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Topological states of matter are particularly robust, since they exploit global features of a material’s band
structure. Topological states have already been observed for electrons, atoms, and photons. It is an
outstanding challenge to create a Chern insulator of sound waves in the solid state. In this work, we propose
an implementation based on cavity optomechanics in a photonic crystal. The topological properties of the
sound waves can be wholly tuned in situ by adjusting the amplitude and frequency of a driving laser that
controls the optomechanical interaction between light and sound. The resulting chiral, topologically
protected phonon transport can be probed completely optically. Moreover, we identify a regime of strong
mixing between photon and phonon excitations, which gives rise to a large set of different topological
phases and offers an example of a Chern insulator produced from the interaction between two physically
distinct particle species, photons and phonons.
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I. INTRODUCTION

Recently, a new paradigm in the classification of the
phases of matter has emerged that is based on topology [1].
The Hall conductance quantization in a 2D electron gas
placed inside a magnetic field is so precise that it serves as a
standard to define the Planck constant. The precision is due
to the current being carried by chiral edge states which are
robust against scattering by disorder. It was realized that
at the heart of this effect there is the nontrivial topology of
the bulk electron band structure encoded in topological
invariants, the Chern numbers [2]. The modern exploration
of new topological phases started with the prediction of
the anomalous quantum Hall effect [3]. This is a so-called
Chern-insulator state that is realized in a staggered mag-
netic field that has a vanishing average. The subsequent
discovery of the quantum spin Hall effect [4,5] then proved
that even time-reversal symmetry breaking is not necessary.
In this case, the nontrivial topology is induced by the spin-
orbit coupling. A third pathway to a nontrivial topology is
the time-dependent modulation of the band structure in
Floquet topological insulators [6–9].
Inspired by these new developments in our understand-

ing of electronic systems, researchers have begun to extend
the concept to other settings. Proposals and first experi-
ments on topological phases exist for cold atoms and

ions (see, e.g., Refs. [10–14]). More closely related to our
setting is the theoretical [15–21] as well as experimental
[9,22–25] investigation of topologically nontrivial phases
of light (see Ref. [26] for a recent review). Unlike electrons,
photons are electrically neutral. Nevertheless, they mimic
the dynamics of charged particles while hopping on a
lattice, e.g., when the time-reversal symmetry is broken by
synthetic gauge fields [15,16,18–20] or when an effective
spin-orbit coupling is engineered [17,21,23].
At present, it remains an outstanding challenge to

engineer topological phases for sound waves (phonons)
in the solid state, with the resulting robust chiral edge state
transport that is useful for applications in phononics. So far,
topological properties have been conjectured to be present
in the vibrations of individual microtubule macromolecules
in biophysics [27], although the precise mechanism
requires further investigation. Moreover, recently it was
pointed out that masses connected by springs or rigid links
in special networks (related to isostatic lattices) show
topological features of vibrations. These include zero
modes localized at some sample edges of an appropriate
geometry [28], propagation of topologically protected
nonlinear solitary waves [29] in 1D chains, and topologi-
cally robust defect modes bound to dislocations inside a
2D lattice [30]. In contrast to those works, here we propose
a 2D phonon metamaterial of the Chern-insulator class
that shows chirally propagating edge states robust against
disorder. Very recently, there have been steps in this
direction for macroscopic systems, employing circulating
fluid currents [31] to break time-reversal invariance, or
wiring up pendula [32] in the appropriate way to create a
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topological insulator. Our goal is to propose a fully tunable
nanoscale system.
It is not trivial to engineer the required nonreciprocal

phases for the transport of phonons in a tunable solid-state
platform. Although it would be conceivable to employ
local time-dependent modulation of the stress, e.g., using
electrodes and piezoelectric materials (essentially emulat-
ing the route towards photonic magnetic fields proposed in
Ref. [19]), this is not very practical, since the number of
wires would scale with the system size.
The tool we employ instead is cavity optomechanics

[33], a rapidly evolving field that studies the interaction
between radiation and nanomechanical motion, with pos-
sible applications in sensing, classical and quantum com-
munication, and tests of foundational questions in quantum
physics. In particular, we consider the flexible and scalable
platform of optomechanical (OM) crystals [34–38]. These
systems are based on freestanding photonic crystals, where
engineered defects support colocalized optical and vibra-
tional modes interacting via radiation pressure. Recently, it
has been proposed that an array of such point defects would
form an optomechanical array “metamaterial” where the
resulting optical and mechanical band structures could be
tuned in situ by a driving laser [39]. Here, we show how to
implement a nontrivial topology for sound waves in a solid-
state device, based on such optomechanical arrays. This can
be achieved when a suitable lattice geometry is chosen and
the driving laser imprints an appropriate phase pattern on
the optomechanical interaction. The light field then induces
an effective Hamiltonian for the sound waves that leads to a
Chern insulator with robust edge modes. We emphasize
that a single laser field (with a suitable phase pattern) is
enough; no time-dependent modulation of any kind is
required in our approach. Our proposal not only presents a
practicable route towards phonon Chern insulators in the
solid state, but its realization would also represent the first
example of a topological state of matter produced using
optomechanics.
In addition, we find that upon sweeping the laser

frequency one can also enter a regime where it is no longer
possible to view phonons and photons as separate. Instead,
a whole series of topological phase transitions arises where
both sound and light are involved. This would be an
example of a topologically nontrivial hybrid band structure
made of two physically distinct particle species, with
corresponding edge states for the emerging hybrid excita-
tions. In contrast to the recently proposed photon-exciton
topological polaritons [40–42], the interaction in our case is
tunable in situ over a wide range via the laser amplitude.

II. RESULTS

A. Optomechanical arrays

In the field of cavity optomechanics [33] the basic
interaction between light and mechanical motion comes

about because any deformation of an optical cavity’s
boundaries will lead to a shift of the cavity’s optical mode
frequencies. Focusing on a single cavity mode, its energy
may therefore be expressed as ℏωcavðx̂Þâ†â, where x̂
represents the mechanical displacement and â†â is the
photon number. Expanding to leading order in x̂, which is
usually an excellent approximation [33], this yields the
basic interaction ℏω0

cavx̂â†â. The mechanical motion is
very often dominated by a single harmonic vibration mode,
such that x̂ ¼ xZPFðb̂þ b̂†Þ, with xZPF the mechanical zero-
point fluctuations and b̂ the phonon annihilation operator.
Thus, one arrives at the fundamental optomechanical
interaction

−ℏg0â†âðb̂þ b̂†Þ; ð1Þ

where g0 ¼ −ω0
cavxZPF is the bare coupling constant. The

optomechanical coupling rate g0 represents the optical shift
due to a mechanical zero-point displacement, and it is
typically much smaller than the photon decay rate κ.
However, by illuminating the sample with laser light,
one can effectively enhance the optomechanical interaction.
When the system is driven by a laser, one can write
â ¼ αþ δâ, where α is the complex amplitude set by
the laser drive and δâ represents the quantum fluctuations
on top of that. Keeping the leading nontrivial terms, one
obtains a quadratic Hamiltonian (the so-called linearized
optomechanical interaction),

−ℏg0ðα�δâþ αδâ†Þðb̂þ b̂†Þ: ð2Þ

This is the well-tested basis for the description of almost
all quantum-optomechanical experiments to date [33]. The
new, effective coupling constant g ¼ g0α is laser tunable
and may be complex, containing a phase factor set by
the laser phase, which becomes crucial in our scheme.
Equation (2) describes the interconversion between pho-
nons and photon excitations at the cavity mode frequency
(terms δâ†b̂ and δâb̂†). Physically, these conversion
processes can be understood as anti-Stokes Raman tran-
sitions, where the driving photons impinging on the cavity
are inelastically scattered into higher-frequency photons
by absorbing a phonon (enabling, e.g., laser cooling of
mechanical motion). Depending on the laser frequency,
there can also be Stokes processes, where driving photons
are scattered to lower frequencies while creating a phonon
(δâ†b̂†), although these are not important for our scheme.
For notational simplicity (and following convention), from
now on we replace δâ by â.
In the solid state, the largest values of g0 have been

reached in OM crystals [34–38]. These are freestanding
photonic crystals, i.e., dielectric slabs with an appropriate
pattern of holes that creates complete optical and mechani-
cal band gaps. A local modification of the pattern of holes
generates a point defect where optical and mechanical
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modes can become localized. The OM interaction between
such a localized optical and mechanical mode is described
by Eq. (1), with g0 on the order of around 1 MHz.
Future optomechanical arrays [43–46] can be produced

by fabricating a periodic array of such point defects, in 1D
or 2D. The localized modes on adjacent lattice sites will
have an evanescent overlap, leading to tunneling of photons
and phonons between sites i and j with rates Jij and Kij,
respectively [43,46,47]. For photons, such tunneling-
induced transport between localized modes has been
demonstrated experimentally in photonic crystal coupled
resonator waveguide arrays [48].
Combining both the optomechanical interaction at each

site j as well as the tunneling between sites, the generic
optomechanical array Hamiltonian [46,49] reads

Ĥ=ℏ¼
X
j

Ωb̂†j b̂j−Δâ†j âj− ðgjâ†j b̂jþH:c:Þþ Ĥhop: ð3Þ

The annihilation operators of photons and phonons are
denoted by âj and b̂j, where the site index j ¼ ðj1; j2; sÞ
will include a sublattice label s for a non-Bravais lattice.
The âj are already displaced by the classical steady-state
light amplitude αj, set by the laser amplitude (as explained
above), and the b̂j are displaced by the static mechanical
displacement βj, set by the constant radiation force;
see Appendix A. The term Ĥhop=ℏ ¼ −Pi;jJijâ

†
i âj −P

i;jKijb̂
†
i b̂j incorporates the hopping of photons and

phonons between different sites, andΔ is the laser detuning
from the optical resonance, Δ≡ ωL − ωcav, as we switched
to a frame rotating at the laser frequency. To be clear, we
note that the detuning Δ defined here already includes a
static effective shift of the optical resonance due to the
mechanical displacement βj, which depends on the laser
intensity and is found from the self-consistent classical
solution. This is already known well for the standard
optomechanical system [33].
The optomechanical interaction displayed in Eq. (3)

converts phonons into photons propagating inside the
array (and vice versa). The strength of these processes is
described by a laser-tunable coupling constant gj ¼ g0αj
that is parametrically enhanced by the light amplitude,
where jαjj2 would be the steady-state photon number in
mode j. The amplitude αj depends on the site j for the case
of an inhomogeneous driving field, which we consider
below. For the sake of simplicity, we omit the Stokes
transitions of the type â†j b̂

†
j , where photon-phonon pairs

are emitted (or annihilated). Stokes processes are strongly
suppressed in the parameter regime that will turn out to be
suitable for the topologically nontrivial phase (whereΔwill
be negative, corresponding to a “red-detuned” laser drive),
so we neglect them at first. Since the anti-Stokes processes
considered here conserve the total excitation number,
Hamiltonian Eq. (3) is equivalent to a single-particle

Hamiltonian, and we are able to use the standard classi-
fication of topological phases [1].

B. Chern insulator implemented
in an optomechanical array

In multimode OM systems, the optical backaction can
be used to engineer the effective mechanical interaction,
which has been suggested to pave the way to phononic
quantum information processing (see, e.g., Refs. [50,51]).
In this context, the phonon hopping amplitudes are modi-
fied by the new pathways that are opened by the OM
interaction. A phononic excitation can be virtually con-
verted into a photon on site i, hop to site j, and be converted
back into a phonon on site j. From standard perturbation
theory, the probability amplitude associated with this
pathway is Jijgig�j=ðΩþ ΔÞ2. Hence, a pattern of phases
in the optomechanical coupling gj can lead to a synthetic
gauge field for phonons in the form of effective hopping

rates KðeffÞ
ij ¼ Kij þ KðoptÞ

ij that contain an optically induced
component with complex phases [51].
Inspired by previous studies that have indicated that a

staggered magnetic field for particles on a kagome lattice
yields topologically nontrivial phases [16,52–54], our
investigations focus on a kagome optomechanical array.
We choose this geometry since it can be naturally imple-
mented in 2D optomechanical crystals based on the
snowflake design [47,55], which have been demonstrated
in an experiment recently [38]. The general approach
described here is of course applicable to other lattice
geometries as well. The kagome optomechanical array is
sketched in Fig. 1. The idea is to have hexagonal patches of
periodically arranged snowflake-shaped holes, with linear
dislocation defects forming at the edges between those
patches. As has been shown in the experiment [38], a
suitable modification of the hole pattern inside the linear
defect then creates a pointlike defect with localized modes.
The nearest-neighbor coupling between those modes will
generate the connectivity of a kagome lattice. Its unit cell
contains three sites (s ¼ A; B;C) forming an equilateral
triangle (we set the side to 1). Thus, the optomechanical
band structure will comprise altogether six bands, three of
them photonlike and three phononlike.
Some general properties of the band structure can be

deduced purely from the symmetry of the kagome lattice
geometry, without assuming anything about the range of
the hopping or other details. The hopping term Ĥhop
maintains the time reversal T , the inversion symmetry I
with respect to any corner of the triangle, and the symmetry
C3 (rotations by n2π=3 around the triangle center, n ∈ Z).
Then, in the absence of the laser drive there is no optical
or mechanical band gap: For both the photons and the
phonons, the central band touches one of the remaining
bands (top or bottom) at the center of the Brillouin zone,
~Γ ¼ ð0; 0Þ, and the other one at the symmetry points, ~K ¼
ð2π=3; 0Þ and ~K0 ¼ ðπ=3; π= ffiffiffi

3
p Þ, where Dirac cones form.
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We now assume the lattice to be driven by a laser, with an
optical phase that depends on the site within the unit cell,
leading to gj ¼ geiφs . To retain the C3 symmetry, we choose
a phase mismatch of 2π=3 between the sublattices,
φB − φA ¼ φC − φB ¼ φA − φC ¼ 2π=3. Physically, the
driving laser phase pattern has to form a vortex around
each triangle center (Fig. 1). This can be achieved via wave
front engineering of the impinging laser field. As opposed
to our recently proposed optomechanical generation of
arbitrary synthetic magnetic fields for photons [39], we
emphasize that here (i.e., for a Chern insulator of sound
waves) only a single laser frequency is needed and that the
imprinted optical phase field is periodic in space, greatly
simplifying its generation. In fact, one does not even need
the versatility of a spatial light modulator for this task.
Superimposing three plane waves impinging on the sample
automatically creates the required pattern of optical phases,
if they are at 120° angles with respect to each other within
the plane of the sample. This is illustrated in Fig. 1(c) for
the slightly simplified case of three interfering plane waves
of a scalar field, and we confirm that it also works when
taking into account the vector nature of the electromag-
netic field.

C. Band structure and topological classification

The resulting band structure in the presence of such a
drive is shown in Fig. 2, and we explain it in more detail
below. The site-dependent optomechanical interaction
breaks the time-reversal symmetry, thereby opening large
gaps between the mechanical bands. As we show, these
gaps are topologically nontrivial and lead to topologically
protected sound waves propagating at the edge of a finite
system.
As discussed before, Hamiltonian Eq. (3) can be trans-

lated from its second-quantized form into a single-particle

version, where the nature of the excitation (photon versus
phonon) is treated as an internal state. Translational
invariance permits us to rewrite it in momentum space,
using a plane wave ansatz:

Ĥð~kÞ=ℏ¼ ω̄− δωσ̂z=2− ðt̄þ δtσ̂z=2Þτ̂ð~kÞ− gðμ̂σ̂x þ ν̂σ̂yÞ:
ð4Þ

Here, we assume that only nearest-neighbor sites are
coupled, although that (reasonable) approximation could
be lifted without destroying any of the essential physical
properties discussed in the following; see Appendix B. The
binary degree of freedom expressed by σz ¼ �1 denotes
photon (þ1) versus phonon (−1) excitations, and σ̂x;y;z
are the Pauli matrices in this subspace. Furthermore, we
introduce the parameters ω̄ ¼ ðΩ − ΔÞ=2, δω ¼ Ωþ Δ,
t̄ ¼ ðJ þ KÞ=2, and δt ¼ ðJ − KÞ.
The 3 × 3 matrices μ̂, ν̂, and τ̂ð~kÞ in Eq. (4) act on the

sublattice degree of freedom, referring to the three sites s ¼
A;B;C of the unit cell. The Hermitian hopping matrix τ̂ð~kÞ
encodesmotion on the kagome lattice, with τAB ¼ 1þe−i~k~a1 ,
τAC¼1þei~k~a3 , and τBC¼1þe−i~k~a2 , where ~a1¼ð−1;− ffiffiffi

3
p Þ,

~a2 ¼ ð2; 0Þ, ~a3 ¼ ð−1; ffiffiffi
3

p Þ are the lattice basis vectors.
At the symmetry points in the Brillouin zone, the eigenbasis

of the C3 rotations diagonalizes τ̂ð~kÞ: the eigenvectors
are the vortex j↺i≡ j1; ei2π=3; e−i2π=3i= ffiffiffi

3
p

, the antivortex
j↻i≡ j1; e−i2π=3; ei2π=3i= ffiffiffi

3
p

, and the vortex-free state
j⊘i≡ j1; 1; 1i= ffiffiffi

3
p

. The matrices μ̂, ν̂ describe the conver-
sion between photons and phonons. When the OM inter-
action converts a phonon into an array photon, a driving
photon is absorbed and its angular momentum is transferred
to the array photon. For example, a vortex-free phonon
jM;⊘i is converted into a photon with a vortex, jO;↺i (M,
mechanical; O, optical). The remaining allowed transitions

FIG. 1. A kagome optomechanical array. (a) Sketch of the overall arrangement of optical and vibrational modes, with nearest-neighbor
hopping on a kagome lattice. The effective magnetic fluxes (indicated) add up to zero, realizing a Chern insulator. (b) Schematic
representation of the elementary building block in a possible realization based on a 2D snowflake optomechanical crystal [for clarity, the
snowflake size in (a) had been exaggerated in comparison]. The picture shows three linear defects that form at the interfaces between
hexagonal domains of a periodic snowflake hole pattern. In the center of each, there is an engineered localized pointlike defect mode (as
in the experiment of Ref. [38]). (c) Suitable optical phase pattern, generated by the superposition of three beams meeting at 120° angles
in the plane of the sample (illustrated here for a scalar field).
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are jM;↺i↔jO;↻i and jM;↻i↔jO;⊘i. All allowed
transitions have matrix element −g, and this fully specifies
μ̂ and ν̂ in the C3 eigenbasis (see also Appendix B).
The eigenfrequencies of Hamiltonian Eq. (4) form six

photon-phonon polariton bands. The admixture between
photon and phonon bands is weak for all quasimomenta
if the highest mechanical and lowest optical bands
are separated by a gap larger than the OM coupling,
Δ34 ≡−Δ − 4J −Ωþ 2K ≫ g, which we call the “weak-
coupling limit.” Then, the photons can be adiabatically
eliminated, arriving at an effective description for the
phonons that incorporates the optical backaction.
In the limit of both weak coupling (Δ34 ≫ g) and

large detuning, Δ34 ≫ J, the optically induced effective

phonon hopping KðeffÞ
ij will be restricted to nearest neigh-

bors, whence we arrive at the model investigated in
Ref. [16,52,53]. A phonon hopping three times anticlock-
wise around a triangle, at each step with probability

amplitude KðeffÞ
ij ≈Kþe−i2π=3Jg2=ðΔþΩÞ2≡KðeffÞeiΦ=3,

picks up the phase (see Appendix C)

Φ ¼ − 3π

2
þ 3 arctan

2KðΔþ ΩÞ2 − Jg2ffiffiffi
3

p
Jg2

: ð5Þ

Keeping in mind that a vector potential ~Að~rÞ imprints the

phase qℏ−1 R ~rj
~ri

~Að~rÞ · d~r on a particle with charge q

hopping on a lattice from ~ri to ~rf, we interpret Φ as the
(dimensionless) flux of a synthetic gauge field piercing a
triangle. Notice that there is no net average magnetic field

as the flux piercing a hexagon is −2Φ; see Fig. 1. The flux
Φ decreases monotonically from 0 to −2π with the laser
amplitude g. We emphasize that in realistic implementa-
tions the photon hopping rate J is much larger than the
phonon hopping rate K. It is precisely in this limit that the
construction adopted here works well (with interference
between direct phonon transport of amplitude K and virtual
transport via the photonic route). Indeed, values for the
phase all the way down to−2π can be reached, staying well
within the weak-coupling limit where Eq. (5) has been
derived.
In the opposite, large-bandwidth limit, J ≫ Δ34, only a

small quasimomentum region close to the ~Γ point contrib-
utes to the optically induced mechanical hopping. Away
from ~Γ, the OM interaction is suppressed, as the energetic
distance between the lowest optical band and the mechani-
cal bands rapidly increases. Thus, the effective mechanical

hopping KðeffÞ
ij is long range in this limit, and this will

change the topological properties that we discuss below. In

general, the range of KðeffÞ
ij is governed by the ratio J=Δ34

and can be tuned by changing the gap Δ34 via the laser
frequency.
Finally, going away from weak coupling, one can enter a

regime where photon and phonon bands cross and hybrid-
ize strongly. In the following, we discuss the topological
properties of the optomechanical band structure for all of
these regimes.
For systems in the quantum Hall state class A, which is

realized here, the topological state is uniquely identified by

FIG. 2. (a) Band structure of a kagome optomechanical array, shown here in the case of well-separated optical and mechanical bands
(“weak-coupling limit”). The three mechanical bands appear flat on the scale of the optical bands. A zoom-in shows the resulting
phonon insulator. (b) The “strong-coupling” limit where photon and phonon excitations mix. (c) Topological phase diagram. The
different topological phases are marked by the color code and by the set of six Chern numbers, corresponding to the bands ordered by
frequency, uniquely identifying each phase. The schematic band structures below the phase diagram indicate the symmetry points where
a pair of bands touch at the corresponding phase transition. The OM coupling g (set by the driving laser amplitude) is displayed on a
logarithmic scale. The scale of the laser frequency (expressed via the detuning Δ) is linear but switches to logarithmic for large negative
detunings, for clarity. The onset of weak coupling is indicated by the line g ¼ 0.1Δ34, where Δ34 is the gap between optical and
mechanical bands. The approximate analytical expressions (see Appendix D) for the boundaries g12 and g23 of the intermediate
topological phase introduced by the long-range hopping are also shown.
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the bands’ Chern invariants (or TKNN invariant [2] after
Thouless, Kohmoto, Nightingale and den Nijs). They are
defined as the integral over the Brillouin zone of the Berry
curvature of each band [2]:

Cl ¼
1

2π

Z
BZ

d2k½∇~k ×
~Alð~kÞ� · ~ez; l ¼ 1;…; 6: ð6Þ

The Berry connection ~Al ¼ ih~klj∇~kj~kli depends on the

eigenstates j~kli of Hamiltonian Eq. (4), describing hybrid
excitations of photons and phonons. The full topological
phase diagram calculated numerically as a function of
the laser parameters is shown in Fig. 2. Whenever two
(or more) bands touch, their Chern numbers may change,
signaling a topological phase transition.
We start our analysis from the regime of weak coupling,

when optical and vibrational bands are separated suffi-
ciently (this regime is delimited by the dotted yellow lines
in Fig. 2). For concreteness, we focus on negative detunings
Δ, to the right of the diagram. At the far right, we are in the
limit of nearest-neighbor hopping. There, the phonons are
made to realize the kagome Chern-insulator model, with
the flux Φ given by Eq. (5). In this model, all three
mechanical bands are separated by complete band gaps.
Both band gaps close simultaneously for special values
of the flux where time-reversal symmetry is unbroken [16].
In our case, this happens when the laser is switched off,
where Φ ¼ 0, and when it reaches a critical amplitude
g ¼ gtp ≡ ðΔþ ΩÞ ffiffiffiffiffiffiffiffiffi

K=J
p

, where Φ ¼ −π. The Chern
numbers are C1=3 ¼ �sgn½sinðΦÞ�, C2 ¼ 0, where the
bands are ordered by increasing energy [52]. Hence, a
topologically nontrivial phase arises as soon as the driving
is switched on, and the system changes to a different
topological phase above the threshold gtp. The photons also
experience a synthetic gauge field, whose flux can be
obtained from Eq. (5) by exchanging K and J and changing
the sign. This flux is therefore small and has opposite
direction. The photon band Chern numbers thus turn out to
be C4=6 ¼ ∓sgn½Φ�, C5 ¼ 0, without any transition at gtp.
When the photon and phonon bands come closer by

changing the laser detuning, an effective long-range hop-
ping of phonons is induced optically, as discussed above.
Then, a new topological phase appears for intermediate
laser amplitudes, not predicted in the simple nearest-
neighbor model. The reason is that the mechanical band
gaps no longer close simultaneously but instead at two
different critical couplings g12 and g23 (Fig. 2). In the
previously discussed limit of short-range hopping,
J=Δ34 → 0, these would again coalesce to become gtp.
The Chern numbers for long-range hopping can be com-
puted analytically (see Appendix D).
We now turn to the regime where the photon and phonon

bands overlap and interact strongly [see the center of the
phase diagram Fig. 2(c)]. There, the topological phases
cannot be understood any more as induced by an effective

staggered synthetic gauge field for the phonons. They give
rise to a phase diagram that is unique for optomechanical
arrays. In this regime, a number of different phases appear.
By inspecting the limit of small coupling (g → 0), one
notices that the topological phase transitions occur when-

ever bands touch at the symmetry points ~Γ, ~K, and ~K0 or
at the special points ~MA, ~MB, and ~MC [see the sketch of
the band structures at the phase transitions, bottom of
Fig. 2(c)]. This remains true for arbitrary coupling, and can
be explained as follows. Topological phase transitions
can happen whenever bands touch each other (instead of
repelling), which is possible if there are selection rules
preventing them from interacting. At the symmetry points
~k ¼ ~Γ; ~K; ~K0, this is guaranteed by angular momentum
conservation, whereas at ~MA the optical and mechanical
kagome sublattice sites A are decoupled from the remaining
sublattices B and C (likewise with B at ~MB and C at ~MC).
The bands actually touch simultaneously at ~K; ~K0, due
to inversion symmetry, while rotational symmetry makes
them touch simultaneously at ~MA, ~MB, and ~MC. From these
considerations, we can predict the transitions to occur at
the laser detunings Δþ Ω ≈ −4J;−2J;−J; 0; 2J, for small
coupling g and small mechanical hopping K. The resulting
set of Chern numbers for all six bands is displayed in Fig. 2,
for each of the various topological phases.

D. Chiral edge state transport

A fundamental consequence of the topological nature of
the optomechanical band structure is the appearance of
chiral edge states at the boundaries of a finite-size system.
These excitations are topologically protected against scat-
tering if the bands are separated by a complete band gap.
They are thus very distinct from the type of edge states
that are produced in graphene-type systems with Dirac
dispersion, which are not robust against disorder and whose
existence even depends on the details of the boundary. The
net number of such edge states (right movers minus left
movers) within a given band gap is directly determined
by the sum of the Chern numbers of all lower-lying bands.
While in the effective short-range kagome model each
pair of subsequent bands is separated by such a gap,
this is not generally true in the full optomechanical model.
Large gaps are desirable because they are more robust
against dissipation, disorder, and Stokes scattering,
described by additional terms Ĥst ¼ −ℏðgjâ†j b̂†j þ H:c:Þ
in the Hamiltonian. However, topological band gaps cannot
be larger than the mechanical bandwidth ∼K, since they
arise by the interplay of intrinsic and optically induced
hopping; see Appendix E. For example, in the realistic
regime where the optical bandwidth is larger than the
mechanical frequency, the largest topological gap ωgap is

given by ωgap ≈ g
ffiffiffiffiffiffiffiffiffiffiffi
2J=K

p
(we consider a laser drive at the

mechanical red sideband of the lowest frequency optical
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mode); see Appendix E. In order to show the feasibility of a
topological optomechanical array, we include all of these
aspects in the remainder of the paper, with a photon decay
rate κ and a mechanical damping rate γ; see Appendixes A
and F. In Fig. 3, we show that for realistic parameters the
topological gaps are surprisingly resilient to dissipation.
The bulk band structure in Fig. 3(d) has a topological gap
between the second band (a hybrid photon-phonon band)
and the third band. The band gaps in the bulk photon and
phonon LDOS, shown in Figs. 3(e) and 3(f) are weakly
smeared by dissipation, although the band gap is much
smaller than the photon decay rate κ. Such a robustness,
which is related to the optomechanically induced trans-
parency phenomenon [56–58], has been noticed in a
different context already for a 1D optomechanical array
[49]. It occurs because the excitations of the hybrid band
have strong phononic components at the band edge,
making them less sensitive to photon decay; see the color
code in Fig. 3(d). In a strip of finite width (30 unit cells),
one can observe that the phononic wave functions form
well-localized chiral edge states [Figs. 3(b) and 3(c)].
The residual bulk DOS inside the band gap [in Figs. 3(f)
and 3(g)] is produced when the mechanical dissipation
smears the nearby large peak in the DOS (the height of
this peak is larger by a factor of ≈1600 than the residual
bulk DOS inside the band gap). That peak is formed by
the localized excitations in the flat mechanical band of the
kagome lattice. We have checked that the transport is still
chiral even in the presence of such residual bulk DOS;
see Appendix G. Our analysis shows that the coupling to
the localized excitations causes injection losses but not
backscattering.
Finally, we study transport in a finite-size array, for an

experimentally realistic setting that reveals the robustness
against backscattering by disorder. Additional robustness
against mechanical dissipation in the form of clamping

losses can be provided by engineering “phonon shields,” as
demonstrated in Ref. [37]. Since the gapless excitations at
the sample edge are phononic in nature, they could be
excited by applying local oscillating stress. On the other
hand, in the current setting, it is experimentally most
straightforward to shine light on the sample edge. Even
though the photon states are not localized at the edge
(unlike the phonon edge modes), this simple approach
works surprisingly well. Effectively, the beat note between
the weak, local probe laser and the strong, global driving
laser creates an oscillating radiation pressure force, launch-
ing phonons. In Fig. 4, we show a simulation of topologi-
cally protected chiral sound waves excited locally by a
laser, traveling along the sample edge around an obstruc-
tion. In addition, we have checked that moderate random
on-site disorder also does not affect the transport.
Moreover, it turns out that spatially resolved imaging of
the light field emanating from the sample [Fig. 4(a)] can be
used to map out the phonon edge state. This is because the
local vibrations will imprint sidebands on the strong drive
laser, and one of these sidebands appears at the probe laser
frequency, which then can be spectrally filtered and
imaged.
In the strong-coupling regime discussed above, where

photons and phonons mix completely, one obtains chiral
transport of photon-phonon polariton excitations, which
can also be excited and read out in the manner dis-
cussed here.
The phonons will eventually decay, since the topological

protection prevents disorder-induced backscattering but
not dissipation (the same is true as well for all topological
photon systems, for example). The number of sites over
which the phonons propagate along the chiral edge state is
given by their speed (the slope of the edge state dispersion)
divided by the overall mechanical decay rate (including
both intrinsic and optically induced dissipation). In the

FIG. 3. Edge states in a kagome optomechanical array. (d) Band structure in the center of a finite-width strip, whose geometry is shown
in (a), as a function of the wave number along the longitudinal direction of the strip. Blue (red) indicates large photonic (phononic)
components. Optical and mechanical dissipation, as well as the Stokes interaction, have all been included (see Appendix F). The
indicated band gap is of topological nature. (b) Zoom-in of the strip’s band structure (here for clarity without dissipation). The dispersion
of the edge states is highlighted. The corresponding phonon probability density as a function of position across the strip is shown in (c),
demonstrating localization at the edges for quasimomenta where the frequency lies in the bulk band gap. The photonic component
(not shown) is small. (e),(f) Local density of states for photons and phonons, respectively, both in the bulk and at the edge of such a
strip (of 30 unit cell width). The band gap is much smaller than the photon decay rate κ. (g) Zoom-in of the phonon local density of
states. The parameters are Ω ¼ 0.1J, Δ ¼ −4.02J, K ¼ 0.005J, g ¼ 0.007J, κ ¼ 0.01J, and γ ¼ 8 × 10−5J.
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simplest case, the typical scale of the propagation length is
given by the ratio of the mechanical hopping K over the
mechanical decay rate γ. For parameters compatible with
state-of-the-art devices, the phonons can propagate for
about 100 sites before decaying; see Appendix G for a
more detailed analysis. This is completely sufficient for
connecting phonon reservoirs and other applications in
phononics.
We now address briefly the most relevant issues for the

experimental realization of optomechanical Chern insula-
tors. The most important constraint in our model is the need
to avoid a mechanical lasing instability [33] that may
appear for larger bandwidths ðJ > Ω=3Þ due to the Stokes
terms. For laser frequencies below the blue sideband of the
lowest frequency optical mode, the instability threshold is
reached when the cooperativity equals (see Appendix H)

C≡ 4
g2

κγ
¼ 1þ

�
Δþ 4J −Ω − 2K

κ=2

�
2

: ð7Þ

The laser intensity (proportional to g2) therefore has
to remain below this threshold, which is accounted for
when selecting parameters in our simulation results dis-
played here.
Regarding experimental parameters, in general, in our

figures we remain compatible with those of the recent 2D
snowflake crystal single-defect experiment [38,55], where
they report Ω ≈ 2π × 9 GHz and a single-photon coupling
strength of g0 ≈ 2π × 250 kHz. To obtain the g ¼ g0

ffiffiffiffiffiffiffiffiffinphot
p

employed in Fig. 3 (where we assume J ¼ 10 Ω and
g ¼ 0.007J) would require on the order of nphot ∼ 106

circulating photons. Although challenging, this should be
doable, especially since any possible increase of the
phonon number due to unwanted heating (and finite
temperatures in general) does not affect measurements
of the band structure and transmission amplitudes, since
the fluctuations do not contribute to the average signal
amplitudes.
In all future experiments on transport in optomechanical

arrays, it will be important to minimize disorder due to
fabrication fluctuations, and efforts to characterize and
optimize this are only now starting. In particular, post-
fabrication processing techniques, such as local oxidation
[59], can be employed in the future in order to drastically
reduce the disorder by orders of magnitude. In numerical
simulations, we have seen that the topological effects
persist robustly up to disorder strengths of 2% of Ω in
the mechanical on-site frequencies and up to about J in the
optical on-site frequencies (at J ¼ 10 Ω). More generally,
we observe in our simulations that there is a wide latitude
in parameter combinations to obtain the effects discussed
here. For example, it may be more convenient experimen-
tally to use larger photon hopping rates J. Then, the
instability is reached for smaller g, the band gaps are
smaller, and the edge states’ penetration length is larger.
We checked that for J ¼ 100 Ω and g ¼ 5 × 10−2 Ω (and
the other parameters in the same range as Fig. 3), one can
still find a topological band gap. The corresponding edge
states are well localized on a strip of width 60 unit cells.

III. CONCLUSION

Apart from its fundamental interest, chiral phonon
transport, robust against disorder, could be useful for many
settings. Among them are the transport of phonons between
localized long-lived vibrational modes (forming robust
“phononic networks”) and the study of quantized heat
transport [60] in an unconventional setting (with a
“one-way” connection between heat reservoirs). The reali-
zation of a phonon Chern insulator would thus also enable
the observation of new physical phenomena relevant to
phononics. In addition, the mechanism we employ is
conceptually distinct from anything that has been consid-
ered for photons, to the best of our knowledge. In fact, the
optomechanical route towards Chern insulators has major
advantages over other proposals that have been put forward
for photons and which one might try to translate to
phonons: The optomechanical concept is more flexible
than geometry-based approaches [17,23], since the proper-
ties can be tuned quickly in situ, and in contrast to settings
based on local electrical modulation [19], it does not
require local wiring of any kind (which is hard to scale up).
The flexibility of the approach proposed here, where the

pattern of the laser field determines the band structure,
could be exploited to generate more general layouts in situ,

phonon transmission probabilitylocal density of states

5200

probe beam

photon transmission probabilitylocal density of states

2.80

light(a)

sound(b)

FIG. 4. Simulation of transport in a finite system. A probe laser
is injected locally at a site on the sample edge, at a fixed
frequency, launching phonons that are transported along the
chiral edge state. The larger figures depict the probability map
of finding a photon (a) or a phonon (b), demonstrating trans-
mission around an obstacle. Because of the optomechanical
interaction, the light intensity in (a), which could be imaged
locally, represents a faithful probe of the chiral phonon transport
in (b). The probe frequency lies in a bulk band gap
(ωL − ωprobe ¼ 1.06J) that just permits mechanical edge states.
The parameters correspond to large detuning between optical
and mechanical bands (Δ=J ¼ −5.7, Ω=J ¼ 1, g=J ¼ 0.2,
K=J ¼ 0.05, κ=J ¼ 0.1, and γ=J ¼ 0.002).

V. PEANO et al. PHYS. REV. X 5, 031011 (2015)

031011-8



where arbitrarily shaped regions of different topological
phases are produced, studying the transport through the
edge states that form at their interfaces, possibly arranged
in interesting interferometer configurations. Moreover, the
time-dependent local control of the band structure could be
the basis for quench experiments on topological phases of
light and sound. Finally, if future improvements in the
coupling g0 between single photons and phonons were to
permit entering the strong single-photon coupling regime
(with g0 ∼ κ; g0 ∼ΩÞ, optomechanical fractional Chern
insulators could be realized, being governed by strong
quantum correlations.

ACKNOWLEDGEMENTS

We acknowledge support by the ERC Starting Grant
OPTOMECH, by the DARPA project ORCHID, and by the
European Marie-Curie ITN network cQOM. We thank
Aashish Clerk, Alexander Altland, and Oskar Painter for
discussions.

APPENDIX A: DERIVATION OF THE
LINEARIZED HAMILTONIAN FOR THE
KAGOME OPTOMECHANICAL ARRAY

We start from the standard input-output formalism for an
array of optomechanical cells (each consisting of a vibra-
tional and an optical mode) on a kagome lattice, driven by a
laser with uniform intensity and a pattern of phases φj. As
we intend to linearize around the classical solution, we first
write down the equations of motion for the classical fields
(the quantum fields averaged over quantum and classical
fluctuations) in a frame rotating with the drive:

_βj ¼ ð−iΩ − γ=2Þβj þ ig0jαjj2 þ iK
X
hl;ji

βl;

_αj ¼ ðiΔð0Þ − κ=2Þαj þ i2g0αjReβj þ iJ
X
hl;ji

αl

þ ffiffiffi
κ

p
eiφj jαðinÞj: ðA1Þ

Here, j ¼ ðn;m; sÞ, n;m ∈ Z, s ¼ A; B;C, and hj; li indi-
cates the sum over nearest-neighbor sites. Moreover, g0 is
the shift of the optical frequencies due to a single phonon
(more precisely, a zero-point displacement), K (J) is the
phonon (photon) hopping rate, and γ (κ) is the phonon

(photon) decay rate. The laser detuning is Δð0Þ¼ωL−ωð0Þ
phot,

and jαðinÞj is the absolute value of the driving field.
The phases φi are independent of the unit cell, but they
depend on the sublattice site: φB − φA ¼ φC − φB ¼
φA − φC ¼ 2π=3. Then, the stationary solutions of
Eq. (A1) are given by αA ¼ e−i2π=3αB ¼ ei2π=3αC, where
αA is a solution of the third-order polynomial equation:

αA ¼ ieiφA
ffiffiffi
κ

p
αðinÞ

Δð0Þ þ 4J þ 2g20jαAj2=ðΩ − 4KÞ þ iκ=2
: ðA2Þ

Without loss of generality, we can choose the phase
of αðinÞ to fix αA > 0 real valued (this amounts to a gauge
transformation).
We now linearize the quantum Langevin equations

(input-output equations of motion) around the classical
solutions. We find (where Ĥ0 ¼ Ĥ þ Ĥst contains also the
Stokes interaction terms):

_̂bj ¼ iℏ−1½Ĥ0; b̂j�− γb̂j=2þ
ffiffiffi
γ

p
b̂ðinÞj

¼ ð−iΩ− γ=2Þb̂j þ ig�j âj þ igjâ
†
j þ iK

X
hl;ji

b̂l þ ffiffiffi
γ

p
b̂ðinÞj ;

_̂aj ¼ iℏ−1½Ĥ0; âj�− κâj=2þ
ffiffiffi
κ

p
âðinÞj

¼ ðiΔ− κ=2Þâj þ igjðb̂j þ b̂†jÞ þ iJ
X
hl;ji

âl þ
ffiffiffi
κ

p
âðinÞj ;

ðA3Þ

where gA ¼ g0αA ¼ e−i2π=3gB ¼ ei2π=3gC, and the detuning
Δ includes a small shift of the optical resonances due to the
average mechanical displacement induced by the radiation
pressure: Δ ¼ Δð0Þ þ 2g20jαAj2=ðΩ − 4KÞ. The input fields
b̂ðinÞj and âðinÞj describe the vacuum (and possibly, thermal)

fluctuations. The Hamiltonian Ĥ is given in Eq. (1) of
the main text, and together with the Stokes terms,
Ĥst ¼ −ℏðgjâ†j b̂†j þ H:c:Þ, it produces the right-hand side of
the Langevin equations displayed here (except the fluc-
tuation and decay terms, which stem from the interaction
with the vibrational and electromagnetic environment).

APPENDIX B: SYMMETRIES
OF THE KAGOME LATTICE

The topological effects discussed in the main text do
not depend qualitatively on the details of the hopping
interactions (there, for concreteness, we assume that only
nearest-neighbor sites are coupled) provided that the
underlying inversion symmetry (around a corner of the
triangle forming the unit cell) and the C3 rotational
symmetry of the kagome lattice are retained. This applies,
in particular, to the topological phase diagram in Fig. 2.
In our model, a topological phase transition occurs when
two bands touch (instead of repelling) as a result of a
selection rule. This happens at the symmetry points
~Γ, ~K, and ~K0, where only three transitions are allowed
by the C3 symmetry: jM;⊘i↔jO;↺i, jM;↺i↔jO;↻i,
and jM;↻i↔jO;⊘i. Moreover, two bands can touch at the
special points ~MA, ~MB, and ~MC, where the inversion
symmetry ensures that the optical and mechanical kagome
sublattices A, B, or C, respectively, are decoupled from the
remaining sublattices.
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When these symmetries are broken, the phase diagram
becomes qualitatively different. For instance, unequal
mechanical and/or optical eigenfrequencies on the different
sublattices break the C3 symmetry. This symmetry breaking
has a twofold effect. First, the bands do not touch anymore

at the symmetry points ~Γ, ~K, and ~K0. This first effect does
not change qualitatively the phase diagram when a small
perturbation breaks the symmetry. In this case, the bands

touch in the neighborhood of ~Γ, ~K, and ~K0, and the borders
of the corresponding topological phase transitions are
only slightly deformed. Second, the bands do not touch

simultaneously at ~MA, ~MB, and ~MC. Then, the border of
the corresponding topological phase transitions split into
three lines and new topological phases appear. This second
effect induces a qualitative change of the topological phase
diagram even when only a small perturbation breaks the
symmetry.

APPENDIX C: DERIVATION OF THE
EFFECTIVE TIGHT-BINDING PHONON

HAMILTONIAN FOR LARGE DETUNINGS

Our aim in this section is to integrate out the optical field
and derive the effective Hamiltonian for the phonons.
Various ways exist for doing this, and here we choose to
eliminate the optical fields from the equations of motion.
In this section, we consider the regime of nearest-neighbor
effective phonon hopping at the far right and far left of the
phase diagram in Fig. 2. For concreteness, we focus on
the far right region in the diagram, −Δ −Ω ≫ J. Since
we want to also include Stokes processes, we start from
the linearized Hamiltonian, Eq. (1). Keeping in mind that
the optical backaction is filtered by the mechanical band, it
is convenient to divide âj into its sidebands:

âj ≡ e−iΩtâðredÞj þ eiΩtâðblueÞj þ δâ: ðC1Þ

When the mechanical bandwidth is small, i.e., when
6KðeffÞ ≪ Ω (where KðeffÞ is calculated below), aredðtÞ and
ablueðtÞ are slowly varying functions (as is δâ, describing
the intrinsic optical fluctuations), and one can neglect
their time derivative in the Heisenberg equation
_̂aj ¼ iℏ−1½Ĥ; âj�. We find

e−iΩtâðredÞj ¼ − gj
Δþ Ω

b̂j þ
X
hj;li

Jgl
ðΔþ ΩÞ2 b̂l;

eiΩtâðblueÞj ¼ −
gj

Δ −Ω
b̂†j þ

X
hj;li

Jgl
ðΔ −ΩÞ2 b̂

†
l : ðC2Þ

We eliminate the photons by substituting Eqs. (C1) and

(C2) in the Heisenberg equation _̂bj ¼ iℏ−1½Ĥ; b̂j� and

arrive at _̂bj ¼ iℏ−1½Ĥeff ; b̂j�, where

Ĥeff

ℏ
≈
X
j

ΩðeffÞb̂†j b̂j −
X
hj;li

KðeffÞ
jl b̂†j b̂l; ðC3Þ

ΩðeffÞ ¼ Ωþ g2

ðΔþ ΩÞ þ
g2

ðΔ −ΩÞ ; ðC4Þ

KðeffÞ
jl ¼ K þ J

g�jgl
ðΔþ ΩÞ2 þ J

gjg�l
ðΔ −ΩÞ2 : ðC5Þ

In deriving this, we neglect the terms containing two
creation or annihilation operators (of the parametric oscil-
lator type b̂†b̂†, etc.), which is a good approximation for a
small bandwidth 6KðeffÞ ≪ ΩðeffÞ. The third term on the
right-hand side of Eq. (C5) describes the additional hop-
ping amplitude induced by Stokes scattering (going beyond
the simpler approximation discussed in the main text,
where this term is neglected). The corresponding flux is

Φ¼−3π

2
−3arctan

KðΔþΩÞ2ðΔ−ΩÞ2−Jg2ðΔ2þΩ2Þ
−2 ffiffiffi

3
p

Jg2ΩΔ
:

The above result tends to the expression in Eq. (3) (which
does not include Stokes scattering) for jΔþ Ωj ≪ Ω. From
this formula it is easy to prove that the small correction due
to the Stokes processes decreases the flux if Φ < −π, but it
increases it if Φ > −π. Since both mechanical band gaps
reach a maximum width at Φ ¼ −π=2 and Φ ¼ −3π=2, the
Stokes processes enlarge the gap in the broad parameter
regime −3π=2 < Φ < −π=2.

APPENDIX D: CALCULATION OF THE CHERN
NUMBERS AND THE CRITICAL COUPLINGS IN

THE WEAK-COUPLING REGIME

1. Critical couplings

In the limit of a very large separation between optical
and mechanical bands, we have a model of phonons with
effective nearest-neighbor hopping on a Kagome lattice,
and there is only one critical coupling for a topological
phase transition. When the separation is reduced, longer-
range hopping develops, and the first effect is that another
topological phase shows up. It is bounded by two critical
couplings, g12 and g23. These can be calculated by
diagonalizing the single-particle Hamiltonian Eq. (2) at

the symmetry points ~Γ and ~K0 (the inversion symmetry
ensures that the second and third band will touch simulta-
neously at ~K and ~K0). Because of rotational symmetry there
are only three allowed transitions at the symmetry points:
jM;⊘i↔jO;↺i, jM;↺i↔jO;↻i, and jM;↻i↔jO;⊘i.
Hence, the Hamiltonian is block diagonal with three 2 × 2
blocks and can be very easily diagonalized for arbitrary g.
However, this leads to a nonlinear equation for the border
of the phase transitions g12 and g23. Instead, we restrict
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ourselves to the weak-coupling regime (limit of large
separation between optical and mechanical bands), where
it is possible to find simple analytical expressions for the
critical couplings and to calculate the Chern numbers
analytically.
At the ~Γ point, the spectrum of the single-particle

Hamiltonian Eq. (2) is (up to leading order in g)

EO↻ ¼ −Δþ 2J þ g2

−Δþ 2J −Ω − EM↺
;

EM↺ ¼ Ωþ 2K þ g2

Δ − 2J þ Ω
;

EO↺ ¼ −Δþ 2J þ g2

−Δþ 2J −Ω − EM⊘
;

EM⊘ ¼ Ω − 4K þ g2

Δ − 2J þ Ω
;

EO⊘ ¼ −Δ − 4J; EM↻ ¼ Ωþ 2K þ g2

Δþ 4J þ Ω
:

Here, we indicate with EO↻ the eigenvalue corresponding
to eigenvector j↻; Oi þ αj↺;Mi (with α ∝ g), and like-
wise for the other eigenvalues. The above eigenvalues,
ordered by increasing energy, are (for small g)

E1 ¼ EM⊘; E2 ¼ EM↻; E3 ¼ EM↺;

E4 ¼ EO⊘; E5 ¼ EO↺; E6 ¼ EO↻:

The coupling g12, where the first and the second mechani-
cal band touch each other, can be obtained from the
condition EM⊘ ¼ EM↻, yielding

g12 ¼ f6K½ðΔ − 2J þ ΩÞ−1 − ðΔþ 4J þΩÞ−1�−1g1=2:
Above this threshold, the first and second band exchange
their eigenvectors:

E1 ¼ EM↻; E2 ¼ EM⊘; E3 ¼ EM↺;

E4 ¼ EO⊘; E5 ¼ EO↺; E6 ¼ EO↻: ðD1Þ
The same calculation at the ~K0 point gives

EO↻ ¼ −Δþ 2J; EM↺ ¼ Ω − K þ g2

Δ − 2J þ Ω
;

EO↺ ¼ −Δ − J þ g2

−Δ − J −Ω − EM⊘
;

EM⊘ ¼ Ω − K þ g2

Δþ J þΩ
;

EO⊘ ¼ −Δ − J þ g2

−Δ − J − EM↻
;

EM↻ ¼ Ωþ 2K þ g2

Δþ J þΩ
:

In this case, the eigenvalues ordered by increasing energy
for small g are

E1 ¼ EM⊘; E2 ¼ EM↺; E3 ¼ EM↻;

E4 ¼ EO↺; E5 ¼ EO⊘; E6 ¼ EO↻: ðD2Þ
The coupling g23, where the second and third band
touch each other, can be obtained from the condition
EM↻ ¼ EM↺, yielding

g23 ¼ f3K½ðΔ − 2J þ ΩÞ−1 − ðΔþ J þΩÞ−1�−1g1=2:
In the same way, at the K point and for g < g23, we have

E1 ¼ EM↻; E2 ¼ EM⊘; E3 ¼ EM↺;

E4 ¼ EO⊘; E5 ¼ EO↻; E6 ¼ EO↺: ðD3Þ
Also at this point the second and third bands swap their
eigenstates at the critical coupling g23.

2. Chern numbers

In the weak-coupling regime, it is also possible to
compute the Chern numbers analytically. We show this
explicitly for the phase that develops due to longer-range
phonon hopping, i.e., the phase discussed above between
g12 and g23. We follow Ref. [61]. Applying their general
idea, we initially try to fix the gauge by requiring

ðhM;↺j þ hO;↻jÞj~k; li ∈ R, where j~k; li is the eigenstate
of band l at ~k. If such a gauge were well defined over the
whole Brillouin zone, the Chern number would be 0
[in Eq. (4), one integrates the curl of a smooth function
over a torus, which gives zero from the Stokes theorem].
However, there are obstructions preventing us from
defining a global gauge. At an obstruction, the overlap

ðhM;↺j þ hO;↻jÞj~k; li vanishes and the chosen gauge is
ill defined. In its neighborhood, i.e., a finite region within
the Brillouin zone, one has to choose a different gauge. In

the new local gauge, the overlap ðhM;↺j þ hO;↻jÞj~k; li≡
ρðk⃗Þe−iθðk⃗Þ is a smooth function of ~k and its complex
argument winds an integer number of times n on a path

around the obstruction, n ¼ ð2πÞ−1 H ~∇θð~kÞ · d~k. When
calculating the Chern number, one picks up a contribution
from the boundary between the two regions of different
gauge. The band Chern number turns out to be the sum

of the winding numbers for all obstructions: Cl ¼
P

in
ðlÞ
i .

Such an analytical approach is possible because, in the
weak-coupling limit and for our particular choice of gauge,
obstructions form only at the symmetry points (this does
not hold in the strong coupling limit).
For concreteness, we focus on the second band and on

the topological phase introduced by the effective long-
range hopping. As discussed above, in this phase (corre-
sponding to g12 < g < g23), the second band wave function

is state jM;⊘i (with a small admixture to jO;↺i) at the ~Γ
point, state jM;↺i (with a small admixture to jO;↻i) at
the ~K0 point, and state jM;↻i (with a small admixture to
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jO;⊘i) at the ~K point. Hence, for the second band, and for
the global gauge defined above, there are obstructions

at ~k ¼ ~Γ; ~K.
From the above discussion it is clear that in order to

compute the Chern number of the second band, it is

sufficient to compute the overlap ðhM;↺j þ hO;↻jÞj~k;2i
close to the symmetry points ~Γ and ~K. We start from ~Γ.
We decompose the Hamiltonian into Ĥð~Γþ δ~kÞ ¼
Ĥð~ΓÞ − ðt̄þ δtσ̂z=2Þδτ̂~Γðδ~kÞ,

δτ̂~Γðδ~kÞ ¼ i

0
BB@

0 −δ~k · ~a1 δ~k · ~a3

δ~k · ~a1 0 −δ~k · ~a2
−δ~k · ~a3 δ~k · ~a2 0

1
CCA; ðD4Þ

where δ~k ¼ ~k − ~Γ. From Eqs. (D4) and (D1) we find, using
standard perturbation theory in δ~k,

ðhO;↻j þ hM;↺jÞjk̂; 2i ∝ h↺jδτ̂~Γðδ~kÞj⊘i ∝ δkx − iδky:

Hence, the phase increases by 2π on a small path going
anticlockwise around the obstruction: the winding number

is 1. In a neighborhood of ~K, we decompose theHamiltonian

into Ĥð ~K þ δ~kÞ ¼ Ĥð ~KÞ − ðt̄þ δtσ̂z=2Þδτ̂ ~Kðδ~kÞ,

δτ̂ ~Kðδ~kÞ

¼ i

0
BBB@

0 −ei2π=3δ~k · ~a1 e−i2π=3δ~k · ~a3
e−i2π=3δ~k · ~a1 0 −ei2π=3δ~k · ~a2
−ei2π=3δ~k · ~a3 e−i2π=3δ~k · ~a2 0

1
CCCA:

ðD5Þ
From Eqs. (D2) and (D5), we find

ðhO;↻j þ hM;↺jÞj~k; 2i ∝ h↻jδτ̂ ~Kðδ~kÞj↺i ∝ δkx − iδky:

Notice that in this case the overlap comes from the optical
part of thewave function. From the above expression we see
that thewinding number is again 1.We can conclude that the
Chern number for the second band in the phase introduced
by the long-range hopping (between g12 and g23) is 2. A
similar calculation shows that the first band has obstructions

at ~Γ and ~Kwith winding number−1 and an obstruction at ~K0

with winding number 1, whereas the third band has an
obstruction with winding number −1 at ~K0. Hence, the
Chern numbers for the mechanical bands in the long-range
hopping phase are ½−1; 2;−1�. When the first and second

bands touch for g ¼ g12 at ~Γ, the wave functions change
smoothly, but they swap the bands. Hence, below g12, the
corresponding obstructions with their winding numbers are
also swapped andwe recover the result for small fluxes in the
tight-binding model: ½1; 0;−1�. A similar argument shows
that, for theChern numbers for g > g23, we recover the result
for large fluxes in the tight-binding model: ½−1; 0; 1�.

APPENDIX E: SIZE OF THE BAND GAPS

The chiral excitations at the edge of the sample are more
robust against dissipation and disorder in the presence of
large band gaps. In Fig. 5, we show the largest band gap as
a function of the laser parameters.
Large band gaps of the order ∼K are present for

comparatively large values of g, g ≫ K. It is easy to
understand this behavior: for K ¼ 0, time-reversal sym-
metry is not broken as one can eliminate the pattern of
phases in the couplings gi by a gauge transformation on the
phonon fields. In that case, all Chern numbers turn out to be
zero and there is no topologically nontrivial band gap. In
the presence of a small K, complete band gaps open. Since
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FIG. 5. (a) Plot of the largest complete topologically nontrivial band gap as a function of the laser parameters for K=J ¼ 10−3. The
yellow lines divide the diagram in separate parameter regions. The largest band gap lies between the subsequent bands indicated inside
each region. This diagram does not depend on Ω. (b) Stability diagram for J=Ω ¼ 1, γ ¼ 0.002J, and κ ¼ 0.1J. It shows the damping
rate of the slowest relaxation process. The unstable region where the Green function ~Gðω; l; jÞ has a pole in the upper-half plane is
marked in black. The mechanical lasing threshold of Eq. (H2) is plotted in yellow, in its region of validity. Note that the onset of the
mechanical lasing instability (and that of another parametric instability visible in the top right-hand corner) restricts the region where the
system is stable. We emphasize that the stable region will include the whole parameter range displayed in Fig. 2(c) for a sufficiently large
value of Ω [where Ω was not specified for Fig. 2(c), since that figure is independent of Ω].

V. PEANO et al. PHYS. REV. X 5, 031011 (2015)

031011-12



K is the smallest frequency scale, the band gaps can be
computed by perturbation theory in K and are of order ≲K.
For example, in the limit of effective tight-binding phonon
hopping (optical bands well separated from mechanical
bands), large band gaps are reached for Φ ¼ 3=2, where the
size of the two mechanical band gaps is 3K.
It is also possible to estimate the band gap in the more

promising parameter regime where the optical bandwidth is
large, J ≳ Ω. In this case, it is advantageous to choose the
laser frequency such that an optical band gets close but does
not cross the mechanical band, Ω ≫ −Δ − 4J −Ω > 0.
In this regime, the modes in the lower optical band and
with quasimomentum k ≪ 1 interact most strongly with
the mechanics. In fact, all other optical modes are far
detuned due to the steep optical dispersion. Near k ¼ 0 (the
Γ point), the low-frequency optical modes have approx-
imately zero quasiangular momentum. For a sideband
resolved system, we can do a rotating wave approximation
(since the blue sideband of the low-frequency optical
modes is detuned by 2Ω). Since a photon with zero-
quasiangular momentum is converted into a phonon with
unit angular momentum (the additional quasimomentum
comes from the laser drive), only such a mechanical mode
is coupled to the light. Moreover, at the Γ point the
mechanical states with quasiangular momentum �1 are
quasidegenerate. Thus, in order to compute the band gap
formed close to the Γ point by the optomechanical
interaction, we can neglect the influence of the remaining
modes and project Hamiltonian Eq. (4) into these three
levels. In a frame rotating with frequencyΩþ 2K, the three
levels are described by the 3 × 3 effective Hamiltonian,

Ĥeff ¼

0
BB@

δωðOÞð~kÞ −g 0

−g δωðMÞð~kÞ Kð~kÞ
0 K�ð~kÞ δωðMÞð~kÞ

1
CCA;

where δωð0Þ ¼−Δ−4J−Ω−2Kþ2Jk2, δωðMÞ ¼ −Kk2,
and K ¼ Kðkx þ ikyÞ2. If δωð0ÞðkÞ > 0, the optical bands
do not cross the mechanical bands but push down the
clockwise phonon mode, creating a band gap. For very
small k (of the order of g=J), the bands might also form
polaritons. As the detuning increases, the optical interaction
becomes weaker and tends to close the gap. The minimal
splitting is reached when the optically induced interaction
is of the same order as the coupling KðkÞ between the
mechanical modes with opposite quasiangular momentum.
For jδωð0ÞðkÞ − δωðMÞðkÞj ≫ jKðkÞj; g, we can eliminate
adiabatically the low-frequency optical mode. The effective
Hamiltonian for the remaining (mechanical) levels reads

~HðeffÞ ¼
 
ωðMÞð~kÞ − g2

ωð0Þð~kÞ Kð~kÞ
K�ð~kÞ ωðMÞð~kÞ

!
:

Thus, the eigenfrequencies of the second and third pho-
nonic bands are (in the original frame)

E2=3 ¼ Ωþ 2K − Kk2 − g2

2ωð0ÞðkÞ∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g4

4ωð0ÞðkÞ þ K2k4

s
;

independent of the direction of the quasimomentum. The
gap ωgap between these two bands is given by the minimum
of E3 − E2 over the quasimomentum k. For concreteness,
we consider the case where the red sideband of the lowest
frequency optical mode coincides with the largest fre-
quency mechanical mode, −Δ − 4J ¼ Ωþ 2K. In this
case, we find a simple expression for the minimal splitting,
ωgap ≈ g

ffiffiffiffiffiffiffiffiffiffiffi
2K=J

p
.

In the most general case, we compute numerically the
largest band gap as a function of the laser parameters. For
fixed laser amplitude, the largest band gap size varies on a
broad range as a function of the laser frequency; see Fig. 5.
Notice that the mechanical eigenfrequency Ω is not
specified in Fig. 5(a). It has been implicitly assumed to
be the largest frequency in the problem while neglecting the
Stokes scattering (which involves a rotating wave approxi-
mation), whence the band gaps become independent of Ω.
Hence, the full phase diagram shown in Fig. 2 can be
explored for an appropriately large value ofΩ. On the other
hand, the effect of Stokes scattering has to be carefully
analyzed for large bandwidths J=Ω ≫ 1 or large couplings
g2 ≫ Ωκ. Below, we show that the interplay of dissipation
and Stokes scattering restricts the laser parameter range
where the system is stable. In particular, we focus on the
experimentally most relevant regime of large optical
bandwidth, J ≫ Ω, where a mechanical lasing transition
arises.

APPENDIX F: CALCULATION OF THE DENSITY
OF STATES AND TRANSMISSION

PROBABILITIES FOR A FINITE SYSTEM

In Figs. 3 and 4, we show the LDOS on site l, ρOðω; lÞ
for photons and ρMðω; lÞ for phonons, as well as the
probabilities TOOðω; l; jÞ and TMOðω; l; jÞ that a photon
(O for optical) injected on site j is transmitted to site l
as a photon or a phonon (M for mechanical), respectively.
They are directly related to the retarded Green function
in frequency space, ~Gðω; l;jÞ¼ R∞−∞dteiωtGðt; l;jÞ, where
the different interesting components are GOOðt;i;jÞ¼
−iΘðtÞh½âiðtÞ;â†jð0Þ�i (propagation of a photon),

GMOðt;i;jÞ¼−iΘðtÞh½b̂iðtÞ;â†jð0Þ�i (conversion of a pho-

ton to a phonon), andGMMðt; i; jÞ ¼ −iΘðtÞh½b̂iðtÞ; b̂†jð0Þ�i
(propagation of a phonon)].
In order to calculate ~Gðω; l; jÞ numerically in a finite

system with N ×M unit cells (see Fig. 4), one organizes all

the fields in a 12NM-dimensional vector ~̂c whose entries
are âj, â

†
j , b̂j, b̂

†
j for all possible 3NM lattice sites. Then,
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Eq. (A3) can be written in a compact form as i
_~̂c ¼ A~̂cþ ~̂ξ

and the Green function is ~GðωÞ ¼ ðω − AÞ−1. Notice that,
in a system with N ×M complete unit cells, the top and
right edges have a zigzag form. In order to effectively
describe a system with only straight edges, we set the
hopping rates from and to the sites on the zigzag edges to
zero. The photon and phonon LDOS are given by

ρOðω; lÞ ¼ −2Im ~GOOðω; l; lÞ;
ρMðω; lÞ ¼ −2Im ~GMMðω; l; lÞ;

respectively. Moreover, from the Kubo formula and the

input-output relations âðoutÞj ¼ âðinÞj − ffiffiffi
κ

p
âj (and likewise

for the phononic fields), we find

TOOðω; l; jÞ ¼ jδlj − iκ ~GOOðω; l; jÞj2;
TMOðω; l; jÞ ¼ κγj ~GMOðω; l; jÞj2;
TMMðω; l; jÞ ¼ γ2j ~GMMðω; l; jÞj2:

For a strip that is infinite in the longitudinal direction and of
finite widthM unit cells (see Fig. 3), the quasimomentum in
the longitudinal direction is a conserved quantity. Hence,
the LDOS is most conveniently calculated by taking a
partial Fourier transform of the corresponding index n in
Eq. (A3). For a numerical evaluation, one considers a finite
length N and introduces periodic boundary conditions for
n, âj ¼ N−1=2P

ne
iknâkms (and likewise for b̂kms). For N

large enough, the finite size effects due to the finite length
are smeared out by dissipation. For the strip, we organize
the fields âkms, â

†
−kms, b̂kms, b̂

†
−kms in a 12M-dimensional

vector ~̂ck. Then, the Langevin equation reads i
_~̂ck ¼ Ak

~̂ck

and the corresponding Green function is ~Gðω; kÞ ¼
ðω − AkÞ−1. We arrive at the photon and phonon LDOS:

ρOðω; n; sÞ ¼ −2N−1Im
X
k

~GOOðω; k; n; s; n; sÞ;

ρMðω; n; sÞ ¼ −2N−1Im
X
k

~GMMðω; k; n; s; n; sÞ:

APPENDIX G: EDGE STATE
TRANSPORT: ANALYSIS OF LOSS

In this appendix, we give more details regarding the
photon and phonon transport in the optomechanical array.
Our goal in this appendix is to analyze the propagation
length of phonons in the chiral edge states. In addition,
we discuss the appearance of a small but finite bulk density
of states even inside the band gap. We argue that the
directionality of the transport is maintained in spite of that
effect.
We focus on the most promising and realistic parameter

regime, where the optical bandwidth is much larger than
the mechanical eigenfrequency (keeping the parameters of
Fig. 3). In order to obtain the phonon propagation length,
we consider injection at a particular site on the edge of a
finite-size system (with a geometry similar to Fig. 4).
In Fig. 6, we plot the decay of the phonon probability for
different values of the intrinsic mechanical decay rate γ.
These values are compatible with present-day experiments
on optomechanical crystals, where even higher mechanical
Q factors (105 and more) are reached routinely [38].
After some transient behavior close to the injection point
(where photons are converted into phonons), the number of
transmitted phonons decays exponentially with the propa-
gation distance. This allows us to extract the propagation
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FIG. 6. Photon and phonon transport in the regime of large optical bandwidths. Panels (a) and (b) display the Green functions j ~GOOj2
and j ~GMOj2 for the propagation of photons and phonons, respectively, after injection of a probe laser photon at a frequency ω inside the
gap. Panel (c) is a cut along the upper edge of (b), for several different values of the mechanical damping γ=Ω¼1.75×10−4;
2×10−4;4×10−4;6×10−4;8×10−4 (from top to bottom), drawn on a log scale to visualize the exponential decay of phonon intensity.
Panel (d) shows the propagation length l directly obtained by a fit of the data from (c) (symbols) and by using the resulting data to fit the
function v=ðγ þ γOÞ with the optically induced damping γO as a fitting parameter (solid line). The mechanical decay rate in (a) and (b) is
γ ¼ 4 × 10−4 Ω. All other parameters are those of Fig. 3, on a 20 × 40 array, at ω=J ¼ 0.10943 (the middle of the band gap).
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length l [see panel (d)]. We expect l to be given by the
edge state speed divided by the overall mechanical decay
rate γtotal ¼ γ þ γO (the sum of the intrinsic and the
optically induced mechanical decay rates). By extracting
l from a fit of the numerical data, we find that indeed
l ¼ v=γtotal, where the speed v ¼ 2∂ωðkÞ=∂k (with two
sites per unit cell along the edge) is obtained from the edge
state dispersion in a strip geometry. The typical scale of l is
roughly given by the ratio of the phonon hopping K over
the mechanical decay rate γ. This rule of thumb applies to
the broad parameter range where the optically induced
mechanical hopping and decay rates are, at most, of the
order of their intrinsic counterpart. From our fits we can
also extract the optically induced damping, which turns out
to be comparatively small (γO=Ω ¼ 4.2 × 10−5). We note
in passing that γ should be larger than a finite threshold
to avoid the mechanical lasing instability analyzed in
Appendix H; see Eq. (H2). For the regime discussed here,
that would imply γ > g2κ=Ω2, which we have ensured to
be true in the figures. This sets an upper limit on l that
depends on the remaining parameters.
Next, we comment on the transient behavior close to the

injection point; see Fig. 6. The initial transient behavior in
the vicinity of the injection point [Fig. 6(c)] is partially due
to photon-phonon conversion and the fact that we choose
to inject locally (at a single site). We now discuss an
additional effect during injection that is due to a residual
contribution to the bulk DOS inside the band gap, which,
though small, is noticeable; see also Fig. 3(g). We find that
this is due to the broadening induced by mechanical
dissipation. In particular, it results from the tail of the
nearby large and narrow DOS peak formed by the localized
excitations of the kagome flatband. The peak is so high that
even a weak broadening can induce a non-negligible bulk
DOS inside the band gap. A phonon injected locally will
tunnel not only to the edge state but also (with a lower
probability) to such localized excitations (after which it will
decay without moving far). This is because local injection,
in principle, can produce excitations at any quasimomen-
tum k; i.e., it also covers the full range of k where the small
dissipation-induced tail of the bulk band is present. Apart
from this influence on the injection process, the small finite
bulk DOS inside the gap can also have some influence
during the propagation, if there is disorder that is not
smooth on the scale of the unit cell. Then there can also be
scattering with large momentum transfer that will be able to
scatter some fraction of the edge state excitations into the
dissipative tails of the localized bulk modes. We emphasize
though that the directionality of the transport is preserved
in any case (since phonons in the localized bulk modes no
longer contribute to transport).
In addition, the injection losses could be reduced further

by injecting excitations in a momentum-resolved way, over
a small interval of momenta. Heisenberg’s uncertainty
relation then necessarily implies that they cannot be

injected at a single point but rather over an extended
region, e.g., by tunneling from a nearby phonon wave-
guide. In fact, to some extent, such a momentum-resolved
injection even happens when exciting the system optically,
since the largest photon-phonon coupling occurs in a
limited range of quasimomenta (near k ¼ 0 for this
parameter regime).
As for Fig. 4, we note that in comparison to Fig. 3

we consider a smaller optical hopping J (by 1 order of
magnitude) and a slightly larger optomechanical coupling
g. This parameter choice allows us to display an edge state
in a comparatively smaller array, since a smaller J implies
shorter-range optically induced mechanical hopping and
thus a smaller width of the edge states.

APPENDIX H: MECHANICAL
LASING INSTABILITY

Here, we show that the optical backaction can cause a
mechanical lasing instability for large enough couplings
and optical bandwidths. There is a phonon lasing insta-
bility if at least one mechanical mode, at any point in the
Brillouin zone, becomes unstable (negative damping rate).
Initially, we analyze the damping rates at the symmetry

point ~Γ. There, it is convenient towrite the OM interaction in
terms of the eigenstates of the C3 rotations with quasimo-

mentum ~Γ: b̂⊘¼ðN Þ−1=2Plb̂l, b̂↺¼ðN Þ−1=2Ple
iφl b̂l,

b̂↻¼ðN Þ−1=2Ple
−iφl b̂l, and likewise for â⊘ â↺, and â↻.

Here and in the following,we omit the quasimomentum label
~Γ,N is the overall number of sites forming the lattice, and the
phasesφl depend on only the site A, B, Cwithin the unit cell.
The linearized OM interaction reads

HOMð~ΓÞ
ℏ

≈ −g½â†↻b̂↺ þ â†⊘b̂†↺� − g½â†⊘b̂↻ þ â†↻b̂
†
↻�

− g½â†↺b̂⊘ þ â†↺b̂
†⊘� þ H:c:

As it should be expected from quasi-angular-momentum
conservation, when a driving photon (which carries a vortex)
emits a phonon with a vortex j↺;Mi, it is simultaneously
converted into a vortex-free array photon (in the opticalmode
j⊘; Oi, with eigenfrequency ωphot − 4J), whereas when
it absorbs a phonon from the same mechanical mode, it is
converted into an array photon with an antivortex (in the
optical mode j↻; Oi, with eigenfrequency ωphot þ 2J).
This is a peculiar situation, with different photon creation
processes connected to phonon absorption and emission,
respectively. It can take place only because the time-reversal
symmetry is broken. Since the coupling strength of both
processes is the same (namely,−g), we have antidamping of
the mechanical mode j↺;Mi if the blue sideband frequency
ωL −Ω is closer to the eigenfrequency of j⊘; Oi than the
red sideband frequency ωL þ Ω is to the eigenfrequency of
j↻; Oi. In the opposite situation, we have damping.
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There are twopossible scenarios: The first scenario occurs
for large bandwidths, J > Ω=3. Then, the blue sideband of
the optical mode j⊘; Oi, located at ωphot − 4J þΩ, has
lower frequency than the red sideband of j↻; Oi, located
at ωphot − 4J þ Ω. In this case, the optical backaction tends
to amplify the mechanical mode j↺;Miwhen the driving is
red detuned (its frequency is below the average eigenfre-
quency of the two optical modes,−Δ − J > 0). Instead, the
mechanical mode is damped by the optical backaction for a
blue detuned drive (−Δ − J < 0). This behavior is com-
pletely opposite to the standard scenario in optomechanics.
A similar analysis shows that the mechanical mode j↻;Mi
shows the opposite behavior. Hence, for any choice of
laser frequency, either j↺;Mi or j↻;Mi is antidamped
(provided J > Ω=3). The optically induced antidamping
grows with increasing coupling and eventually overcomes
the intrinsic damping, thus generating a mechanical lasing
transition at a critical coupling.
The second scenario occurs for small bandwidths,

J < Ω=3. Then, the blue sideband near j⊘; Oi has a higher
frequency than the red sideband of j↻; Oi. In this case,
the optical backaction damps the mechanical mode j↺;Mi
for a red-detuned laser (−Δ − J > 0) and amplifies it for
a blue-detuned drive (−Δ − J < 0). That is the standard
behavior in optomechanical systems. A similar analysis
shows that the mechanical mode j↻;Mi displays the same
behavior. Since, at ~Γ the spacing between the optical
eigenstates is largest, the same conclusion can be drawn
for any momentum. We can conclude that in the small
bandwidth case, J < Ω=3, there is a mechanical lasing
transition for a blue-detuned drive but not for a red-detuned
drive. Notice that the region where no unwanted mechani-
cal lasing transition is present for small bandwidth J
includes the central part of the phase diagram Fig. 2 (where
a number of different topological phases appear), as well
as the “tight-binding limit” region on the right-hand part of
the diagram.
It is possible to analytically compute the threshold of the

mechanical lasing transition for large bandwidths J ≫ Ω
and when the driving frequency is below the blue sideband
of the lowest frequency optical mode j⊘; Oi (at the ~Γ
point), −Δ − 4J > −Ω − 2K. Since the other blue side-
bands have larger detuning, the lasing transition is deter-
mined by the backaction of j⊘; Oi on the mechanical mode
j↺;Mi. In order to get simple formulas, we neglect the
backaction by the optical modes j↻; Oi and j↺; Oi. This is
a good approximation as these modes are far detuned for a
large optical bandwidth. The Langevin equations for the
modes â⊘, b̂↻, and b̂↺ read

_̂a⊘ ¼ ðiΔþ i4J − κ=2Þâ⊘ þ igðb̂↻ þ b†↺Þ þ
ffiffiffi
κ

p
âðinÞ⊘ ;

_̂b↻ ¼ ð−iΩ − i2K − γ=2Þb̂↻ þ igâ⊘ þ ffiffiffi
γ

p
b̂ðinÞ↻ ;

_̂b↺ ¼ ð−iΩ − i2K − γ=2Þb̂↺ þ igâ†⊘ þ ffiffiffi
γ

p
b̂ðinÞ↺ :

As before, we divide â⊘ into its blue and red sidebands as
well as its intrinsic quantum fluctuations (optical vacuum
noise):

â⊘ ≡ e−iΩtâðredÞ þ eiΩtâðblueÞ þ δâ:

For a narrow mechanical bandwidth γ ≪ Ω, the operators
âðredÞ and âðblueÞ are slowly varying and we can neglect their
derivative in the first Langevin equation. Then, we find

â⊘ ¼ ig
κ=2 − iðΔþ 4J þΩþ 2KÞ b̂↻

þ ig
κ=2 − iðΔþ 4J −Ω − 2KÞ b̂

†
↺ þ δâ;

where δâ describes the vacuum noise. By substituting in the
second and third Langevin equations and performing a
rotating wave approximation, we find

_̂b↻ ¼ ð−iΩðeffÞ
↻ − γðeffÞ↻ =2Þb̂↻ þ η̂↻;

_̂b↺ ¼ ð−iΩðeffÞ
↺ − γðeffÞ↺ =2Þb̂↺ þ η̂↺:

Here, η̂↻=↺ contains the intrinsic mechanical as well as the
optically induced noise. The effective eigenfrequencies

ΩðeffÞ
↻=↺ and decay rates γðeffÞ↻=↺ are obtained as

ΩðeffÞ
↻ ¼ Ωþ 2K þ g2ðΔþ 4J þ Ωþ 2KÞ

ðκ=2Þ2 þ ðΔþ 4J þ Ωþ 2KÞ2 ;

γðeffÞ↻ ¼ γ þ g2κ
ðκ=2Þ2 þ ðΔþ 4J þΩþ 2KÞ2 ;

ΩðeffÞ
↺ ¼ Ωþ 2K þ g2ðΔþ 4J −Ω − 2KÞ

ðκ=2Þ2 þ ðΔþ 4J −Ω − 2KÞ2 ;

γðeffÞ↺ ¼ γ − g2κ
ðκ=2Þ2 þ ðΔþ 4J −Ω − 2KÞ2 : ðH1Þ

We reach the threshold of the mechanical lasing transition

when the smaller rate reaches zero,γðeffÞ↻ ¼ 0, correspond-
ing to a maximum tolerable cooperativity (before hitting
the instability) of

C ¼ 4
g2

κγ
¼ 1þ

�
Δþ 4J −Ω − 2K

κ=2

�
2

: ðH2Þ

Our formula holds for a laser driving frequency below
the blue sideband of the lowest frequency optical mode
j⊘; Oi, −Δ − 4J > −Ω − 2K. The threshold cooperativity
increases monotonically from C ¼ 1 to infinity for decreas-
ing laser frequency. Notice that C ¼ 1 also represents the
lower bound for the maximum tolerable cooperativity. It is
reached when the driving is close to the blue sideband of
any optical mode.
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APPENDIX I: STABILITY DIAGRAM

In the general case, each relaxation process towards the
classical solution Eq. (A2) is associated with a pole of the
Green function ~Gðω; l; jÞ lying in the lower-half complex
plane. The corresponding damping rate is given by twice
the distance of the pole from the real axis. A pole in the
upper-half plane is associated with an excitation with
negative damping and signals that solution Eq. (A2) is
unstable. In Fig. 5, we plot the damping rate of the slowest
relaxation process as a function of the laser parameters for
J ¼ Ω. The unstable region where the Green function
~Gðω; l; jÞ has at least one pole in the upper-half plane is
marked in black. The analytical expression for the border of
the mechanical lasing instability Eq. (H2) is plotted in
yellow. It is derived for laser frequencies below the blue
sideband of the lowest frequency optical mode (the right-
hand side of the stability diagram). In the central part of the
diagram corresponding to the strong-coupling regime, the
maximum tolerable cooperativity stays close to its lower
bound C ¼ 1 because the driving frequency is always close
to the blue sideband of an optical state. In the left-hand part
of the diagram, the driving frequency is larger than the blue
sideband of the largest frequency mode and the lasing
thresold starts to increase again. Notice that at the far right
of the diagram the solution become unstable for values of
the cooperativity below the threshold of the mechanical
lasing instability Eq. (H2). In this regime, the instability
is not induced by mechanical lasing but by a parametric
instability. In optomechanical arrays, parametric instabil-
ities can occur for g2 ≳ Ωκ [39,49]. They set a finite limit
to the tolerable cooperativity also in systems with a small
bandwidth driven by a red-detuned laser where no
mechanical lasing transition is present.
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