupling limit that holds for
the breakdown of photon blockade (Sec. IV C).

A. “Thermodynamic limit” for a saturable transition

Spontaneous emission to modes of the radiation field
other than the cavity mode breaks the conservation law
4jβj2 þ ζ2 ¼ 1; the neoclassical equations are replaced by
Maxwell-Bloch equations:

dα
dt

¼ −ðκ − iΔωÞα − igβ − iE; ð25Þ

dβ
dt

¼ −ðγ=2 − iΔωÞβ þ igαζ; ð26Þ

dζ
dt

¼ −γðζ þ 1Þ þ 2igðα�β − αβ�Þ; ð27Þ

with γ the spontaneous emission rate. Steady states of α
then satisfy the state equation of optical bistability for a
saturable two-state transition [35]:

α ¼ −iE
�
κ − iΔωþ g2ðγ=2þ iΔωÞ

γ2=4þ Δω2 þ 2g2jαj2
�−1

: ð28Þ

They follow from the response of a Lorentzian resonance
both broadened and shifted by saturable absorption and
dispersion. Although Eq. (28) is normally written down
for a medium of density N=V (with g2 → Ng2 in the

numerator) [36,59], single-atom optical bistability [60] is
the natural extrapolation away from the results reported in
Secs. II and III.
On resonance, the nonlinearity of Eq. (28) is brought

into play (no longer a negligible perturbation) for photon
numbers

jαj2 ∼ nsat ¼ γ2=8g2: ð29Þ

The saturation photon number nsat may then be read as a
typical photon number, and a “thermodynamic limit”
nsat → ∞ thus defined. The limit arrived at in this way
is a weak-coupling limit, since

g2 ¼ ω0μ
2

2ℏϵ0V
; ð30Þ

where μ is the dipole moment, so taking g2 to 0 implies that
nsat and V are taken simultaneously to infinity. The limit is,
of course, a little artificial when just one two-state system is
considered because, without putting Ng2 in the numerator
of Eq. (28), the nonlinear polarization vanishes altogether if
g2 → 0. The more natural limit is g2 → 0, N → ∞ with the
cooperativity parameter C ¼ Ng2=γκ (density N=V) fixed
[36,59]. Nonetheless, a meaningful limit can be defined for
N ¼ 1 by letting g2 → 0, κ → 0 with C1 ¼ g2=γκ fixed—
or, more correctly, ðg=γÞ2 → 0, ðκ=γÞ → 0 with C1 fixed.
We will return to results moving in this direction in Sec. V.

B. Comparison with mean-field theory

Although the neoclassical equations are Maxwell-Bloch
equations with the spontaneous emission rate γ set to 0,
their steady-state solution is not recovered quite so directly:
setting γ to 0 in Eq. (28) does not return Eq. (19). Since
the Maxwell-Bloch equations break the conservation law
ζ2 þ 4jβj2 ¼ 1, they reach a steady state in the interior of
the Bloch sphere rather than on its surface; indeed, the on-
resonance steady state moves to the center of the sphere as γ
goes to 0. There is, however, a special case. In the presence
of weak nonlinear dispersion,

2g2jαj2 ≪ Δω2; ð31Þ

Eqs. (19) and (28) (with γ ¼ 0) agree—both yield the state
equation for a Kerr nonlinearity to lowest order in
2g2jαj2=Δω2 (see, e.g., Sec. VII 5. of Ref. [59]):

α ¼ −iE
�
κ − i

�
Δω −

g2

Δω

�
1 −

2g2

Δω2
jαj2

���−1
: ð32Þ

Note that the solution with ζ < 0 is chosen to arrive at
Eq. (32) from Eq. (19) (the other solution is unstable).
Considering linear dispersion only, i.e., when the Kerr
nonlinearity is negligible, this equation returns vacuum
Rabi resonances at Δω ¼ �g, in the manner of the
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treatment of vacuum Rabi splitting made by Zhu et al. [61].
The Kerr nonlinearity pulls the vacuum Rabi resonances
toward line center, eventually inducing a large enough tilt
to recast each as a bistable “switch”—so each vacuum Rabi
resonance exhibits hysteresis as the drive detuning is
scanned [62].
Figure 4(a) shows an example of dispersive bistability

like this, where jαj2—the mean-field photon number—is
plotted from Eq. (19) for a drive amplitude a little beyond
the regime where Eq. (32) would hold. The photon number
is everywhere less than 1, a sure sign that the full quantum
treatment cannot agree with the mean-field prediction. Gray
curves compare the quantum result at three different drive
amplitudes within the range of the lower panel of Fig. 1; the
smallest of the three corresponds to the mean-field plot.
The departure from mean-field theory is clear. The photon
blockade remains in place. We observe only a partially
saturated vacuum Rabi resonance, where in the two-state
approximation, each vacuum Rabi resonance saturates with
peak photon number n ¼ 0.25 [14]; the peak number is
n ≈ 0.2 for E=κ ¼ 1 in the figure.
The gray curves for E=κ ¼ 5 and E=κ ¼ 8 illustrate the

continuing disagreement between the full quantum treat-
ment and mean-field theory. They confirm that the break-
down of photon blockade sets in, not as a dispersive
bistability, as mean-field theory predicts, but through a
cascade of multiphoton transitions. The expectation that a
nonlinearity is “turned on” only by high photon numbers

(as in Sec. IVA) holds true for a perturbation away from a
linear response, e.g., in the Kerr nonlinearity of Eq. (32).
The present case is different, as the nonlinearity of Eq. (19)
diverges on resonance as the photon number goes to 0—a
clear sign that mean-field theory fails and quantized energy
levels are needed.
Note that the divergence is encountered only when the

two-state system and field mode are resonant with one
another. Detuning “softens” the nonlinearity, and in the
strong dispersive regime, where the detuning δ is much
larger than the coupling strength [63], Eq. (19) is replaced
by the saturable extension of the Kerr model

α¼−iE
�
κ− i

�
Δω−

g2

δ

�
1þ4g2

δ2
jαj2

�−1=2��−1
; ð33Þ

where, since g2=δ2 ≪ 1, we return to a nonlinearity that
is “turned on” only by high photon numbers, essentially
restoring the mean-field bistability.
At higher drive amplitudes, in particular, above the

critical point, mean-field theory and the full quantum
treatment are brought into close agreement. Figure 4(c)
makes the comparison for E=κ ¼ 30 (top of the upper panel
in Fig. 1); the agreement is not exact, but the small
difference is not apparent at the resolution of the figure.
The region of coexistent states (Fig. 2) connects these

two extremes, where, at intermediate drive strengths, the
mean-field prediction of dispersive bistability supports
the proposal of a first-order transition running along the
walls of the channel leading to the critical point in Fig. 1.
Figure 4(b) compares mean-field steady states (red and blue
curves) with the photon-number mean (gray shading) for
E=κ ¼ 12 (lower half of the middle panel in Fig. 1). Of
course, fluctuations are an essential part of the story,
making the connection between these results. The
photon-number mean is to be understood as an average
over spontaneous switching between the mean-field steady
states.
I illustrate the influence of quantum fluctuations with the

aid of quantum trajectory simulations in Fig. 5. To arrive at
the yellow and green curves, the photon-number expect-
ation is plotted against ΔωðtÞ=κ while the drive detuning
is scanned with the drive amplitude fixed; the result is
superposed on the steady-state plot of Fig. 4(b). The scan
of Fig. 5(a) is “fast,” with a scan rate of 0.1κ per κ−1. It
shows dynamical symmetry breaking: With Δω=κ chang-
ing from negative to positive (yellow curve), the photon
number climbs via excitation of the lower Jaynes-
Cummings oscillator—third term on the right-hand side
of Eq. (23)—while with Δω=κ changing from positive to
negative (green curve), it climbs the ladder of the upper
Jaynes-Cummings oscillator—second term on the right-
hand side of Eq. (23). There is a noisy period preceding
each deexcitation (precipitous drop to 0), but there is no
“blinking” of the photon number on and off. Figure 5(b)

FIG. 4. Mean-field photon number jαj2 (red and blue curves),
compared with the photon-number mean, including quantum
fluctuations (gray), for a dipole-coupling strength g=κ ¼ 50 and
drive amplitudes (a) E=κ ¼ 1 (red and blue) and 1,5,8 (gray,
lower to upper), (b) E=κ ¼ 12, and (c) E=κ ¼ 30. Steady states
plotted as solid red (blue) curves are stable (unstable); those
plotted as dashed red curves—running close to jαj2 ¼ 0 in (a) and
(b)—have ζ > 0 and are unstable.
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shows how symmetry is recovered in a “slow” scan, with a
scan rate of 0.001κ per κ−1. Here, the photon number does
“blink” on and off, thus restoring symmetry with respect
to scan direction; a time average at fixed detuning recovers
the photon-number mean (gray shading) from quantum
trajectories that switch back and forth between mean-field
steady states.

C. “Thermodynamic limit”

Returning to the discussion of Sec. IVA, the photon-
number scaling of the mean-field state equation [Eq. (19)]
shows exactly the reverse dependence on dipole-coupling
strength to the saturable nonlinearity of Eq. (28). The
mean-field photon number satisfies (with ζ < 0)

jαj2
nscale

¼
�
2E
g

�
2
�
1þ

�
Δω
κ

−
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δω2κ2=g4þjαj2=nscale
p

�
2
�
−1
;

ð34Þ

where nscale ¼ g2=4κ2; on resonance,

ðjαj2=nscaleÞ½ðjαj2=nscaleÞ þ 1 − ð2E=gÞ2� ¼ 0: ð35Þ

The “thermodynamic limit” takes nscale to infinity. It is a
strong-coupling limit, in sharp contrast to the limit of
Sec. IVA. Is it, however, a limit in which fluctuations

vanish? We should consider that while photon numbers
scale with nscale above and near the critical point, the
nonlinearity of Eq. (34) diverges (on resonance) as jαj2
goes to 0. Energy-level shifts due to one, two, three, etc.,
photons are fundamental to photon blockade (lower panel
of Fig. 1) with associated multiphoton resonances that
are missed by the mean-field nonlinearity of Eq. (34)
[Fig. 4(a)]. Can something be said about the role of
fluctuations in this regime?
We focus on the lower panel of Fig. 1 and low drive

amplitudes in Fig. 2, where mean-field theory and the full
quantum treatment disagree. The following argument,
if a little crude, suggests that this regime of disagreement
persists—i.e., does not collapse to n=nscale ¼ 0—as nscale is
taken to infinity. I argue from the detuning of the n-photon
resonance away from the blockaded next step—the n plus
first step—up the Jaynes-Cummings ladder: with nℏωD ¼
nℏω0∓ ffiffiffi

n
p

ℏg and n large,

Enþ1;ðU;LÞ − En;ðU;LÞ − ℏωD ≈∓
ffiffiffiffiffiffiffiffiffiffi
nscale
n

r
ℏκ: ð36Þ

Assume then that the n-photon blockade persists up to a
minimum detuning of mℏκ, i.e., up to some nmax withffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nscale=nmax

p
∼m. Assume also that the nmax-photon tran-

sitionissaturated; i.e., themeanphotonnumber isnmax=4.We
thus arrive at a bound nmax=4 ∼ nscale=4m2 on the photon
number in the regime of multiphoton blockade. Although
crude, with m ¼ 10, the bound gives reasonable numbers,
nmax ∼ 6 and nmax=4 ¼ 1.5, for nscale ¼ 625 as in Fig. 1.
I suggest, furthermore, that the regime of multiphoton
blockade grows linearly with nscale and therefore does not
collapse to n=nscale ¼ 0 in the “thermodynamic limit.”
Of course, quantum fluctuations determine the drive

detuning that locates the first-order transition along the
channel leading up to the critical point in Figs. 1 and 2, e.g.,
in Fig. 3(a) around Δω=κ ¼ �1.1. An equilibrium tran-
sition is located according to the Maxwell equal-area
construction, but the construction does not carry over to
the nonequilibrium case, where a generalization that
balances fluctuations in the presence of nonlinearity holds
[64,65]. The brown stripe (r ≈ 1) through the domain of
coexistence in Fig. 2 should approximate the location of
this transition, although its point of termination, at
jΔω=κj ≈ 20 and E=κ ≈ 9, likely depends on the chosen
criterion for coexistence (bimodality of theQ function) and
finite value of nscale ¼ 625.

V. LADDER SWITCHING THROUGH
SPONTANEOUS EMISSION

In contrast to quantum phase transitions in thermal
equilibrium, dissipative quantum phase transitions are
influenced in a fundamental way by their inputs and
outputs. Outputs send information into the environment,

FIG. 5. Sample quantum trajectories show dynamical sym-
metry breaking as the drive detuning Δω=κ is scanned.
Time-dependent photon-number expectations are superposed
on the plot of Fig. 4(b), for scan times (one direction) of
(a) κT ¼ 6 × 102 and (b) κT ¼ 6 × 104. Yellow (green) curves
plot the scan from left to right (right to left).
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which might potentially identify—in effect, “measure”—
the open-system quantum state, while inputs impose
boundary constraints, e.g., an imposed rather than self-
consistent drive (Sec. II D). The behavior of Secs. II–IV is
formed around the cavity input and output: Driven off
resonance, the nonlinear response is drawn from either the
upper or lower Jaynes-Cummings ladder, whether upper or
lower imposed by the drive detuning; neither ladder is drive
selected on resonance—a parity-breaking decision is made
against a background of fluctuations, the result revealed
by information in the environment, i.e., by measuring the
output field.
Spontaneous emission provides a second channel for

leaking information to the environment. In this section,
I show how spontaneous emission connects the strong-
coupling “thermodynamic limit” (Sec. IV C) to the weak-
coupling limit (Sec. IVA). I show how a spontaneous
emission quantum jump triggers an environment-induced
measurement revealing the Jaynes-Cummings ladder in
play—through a 50=50 selection, spontaneous emission
quantum jumps induce ladder switching. A high rate of
switching destroys the split-line structure built around
broken parity states, transforming it into the nonlinear
response of a saturable transition.
The excited-state doublets of the Jaynes-Cummings

Hamiltonian entangle photon number with “up” and
“down” states of the two-state system; they are n-quanta
cavity polaritons. The split line of Fig. 1 distinguishes
U- from L-polariton states. It is important in this regard
that the fU;Lg identity be preserved by the quantum jump
under cavity loss—at least to good approximation.
Although the jump most generally mixes U and L,

ajEn;fU;Lgi ¼
ffiffiffi
n

p þ ffiffiffiffiffiffiffiffiffiffiffi
n − 1

p

2
jEn−1;fU;Lgi

þ
ffiffiffi
n

p
−

ffiffiffiffiffiffiffiffiffiffiffi
n − 1

p

2
jEn−1;fL;Ugi; ð37Þ

at large photon number, the matrix element for ladder
switching is small; the fU;Lg identity is, indeed, to good
approximation, preserved. Rare switches nonetheless do
occur. They initiate the “off” stages of the on-off “blinking”
of Fig. 5(b). The details are uncovered by Fig. 3(b), where
the excitation path from the blockaded vacuum to a state of
high photon number is the broad path between the peaks in
the contour plot (high “skirt” joining the peaks in the
surface plot) and deexcitation follows the narrow path in
the contour plot (low “ripple” connecting the peaks in the
surface plot). Although not so clear in Fig. 3, the blink-off
path (deexcitation) in fact follows a spiral, wrapping around
and terminating at the origin [see Fig. 6(b)]. It is the path of
free decay down the Jaynes-Cummings ladder that is not
quasiresonant with the drive [lower ladder for Fig. 3(b)] and
reached from the quasiresonant (upper) ladder through a
rare ladder switching event.

Spontaneous emission is much more likely to initiate
ladder switching than cavity loss. The quantum jump mixes
U and L in equal proportion, where, setting aside an overall
phase,

σ−jEn;fU;Lgi ¼
1

2
jEn;Ui þ

1

2
jEn;Li: ð38Þ

Subsequently, environment-induced measurement by the
cavity output resolves the superposition, yielding a 50=50
chance of a ladder switch. With the drive on resonance
and above the critical point, ladder switching induced by
spontaneous emission is read as phase switching of the
output field; such phase switching serves as a key indicator
of spontaneous dressed-state polarization (see Sec. 5 of
Ref. [27] and also Ref. [58] and Sec. 10.5 of Ref. [66]). It

FIG. 6. (a) Mean photon number in the steady state versus
detuning Δω=κ for drive amplitude E=κ ¼ 18 in Fig. 1 and
spontaneous emission rate γ=κ ¼ 0 (orange), 0.1 (cyan), and 1
(green). Additional curves (blue triangles) show the time evolu-
tion to steady state (blue circles) for Δω=κ ¼ �2.0; the time axis
appears at the top of the graph. (b) Surface plot of the steady-state
Q function for γ=κ ¼ 0 (upper left), 0.1 (upper right), and 1.0
(lower); left peak heights hl ¼ 0.006; 0.14; 0.19; right peak
heights hr ¼ 0.28; 0.12; 0.02.
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has been experimentally observed in a high-bandwidth
homodyne measurement of the light transmitted by a
Fabry-Perot traversed by a cloud of laser-cooled 133Cs
atoms [67].
With the drive off resonance, Fig. 6 illustrates the effect

of spontaneous emission below the critical point, where the
superposition [Eq. (38)] is resolved by output field intensity
rather than phase: Does the output remain “bright”—no
ladder switch—or does it blink “off” in a switch to the
ladder not quasiresonant with the drive? Spontaneous
emission shortens the wait to the next “off” switch, in
this way driving the on-off “blinking” at a faster rate.
Figure 6(a) shows how this erodes the walls of the deep
channel leading up to the critical point in Fig. 1, and how
the time to the steady state is reduced (blue triangles in the
figure). The faster “blinking” is also evident from
the increasingly prominent pathways for excitation and
deexcitation shown by the series of phase-space plots in

Fig. 6(b)—that the “blinking” is driven specifically by the
“off” switch is clear from the changing ratio of peak
heights: hl=hr ¼ 0.02; 1.2; 9.5 for γ=κ ¼ 0; 0.1; 1.0, where
hl refers to the vacuum peak and hr to the “bright” state
(n ¼ 276 photons in the cavity). Note the spiraling free
decay down the detuned Jaynes-Cummings ladder follow-
ing an excited ladder switch.
The spontaneous emission rates of Fig. 6 correspond

to saturation photon numbers of nsat ¼ 0; 5 × 10−7, and
5 × 10−5, far from the “thermodynamic limit” of Sec. IVA.
I present results illustrating the link to this limit in Figs. 7
and 8, where spontaneous emission rates 10 and 100 times
larger are added—saturation photon numbers nsat ¼ 0.005
and nsat ¼ 0.5; although nsat ¼ 0.5 might still seem very
small, it is large enough to illustrate the link brought by
spontaneous emission between the weak-coupling limit of
Sec. IVA and the strong-coupling limit of Sec. IV C.
Frames (a) and (b) of Figs. 7 and 8 (nsat ¼ 5 × 10−7 and
nsat ¼ 5 × 10−5) are changed quantitatively from Figs. 1
and 2, but they still show a breakdown of photon blockade
through a cascade of multiphoton transitions and splitting
of the cavity line. Mean photon numbers are lowered and
the first-order transition “softened” [Fig. 6(a)], but
the landscape overall remains unchanged. Moving to
frames (c) and (d) of Figs. 7 and 8 (nsat ¼ 0.005 and
nsat ¼ 0.5), a qualitative change sets in. While multiphoton
resonances persist in Fig. 7(c)—though noticeably
broadened—there is no longer a splitting of the cavity
line; in Fig. 7(d), the resonances, too, are gone.

FIG. 7. As in Fig. 1 with spontaneous emission at the rate
(a) γ=κ ¼ 0.1, (b) γ=κ ¼ 1, (c) γ=κ ¼ 10, (d) γ=κ ¼ 100.

FIG. 8. As in Fig. 2 with spontaneous emission at the rate
(a) γ=κ ¼ 0.1, (b) γ=κ ¼ 1, (c) γ=κ ¼ 10, (d) γ=κ ¼ 100. The red
lines in (d) outline the bistable region according to the state
equation [Eq. (28)].
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The contrasting “thermodynamic limits” of Secs. IVA
and IV C are perhaps most apparent from the regions of
mean-field bistability, determined, respectively, from the
state equation of optical bistability [Eq. (28)] and the
neoclassical equation [Eq. (19)]. These regions are outlined
with boundaries drawn in red in Figs. 8(d) and 2. The
overlayed contours show how the domain of coexistent
states—domain of bimodal steady-state Q functions—
maps onto the mean-field prediction, suggesting a
Maxwell-like construction. In the case of Fig. 8(d), in
particular, although nsat ¼ 0.5 is still very far from the
“thermodynamic limit” (nsat → ∞), the emerging construc-
tion is similar to that reached by Bonifacio et al. (see Fig. 4
of Ref. [64]) from the potential solution to a small-noise
(nsat ≫ 1) Fokker-Planck equation. The trailing tail at high
drive amplitude is an artifact: It comes from Q functions
with two local maxima and a local minimum of nearly
equal height—i.e., it does not correspond to Q functions
with two resolved peaks.

VI. CONCLUSION

Introduced as an analogue of Coulomb blockade for
quantum-well electrons [13] and a signature of strong-
coupling cavity QED [14], photon blockade is the key
element of proposed photonic extensions of many-body
physics models. It is proposed, for example, as a route
to a photonic analogue of the superfluid-to-Mott-insulator
quantum phase transition of the Bose-Hubbard model
[20–22]; although, photon numbers go to 0 at T ¼ 0 in
thermal equilibrium, so experiments on quantum phase tran-
sitions for photons employ a laser drive to offset the unavoid-
ablephoton loss [46,47]. Inevitably, thephotonicextrapolation
moves toward dissipative quantum phase transitions, where
inputsbalanceoutputs farawayfromthermalequilibrium(e.g.,
the transition through laser threshold [31–33]).
I have taken a small step in this direction, exploring the

far-from-equilibrium steady states of the Jaynes-Cummings
system with a coherent drive and photon loss. I mapped out
the mean photon number as a function of drive amplitude
and detuning, to show that a previously identified critical
point of the driven Jaynes-Cummings Hamiltonian [28] is
the organizing center both of strong-coupling dispersive
bistabilities [29,30]—coexistence of the blockaded vacuum
state and a state of the cavity filled up with light—and a
previously reported parity-breaking transition [27]. The
photon-number landscape (Figs. 1 and 2) tracks the break-
down of photon blockade, passing, from low photon
number, through the saturation of a series of multiphoton
resonances, to a phase transition of either second order (on
resonance as a function of drive amplitude) or first order
(fixed amplitude as a function of detuning).
I also explored the idea of a “thermodynamic limit”

in a photonic system driven far from thermal equilibrium,
where photon numbers are set by an interplay of non-
linearity and photon loss. I noted how the

ffiffiffi
n

p
nonlinearity

of the Jaynes-Cummings model weakens with increasing
photon number, which translates as a divergence of the
mean-field nonlinearity as the photon number goes to 0;
thus, the breakdown of photon blockade acquires a strong-
coupling “thermodynamic limit,” in contrast to the weak-
coupling limit of other dissipative quantum phase transi-
tions for photons—where many photons are required to
“turn on” a nonlinearity (see, e.g., Ref. [34]). An example
of the latter is the optical bistability studied in the 1980s
[35–38]. Finally, I showed how the breakdown of photon
blockade is transformed into absorptive optical bistability
by dressed-state ladder switching, each switch triggered by
spontaneous emission (Figs. 7 and 8).
I treated just one Jaynes-Cummings system—a model in

zero dimensions: What can be said about lattices or
photonic cavity arrays? I mapped the Jaynes-Cummings
Hamiltonian with coherent drive to the effective single-site
Hamiltonian of a Bose-Hubbard model in the mean-field
decoupling approximation, and the bottom panel of Fig. 1
shows marked similarities to the phase diagram of theMott-
insulator-to-superfluid phase transition (e.g., Fig. 4 of
Ref. [20]). “Similar” should not be read, however, beyond
what follows from a common level structure: The mean
field of the Bose-Hubbard model is a self-consistent field,
the coherent drive of the Jaynes-Cummings model an
imposed constraint. Although the resonances of Fig. 1
resemble Mott phases of exactly one, two, three, etc.,
photons per site, they do not mark phase boundaries. They
indicate a flow of energy, from input to output, in clumps of
one, two, three, etc., photons at a time [26].
Le Boité, Orso, and Cuiti recently applied the mean-field

decoupling approximation to a dissipative photonic lattice
with coherent drive [68,69]. They considered, in particular,
an on-site Kerr linearity, where an interaction energy
proportional to the square of the photon number provides
dispersion proportional to photon number [e.g., as in
Eq. (32)]. This model was solved in zero dimensions in
the early 1980s [65]. By working in the generalized P
representation of Drummond and Gardiner [70], the mean
field is found as an explicit function of parameters: In
current notation, hai ¼ AðE=κ;Δω=κ; g=κÞ, where A is a
ratio of Gamma functions multiplied by generalized
hypergeometric functions [65]. Le Boité et al. extend this
result to lattices by introducing an effective drive field
E → E − zthai, with zt a nearest-neighbor tunneling rate,
and solving

hai ¼ A½ðE − zthaiÞ=κ;Δω=κ; g=κ� ð39Þ

self-consistently for hai. As the authors point out, their
approach differs from a Gross-Pitaevskii approximation,
which simply replaces E by E − ztα in the Kerr model
equivalent of Eq. (10).
The approach might be applied in a similar way to the

driven Jaynes-Cummings model. While, in this case, there
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is no known explicit expression AðE=κ;Δω=κ; g=κÞ, the
right-hand side of Eq. (39) can always be computed
numerically—as the photon number is in Fig. 1. There
is reason, however, to think the mean-field decoupling
approximation a poor one for treating the breakdown of
photon blockade. The authors of Ref. [69] say it is “not
fully controlled” and that work beyond the mean field will
ultimately determine its domain of validity. Perhaps it can
“set” the resonances of Fig. 1 as Mott-like phases, but the
transition to high photon number presents a very different
challenge.
An approximation of the kind used in Eq. (39) faces two

main troubles: It reads a dynamical, or statistical, non-
linearity as a fundamental nonlinearity of interaction, and it
neglects site-to-site correlations that clearly follow when
the statistical dynamic is “unwound.” The point is illus-
trated by Fig. 5, where, although the photon number is
plotted there, what follows holds in an analogous way for
the field.
The gray shaded region in Fig. 5 follows the response of

the mean photon number as a function of the detuning
Δω=κ; it is a cut through a function NðE=κ;Δω=κ; g=κÞ,
at E=κ ¼ 12 and g=κ ¼ 50. Importantly, the response is
nonlinear, but the nonlinearity is different in kind to what
one reads from a mean-field state equation like Eq. (19): It
folds in an average over fluctuations [the switching of
Fig. 5(b)] assumed to be negligible in a normal mean-field
approach. With this average folded into the nonlinearity,
it seems dubious that mean fields can be related by an
equation like Eq. (39). Alternatively, approaching from the
other direction, if we say the fluctuations are present, i.e.,
the blockade turns on and off, then surely site-to-site
correlations must be taken into account.
The breakdown of photon blockade takes the Jaynes-

Cummings system from a quantum domain dominated by
multiphoton resonance [Fig. 4(a)] to an essentially classical
level of high excitation [Fig. 4(c)]. If we can set aside the
Mott-insulator-to-superfluid transition per se, the extension
to lattices might more convincingly begin with standard
many-site mean-field equations, extending Eqs. (10)–(12).
A formulation like that of Ref. [65] might then add
quantum noise, replacing mean-field equations with sto-
chastic differential equations that respect site-to-site corre-
lations and are suited to numerical simulation. In view of
the difficulties faced by simulations within the generalized
P representations (see, e.g., Ref. [71]), however, it is far
from clear that a program in this direction could be carried
through.
A theoretical approach able to follow a transition from

one or two photons per site through hundreds to thousands
of photons per site across a driven, dissipative lattice is a
significant and unmet challenge. Experiments to realize
the breakdown of photon blockade in zero dimensions
are feasible, on the other hand. Indeed, adding to the one
previous experiment with strong coherent drive [67], very

recently, a coherent quantum-to-Glauber-state transition for
a two-level system coupled to a microwave resonator has
been experimentally observed [72].
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