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We present the theory of the k-core pruning process (progressive removal of nodes with degree less than
k) in uncorrelated random networks. We derive exact equations describing this process and the evolution of
the network structure and solve them numerically and, in the critical regime of the process, analytically. We
show that the pruning process exhibits three different behaviors depending on whether the mean degree hqi
of the initial network is above, equal to, or below the threshold hqic corresponding to the emergence of the
giant k-core. We find that above the threshold the network relaxes exponentially to the k-core. The system
manifests the phenomenon known as “critical slowing-down,” as the relaxation time diverges when hqi
tends to hqic. At the threshold, the dynamics become critical, characterized by a power-law relaxation
(∝ 1=t2). Below the threshold, a long-lasting transient process (a “plateau” stage) occurs. This transient
process ends with a collapse in which the entire network disappears completely. The duration of the process
diverges when hqi → hqic. We show that the critical dynamics of the pruning are determined by branching
processes of spreading damage. Clusters of nodes of degree exactly k are the evolving substrate for these
branching processes. Our theory completely describes this branching cascade of damage in uncorrelated
networks by providing the time-dependent distribution function of branching. These theoretical results
are supported by our simulations of the k-core pruning in Erdős-Rényi graphs.
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I. INTRODUCTION

Pruning algorithms for networks provide an effective
way to extract subgraphs distinguished by their structural
properties, connectivity, robustness against failures and
damage, and other features [1–6]. In general pruning
processes, parts of a network are progressively removed
from it according to some rule. If the rule is simply random
removal of nodes, we obtain ordinary percolation [7–9], but
in general we are interested in more complex pruning rules.
The parts removed may be nodes [1,5,10], clusters [11],
finite connected components in interdependent and multi-
plex networks [6,12,13], etc. Despite the wide variety of
pruning processes, many of them demonstrate similar
behaviors, such as discontinuous hybrid phase transitions.
The k-core pruning, as the simplest pruning process of this
kind, stands as a paradigm for all such pruning processes,
so its theory should help to understand the behavior of these
pruning algorithms in general. The k-core is the network
subgraph in which all nodes have degree at least k [2].
Since k-cores represent the densest parts of networks, they

play an important role in understanding the structure and
dynamics of complex network systems [9]. The standard
algorithm for finding the k-core of a network employs the
following pruning process: at each step remove all nodes of
degree less than k. This removal decreases the degrees of
remaining nodes, some of which will become smaller than
k. So, the pruning is repeated until either the k-core remains
or the network disappears [10].
Previous investigations have mainly focused on the final

result of the k-core pruning process, namely, the k-core.
Thesewere the studieswhich showed that k-core percolation
is a hybrid phase transition, combining discontinuity and
a critical singularity, in contrast to ordinary percolation
(continuous phase transition) [5,9,14]. However, associ-
ating the number of steps in the pruning process with
time t reveals a process exhibiting complex dynamics
above, below, and at the k-core percolation threshold.
Understanding the k-core pruning process and accompany-
ing structural changes can shed light on various critical
phenomena, such as the jamming transition, the rigidity
percolation, glassy dynamics [15,16], complex contagion
[17], mass extinction [18], avalanches in neuronal networks
[19], and many others. Furthermore, the k-core pruning
process is one of the simplest examples of dynamic
processes associated with hybrid phase transitions, sharing,
for example, some common properties with cascade failures
in interdependent networks that have recently received
significant attention in the literature [6,12,20–24].
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In this paper, we develop the detailed theory of the k-core
pruning process in uncorrelated, sparse random networks,
describing the temporal evolution of the network’s struc-
ture, the spreading of damage over the network, and critical
phenomena in this process. We show that near the threshold
value of the mean degree hqic, corresponding to the
emergence of the giant k-core, this cascade of removals
of nodes is a branching process with the mean branching
coefficient close to 1. Our theory describes this process
completely providing the full time-dependent distribution
of branching from the beginning until the end of the
pruning. We indicate that the clusters of nodes of degree
k (so-called “corona clusters”), evolving due to the pruning,
provide the substrate for the branching processes. Near the
threshold we find three different behaviors depending on
whether the mean degree hqi of the initial network is above,
equal to, or below the threshold. First, we demonstrate that
above the threshold the network relaxes exponentially to
the steady k-core. The relaxation time diverges when hqi
tends to hqic, manifesting a phenomenon known as “critical
slowing-down.” Second, at the critical point hqi ¼ hqic, the
dynamics is critical, characterized by a power-law relax-
ation with 1=t2 dependence. Third, below the threshold, a
long-lasting transient process (a “plateau” stage) occurs.
This transient process ends with a collapse in which the
entire network disappears. We find that the duration of the
process diverges when hqi approaches hqic. Our theory is
supported by numerical calculations for Erdős-Rényi
graphs and by simulations of the pruning process in these
random graphs.
In Sec. II, we derive the exact equations describing the

evolution of the network structure during the pruning
process enabling us to obtain the time-dependent degree
distribution Pðq; tÞ and the branching probability distribu-
tion Pðn; tÞ at all times. Close to the critical point, the
probability that different branches of the process cross each
other is negligibly small. We show that in this region our
equations take a simple form for analytical treatment.
Section III explores the three regimes of the pruning
process below, at, and above the threshold. Section IV
describes the statistics of the branching process. A relation-
ship with dynamical systems close to a saddle point
bifurcation and details of calculations are given in the
appendixes.

II. EVOLUTION EQUATIONS

To study the k-core pruning process, let us consider as a
representative case an infinite uncorrelated sparse random
network, which is completely defined by its degree dis-
tribution PðqÞ. In this case, we can write exact equations
for the evolution of the degree distribution. Let Pðq; tÞ
be the proportion of vertices having degree q at time t,
with the initial condition Pðq; 0Þ ¼ PðqÞ. At each time
t ¼ 1; 2; 3;…, all vertices with degree q less than k are
pruned by having all edges connected to them removed

from the network. The probability Pð0; tÞ thus tracks the
number of vertices pruned so far.

A. Exact evolution equations

The removal of edges from pruned vertices means that
some nonpruned vertices will also lose edges, changing the
degree distribution of the remaining network. Let rt be the
probability that, upon following a randomly chosen edge
within the network existing at time t, we arrive at a vertex
with degree less than k:

rt ¼
1

hqit
X
q<k

qPðq; tÞ: ð1Þ

Such an edge will be removed in the subsequent step. Here,
hqit is the mean degree of the surviving network at time t,

hqit ¼
X
q

qPðq; tÞ: ð2Þ

The probability that a vertex of degree q0 ≥ k at time t has q

surviving edges at time tþ 1 is then ðq0qÞð1 − rtÞqrq
0−q

t .
A vertex of degree q0 < k at time t will, of course, have
degree zero at time tþ 1. Summing over all q0, the degree
distribution then evolves as follows:

Pðq; tþ 1Þ ¼
X

q0≥maxfq;kg
Pðq0; tÞ

�
q0

q

�
ð1 − rtÞqrq

0−q
t ; ð3Þ

for q > 0, while the fraction of pruned nodes evolves
according to

Pð0; tþ 1Þ ¼
X
q0<k

Pðq0; tÞ; ð4Þ

where the sum includes q0 ¼ 0. The uncorrelated nature of
the network ensures that Eqs. (1)–(4) completely define the
evolution of the network at all times. Note that another
approach for the pruning process which, however, does
not consider the evolution of the network structure, was
proposed in Ref. [25].
To understand the spreading of damage through the

network as the pruning process evolves, we introduce the
probability st. This is the probability that, following an edge
at time t, we reach a vertex that has degree at least k at time t,
but will have no more than k − 1 other surviving edges at
time tþ 1 (not counting the edge through which we reached
the vertex). This means that if the edge we are following is
removed at time t, thevertex that it leads towill be removed at
time tþ 1. To calculate st, we sum over probabilities that all
but l of the q − 1 outgoing edges of a vertex of degree q (i.e.,
q − 1 − l edges) are lost at time t (each one with probability
rt) with l equal to at most k − 1. A second summation is then
performed over all possible degrees q ≥ k:
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st ¼
1

hqit
X
q≥k

qPðq; tÞ
Xk−1
l¼0

�
q − 1

l

�
rq−1−lt ð1 − rtÞl: ð5Þ

The probability Pðn; tÞ that a vertex removed at time t has n
neighbors that will be removed at time tþ 1 is then

Pðn; tÞ ¼
P

k−1
q¼n Pðq; tÞðqnÞsnt ð1 − stÞq−nP

k−1
q¼1 Pðq; tÞ

: ð6Þ

This function describes the branching of spreading damage.
The mean branching is

bt ¼
Xk−1
n¼0

nPðn; tÞ ¼ st

P
k−1
q¼1 qPðq; tÞP
k−1
q¼1 Pðq; tÞ

: ð7Þ

B. Noncrossing approximation

Unfortunately, it is difficult to study analytically
Eqs. (1)–(4). In this section, we develop an approximate
approach providing the asymptotic description of the
pruning process at large times near the critical point.
When the probability rt is very small, the pruning can

then be considered as a branching process. The probability
that a vertex loses two neighbors in a single step is
negligible; in other words, the probability that two or more
branching trees meet at a vertex is negligible. The process
then evolves with independent branching trees spreading
simultaneously over the network. An example of such
noncrossing branchings observed in simulations is shown
in Fig. 1. If crossings are negligible, the fraction of vertices

of degree q < k − 1 is also negligible and only vertices of
degree q ≥ k − 1 must be taken into account. This is the
main assumption of the “noncrossing” approximation. This
approximation is supported by our numerical solution
of Eqs. (1)–(4) and simulations that show that the prob-
ability of crossings between branches are negligible and
Pðk − 1; tÞ ≫ Pðk − 2; tÞ ≫ � � �Pð1; tÞ already after a
short initial period (see the next sections). Applying the
noncrossing approximation to Eq. (5), we find that st
becomes simply the probability that, following an edge at
time t, we encounter a vertex of degree k.

st ≈
kPðk; tÞ
hqit

: ð8Þ

Furthermore, the probability rt, Eq. (1), and the mean
branching bt, Eq. (7), take the simple forms

rt ≈
ðk − 1ÞPðk − 1; tÞ

hqit
; ð9Þ

bt ≈
ðk − 1ÞkPðk; tÞ

hqit
: ð10Þ

So rt is simply the probability that, following an edge
at time t, we encounter a vertex of degree k − 1. The
evolution equation (3) is also simplified. The following set
of equations determines the evolution of the degree dis-
tribution during the k-core pruning process:

Pðq; tþ 1Þ ¼ Pðq; tÞ − rtqPðq; tÞ þ rtðqþ 1ÞPðqþ 1; tÞ;
ð11Þ

Pðk − 1; tþ 1Þ ¼ rtkPðk; tÞ; ð12Þ

Pð0; tþ 1Þ ¼ Pð0; tÞ þ Pðk − 1; tÞ; ð13Þ

hqit ¼ ðk − 1ÞPðk − 1; tÞ þ
X
q≥k

qPðq; tÞ; ð14Þ

where q ≥ k. The negative term in Eq. (11) corresponds to
the reduction in Pðq; tÞ due to vertices of degree q losing
with the probability qrt a single edge, while the positive
term (last term) corresponds to an increase in Pðq; tÞ due to
vertices of degree qþ 1 losing an edge with the probability
ðqþ 1Þrt and so ending up with degree q.
Using Eq. (10), we rewrite Eq. (12) as follows:

Pðk − 1; tþ 1Þ ¼ btPðk − 1; tÞ: ð15Þ

Equations (12) and (15) show that the removal of a vertex
of degree k − 1 at time t triggers in the next step the
removal of all corona vertices attached to it since they will
lose one edge and will have degree k − 1. On average, the
number of these corona vertices is the mean branching bt.

FIG. 1. A snapshot of the branching process of propagation of
node pruning in a small part of the network of 105 nodes during
the plateau stage (hqi < hqic) of the k-core pruning process for
k ¼ 3. The node labeled 0 is pruned, causing the corona nodes
(i.e., nodes with degree 3) labeled 1 to lose edges. These two
nodes are pruned in the next step, and so on, with further corona
nodes removed in subsequent steps according to the numbered
order. Orange and white circles represent the nearest-neighboring
nodes of degree 4 and greater than 4, respectively, that survive
because their degrees exceed 3. The orange nodes after this
pruning become of degree 3. They augment other corona clusters,
which may then be pruned at a later time.
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In uncorrelated networks, Eqs. (11)–(14) describe the
noncrossing branching processes of spreading damage
(see Appendixes B and C). They show that vertices of
degree k (“corona” vertices) are crucial for spreading
damage. In the case hqi ≥ hqic at large times, t ≫ 1,
crossings are negligible and these equations are asymp-
totically exact. Equations (11)–(14) are not valid when
there are numerous crossings between branching processes.
Such crossings are abundant both at the initial stage of the
pruning process and at the end of the “plateau” stage when
the network collapses. In this case, the exact Eqs. (1)–(4)
must be used. Branching processes are discussed in detail
in Sec. IV.

III. THREE REGIMES OF THE
PRUNING PROCESS

As a representative example of the pruning process, we
solved Eqs. (1)–(4) numerically for Erdős-Rényi networks
(Poisson degree distributions) using the initial mean degree
hqi as a control parameter. We solved the equations
for k ¼ 3 and k ¼ 5. The 3-core appears with a hybrid
transition at hqic ≈ 3.350 918 87, while for the 5-core,
hqic ≈ 6.799 275 5. We also performed simulations of
the pruning process in the networks. We found that for
any k ≥ 3, the dynamics of the pruning process can be
divided into three different regimes: hqi<hqic, hqi > hqic,
and hqi ¼ hqic.

A. Pruning process below hqic
Below hqic, the pruning process ends in a finite time

(number of steps) with the complete destruction of the
infinite network. Rapid pruning of vertices at early times
soon slows down and the system enters a plateau stage in
which the rate of removal of vertices is very slow. Finally,
this transient process ends with a collapse in which the
entire network disappears, as can be seen in Fig. 2 which
displays the temporal dependence of the network size S.
The duration of the entire process, from beginning until
final collapse, diverges as the inverse square root of the
distance from the critical point,

T ¼ Abelow=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hqic − hqi

p
; ð16Þ

as shown in Fig. 3. The time T is mainly determined by the
duration of the plateau stage. Note that the inverse square-
root scaling law is a general feature of nonlinear dynamic
systems that are close to a saddle-node bifurcation [26,27].
In such systems, the long-lasting transient process is caused
by a bottleneck region (the ghost) that exists in phase space
when the system is close to a saddle-node bifurcation or
the limiting point of metastable states in the case of the
first-order phase transitions (see a simple model in
Appendix A). The nature of the bottleneck effect in the
k-core pruning process is discussed in Sec. IV.

B. Pruning process above hqic
Above hqic a finite fraction of the network remains

indefinitely and the network relaxes to the steady k-core
only in the infinite time limit (see Fig. 2). In this regime,
according to the numerical solution of Eqs. (1)–(4) and
simulations, the relaxation to the steady state is exponen-
tial. Instead of measuring the total time, we characterize
the time scale of the pruning process by measuring the
relaxation time τ, where

FIG. 2. Size S of the Erdős-Rényi network versus time t during
the pruning process for k ¼ 3 in two cases. (i) Below the
threshold hqic, the system passes through a long “plateau” stage
before a final collapse. Shown are numerical calculations for
mean degree hqi ¼ 3.3509 (blue solid line) and simulations
(triangles) for a network of 108 vertices showing similar total
time. (ii) Above hqic, the system relaxes to a finite size, numerical
solution for hqi ¼ 3.350 92 (red solid line) and simulations
(circles).

8x10-6

4x10-6

FIG. 3. Characteristic times associated with the k-core pruning
process for k ¼ 3 on an Erdős-Rényi network. Circles show the
duration T of the entire pruning process below hqic. Squares
show the relaxation time constant τ above hqic. Fitted square-root
scaling for T and τ are shown by black solid lines. The critical
point hqic is marked by a vertical dotted line. Completion times
for a simulated network of 108 vertices are also shown below hqic
(triangles). In the inset, the inverse squares of T and τ (also scaled
by 2π) are shown, demonstrating the inverse square dependence
on the distance from the critical point.
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Pðk − 1; tÞ ∝ e−t=τ: ð17Þ
The relaxation time τ diverges as the inverse square root of
the distance from the critical point, as seen in Fig. 3,

τ ¼ Aabove=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hqic − hqi

p
: ð18Þ

We examine the origin of this scaling in more detail in
Sec. IV B, using the noncrossing approximation.
The divergence of τ manifests the phenomenon known

as critical slowing-down. Furthermore, comparing the
amplitudes Abelow and Aabove of the square-root singularities
below and above the transition, we find their ratio to
be Abelow=Aabove ¼ 9.133=1.452 ¼ 6.29 for k ¼ 3 and
8.44=1.34 ¼ 6.28 for k ¼ 5, in agreement with the ratio
2π expected for general transitions of this kind; see
Appendix A. So we suggest that a relationship,

Tðq−Þ
τðqþÞ

¼ 2π; ð19Þ

is a general property of the k-core pruning process. Here,
Tðq−Þ is the duration of the entire pruning process at the
mean degree q− ¼ hqic − ε, τðqþÞ is the relaxation time at
the mean degree qþ ¼ hqic þ ε, and ε ≪ hqic.
In Fig. 4, we show the evolution of the degree distri-

bution just above and just below hqic. Near the critical
mean degree, the initial evolution of the degree distribution
Pðq; tÞ both above and below the critical point is similar;
namely, there is a sharp initial decrease of Pðq; tÞ for
nonzero q. Below hqic, however, the network finally

collapses completely, while above the critical point, the
k-core survives forever. The theoretical results agree well
with simulation.

C. Critical pruning process

Solving Eqs. (1)–(4) numerically for Erdős-Rényi
networks, we find that exactly at the critical point hqic,

FIG. 4. Time evolution of the network degree distribution during the k-core pruning process, for an Erdős-Rényi network with k ¼ 3.
Each line shows Pðq; tÞ for a different value of q, in order from top to bottom, q ¼ 3; 4; 5; 2; 1, as labeled. Left: Initial mean degree
hqi ¼ 3.3509. Right: Initial mean degree hqi ¼ 3.350 92. Also shown are traces from simulation runs for an Erdős-Rényi network with
N ¼ 108 vertices and mean degree 3.3511 (left) and 3.351 11 (right). Note that the critical point for a particular realization is a stochastic
quantity, so the mean degrees for matching theory and simulation are not necessarily equal. Theoretical curves are chosen to be near the
critical point and to have a similar total time.

FIG. 5. Decay of Pðk − 1Þ on a log-log scale for several values
of hqi close to hqic. Exactly at the critical point, the decay follows
a power law with exponent −2. [For clarity, the final collapse of
Pðk − 1Þ for curves below the critical point is not shown.] Curves
are plotted for the Erdős-Rényi graphs with the mean degree
values (labeled 1–6) 3.350 905, 3.350 91, 3.350 915, which
are below qc, 3.350 91887 (very close to qc), and 3.350 92,
3.350 925, which are above qc. Dashed line is a power-law decay
with exponent −2.
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the relaxation is much slower, with Pðk − 1; tÞ decaying as
a power law,

Pðk − 1; tÞ ∝ 1

tσ
; ð20Þ

as can be seen in Fig. 5. For k ¼ 3, we measured the
exponent σ ¼ −1.993 at hqi ¼ 3.350 918 87, suggesting
that the exponent is −2. Note that in a simple model of a
particle moving in a one-dimensional potential in
Appendix A, the corresponding critical exponent is −1
[see Eq. (A3)]. We explain the power-law behavior,
Eq. (20), in Appendix B by solving Eqs. (B1)–(B4) within
the noncrossing approximation. This approach gives the
exact value σ ¼ 2.

IV. BRANCHING PROCESSES OF PRUNING

In this section, to understand the nature of the critical
dynamics of the pruning process, we study the spreading of
damage through the network and the structural changes
during this process. The probability Pðn; tÞ of the branch-
ing process is given by Eq. (6), which takes a simple form
within the noncrossing approximation:

Pðn; tÞ ¼
�
k − 1

n

�
snt ð1 − stÞk−1−n: ð21Þ

Since the parameter st given by Eq. (8) is the probability
to encounter a vertex of degree k (corona vertex), the
probability Eq. (21) is precisely the probability that
following an edge we arrive at a corona vertex, which
has n corona vertices at the ends of emanating edges [28]. It
is important to note that as the network evolves according
to Eqs. (1)–(4) during the k-core pruning process, so do the

corona clusters and hence their size distribution. Since the
probability st and, therefore, the probability Pðn; tÞ of the
branching process depend on time, the size distribution of
branches of removed vertices is therefore related but not
equal to the instantaneous size distribution of corona
clusters (see the following subsection).

A. Branching processes at hqi < hqic
The numerical solution of Eqs. (1)–(4) and simulation

show that, in the case hqi < hqic during the plateau stage,
the pruning process develops as a branching process, as
described in Sec. II B. The branching process of removals
evolves in agreement with Eqs. (8)–(15). Examples of
typical pruning trees are illustrated in Fig. 6 for k ¼ 3. The
figure shows that crossings between the branching trees are
abundant only at the beginning of the pruning process
and are rare in the plateau stage. The crossings are also
abundant at the end of the plateau stage, signaling a
collapse in which the entire network disappears.
The full branching distribution, given by Eq. (6) is

shown in Fig. 7. It is similar both above and below the
transition, and barely changes throughout most of the
pruning process. In the figure, we also show the branching
distribution observed in simulations. The agreement with
theory is good; however, there are noticeable finite size
fluctuations, which are largest when the pruning process is
slowest: this occurs in the middle of the plateau period. In
contrast to this behavior, fluctuations in the case hqi ≥ hqic
are enhanced with increasing time (see Fig. 7). Critical
behavior of fluctuations is a common property of systems
approaching the critical point of a continuous phase
transition, or the limiting point of the metastable states
of a first-order phase transition; however, discussion of
these phenomena is beyond the scope of the present paper.

FIG. 6. Example of the pruning process from time t ¼ 10 till 34 in a small part of the Erdős-Rényi network with 105 nodes. Time
progresses from left to right in the tree. Blue circles represent vertices removed at a given time step. Their removal results in the removal
of vertices on the right, and so on. Crossings (dashed lines) between the branching processes are abundant at the beginning of the
pruning process. They appear rarely after a short initial period. Typical trees of medium size are shown. Much longer and much shorter
trees also occur.
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In the early part of the plateau, Pðk − 1; tÞ decreases,
reaching a minimum in the middle of the plateau stage, at
t ¼ tm. From Eq. (B2), this corresponds to the point when
bt reaches 1. A Taylor expansion around this point (see
Appendix C) gives the temporal behavior of Pðk − 1; tÞ in
the plateau stage:

Pðk − 1; tÞ ¼ Pðk − 1; tmÞ
�
1þ 1

2

�
t
tm

− 1

�
2

Cp þ � � �
�
:

ð22Þ

The corresponding equation for bt is

bt ≈ 1þ
�
1 − t

tm

�
Cb: ð23Þ

Our analysis of the plateau stage in Appendix C shows
that Cb ∼ 1=T ∝

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihqic − hqip
≪ 1. This analytical result

agrees with our observation from the numerical solutions.
The mean branching bt, Eq. (7), is slightly below 1 in the
beginning of the plateau stage. As time increases, bt tends
to increase, as pruning of vertices decreases the mean
degree of the network. The mean branching reaches 1 at tm
as required, then continues to increase, with an accelerating
rate of pruning, until the network finally collapses rapidly,
as seen on the left-hand side in Fig. 8. We observe from
numerical solution of the exact Eqs. (1)–(4), and from
simulations, that the minimum occurs in the middle of the
plateau stage, i.e., tm ¼ T=2; see Fig. 4. The numerical
solution of exact Eqs. (1)–(4) shows that the coefficient Cp

is of order 1. Using this result and Eq. (C5) in Appendix C,
we find a relationship between Pðk − 1; tmÞ and the
duration T of the pruning process:

Pðk − 1; tmÞ ∼
1

T2
∝ hqic − hqi: ð24Þ

FIG. 7. Evolution of the branching distribution Pðn; tÞ below (left) and above (right) the critical point for k ¼ 3. Solid green, red, and
blue curves are theoretical curves from Eq. (6) for n ¼ 1; 0, and 2, respectively, as labeled, for hqi ¼ 3.3509 (left) and hqi ¼ 3.350 92
(right). Green points, red crosses, and blue circles represent results of simulation for n ¼ 1; 0, and 2, respectively, in an Erdős-Rényi
network of 108 nodes, at hqi ¼ 3.3511 (left) and 3.351 11 (right), being just below and just above the critical mean degree for that
network.

FIG. 8. Evolution of the mean branching ratio bt below (left) and above (right) the critical point for k ¼ 3. Dashed curves are
calculated using Eq. (10), points are from simulations. Parameters used and simulation realizations are the same as in Fig. 7.
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The instantaneous size distribution ΠðS; tÞ of finite
corona clusters can be found directly from the degree
distribution Pðq; tÞ at every time t:

ΠðS; tÞ ¼ CS−3=2e−S=S�ðtÞ; ð25Þ

where S�ðtÞ → ∞ at the critical point of the emergence
of a giant corona cluster. According to Ref. [28], a giant
connected cluster of corona vertices is present when

bt ¼
ðk − 1ÞkPðk; tÞ

hqit
≥ 1: ð26Þ

In the case of k ¼ 3, we have S�ðtÞ ¼ −1= ln½4stð1 − stÞ�,
where st ¼ 3Pð3; tÞ=hqit according to Eq. (8) [28]. In
Appendix C, we show that a giant corona cluster appears
continuously at the same time tm when the fraction
Pðk − 1; tÞ of k − 1 nodes achieves a minimum. Such a
giant corona cluster will be consumed by the pruning
process, guaranteeing the collapse of the whole network in
finite time. A similar continuous emergence of a giant
subgraph prone to failure was recently observed in inter-
dependent networks in Ref. [12]. The left-hand side of
Eq. (26) is identical to Eq. (10), so the border of the region
where a giant corona cluster appears is at the point where
the mean branching of the pruning process equals 1. The
region in the hqi − t plane where the giant corona cluster is
present is marked in Fig. 9 as region III. Note that a giant
corona cluster only appears below hqic in the plateau stage.
At hqi ¼ hqic, at any time t there are only finite corona
clusters. When t → ∞, the size distribution of corona

clusters tends to the power-law function Eq. (24), corre-
sponding to the critical point of the emergence of a giant
corona cluster. Above hqic, there are only finite corona
clusters at any time.

B. Branching processes at hqi > hqic
Above the transition point, with increasing time the

degree distribution Pðq; tÞ tends to the steady distribution
PkðqÞ with mean degree hqik ¼

P
q≥kqPkðqÞ, while

Pðk − 1; tÞ → 0. In turn, the mean branching bt saturates
at a constant value bk less than 1 (see the right-hand side
of Fig. 8). If hqi is close to hqic, 1 − kðk − 1ÞPkðkÞ=
hqik ≈ B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihqic − hqip
, where B is a constant [28], and

using Eq. (10), we have bk ≈ 1 − B
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihqic − hqip

.
Substituting the constant bk for bt¼kðk−1ÞPkðk;tÞ=hqit
in Eq. (B2) in Appendix B, and solving, we find an
exponential decay of Pðk − 1; tÞ, Eq. (17), and a relation-
ship between the relaxation time τ and the branching
coefficient bk:

bk ¼ 1 − τ−1: ð27Þ

Therefore,

τ−1 ¼ 1 − kðk − 1ÞPkðkÞ=hqik ≈ B
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hqic − hqi

p
; ð28Þ

in agreement with the numerical solution Eq. (18). The
pruning process evolves only within finite corona clusters,
and the network survives at any time t (region II in Fig. 9)
approaching the steady k-core as time approaches infinity.

C. Critical branching process

Exactly at the critical point, hqi ¼ hqic, the branching bt
comes arbitrarily close to 1, but only reaches that value in
the infinite time limit. The leading term in 1 − bt is a
monotonically decreasing function of t. Solving Eqs. (B1)
and (B2) in Appendix B, we find that the function
Pðk − 1; tÞ has power-law behavior, Eq. (20), with critical
exponent σ ¼ 2. This behavior corresponds to the mean
branching bt increasing as

bt ¼ 1 − 2=tþOð1=t2Þ: ð29Þ

This kind of time dependence of the mean branching is
known to lead to the avalanche lifetime distribution
LðT Þ ∝ T −2 [29] found in various models (see, for
example, Refs. [30,31]) and real systems (for example,
in the brain [32]). This suggests that the power-law
relaxation Eq. (20) and the avalanche lifetime distribution
have the same origin.
Since the mean branching bt ¼ ðk − 1Þst tends to 1

when t → ∞, we have st → 1=ðk − 1Þ. Equation (21) gives
the following exact result:

FIG. 9. Phase diagram for the k-core pruning process in
the hqi-t plane. The vertical line represents the critical point
hqi ¼ hqic (k ¼ 3 for this figure). In region II at hqi > hqic, the
pruning process reduces the network to the giant k-core as time
approaches infinity. Only finite corona clusters are present in
region II. A giant corona cluster is present in region III. The mean
branching is 1 on the border between regions II and III. The mean
branching is below 1 in region II and larger than 1 in region III.
The network collapses at times on the upper boundary of region
III, so there is no network in region I.
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Pðn;∞Þ ¼
�
k − 1

n

� ðk − 2Þk−1−n
ðk − 1Þk−1 : ð30Þ

In the case of k ¼ 3, we obtain Pð0;∞Þ ¼ Pð2;∞Þ ¼ 1=4
and Pð1;∞Þ ¼ 1=2. These values agree with results
obtained by our simulations and numerical solutions that
are displayed in Fig. 7.

V. DISCUSSIONS AND CONCLUSIONS

In this paper, we have developed the theory of the k-core
pruning process in uncorrelated, sparse random networks
with an arbitrary degree distribution. Employing the
numerical solution of the exact evolution equations,
Eqs. (1)–(4), an asymptotic analysis, and simulations in
Erdős-Rényi graphs, we revealed that this process demon-
strates three different kinds of critical behavior depending
on whether the mean degree hqi of the initial network is
above, equal to, or below the critical point hqic corre-
sponding to the emergence of the giant k-core. We found
that above the critical point, at large times the network
relaxes exponentially to the steady k-core. At the critical
point hqi ¼ hqic, the dynamics is critical and it is described
by a power law with respect to time (∝ 1=t2). Below the
critical point, the pruning eliminates an infinite network in
a finite time. The duration of the transient process diverges
when hqi tends to hqic from below. This behavior is generic
for the pruning processes in uncorrelated random complex
networks in situations when the giant k-core emerges at
finite values of mean degree.
We found mechanisms for these critical phenomena.

Studying the structure of paths along which damage is
spreading in the network, we found that the damage
spreading is a branching process. Our analysis showed
that it is the evolving clusters of nodes of degree k (corona
clusters) that provide the substrate for the branching
process. Indeed, if a vertex of degree k loses an edge
and is removed, this removal triggers a removal of all
corona vertices, one by one, which belong to the same
corona cluster. Using analytical methods and simulation,
we showed that the pruning can be considered as a
branching process that begins after a short initial period
of rapid network change. During this process, independent
branching trees develop with branching ratio close to 1. The
temporal behavior of the mean branching plays a crucial
role in the branching process and slow-down of the k-core
pruning dynamics at the critical point and during the
plateau stage. To understand the branching process, it is
important to note that corona clusters evolve in time. When
damage propagates over the network, on one hand, it
removes corona nodes, but on the other hand, it decreases
the degrees of neighboring nodes, producing new corona
vertices and thus increasing the size of other corona
clusters, which can be pruned at a later time. Because of
this, the branching probability becomes time dependent.
The mean branching is close to 1 during the whole plateau

stage, below hqic. At the beginning of the stage, the mean
branching is a little bit smaller than 1, and slowly increases
with time. It reaches the value 1 approximately at the
middle of this stage and then continues to increase. At this
point a giant corona cluster is formed, providing a substrate
for the complete collapse of the network at the end of the
plateau stage. Exactly at the critical point, the mean
branching comes arbitrarily close to 1, but never reaches
it at any finite time. This leads to a power-law decay in the
fraction of nodes of degree k − 1. The branching trees of
pruning become arbitrarily long, but a giant corona cluster
is never formed, until t → ∞. Finally, we found that above
the critical point hqic, the mean branching saturates at a
constant value less than 1. In this case, the mean size of
branches is finite and relaxation to the steady k-core
follows an exponential law.
The condition that the giant k-core emerges above a

finite critical mean degree holds for uncorrelated complex
networks with a finite second moment of the degree
distribution. In scale-free networks, PðqÞ ∼ q−λ, the second
moment and, therefore, the critical mean degree are finite at
λ > 3. In networks with a heavy-tailed degree distribution
(2 < λ < 3), a giant k-core exists at any mean degree (see
Ref. [5]). In this case, the dynamics of the k-core pruning
process may be different from those at λ > 3. However, a
detailed analysis of this situation is out of the scope of
this paper.
The k-core decomposition is the standard method for

characterizing real networks [33], which have a wide
spectrum of structural features. They can be clustered
and correlated [8], can have a complex modular organiza-
tion [34], self-similarity [35], and other structural features
distinguishing them significantly from uncorrelated ran-
dom networks. We suggest that studying the temporal
evolution of the k-core pruning process could be a new tool
for getting information about details of the structural
organization of real-world networks.
The k-core pruning process in sparse, uncorrelated

random complex networks is a representative model of
dynamics in complex systems undergoing hybrid phase
transitions. We have solved this model and have devel-
oped the complete description of critical dynamical
phenomena, including the long-lasting transient process,
critical relaxation, and critical slowing-down. We suggest
that our results could be useful for understanding similar
collective phenomena that occur in other complex sys-
tems near discontinuous (hybrid and first-order) phase
transitions.
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APPENDIX A: RELAXATION IN 1D SYSTEM
NEAR BORDER OF METASTABILITY

The behavior described in this paper for the k-core
pruning process is common for dynamical systems having a
saddle point for some set of system parameters. Here, we
consider the simplest dynamical model of this sort, namely,
a particle moving in a one-dimensional potential FðxÞ in a
viscous medium, demonstrating features similar to the
k-core pruning process:

∂tx ¼ −∂xFðxÞ;

FðxÞ ¼ −axþ bx2 − 1

3
x3: ðA1Þ

Here, the coefficients a and b are positive, and the
variable (particle’s coordinate) xðtÞ ≥ 0. The initial con-
dition is xðt ¼ 0Þ ¼ 0. There are three distinct regimes;
see Fig. 10.
(a) a > ac ¼ b2, normal phase, with ∂xFðxÞ < 0 at any x.

At the end of the process, x approaches infinity;
(b) a ¼ ac, resulting in the saddle point xs ¼ b in FðxÞ.

As t → ∞, xðtÞ approaches b;
(c) a < ac ¼ b2, which gives the local minimum

(“metastable state”) at xm ¼ b − ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − a

p
. As

t → ∞, xðtÞ approaches xm.
The straightforward solution of Eq. (A1) shows that in

the normal phase [regime (a)], i.e., when a > ac, the
variable x, starting from 0, approaches infinity in a finite
time TðaÞ. For a close to ac, the process greatly slows
down when xðtÞ passes the value b, and we obtain the
asymptotic expression

T ≅ 2

Z
b

0

dx
a − 2bxþ x2

≅
πffiffiffiffiffiffiffiffiffiffiffiffiffi

a − b2
p : ðA2Þ

This time diverges at the critical point ac ¼ b2 [regime (b)],
at which x relaxes to the saddle point value b slowly, in a
power-law way. Asymptotically, we get

xðtÞ − b ≅ − 1

b3
1

t
: ðA3Þ

Note that in the case FðxÞ ¼ cx4, which corresponds to the
second-order phase transition within the Landau theory, the
equation ∂tx ¼ −∂xFðxÞ leads to the critical relaxation
x ∝ t−1=2.
In regime (c), xðtÞ relaxes exponentially to the local

minimum value xm ¼ b − ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − a

p
. Asymptotically,

xðtÞ − xm ∝ e−t=τ: ðA4Þ

Here, τ is the relaxation time,

τ ¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − a

p ; ðA5Þ

diverging at the critical point.
The square-root critical singularities of T and τ,

Eqs. (A2) and (A5), respectively, coincide with those of
the k-core pruning process, Eqs. (16) and (18). From these
expressions, we obtain the remarkably beautiful ratio of the
critical amplitudes of T and τ:

Tða − acÞ
τðac − aÞ ¼ 2π; ðA6Þ

coinciding with the corresponding ratio that we find for the
k-core pruning.
Near the critical point, the time T to complete the process

(to run away from x ¼ 0 to infinity) in the normal phase is
strongly influenced by small variations of the parameters of
the system. To quantify this effect, we introduce a time-
dependent perturbation hðtÞ of the coefficient a in the
potential FðxÞ, namely, a − hðtÞ. Let hðtÞ be a constant h
within the interval of width ϵ around some moment ~t. We
define the response of T to h as

χð~tÞ≡ lim
h;ϵ→0

ΔTðh; ϵ; ~tÞ
hϵ

; ðA7Þ

where ΔTðh; ϵ; ~tÞ ¼ Tðh; ϵ; ~tÞ − Tðh ¼ 0; ϵ ¼ 0; ~tÞ is the
variation of the time T due to the perturbation hðtÞ. This
response takes an elegant asymptotic form as a approaches
the critical point ac ¼ b2,

χð~tÞ ≅ 1

a − b2

��
π

2

�
2
�

~t
T=2

− 1

�
2

þ 1

�−1
; ðA8Þ

which has a Lorentz shape in terms of the moment of the
perturbation ~t and diverges according to the Curie-Weiss

0
F(x)

x

(a)

0
0

F(x)

xb

(b)

0

(c)

F(x)

x0
0

FIG. 10. Potential FðxÞ versus x in Eq. (A1) in the following
cases. (a) The coefficient a > ac ≡ b2, F0ðxÞ < 0 at any x.
(b) a ¼ ac, F0ðx ¼ bÞ ¼ 0, and there is a saddle at x ¼ b.
(c) a < ac, FðxÞ has a local minimum and a local maximum.
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law. Here, T is the time, given by Eq. (A2), to run away to
infinity in the absence of perturbation, h ¼ 0, and T=2 is
the time at which the particle passes the point x ¼ b. This
divergence of the response χ at the critical point indicates
the presence of strong fluctuations near the critical
point, which we observe in the k-core pruning process
(see Figs. 7 and 8).

APPENDIX B: CRITICAL RELAXATION IN THE
NONCROSSING APPROXIMATION

Here, we study analytically the k-core pruning process in
uncorrelated, sparse random networks with an arbitrary
degree distribution having a finite second moment. Let
us solve Eqs. (11)–(14) and find the critical behavior of
Pðk − 1; tÞ at the critical point hqi ¼ hqic. At t ≫ 1, we
consider Pðq; tÞ as a function of continuous time t. In this
limit, Eqs. (11)–(14) take a differential form,

∂Pðq; tÞ
∂t ¼ k− 1

hqit
Pðk− 1; tÞ½ðqþ 1ÞPðqþ 1; tÞ− qPðq; tÞ�;

ðB1Þ

∂Pðk − 1; tÞ
∂t ¼

�
kðk − 1Þ
hqit

Pðk; tÞ − 1

�
Pðk − 1; tÞ; ðB2Þ

∂Pð0; tÞ
∂t ¼ Pðk − 1; tÞ; ðB3Þ

hqit ¼ðk − 1ÞPðk − 1; tÞ þ
X
q≥k

qPðq; tÞ; ðB4Þ

where q ≥ k. In order to solve these equations, we use the
fact that with increasing t the degree distribution Pðq; tÞ
for q ≥ k tends to the steady degree distribution of the
k-core, PkðqÞ, i.e., Pðq; tÞ ¼ PkðqÞ þ δPðq; tÞ. Moreover,
δPðq; tÞ → 0 and Pðk − 1; tÞ → 0 in the infinite time limit.
At the critical point, the distribution satisfies the condition
kðk − 1ÞPkðkÞ ¼ hqik, where hqik ≡P

q≥kqPkðqÞ [5,28].
We solve Eq. (B1) in the first order in Pðk − 1; tÞ and find

δPðq; tÞ ¼ ðk − 1Þ
hqik

½qPkðqÞ − ðqþ 1ÞPkðqþ 1Þ�

×
Z

∞

t
Pðk − 1; tÞdt: ðB5Þ

Then, using Eq. (B4), we find hqit in the first order in
Pðk − 1; tÞ. Substituting these results into Eq. (B2) gives an
equation,

∂Pðk − 1; tÞ
∂t ¼ −vPðk − 1; tÞ

Z
∞

t
Pðk − 1; tÞdt

−
ðk − 1Þ
hqik

P2ðk − 1; tÞ þO½P3ðk − 1; tÞ�;

ðB6Þ

where

v ¼ kðk − 1Þ2ðkþ 1Þ
hqi2k

Pkðkþ 1Þ − ðk − 1Þðk − 2Þ
hqik

: ðB7Þ

Equation (B5) has a solution

Pðk − 1; tÞ ¼ 2

vt2
þOð1=t3Þ: ðB8Þ

Numerical solution of the exact Eqs. (1)–(4) confirms this
result (see Fig. 5). Using Eqs. (B5) and (B8), we find the
mean branching:

bt ¼
kðk − 1ÞPðk; tÞ

hqit
≈ 1 − 2

t
þOð1=t2Þ: ðB9Þ

Note that this is the universal critical behavior of branching
processes [29].

APPENDIX C: PLATEAU STAGE IN THE
NONCROSSING APPROXIMATION

If hqi < hqic, with increasing time the fraction
Pðk − 1; tÞ of nodes of degree k − 1 achieves a minimum
at a time tm in the middle of the plateau stage (see Fig. 4).
The time tm is determined by the condition

∂Pðk − 1; tÞ
∂t

����
t¼tm

¼ 0: ðC1Þ

According to Eq. (B2), at t ¼ tm the following equality also
holds:

kðk − 1ÞPðk; tmÞ
hqitm

¼ 1: ðC2Þ

It signals the percolation of corona clusters [see Eq. (26)].
Thus, the minimum of Pðk − 1; tÞ occurs when the giant
corona cluster appears. Near the minimum, we can use the
Taylor expansion

Pðk − 1; tÞ ¼ Pðk − 1; tmÞ
�
1þ 1

2

�
t
tm

− 1

�
2

Cp þ � � �
�
;

ðC3Þ

where
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Cp ≡ t2m
Pðk − 1; tmÞ

∂2Pðk − 1; tÞ
∂t2

����
t¼tm

: ðC4Þ

Differentiating Eq. (B2) with respect to t, we find the
second derivative and

Cp ¼ t2mvmPðk − 1; tmÞ; ðC5Þ

where

vm ¼ kðk − 1Þ2ðkþ 1Þ
hqi2tm

Pðkþ 1; tmÞ − ðk − 1Þðk − 2Þ
hqitm

:

ðC6Þ
We estimate Pðk − 1; tmÞ and tm using the numerical
solution of exact Eqs. (1)–(4). Our numerical results in
Secs. III A and IVA show that the coefficient Cp is of the
order of 1, and tm ≈ T=2; i.e., the minimum takes place at
the middle of the plateau stage. Equation (C5) gives a
relationship between Pðk − 1; tmÞ and the duration T of the
entire pruning process:

Pðk − 1; tmÞ ∼
1

T2
∝ hqic − hqi: ðC7Þ

Note that in the neighborhood of the threshold hqic, the
plateau duration tends to the time T to complete the pruning
process. Equation (10) and the Taylor expansion of the
function Pðk; tÞ give the temporal behavior of the mean
branching bt near tm,

bt ¼ 1þ
�

t
tm

− 1

�
Cb þ � � � ; ðC8Þ

where

Cb ¼ tm
kðk − 1Þ
hqi2tm

Pðk − 1; tmÞ

× ½ðk − 1Þ2Pðkþ 1; tmÞ þ 2ðk − 1Þ − hqitm �: ðC9Þ

This equation shows that Cb is small since
Cb ∼ 1=T ∝

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihqic − hqip
≪ 1. This result is also sup-

ported by our numerical solution and simulations for
Erdős-Rényi graphs (see Sec. IVA).
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