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It has long been recognized that the diffusion of adsorbed molecules and clusters is the key controlling
factor in most dynamical processes occurring on surfaces and in nanoscale-confined spaces. The ability to
manipulate diffusion is essential for achieving efficient transport in nano- and microstructures and for many
other applications. Through simulations and experiments, we found that under the influence of mechanical
oscillations, the diffusion coefficient in nanoscale-confined regions can be greatly enhanced. This effect
occurs due to bifurcations of particle trajectories caused by the reconstruction of the energy landscape
during oscillations. We derive a parameter-free analytical model for the enhanced diffusion that is in
excellent agreement with results of our numerical simulations. The oscillation-induced enhancement of
diffusion may have interesting and promising applications in such areas as directed molecular transport,
sorting of particles, and tribology. Here, our findings have been applied to studies of mechanical cleaning of
surfaces from contamination. Through both experiments and simulations, we have shown that using an
oscillating slider, one can significantly reduce the concentration of contaminants in a confined region,
which is crucial for achieving superlow friction.
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I. INTRODUCTION

Studies of the diffusive properties of adsorbates are of
broad scientific and technological importance in areas
ranging from chemical kinetics [1,2] and surface nano-
structuring [3,4] to molecular sorting [5–7], directed trans-
port [8,9], and tribology [10,11]. At surfaces, the molecular
diffusion is usually reduced compared to that in gas or liquid
phases because of the potential energy landscape impeding
molecular motion. The ability to enhance or, more generally,
to manipulate diffusion at the nanoscale presents a great
challenge for both fundamental studies and applications.
It has been theoretically demonstrated that significant
enhancement of diffusion can be achieved by applying
external time-dependent forces with zero mean [12,13] or
through temporal modulations of surface potential [14,15].
These effects have been observed for colloidal particles in a
periodic potential whose potential barriers are subjected to
temporal oscillations [16] and for paramagnetic particles

moving on a magnetically structured substrate and subjected
to a periodic forcing of an external magnetic field [17].
However, it seems impossible to implement these ideas
under a strict size confinement typical for nanodevices,
which leaves very limited access to interfere with the system
in order to be able to enhance diffusion.
In this paper, we investigate the mechanism of diffusion

of adsorbed molecules confined between oscillating sur-
faces that is a common configuration for tribology.
Through both modeling and explicit molecular dynamics
simulations, we find that in applying mechanical oscilla-
tions, the diffusion coefficient in a nanoscale-confined
region can be greatly enhanced compared to the diffusion
coefficient on immobile surfaces. The giant enhancement
of diffusion occurs due to bifurcations of particle trajecto-
ries caused by the reconstruction of the energy landscape
during oscillations. An analytical model has been derived
that describes quantitatively dependencies of the diffusion
coefficient on frequency and amplitude of oscillation and
on temperature.
We have studied experimentally a process of mechanical

cleaning of surfaces using an oscillating slider and found
that enhancement of diffusion in the confined region leads
to significant reduction of contaminant concentration,
which is difficult to achieve by conventional cleaning
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techniques. The experimental observations have been
compared with the predictions of simulations.

II. THEORETICAL MODEL

In order to mimic the commonly used experimental
configuration depicted in Fig. 1(a), we consider a one-
dimensional model that includes two rigid plates and
adsorbed particles of mass m embedded between them,
as shown in Fig. 1(b). The top plate (slider) oscillates
harmonically with a frequency f and amplitude A, while
the bottom plate (substrate) is fixed. The motion of the ith
adsorbed particle is governed by the following Langevin
equations

mẍi ¼ Fsub
i þFsld

i − ηsub _xi − ηsldð_xi − vsldÞ þFa−a
i þ γiðtÞ;

ð1Þ

where xi is the coordinate of the ith particle; Fsub
i ¼

Usubð2π=asubÞ cosð2πxi=asubÞ and Fsld
i ¼ Usldð2π=asldÞ×

cos½ð2π=asldÞðxi − XsldÞ� are the forces describing the
particle-substrate and particle-slider interactions, respec-
tively; asub and asld are the spatial periodicities of the
substrate and slider; Xsld ¼ Asinð2πftÞ is the center-of-
mass coordinate of the slider; Fa−a

i is the force describing
interparticle interactions, which are modeled by the
Gaussian repulsive potentialUa−aðrÞ ¼ Ua−a

0 exp½−ðr=bÞ2�
with r being the interparticle distance; ηsub and ηsld are the
damping constants responsible for the dissipation of the
particle kinetic energy to the substrate and slider; and γiðtÞ
is the random force representing thermal noise and satisfy-
ing the fluctuation-dissipation relation. The results pre-
sented in the paper have been obtained choosing the
parameters of interparticle interactions as Ua−a

0 ¼
0.2Usub and b ¼ ðasub=2πÞ. Similar results have also been
obtained for Lennard-Jones interactions between particles

(see the Supplemental Material) and for the Gaussian
repulsive potential with different values of parameters.
In simulations, before applying oscillations to the slider,

the adsorbates are uniformly distributed on the substrate
with a given surface concentration Nads=Nsub ¼ 0.5, where
Nsub is the number of substrate atoms, and the system is
equilibrated at finite temperature T with the Langevin
thermostat. Then, the oscillations are applied and the
simulations are performed during 200 periods. A broad
range of frequencies spanning over 6 orders of magnitude
has been studied: 1.26 × 10−6 < f=f0 < 1.24, where f0 ¼
ð1=asubÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðUsub=mÞp
is the intrinsic frequency for small

oscillations at the minima of the substrate potential. The
velocity Verlet method has been used to integrate the
equations of motion. There is ample evidence from
the field of atomic and molecular vibrations and diffusion
that the molecular motion on this small scale is close to
critically damped [18,19]. Therefore, most of the results
presented below have been obtained for the values of the
damping coefficient, which are critical with respect to the
interaction between the particles and surfaces ηsub ¼
4π

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Usubm

p
=asub and ηsld ¼ 4π

ffiffiffiffiffiffiffiffiffiffiffiffi
Usldm

p
=asld. These values

of the damping coefficient correspond to the transition
between the oscillatory and aperiodic behaviors of a single
particle in a single potential well. The simulations per-
formed in the overdamped regime of motion lead to similar
conclusions.

III. ENHANCED DIFFUSION

First, we present in Fig. 1(c) results obtained for
low temperature T ¼ 0.01Usub=kB. Both commensurate
(asld=asub ¼ 1) and incommensurate surfaces with the same
potential corrugationUsld ¼ Usub have been studied, and in
the latter case, the misfit ε ¼ ðasld − asubÞ=asld is changed
from 0.025 to 0.2. In all cases, we find a giant enhancement
of diffusion coefficient induced by oscillations. In Fig. 1(c),
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FIG. 1. Schematics of the studied systems and enhanced diffusion. (a) Schematic sketch of experimental configuration and (b) the
model geometry, where red spheres represent particles embedded between two surfaces shown as black and yellow spheres (curves). The
arrows in (b) indicate the directions of oscillations. (c) Dependence of normalized diffusion coefficient D=Dfree on frequency of
oscillations f=f0 calculated for commensurate (asub=asld ¼ 1) and incommensurate (asub=asld ¼ 0.95) surfaces, with Dfree ¼ kBT=ηsub
being the free diffusion coefficient and the oscillation amplitude A being A=asld ¼ 2. The inset shows this dependence in the high-
frequency range.
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we present the diffusion coefficient normalized to the
diffusion coefficient of free particles Dfree ¼ kBT=ηsub
(in the absence of interaction with a surface). The
diffusion coefficient at a fixed surface can be estimated
as Dfreeexpð−Usub=kBTÞ and, for instance, with T ¼
0.05Usub=kB it is 8 orders of magnitude lower than
Dfree. Under these conditions, the oscillation-induced
diffusion coefficient may be more than 10 orders of
magnitude higher than the diffusion coefficient at the
substrate surface in the absence of oscillations.
For both commensurate and incommensurate contacts, a

nonlinear dependence of D on f has been found at high
frequencies (f=f0 > 0.1), as shown in the inset in Fig. 1(c).
This effect is similar to the previously discussed giant
enhancement of diffusion under the action of external time-
dependent force with zero mean [12,13,20] or vibrations of
substrate surface [21]. Here, we focus on another regime of
diffusion that emerges at low frequencies f=f0 < 0.06.
This regime, as we show below, is of experimental
relevance. In this regime, for commensurate surfaces, D
depends linearly on f for all frequencies studied in the
simulations [black squares in Fig. 1(c)]. For incommensu-
rate surfaces in the intermediate range of frequencies (e.g.,
6.28 × 10−4 < f=f0 < 0.06 for ε ¼ 0.05), D exhibits the
same linear dependence on f as for commensurate surfaces;
however, for lower frequencies, DðfÞ deviates from lin-
earity, becoming smaller than that for the commensurate
surfaces. The threshold frequency at which DðfÞ starts to

deviate from the linear law increases with increasing misfit
ε. It should be noted that linear variation of D with f has
been previously found in simulations of diffusion in a
periodic potential with temporally changing amplitude
[14,15]. The prediction of oscillation-induced enhancement
of diffusion of particles confined between incommensurate
surfaces has been confirmed qualitatively in our experi-
ments on mechanical cleaning, which are discussed in the
next section.
To understand the mechanism of diffusion leading to the

linear dependence of D on f that covers a wide frequency
range, we present in Fig. 2 the trajectories of adsorbed
particles and time evolution of potential profiles calculated
for both commensurate and incommensurate surfaces dur-
ing two periods of oscillations. As shown in Fig. 2(a),
bringing the trajectories to a common start point, for the
commensurate surfaces, we find a pattern that results from
perfect multiple bifurcations of trajectories, which occur
under the influence of the oscillations. At t ¼ 0, all particles
are located in the minima of potential created by the
confining surfaces [Fig. 2(c)]. When the slider starts to
oscillate, the position of the potential minimum changes
with time. At low frequencies, the particles follow the
position of the minimum adiabatically as shown in
Fig. 2(c) before the first bifurcation point. As the oscillation
proceeds, at a certain time, the minimum of potential energy
[indicated as blue regions in Fig. 2(c)] transforms into the
maximum [red regions in Fig. 2(c)] and two new potential
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FIG. 2. Mechanisms of enhanced diffusion. (a),(b) Trajectories of adsorbates calculated for commensurate surfaces oscillating with
frequency f=f0 ¼ 1.26 × 10−2 and for incommensurate surfaces (asub=asld ¼ 0.95) with f=f0 ¼ 1.26 × 10−5, respectively. The
oscillation amplitude is A ¼ 2asld. The time interval in (a) and (b) corresponds to two periods of oscillations. Note that different scales of
the Y axis are used for better visualization. (c),(d) Time evolution of the potential energy experienced by particles Uðx; tÞ for
commensurate and incommensurate (ε ¼ 0.05) surfaces, respectively. Blue and red regions correspond to potential minima and maxima,
respectively. The color bar is shown to the right of (d). The time interval in (c) and (d) corresponds to one period of oscillations. White
curves in (c) show trajectories of adsorbates.
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minima appear simultaneously at a distance of asub=2 to the
left and right of the former minimum. The variation of
potential energy barriers separating the neighboring minima
in the particle-substrate energy landscape with time during
one period of oscillations is shown in Fig. 3.
We can introduce a “landscape reconstruction time” Δtr

that is a time interval during which the barriers separating
neighboring minima are very low, of the order of kBT or
even smaller, as indicated by green regions in Fig. 2(c). The
time Δtr is proportional to the temporal period of oscil-
lations and depends on kBT. During the landscape
reconstruction time, the particles leave the former mini-
mum and jump to the new neighboring minima with equal
probabilities, since for commensurate surfaces, the energy
landscape is symmetric with respect to the position of the
former minimum. After this bifurcation transition, the
positions of new potential minima change continuously
with time, and the barrier heights separating minima
become much larger than kBT, thus trapping particles until
the next transition. In this quasistatic regime, the motion of
particles can be described as a random walk. At each
bifurcation point, the particles jump randomly to one of the
two neighboring minima with the same probabilities, and
the jump length equals to half of the substrate period.
Correspondingly, the diffusion coefficient can be written
as [22]

D ¼ ðasub=2Þ2=2Δt ¼ asubAf=2; ð2Þ
where Δt ¼ 1=fNb is the average time between bifurca-
tions and Nb ¼ 4A=asub is the number of bifurcations per
period of oscillations. In the quasistatic regime, which
spans over 5 orders of magnitude of f, this equation is in
excellent agreement with the results of numerical simu-
lations, as shown in Fig. 5(a). Equation (2) also demon-
strates that in the quasistatic regime, D is proportional
to the amplitude of oscillations that is confirmed by
numerical simulations. For A ¼ 1 μm, f ¼ 10 kHz, and
asub ¼ 0.2 nm, we get D ¼ 1 × 10−8 cm2=s that is more

than 10 orders of magnitude larger than the diffusion
coefficient at the fixed surface calculated for Usub ¼
0.1 eV and m ∼ 100 atomic mass unit.
For incommensurate surfaces [see Fig. 1(c)], DðfÞ

changes linearly in the intermediate frequency range;
however, it deviates from the linearity for frequencies
lower than f=f0 ¼ 6.28 × 10−5. Figure 2(b), showing
the trajectories of the particles at low frequency
f=f0 ¼ 1.26 × 10−5, exhibits an asymmetric splitting of
particles rather than the symmetric one observed for the
commensurate surfaces. This behavior can be understood
comparing the time evolution of the energy landscapes for
commensurate and incommensurate surfaces shown in
Figs. 2(c) and 2(d). The major difference between the
two maps shown in Figs. 2(c) and 2(d) is that during the
landscape reconstruction time Δtr, the energy profile for
the commensurate contact is symmetric with respect to the
position of the former minimum, while for the incom-
mensurate one, that is not the case. This effect is manifested
by the inclination of green domains in Fig. 2(d), which
represents the potential energy profile during Δtr. Thus, for
incommensurate surfaces, there is small bias force Fb
acting toward one of the two newly appearing neighboring
minima. The force-induced (deterministic) and diffusive
(random) displacements of particles during the landscape
reconstruction time Δtr can be estimated as Δxb ∼
FbΔt2r=ð2mÞ and Δxd ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DfreeΔtr

p
, respectively. If the

oscillations are not too slow, Δxb is much smaller than Δxd
simply because for small Δtr, the square root wins. The
diffusive displacement is symmetric and moves the par-
ticles to new minima with equal probabilities. In this range
of frequencies, the diffusion coefficient for incommensu-
rate surfaces scales linearly with f and coincides withD for
commensurate surfaces. When the period of oscillations
gets too long, Δtr gets large, the drift (Δxb ∼ Δt2r) starts to
win over the diffusion (Δxd ∼

ffiffiffiffiffiffiffi
Δtr

p
), and the particles go

with the overwhelming probability either left or right. As a
result, the trajectories get more and more deterministic,
resulting in a smaller D compared to that for the commen-
surate surfaces.
The simulations discussed above have been performed

for the critical values of damping coefficients. However, it
is important to understand what would happen for higher
damping, which is characteristic for experiments with a
colloidal system diffusing over laser-generated periodic
potentials [23] that may provide direct evidence of the
predicted mechanism of the enhancement of diffusion. For
commensurate surfaces, in the range of frequencies, where
DðfÞ changes linearly with f under critical damping, the
simulations performed for the overdamped conditions show
the same results as for the critical damping [see Fig. 4(a)].
Figure 4(b) shows that for incommensurate contacts, the
range of frequencies, where we found a linear dependence
ofD on f, becomes broader, extending to lower frequencies
compared to the case of the critical damping. The latter
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FIG. 3. Variation of potential energy barriers separating the
neighboring minima in the particle-substrate energy landscape
with time during one period of oscillations with the amplitude
equal to A ¼ 2a. The results are for commensurate surfaces.

MA et al. PHYS. REV. X 5, 031020 (2015)

031020-4



is explained by the fact that the force-induced (determin-
istic) displacements of particles during the landscape
reconstruction time that lead to the deviation from the
linear law become less significant under the overdamped
conditions, and the symmetric diffusive displacements
dominate in a broader range of frequencies.
Figure 4 also shows that at high frequencies, the results

obtained for higher damping deviate from the linear
relation found for the critical damping. At these frequen-
cies, the viscous force acting on the particles ηsub _xi −
ηsldð_xi − vsldÞ becomes of the same order or even larger
than the potential forces and the bifurcation mechanism of
diffusion stops working. The limiting frequency above
which this mechanism fails can be estimated by comparing
the amplitude of the potential force with that of the viscous
force. This gives flim ¼ ðUsub=asldÞ=ðAηsubÞ, showing that
the limiting frequency decreases with increase of damping.
In our cases, flim=f0 equals to 0.16 for critical damping and
0.05 for overdamped particles, which are in the excellent
agreement with the numerical results for both commensu-
rate and incommensurate surfaces (Fig. 4).
Equation (2) for the oscillation-induced diffusion coef-

ficient has been derived for noninteracting adsorbed par-
ticles. The bifurcation mechanism of oscillation-induced
enhancement of diffusion is expected to work when the
concentration of particles is low enough and they do not
cluster. Under these conditions, the exact form of the
potential does not play any role. However, our simulations
show that in the considered range of parameters, the effect
of soft Gaussian repulsion between the particles on the
diffusion coefficient is negligible even for high surface
concentration Nads=Nsub ¼ 0.5. The exact values of the
parameters of the Gaussian potential only slightly influence
the magnitude of the oscillation-induced diffusion coef-
ficient. Unlike hard spheres or Lennard-Jones potentials,
the Gaussian repulsive potential allows for the possibility
that the particles can pass through each other even in 1D
systems. This enables us within the 1D model considered
here to mimic 2D dynamics, where, contrary to 1D,
bypassing is possible. We have found that the predicted
mechanism of enhancement of diffusion through

bifurcation works also for the Lennard-Jones interaction
between particles, and at low oscillation frequencies, which
are discussed in this work, the oscillation-induced diffusion
coefficient exhibits a linear dependence on f [24].
However, in this case, the values of the diffusion coefficient
decrease with increase of the particle concentration, indi-
cating that collective behavior of the adsorbates (e.g.,
clustering) plays a role.
So far, we have discussed oscillation-induced diffusion

at low temperatures where D is completely determined by
the bifurcation mechanism. For higher temperatures, the
diffusion coefficient as a function of f exhibits a crossover
from the linear dependence for intermediate range of
frequencies, where it coincides with DðfÞ for low temper-
ature, to a constant at lower frequencies. In Fig. 4(a), we
show DðfÞ calculated for commensurate surfaces at tem-
perature T ¼ 0.2Usub=kB that for Usub of the order of
0.1 eV corresponds to room temperature. Here, in the low-
frequency limit, the diffusion coefficient is three orders
higher than the diffusion coefficient on immobile surfaces
at the same temperature. When the temperature is raised,
the possibility of thermally activated jumps above the
barrier appears, and at high temperatures, such thermally
activated jumps dominate the diffusion. The particle
trajectories in this regime are shown in the Supplemental
Material [24]. In this case, the mean-squared diffusive
displacements of particles during the landscape
reconstruction time increase with T, and at low frequencies,
it becomes larger than the substrate period. Then,
ðΔxdÞ2 ∼ Δtr ∼ 1=f, and considering that the time between
bifurcations scales as Δt ¼ 1=fNb, we find that DðfÞ
levels off at low frequencies, as shown in Fig. 4(a). At
intermediate frequencies, the particles are transferred only
to the closest neighboring minima, and DðfÞ is described
by Eq. (2) exhibiting a linear dependence on f.
Based on the mechanisms revealed above, we have

derived a parameter-free analytical model for DðfÞ that
considers the whole process as a superposition of two
random walks, one described by the splitting of trajectories
at the bifurcation points and the other corresponding to
jumps between adjacent minima of the potential when
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the barrier does not vanish. The mean-squared displace-
ment in both walks sum up, and so do the diffusion
coefficients. The overall effective diffusion coefficient is
Deff ¼ Dbif þDact. The diffusion coefficient for the bifur-
cation process is given by Eq. (2), and the diffusion
coefficient Dact due to the thermally activated processes
can be evaluated as the mean over the oscillation period of
instantaneous coefficients of diffusion as obtained through
the activation mechanism Dact ¼ ð1=TÞ R T

0 DðtÞdt, where
the instantaneous diffusion coefficient DðtÞ is given by the
Arrhenius formula D ¼ ðkBT=ηÞ expð−ΔE=kBTÞ. Here,
ΔE is the height of the energy barrier at time t, as shown
in Fig. 3. This parameter-free analytical model for DðfÞ
covers both the linear and the frequency-independent
behaviors, and the transition between them. As shown in
Fig. 5(a), it agrees well with the numerical results. The
validity of the analytical model has also been proven
for a wide range of temperatures 10−2Usld=kB ≤ T ≤
0.4Usld=kB [24].
In Fig. 5(b), we showDðfÞ for incommensurate surfaces

(ε ¼ 0.05, as an example) calculated for two temperatures
T ¼ 0.01Usub=kB and T ¼ 0.2Usub=kB. In the linear
regime of variation of D with f, the theoretical model
(curves) still shows good agreement with numerical results.
For lower frequencies, the model overestimates the dif-
fusion coefficient for incommensurate surfaces. As we
discussed above, in this case, the asymmetry of the
potential profile during the landscape reconstruction time
leads to the asymmetric splitting of particle trajectories,
resulting in smaller diffusion coefficients. With the increase
of the difference between the properties of confining
surfaces described by the parameters asld and asub, Usld
andUsub, and ηsld and ηsub, the oscillation-induced diffusion
coefficient decreases.

IV. MECHANICAL CLEANING OF SURFACES

The enhancement of diffusion in oscillating contacts
discussed above may have interesting and promising
applications in such areas as directed molecular transport
[8,9], sorting of particles [5–7], and tribology [10,11].

Here, we consider the manifestation of this effect in a
process of mechanical cleaning of surfaces from contami-
nation using an oscillating slider (mechanical wiping).
In situ cleaning of tribological contacts is crucial for
achievement of the superlow-friction state (superlubricity),
which may be destroyed due to the presence of contam-
inations between the surfaces [25,26]. Recently, it has been
experimentally demonstrated that mechanical wiping of
graphite surfaces using a graphite microflake may drasti-
cally reduce the amount of contaminations on surfaces [27].
Using this approach, individual surface areas can be
cleaned selectively, which is difficult to achieve with any
conventional cleaning technique.
In experiments on cleaning via mechanical oscillation

illustrated in Figs. 6(a)–(c), we use graphite mesa as the
substrate and slider. First, the graphite mesas are prepared
[Fig. 6(a)]; then, the surfaces are exposed to air for
several minutes, during which contaminants are adsorbed
[Fig. 6(b)], and after that, the cover of the right mesa is
transferred to the top of the left one, the oscillations are
applied to the slider, and friction measurements are
performed [Fig. 6(c)]. Details of the sample preparation
and friction force measurements are provided in
Appendixes A and B, respectively. Two sets of experiments
with oscillation amplitudes A ∼ 0.08L and A ∼ 1.0L, where
L ∼ 3 μm is the size of the slider, have been performed. A
reduction of the amount of contaminants confined between
surfaces NconfðtÞ with the number of oscillation periods has
been measured indirectly through the decrease of the
kinetic friction force, assuming that for incommensurate
contacts, the friction is proportional to the number of
embedded particles (see the Supplemental Material [24] for
details). As shown in Figs. 6(e) and 6(f), a gradual
reduction of contaminants with a characteristic time scale
of tens of periods has been observed, indicating that the
mechanical cleaning is a diffusion-limited process.
In simulations of mechanical cleaning, we slightly

modify the system used above for calculations of diffusion
in order to include the finite size of the slider and properly
describe interactions of adsorbed particles with the slider
edges. The slider and substrate are modeled as 1D arrays
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including Nsld and Nsub atoms with interatomic distance
asub and asld, respectively [see Fig. 6(d) for a schematic
sketch of the system]. The interactions between the
adsorbed particles and surface atoms are described by
Lennard-Jones potentials with parameters chosen in such a
way that the particles embedded between surfaces and
located away from the slider edges experience the same
periodic potential as in diffusion simulations. However, at
the edges of the slider, the energy barriers are higher than in
the confinement.
For systems illustrated in Fig. 6(d), in order to character-

ize quantitatively the cleaning process, we calculate the
normalized number of adsorbates in the confined region as
a function of time pðtÞ ¼ NconfðtÞ=Nconfð0Þ. Averaging
pðtÞ over a number of realizations gives a survival
probability for the particles to stay in the confined region.
As we show below, pðtÞ depends on both frequency and
amplitude of oscillations. Following the experimental
procedure, we perform simulations for both small A ∼
0.1L and large A ∼ 1.05L amplitudes of oscillations, where
L ¼ Nsldasld is the slider length. For not too short times,
NconfðtÞ=Nconfð0Þ is equal to expð−t=τÞ, where τ ¼ 1=λD,
D is the diffusion coefficient in the confined region, and
λ > 0 is a parameter depending on boundary conditions at
the slider edges and the slider length [28]. In the case of
absorbing boundaries, for which the particles are removed

from the confinement as they reach the slider edges,
λ ¼ π2=ðLþ 2AÞ2, while for reflecting boundaries,
NconfðtÞ=Nconfð0Þ ¼ 1 and λ ¼ 0. Modeling the cleaning
experiments, we have to consider that the particles may
leave the confined region. The simulations show that
particles leaving the confined region are partially reflected
by the slider edges, and the partially absorbing boundary
conditions should be applied, for which the parameter λ lies
between two limiting values corresponding to absorbing
and reflecting boundaries. Thus, the cleaning efficiency
1 − pðtÞ is determined by both the diffusion coefficient in
the confinement and the boundary conditions at the slider
edges.
It is instructive to present the results of cleaning

simulations as a function of number of oscillation periods
tn ¼ tf, as shown in Figs. 6(e) and 6(f). Measuring time
in the number of periods can be used to compare the
results at different frequencies and with the ones of
experiment. Then, in the frequency range for which the
diffusion coefficient changes linearly with f, we get the
equation pðtnÞ ¼ expð−tnλAasub=2Þ, where λ is the only
frequency-dependent parameter. Our simulations show
that the probability of a particle to be reflected by the
slider edges increases with f, and thereby λ decreases
with increasing f. Thus, for a given number of periods,
the cleaning is more efficient (the survival probability
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FIG. 6. Mechanical cleaning of surfaces. (a)–(c) Schematic representation of the experimental procedure including (a) preparation of
graphite mesas, (b) adsorption of contaminants, and (c) transferring of the cover of the right mesa to the top of the left one and
mechanical cleaning. The top parts in blue are SiO2, and the rest in gray are graphite mesas. The black triangle stands for the tip of the
microforce sensing probe, and the red arrows indicate the direction of the oscillation of the substrate. (d) Schematic sketch of the model
used to simulate the cleaning process via mechanical oscillation. Golden spheres represent the slider surface that oscillates as indicated
by the arrows, red spheres show adsorbed particles, which initially are uniformly distributed, and black spheres depict the substrate. (e),
(f) Comparison between the values of NconfðtÞ=Nconfð0Þ measured in experiments (square symbols connected by dashed lines) and
calculated in simulations (curves) for small (A ∼ 0.1L, where L is the size of the slider) and large amplitudes (A ∼ 1.0L) of oscillations,
respectively. In (e), the curves from top to bottom have been calculated for f=f0 ¼ 1.26 × 10−2, 5.03 × 10−5, and 1.26 × 10−5,
respectively. In (f), the curves from top to bottom correspond to f=f0 ¼ 1.26 × 10−2, 1.26 × 10−3, and 5.03 × 10−5, respectively.
Simulations have been performed for incommensurate surfaces with asld=asub ¼ ð1þ ffiffiffi

5
p Þ=2 and T ¼ 0.2Usub=kB.
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becomes lower) for lower frequencies, as shown in
Figs. 6(e) and 6(f). The same conclusion is correct for
lower frequencies, where DðfÞ is a constant, and pðtnÞ
changes as pðtnÞ ¼ 1 − expð−tnλD=fÞ.
In Figs. 6(f), we compare the results of our mea-

surements with the numerical results obtained for
incommensurate surfaces with asld=asub ¼ ð1 þ ffiffiffi

5
p Þ=2

corresponding to the golden ratio and temperature
T ¼ 0.2Usld=kB. The golden ratio represents the “most
irrational” incommensurability between contacting surfa-
ces, which results in superlow friction in the absence of
contaminants [29]. For both small and large amplitudes of
oscillations, the results of simulations approach the exper-
imental data as frequency decreases. A higher efficiency of
cleaning, which has been found for large oscillation
amplitudes both in experiments and in simulations, results
from the effect of pushing of adsorbed particles outside the
confined region by the slider edges, which speeds up
the process [24]. The effect of pushing is less significant
for the smaller amplitudes for which the enhanced diffusion
completely dominates the cleaning process.
Our model gives a clear qualitative description of the

experiments on cleaning via mechanical oscillations; how-
ever, at the present stage, it cannot be pushed to give
quantitative predictions, since the simulation results depend
not only on the frequency but also on the unknown
parameters of the experiment, such as particle-substrate
interactions, boundary conditions, etc. Direct quantitative
evidence of the predicted effect can be provided by
experiments with two-dimensional colloidal systems dif-
fusing over laser-generated periodic potentials [23].

V. CONCLUSIONS

To summarize, we have found a significant enhancement
of diffusion coefficients in nanoscale confinement under
the influence of mechanical oscillations. The giant
enhancement of diffusion occurs due to bifurcations of
particle trajectories caused by the reconstruction of the
energy landscape during oscillations. The oscillation-
induced enhancement of diffusion may have interesting
and promising applications in such areas as directed
molecular transport, sorting of particles, and tribology.
Here, our findings have been applied to studies of the
mechanical cleaning of surfaces, which demonstrated that
enhancement of diffusion leads to a significant reduction of
contaminant concentration in the confined region.
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APPENDIX A: SAMPLE PREPARATION

Microscale graphite mesa samples are used to build the
systems (see the Supplemental Material [24] for details of
sample preparation). First, samples of different sizes (3 μm
for small samples and 10 μm for big samples), which
exhibit self-retraction, have been identified. These self-
retraction samples have flat surfaces and exhibit superlow
friction (superlubricity) due to incommensurability of
contacting surfaces [30,31]. We use a tungsten tip to push
the upper part of the small graphite mesa away, and the
cleaved surfaces are exposed to air at a temperature of 23 °C
and 10% humidity for several minutes. During this time,
molecules and probably larger contaminants have been
adsorbed on surfaces, as indicated in Fig. 6(b). Finally, we
use the tungsten tip to transfer the upper part of the large
sample to cover the small sample [Fig. 6(c)] and leave the
sample for approximately 15 minutes before the friction
force measurements with the oscillating slider are started.

APPENDIX B: FRICTION FORCE
MEASUREMENT

For the friction force measurement, we employ a micro-
force sensing probe FemtoTools FT-S100 with force
resolution of 5 nN and a bandwidth of up to 8 kHz; see
Fig. 6(c). The microforce sensing probe is calibrated in situ
using the method reported in Ref. [32]. The sample is
placed on a three-dimensional platform with the help of
which the speed and displacement could be controlled
precisely. Measurements of friction force are performed by
bringing the tip of the microforce sensing probe into
contact with the SiO2 layer grown on the top surface of
the highly oriented pyrolytic graphite sample by plasma-
enhanced chemical vapor deposition, and by moving the
platform at a constant speed of 25 nm=s while keeping the
microforce sensing probe fixed [Fig. 6(c)]. A typical
loading displacement was about 500 nm. After measuring
the friction, the sample is pushed back to its initial position
with speed of 1 μm=s, and another cycle of measurements
is started.
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