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Under ideal conditions, quantum metrology promises a precision gain over classical techniques scaling
quadratically with the number of probe particles. At the same time, no-go results have shown that generic,
uncorrelated noise limits the quantum advantage to a constant factor. In frequency estimation scenarios,
however, there are exceptions to this rule and, in particular, it has been found that transversal dephasing
does allow for a scaling quantum advantage. Yet, it has remained unclear whether such exemptions can be
exploited in practical scenarios. Here, we argue that the transversal-noise model applies to the setting of
recent magnetometry experiments and show that a scaling advantage can be maintained with one-axis-
twisted spin-squeezed states and Ramsey-interferometry-like measurements. This is achieved by exploiting
the geometry of the setup that, as we demonstrate, has a strong influence on the achievable quantum
enhancement for experimentally feasible parameter settings. When, in addition to the dominant transversal
noise, other sources of decoherence are present, the quantum advantage is asymptotically bounded by a
constant, but this constant may be significantly improved by exploring the geometry.
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I. INTRODUCTION

High-precision parameter estimation is fundamental
throughout science. Quite generally, a number of probe
particles are prepared, then subjected to an evolution that
depends on the quantity of interest, and finally measured.
From the measurement results an estimate is then extracted.
When the particles are classically correlated and non-
interacting, as a consequence of the central limit theorem,
the mean-squared error of the estimate decreases as 1=N,
where N is the number of particles (probe size). This best
scaling achievable with a classical probe is known as the
standard quantum limit (SQL) [1]. Quantum metrology
aims to improve estimation by exploiting quantum corre-
lations in the probe.
In an ideal setting without noise, it is well known that

quantum resources allow for a quadratic improvement in
precision over the SQL [1,2]; i.e., the mean-squared error of
the estimate after a sufficient number of experimental
repetitions can scale as 1=N2, yielding the so-called
Heisenberg limit. Realistic evolution, however, always
involves noise of some form, and although quantum

metrology has been demonstrated experimentally, e.g., for
atomic magnetometry [3–9], spectroscopy [10,11], and
clocks [12,13], there is currently much effort to determine
exactly when, and by how much, quantum resources allow
estimation to be improved in the presence of decoherence
[14–33]. It is known that for most types of uncorrelated noise
(acting independently on each probe particle) the asymptotic
scaling is constrained to be SQL-like [17–24]. Specifically,
when estimating a parameter ω, the mean-squared error
obeysΔ2ω ≥ r=νN, where ν is the number of repetitions and
r is a constant that depends on the evolution. If the evolution,
which each probe particle undergoes, is independent of N,
the scaling is constrained to be SQL-like. However, for
frequency estimation this is not necessarily the case. In
frequency estimation scenarios, such as those of atomic
magnetometry [34–36], spectroscopy [37–39], and clocks
[40–45], there are two relevant resources, the total number of
probe particles N and the total time T available for the
experiment [14,15]. The experimenter is free to choose the
interrogation time t ¼ T=ν and, in particular, t may be
adapted to N. In this case, the time over which unitary
evolution anddecoherence act is different for eachN and thus
the evolution is not independent of N. Schematically, the
no-go results for noisy evolution in this case become

Δ2ω ≥
rðtÞ
NT=t

⟶
tðNÞ

Δ2ωT ≥
c½tðNÞ�

N
; ð1Þ
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with cðtÞ ¼ rðtÞt. Thus, if for some optimal choice of tðNÞ
the coefficient c decreases with N, although the no-go
results may hold for any fixed evolution time, the bound
does not imply SQL-like scaling. Note that the bound Eq. (1)
is always achievable in themany-repetitions limit ν → ∞ [2],
which corresponds to T ≫ t [14–16]. Although without
noise it is optimal to take t as large as possible, i.e., t ¼ T, for
any noisy evolution the optimal t becomes finite because of
noise dominating at large times. So the many-repetitions
regime can always be ensured by considering sufficiently
large T [24–27].
In frequency estimation scenarios, for the asymptotic

scaling to be superclassical, c must vanish as N → ∞, which
is only possible if the evolution is such that decoherence can
be neglected at short time scales, and the no-go theorems then
do not apply [46]. This is also necessary for error-correction
techniques, which utilize ancillary particles not sensing the
parameter [29] or employ correcting pulses during the
evolution [28], to surpass the SQL [22,23,46]. Without such
additional resources—considering just interrogation-time
optimization—the possibility of superclassical scaling has
been demonstrated for non-Markovian [25,26] evolutions
(for which the effective decoherence strength vanishes as
t → 0), as well as for dephasing directed along a direction
perpendicular to the unitary evolution [27]. In the latter case,
it was shown that an optimal variance scaling of 1=N5=3 can
be obtained by choosing t ∝ 1=N1=3 [27]. This result was
based on numerical analysis of the quantum Fisher informa-
tion [47] and was shown to be saturable by Greenberger-
Horne-Zeilinger (GHZ) states [48]. However, GHZ states of
many particles are not easily generated in practice, and the
Fisher information approach does not explicitly provide
the required measurements. Thus, the question of whether
the scaling is achievable in practically implementable metrol-
ogy was left open.
In this paper, we argue that the transversal-noise model

applies to atomic magnetometry, in particular, the exper-
imental setting of [3], and study the quantum advantage
attainable with use of one-axis-twisted spin-squeezed states
(OATSSs) [49] and Ramsey-interferometry-like measure-
ments [37–39], both of which are accessible with current
experimental techniques. We explicitly show that the setup
geometry plays an important role for the achievable
quantum enhancement. A suboptimal choice leads to a
constant factor of quantum enhancement, while super-
classical precision scaling can be maintained for a more
appropriate choice. We study the enhancement achievable
with the numbers of the experiment [3] and demonstrate the
advantage of modifying the geometry. We further consider
the case of noise that is not perfectly transversal and find
that, although the asymptotic precision scaling is then again
SQL-like, the precision may be substantially enhanced by
optimizing the geometry. As the previous results [27] were
based on numerics, we also provide an analytical proof of
the scaling for GHZ states in Appendix C.

II. MODEL

We consider a scheme in which N two-level quantum
systems are used to sense a frequency parameter ω in
an experiment of total duration T, divided into rounds of
interrogation time t. We keep in mind that this can
correspond to atomic magnetometry, in which the particles
then represent the atoms with a spin precessing in a
magnetic field at a frequency proportional to the field
strength. As in Ref. [27], we describe the noisy evolution
by a master equation of Lindblad form

∂ρ
∂t ¼ HðρÞ þ LðρÞ: ð2Þ

Here, HðρÞ ¼ −i½Ĥ; ρ� is the unitary part of the evolution
that encodes the parameter dependence. The Hamiltonian is
given by

Ĥ ¼ ω

2

XN
k¼1

σ̂ðkÞz ; ð3Þ

where σ̂ðkÞz is a Pauli operator acting on the kth particle
(qubit). The Liouvillian LðρÞ describes the noise, which is
uncorrelated on different qubits, so that L ¼ P

kL
ðkÞ, and

for a single qubit we have

LðkÞρ ¼ − γ

2
½ρ − αxσ̂

ðkÞ
x ρσ̂ðkÞx − αyσ̂

ðkÞ
y ρσ̂ðkÞy − αzσ̂

ðkÞ
z ρσ̂ðkÞz �;

ð4Þ

where γ is the overall noise strength and αx;y;z ≥ 0, with
αx þ αy þ αz ¼ 1. For αz ¼ 1, Eq. (4) describes dephasing
along the direction of the unitary, while αx ¼ 1 (or equiv-
alently αy ¼ 1) corresponds to the transversal-dephasing
noise. For αx ¼ αy ¼ αz ¼ 1=3, we have an isotropic
depolarizing channel.
Under this model, interrogation-time optimization leads

to a quantum scaling advantage for transversal (αx ¼ 1) but
not for parallel (αz ¼ 1) noise. This can be understood by
looking at how the coefficient c in Eq. (1) behaves in
the two cases. For short times, one can obtain bounds of
the form Eq. (1) with [27]

czðγ;ω; tÞ ¼ 2γ þ 2γ2tþOðt2Þ; ð5Þ

cxðγ;ω; tÞ ¼
γ2ω3t3

12
þOðt5Þ: ð6Þ

From this, we see that for parallel dephasing, interrogation-
time optimization cannot prevent asymptotic SQL-like
scaling, because cz is bounded from below by the nonzero
factor of 2γ. However, for perpendicular noise cx → 0 as
t → 0, and hence in this case, optimization may allow for
superclassical scaling. In Ref. [27], it was found that taking
t ¼ ð3=γω2NÞ1=3 leads to
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Δ2ωT ≥
32=3

2
ðγω2Þ1=3 1

N5=3 ; ð7Þ

and that this bound is achievable with GHZ input states.
To see that the model is relevant in practice, we consider

the atomic magnetometry experiment of Ref. [3] illustrated
in Fig. 1. In this experiment, entanglement was demon-
strated to enhance the sensitivity, but the precision scaling
with N was not studied. The relevant magnetometer
consists of a vapor of caesium atoms, which is subject
to a strong external dc magnetic field B and used to sense a
weak radio-frequency field Brf perpendicular to B (note that
in Ref. [3] two separate ensembles were used; this is not
important for the present argument). The atoms are opti-
cally pumped into an extreme magnetic sublevel and may
be treated as effective two-level systems with an energy
splitting determined by B. With B ≫ Brf , the dominant
noise is due to small variations in the dc magnetic field seen
by different atoms (e.g., due to field inhomogeneities and
atomic motion), which leads to fluctuations of the indi-
vidual energy splittings. This corresponds to a dephasing
noise that acts on each atom independently and is charac-
terized by the spin-decoherence time T2 [50]. As the
experiment is conducted at a time scale much shorter than
the ones of spontaneous emission and B-field fluctuations,
other noise sources are suppressed. In particular, the spin-
relaxation time T1 can be taken infinite (see Appendix A
for discussion) and collective noise can be neglected. The
Larmor frequency of the strong field B is matched to the
frequency of the weak field Brf , and it is then convenient to
describe the system in a rotating frame (RF). If ρ is the state
of a single atom in the nonrotating frame and B is directed
along the x axis (see Fig. 1), the state in the rotating frame
reads ρRF ¼ eiĤBtρe−iĤBt, where ĤB ¼ κBσ̂x and κ is the
coupling strength to the magnetic field. In such a Larmor-
precessing frame, the master equation for the evolution may
be written as (see also Appendix A) [35]

∂ρRF
∂t ¼ −iκBrf ½σ̂z; ρRF� − 1

T2

ðρRF − σ̂xρRFσ̂xÞ; ð8Þ

where the first term can be understood as the effective free
Hamiltonian in the rotating framewith the Brf field pointing
along z. The dephasing noise is directed along B and
parametrized by T2. Since Eq. (8) is exactly of the form
Eq. (2), it is clear that this experimental setting is captured
by the previously stated model with ω ¼ 2κBrf and trans-
versal noise αx ¼ 1, αy ¼ αz ¼ 0, γ ¼ 2=T2. We note that
B ≫ Brf is important for the noise to be transversal, which
may imply that γ is large relative to ω. In particular, this is
the case in Ref. [3], as we show below.
In Ref. [3], superclassical precision was demonstrated by

initially aligning the collective spin of the atomic ensemble
along B and reducing fluctuations of its component in
the direction perpendicular to both B and Brf via spin

squeezing [Fig. 1(a)]. Below, we study such a geometry
along with another setting, in which the collective spin is
initially perpendicular to both B and Brf and its component
alongB is squeezed [Fig. 1(b)]. In principle, scenario (b) can
be obtained from (a) by applying a π=2 pulse to the atomic
ensemble before the evolution. In both cases, Brf is
estimated from a measurement of a component of the
collective spin (in the rotating frame), read out, e.g., via
the scheme of Ref. [3], which resembles a standard Ramsey-
interferometry [37–39] measurement. We show that in (b),
for one-axis-twisted spin-squeezed states, a superclassical
scaling 1=N5=4 of the mean-squared error can be maintained,

FIG. 1. Atomic magnetometry setup. An ensemble of atoms is
placed in a strong magnetic field Bwhich induces a level splitting
between the magnetic sublevels. The atoms are used to sense a
weak field Brf in the plane perpendicular to B, which rotates in
this plane with a frequency matched to the Larmor precession
induced by B. We consider two cases for the state preparation and
readout. Scenario (a) corresponds to the geometry of the experi-
ment [3]. All atoms are initially pumped to an extreme magnetic
sublevelm ¼ F creating a coherent spin state aligned with B. The
state is then squeezed to make it more sensitive to the evolution
induced by Brf. In a frame rotating around B at the Larmor
frequency, the state can be depicted as shown in the lower part.
Brf points then along z and induces a rotation around the
z axis. The state is squeezed in y and Brf is estimated from a
measurement of the collective-spin component Ĵy. Scenario (b) is
similar, but the state is initially perpendicular to B. In the rotating
frame, it is squeezed in x and Ĵx is measured. The dominant noise
in both cases comes from individual atomic motion causing
variations in the effective magnetic field and hence the energy
splitting. This results in uncorrelated dephasing noise in the
direction of B; the impact on the collective spin is schematically
illustrated by the inner prolate spheroids. Importantly, the noise
preserves the spin along B but shrinks it in the perpendicular
directions.
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thus demonstrating that a scaling quantum advantage is
possible with feasible states and measurements. At the same
time, we find that in (a) the quantum advantage is limited by
a constant, which matches the bound for parallel dephasing
[14,24]. As a consequence, for an atomic ensemble size and
parameters matching the experiment of Ref. [3], (b) may
considerably outperform (a).
As an aside, we note that when the true value of the

estimated parameter is zero, the bound Eq. (7) vanishes.
This does not mean that the precision is unbounded, but
indicates that the bound gives no information in such a
limit. One may then speculate whether the scaling can be
further improved if ω can be made arbitrarily small in an
adaptive manner. We discuss this issue in Appendix D.

III. COMPUTING PRECISION FOR SPECIFIC
STATES AND MEASUREMENTS

To obtain results for the precision achievable within
the above scenarios, we make use of error propagation
and apply it for adequate choices of squeezed states
and collective-spin-observable measurements. Generally,
when a parameter ϕ is estimated based on the average of
measuring an observable Ô, and when the prior knowledge
of ϕ is sufficiently tight, fluctuations in the estimate can
be linearly related to the fluctuations in Ô. Thus, for a
system in a state ρ, in such a local estimation regime the
mean-squared error of the estimate may be quantified as

Δ2ϕ ¼ ðΔ2ÔÞρ
j∂hÔiρ=∂ϕj2

¼ hÔ2iρ − hÔi2ρ
j∂hÔiρ=∂ϕj2

: ð9Þ

If the measurement is repeated, Δ2ϕ will additionally
decrease inverse proportionally to the number of repetitions
ν, which also ensures the above local regime as ν → ∞ and
thus that Eq. (9) always holds. Here, we are interested in
frequency estimation over a total time T with a single-round
duration t, such that ν ¼ T=t. We therefore write the overall
mean-squared error of the ω estimate as [2]

Δ2ωT ¼ t
ðΔ2ÔÞt

j∂hÔit=∂ωj2
; ð10Þ

which, like Eq. (1), is valid in the T ≫ t regime, i.e., for
sufficiently large T. The expectation values in Eq. (10) can
be evaluated by computing the expectation value of either
the static operator in the time-evolved state or the time-
evolved operator in the input state (analogously to the usual
Schrödinger and Heisenberg pictures for unitary dynam-
ics). Specifically, in terms of the Kraus representation of
the evolution, one has

hÔit ¼
X
s

Tr½ÔKsðtÞρ0K†
sðtÞ� ¼

X
s

Tr½K†
sðtÞÔKsðtÞρ0�;

ð11Þ

where Ô is the time-independent observable, ρ0 is the input
state, and Ks are the Kraus operators of the global channel.
For independent channels acting on each qubit, Ks ¼
Ks1 ⊗ � � � ⊗ KsN , where the Ksi are the Kraus operators
acting on the ith qubit.
In subsequent sections, we determine the precisions

attainable under our model Eq. (2) for specific input states
and measurements. The model has four Kraus operators,
which have the form

K1 ¼ a1σ̂y; K3 ¼ a3σ̂z − ib31;

K2 ¼ a2σ̂x; K4 ¼ a4σ̂z − ib41: ð12Þ

Here, the coefficients ai, bi are real and depend on the
frequency ω, the noise parameters γ, αx, αy, αz, and the time
t (see Appendix B). However, to simplify notation we
suppress these dependences. Because of trace preservation,P

sK
†
sKs ¼ 1, the coefficients must satisfy

a21 þ a22 þ a23 þ a24 þ b23 þ b24 ¼ 1: ð13Þ

For later calculations, it is useful to compute the evolution
of both σ̂x and σ̂y under the Kraus map. For σ̂x, we have

K†
1σ̂xK1 ¼ −a21σ̂x;

K†
2σ̂xK2 ¼ a22σ̂x;

K†
3σ̂xK3 ¼ ð−a23 þ b23Þσ̂x þ 2a3b3σ̂x;

K†
4σ̂xK4 ¼ ð−a24 þ b24Þσ̂x þ 2a4b4σ̂x: ð14Þ

Using Eq. (13), the evolution under the channel can then
be written as (Pauli operators with no explicit time
dependence are time independent)

σ̂xðtÞ ¼
X
s

K†
s σ̂xKs ¼ ξxσ̂x þ χxσ̂y; ð15Þ

where the coefficients ξx ¼ 1 − 2ða21 þ a23 þ a24Þ, χx ¼
2ða3b3 þ a4b4Þ are again real and encode the full depend-
ence of the evolved operator on time, frequency, and the
noise parameters. They are given in Appendix B. Similarly,
one obtains

σ̂yðtÞ ¼
X
s

K†
s σ̂yKs ¼ ξyσ̂y þ χyσ̂x; ð16Þ

with ξy ¼ 1 − 2ða22 þ a23 þ a24Þ, χy ¼ −2ða3b3 þ a4b4Þ.

IV. BEATINGTHE SQLWITHREALISTIC STATES
AND MEASUREMENTS

Several experiments have demonstrated superclassical
sensitivity of magnetometry with atomic ensembles by
squeezing the collective atomic spin [3–9]. Considering
the perpendicular model noise, we now show that
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spin-squeezed states and Ramsey-type measurements
together with interrogation-time optimization are suffi-
cient not only to reach precisions unattainable by classical
protocols but also to maintain superclassical precision
scaling with the particle number.

A. Collective spin

Ramsey interferometry performed on a collection of
spin-1=2 particles (qubits) effectively corresponds to
collective-spin measurements [37–39]. Here, we consider
the components of collective spin along x and y,

Ĵx ¼
1

2

X
k

σ̂ðkÞx ; Ĵy ¼
1

2

X
k

σ̂ðkÞy ; ð17Þ

which specify the observables measured in scenarios (b)
and (a) of Fig. 1, respectively. The evolution of Ĵx under the
model Eq. (2) follows directly from Eq. (15),

ĴxðtÞ ¼
X
s

K†
s ĴxKs ¼ ξxĴx þ χxĴy; ð18Þ

and similarly for Ĵy using Eq. (16). The derivatives with
respect to the estimated parameter then read

∂hĴxit
∂ω ¼ ∂ξx

∂ω hĴxi0 þ
∂χx
∂ω hĴyi0; ð19Þ

and similarly for Ĵy after interchanging x ↔ y. We also
compute [note that taking the square and evolving do not
commute because the evolution is not unitary, i.e.,
Ĵ2xðtÞ ≢ ðĴxðtÞÞ2]

Ĵ2xðtÞ ¼
X
s

K†
s Ĵ2xKs ¼

1

4

X
k;k0

X
s

K†
s σ̂

ðkÞ
x σ̂ðk

0Þ
x Ks

¼ N
4
þ 1

4

X
k≠k0

σ̂ðkÞx ðtÞ ⊗ σ̂ðk
0Þ

x ðtÞ

¼ N
4
þ 1

4

�X
k

σ̂ðkÞx ðtÞ
�

2 − 1

4

X
k

½σ̂ðkÞx ðtÞ�2

¼ N
4
þ ½ĴxðtÞ�2 − 1

4

X
k

ðξxσ̂ðkÞx þ χxσ̂
ðkÞ
y Þ2

¼ N
4
ð1 − ξ2x − χ2xÞ þ ðξxĴx þ χxĴyÞ2; ð20Þ

so that from Eqs. (18) and (20) we obtain the variance

ðΔ2ĴxÞt ¼
N
4
ð1 − ξ2x − χ2xÞ þ ξ2xðΔ2ĴxÞ0

þ χ2xðΔ2ĴyÞ0 þ ξxχx½covðĴx; ĴyÞ�0; ð21Þ

with cov denoting the covariance. The variance for Ĵy is
again obtained by just replacing x ↔ y.

For a specific initial state of the atomic ensemble with
both its expectation values and variances known at t ¼ 0,
we can substitute the above expressions into Eq. (10), in
order to quantify the precision attained in scenarios (a)
and (b) of Fig. 1 for a given interrogation time t.

B. One-axis-twisted spin-squeezed states

There is no unique definition of spin squeezing [49], but
generally spin-squeezed states are states in which fluctua-
tions of the collective-spin component are reduced in a
particular direction, when compared to the value they
would have in a state with all individual spins aligned,
i.e., in a coherent spin state (CSS), an eigenstate of the
corresponding spin component with maximal eigenvalue.
Spin-squeezed states are useful for metrology due to their
enhanced sensitivity to any change of the collective spin in
the squeezed direction, e.g., caused by precession in a
magnetic field.
A number of experiments, in particular Ref. [3],

employ the so-called two-axis-twisted spin-squeezed
states, which can be generated by quantum nondemolition
measurement of the collective atomic spin mediated by
light. However, here we focus on one-axis-twisted spin-
squeezed states because they are amenable to analytical
treatment. As two-axis-twisted states allow for stronger
suppression of the collective-spin variance in a particular
direction, i.e., stronger squeezing, we expect them to
attain precisions at least as good as those derived below
for OATSSs. At the same time, quantum advantage with
OATSSs in magnetometry has been demonstrated in the
experiment of Ref. [9] using a Bose-Einstein condensate,
and the generation of OATSSs using nitrogen-vacancy
centers in diamond has been studied [51].
OATSSs are a particular kind of spin-squeezed states first

introduced by Kitagawa and Ueda [52]. They can be
produced by first preparing atoms in a CSS along one
direction, and then applying an evolution with a Hamiltonian
quadratic in one of the perpendicular spin components.
For example, for spin-1=2 particles, one can start from an
eigenstate of Ĵx with eigenvalueN=2 (all spins aligned along
x) and apply an evolution with a Hamiltonian proportional to
Ĵ2z . This will generate a state with minimum uncertainty at an
angle to both the y and z axes, which depends on the strength
of the evolution. The state can then be rotated to align the
direction of minimum uncertainty with one of the axes.
For scenarios (a) and (b) of Fig. 1, we consider two cases

where the initial CSS is along either x or y, and the
collective-spin component with minimum uncertainty is Ĵy
or Ĵx, respectively. For scenario (a), the mean values of the
collective spin are [52]

hĴxi0 ¼
N
2
cosN−1 μ

2
; hĴyi0 ¼ hĴzi0 ¼ 0; ð22Þ

whereas the variances read
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ðΔ2ĴxÞ0 ¼
N
4

�
N

�
1 − cos2ðN−1Þ μ

2

�
− 1

2
ðN − 1ÞA

�
;

ðΔ2ĴyÞ0 ¼
N
4

�
1þ 1

4
ðN − 1Þ½A −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p
�
�
;

ðΔ2ĴzÞ0 ¼
N
4

�
1þ 1

4
ðN − 1Þ½Aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p
�
�
; ð23Þ

with μ being the squeezing parameter, A ¼ 1 − cosN−2 μ,
and B ¼ 4 sinðμ=2ÞcosN−2ðμ=2Þ. We note that the covari-
ance ½covðĴx; ĴyÞ�0 ¼ 0 vanishes for this state. The equiv-
alents of Eqs. (22) and (23) for scenario (b) are obtained by
interchanging x ↔ y.

C. Mean-squared-error scaling under
transversal noise

The mean-squared errors of estimation, which are
achieved in scenarios (a) and (b) of Fig. 1, can be calculated
by using Eqs. (22), (23), (19), (21) (and the equivalents for
Ĵy) and substituting into Eq. (10). The best precision is then
obtained by optimizing the evolution time t and the
squeezing μ for each N. The general expressions are rather
involved, and we have been able to obtain their minima only
numerically. However, any explicit choice of tðNÞ and μðNÞ
provides a precision that is guaranteed to be attainable.
Specifically, for scenario (b) a choice that appears

to be nearly optimal is μ ¼ ðγ=ωÞ1=4ðN=4Þ−4=5 and t ¼
ðγωÞ−1=2N−1=8 [53]. For this choice, we expand Eq. (10)
in 1=N to find the expression for the asymptotic
mean-squared error

Δ2ωðbÞT ¼
N→∞

2ω

3

1

N5=4 : ð24Þ

Since the scaling is better than the 1=N of the SQL, this
demonstrates that superclassical precision scaling is indeed
possible with spin-squeezed states and Ramsey-type mea-
surements in the presence of transversal noise.
The possibility for a large quantum enhancement

depends strongly on the geometry. We can see this by
comparing with scenario (a). There, we find that

Δ2ωðaÞT ¼
N→∞

2γ

N
; ð25Þ

which coincides with the best achievable precision for the
parallel-noise setting [24] constrained by Eq. (5). As
discussed in Appendix E, we find an analytical proof of
Eq. (25) in the limit ω → 0, and strong numerical evidence
for arbitrary ω, which indicates very clearly that no better
precision can be achieved. The value is attainable by any
choice of μ ∝ 1=Ns=ðsþ1Þ and t ∝ 1=Ns with s > 1. Thus,
for this geometry, under transversal noise only SQL-like
scaling is possible and the quantum enhancement over
classical, nonentangled strategies is bounded, while for

scenario (b), the quantum enhancement is unbounded with
increasing N.
One can understand intuitively why scenario (b) is more

robust than (a) from the pictures of the collective spin in
Fig. 1. In both cases the dephasing is directed along x and
so causes random rotations around the x axis. The effect of
such rotations on the state in (a) is to smear the squeezed
state into a more circular distribution at the pole. This
reduces the sensitivity of a Ĵy measurement to a small
rotation around the z axis, which is the signal we want to
detect. In scenario (b), the effect of x rotations is to smear
the state along the equator. However, this does not affect the
sensitivity of the Ĵx measurement to a z rotation as strongly.
Using the same picture, one can also understand why there
is a finite optimal value of the squeezing parameter μ. When
μ becomes large, the ellipse starts to stretch around the ball.
Referring to scenario (b), a z rotation will then increase the
projection of the state onto the x axis and hence the Ĵx
measurement loses sensitivity.
The difference between the two geometries shows up

only for quantum strategies, that is, when squeezed states
are employed. If the initial states are not squeezed but are
simply CSS states along x for scenario (a) or y for scenario
(b), then the precision takes the same form in both cases:

Δ2ωCSST ¼ 2tγ2Γ2Γ̄4e−γtΓ̄½1 − cosh ðγtΓ̄Þ þ 2eγtðΓ̄ΓÞ2�
½2ð1 − e−γtΓ̄Þ − γtΓ2Γ̄ð1þ e−γtΓ̄Þ�2

1

N
;

ð26Þ

where Γ ¼ 2ω=γ and Γ̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Γ2

p
. Thus, we can bench-

mark the quantum enhancement in either scenario against
this classical value. In particular, we consider the numbers
from Ref. [3]. In this experiment, N ≈ 1011, T2 ≈ 30 ms,
κ ≈ 1010 ðTsÞ−1, and Brf ≈ 36 fT, which gives γ ¼ 2=T2 ≈
67 Hz and ω ¼ 2κBrf ≈ 3.6 × 10−3 Hz, and the measure-
ment time is t ≈ 1 ms. The experiment is not performed
with OATSSs, but we compute the quantum enhancements
that OATSSs would provide. We insert the numbers in the
full expressions [from Eq. (10)] for Δ2ωðaÞT and Δ2ωðbÞT
and vary the squeezing, which we quantify in dB [54]; see
Fig. 2(a). The precision in scenario (a) saturates with
increasing squeezing, and the best quantum enhancement
attainable is Δ2ωCSS=Δ2ωðaÞ ≈ 8. In scenario (b), on
the other hand, the enhancement can reach Δ2ωCSS=
Δ2ωðbÞ ≈ 2 × 107, corresponding to a 4500-fold improve-
ment in precision. In this case, the precision does not
saturate but is limited by the maximal squeezing attainable
by the OATSS. This underlines the advantage offered by
geometry. However, these maximal enhancements require
rather prohibitive squeezings of ≳ − 18 and −73 dB,
respectively. If we restrict the squeezing to at most
−8 dB as discussed in the outlook of Ref. [3], then scenario
(b) provides an enhancement of Δ2ωCSS=Δ2ωðbÞ ≈ 6.4,
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corresponding to a factor of 2.5 in precision, while scenario
(a) for the same numbers gives Δ2ωCSS=Δ2ωðaÞ ≈ 3.8,
corresponding to a factor of 1.95. However, the behavior
in the two scenarios for varying interrogation time is very
different, as explicitly shown in Fig. 2(b). The performance
is similar at short times, but when the interrogation time is
increased, the quantum advantage in scenario (a) is lost,
while the advantage in scenario (b) is maintained. This is
a nice feature of the optimized geometry, as in practice
experimental constraints may impose a lower limit on t.
As seen from Fig. 2(b), at a squeezing of −8 dB, the best
precision in scenario (a) (optimizing t) is not significantly
below the best precision attainable with a CSS, while
the advantage of scenario (b) importantly remains even
when experimental constraints do not allow for arbitrarily
small t.
We note that, as for Eq. (7), the error Eq. (24) vanishes as

ω → 0. We refer the reader to Appendix D for a discussion
of this limit.

D. Nontransversal noise sources

In a realistic implementation, in addition to the dominant
transversal noise, other sources of decoherence will be
present. For example, in some setups different from
Ref. [3], e.g., spin-exchange relaxation-free magnetometers
[55,56], spin relaxation cannot be neglected. Typically
[35,36], this is modeled as uncorrelated depolarizing noise
[αx ¼ αy ¼ αz ¼ 1=3 in Eq. (4)] with a strength dictated by
the spin-relaxation time T1 (see Appendix A). As opposed
to the directional dephasing caused by spin decoherence,
such noise is isotropic and always yields a parallel-noise

component independently of the geometry. In the case of
Ref. [3], any spatial misalignment between B, Brf , and the
direction of squeezing, temporal mismatch between the Brf
rotations, and the Larmor frequency of B, or violation of the
condition Brf ≫ B, may be phenomenologically included
into such a depolarization model.
We assess the effect of such additional noise sources by

considering a deviation from perfect transversality. In
particular, we take a small component of dephasing directed
along the z axis, such that αx ¼ 1 − ϵ and αz ¼ ϵ. As
discussed in Ref. [27], once any such parallel-dephasing
contribution is present, the asymptotic scaling must return to
its SQL-like behavior; that is,

Δ2ωT ≥
cxzðγ; ϵÞ

N
; ð27Þ

with cxzðγ; ϵÞ lower bounded by the minimum of Eq. (5),
i.e., czðϵγ;ω; tÞ ≥ 2ϵγ. For instance, for the depolarization-
based spin-relaxation model, cxzðγ; ϵÞ ≥ 8=ð3T1Þ (see
Appendix A). We illustrate the resulting crossover behavior
in Fig. 3.
Although the asymptotic scaling is now again SQL-like,

geometry can strongly influence the achievable quantum
gain and the effective N at which the crossover to SQL-like
scaling happens. In Fig. 3, we show the mean-squared-error
scalings attained in scenarios (a) and (b) using, respectively,
OATSSs along x and y and measurements of Ĵy and Ĵx and
compare them to a strategy without entanglement, simply
using a CSS along x and measurement of Ĵy corresponding
to the nonentangled strategy implemented in Ref. [3]. We

FIG. 2. Mean-squared error of estimation as a function of
(a) squeezing and (b) interrogation time, for parameters corre-
sponding to Ref. [3], N ¼ 1011, γ ¼ 67 Hz, ω ¼ 3.6 × 10−3 Hz.
In (a) the interrogation time is fixed at t ¼ 1 ms, while in (b) the
squeezing is fixed at −8 dB (indicated by the dotted lines, these
values correspond to the numbers discussed in the text). The
results for scenario Fig. 1(a) (yellow line), scenario Fig. 1(b)
(blue line), and for CSS (dashed gray line) are shown.

FIG. 3. The mean-squared error of estimation rescaled by the
particle number such that SQL-like scaling is horizontal. The
curves for scenario (a) (yellow line) and (b) (red line) with 5% of
parallel noise are shown, and for scenario (b) under purely
transversal noise (blue line), along with their asymptotes (dashed
line), respectively, 2γð1 − ϵÞN from (25), 2γϵ from the parallel
noise component, and 2ω=3N5=4 from Eq. (24). We also show the
performance Eq. (26) of a CSS without squeezing (gray dashed
line). The locations where the OATSS strategies reach 90% of
their asymptotic gain over this CSS strategy are indicated for
scenarios (a) (open triangle) and (b) (closed triangle).
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see that while the strategy in (b) can saturate the bound
2γϵ=N, the strategy in (a) only reaches 2γð1 − ϵÞ=N as
imposed by Eq. (25). Thus, the mean-squared error of
geometry (b) is a factor ϵ=ð1 − ϵÞ lower than (a), which
may be significant when the noise is dominantly trans-
versal. Furthermore, superclassical scaling persists over a
larger range of N in geometry (b). In the Fig. 3, the
locations where the OATSS strategies for (a) and (b) reach
90% of their asymptotic gain over the nonentangled CSS
strategy are indicated. Clearly, the crossover happens at
much largerN in scenario (b). As ϵ → 0, the crossover must
go to infinity. To get an idea of the behavior, we can take the
N at which the asymptotic bound 2ϵγ=N crosses the
asymptote Eq. (24) for perfectly transversal noise. This
intersection scales as ðω=γÞ4=ϵ4. Thus, significant gain in
precision by squeezing is attained over a larger range of N
if the geometry is chosen correctly.

V. CONCLUSION AND OUTLOOK

For quantum metrology to be relevant in practical
situations, it is important that good performance can be
attained under realistic noise with states and measurements
that are amenable to implementation in the laboratory.
While recent results have shown that for many noise types
precision scaling can only improve over the classical limit
by a constant, here we demonstrate that under transversal
dephasing, superclassical scaling can be preserved with
experimentally accessible states and measurements, and we
argue that this noise model is relevant to recent atomic
magnetometry experiments. We show that the choice of
geometry is important for the attainable quantum improve-
ment both asymptotically and for parameter settings cor-
responding to recent experiments. Furthermore, we assess
the robustness of the model to other nontransversal sources
of noise and find that quantum enhancement could still
be achieved for atomic ensembles of macroscopic size with
an adequate choice of geometry.
Our results give a clear message that quantum-enhanced

metrology maintains its relevance even in the presence of
noise, and we hope that they will encourage the search for
other practically motivated scenarios where quantum strat-
egies provide an advantage. For instance, it has been
suggested that the transversal-noise model applies also to
nitrogen-vacancy centers in diamonds [28], and that one-
axis-twisted spin-squeezed states could be prepared in such
systems [51]. Very recently, a noise-robust magnetometry
scheme employing SQUID junctions has been proposed
[57]. Finally, in the Appendix D, we speculate about the
potential of adaptive techniques that bias the estimated
parameter towards the zero value, for which our current
precision bounds fail. We expect that the question of what
happens in this limit could be consistently resolved by
employing Bayesian techniques [22,33,42], which account
explicitly for the prior knowledge about the estimated
parameter.
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APPENDIX A: ATOMIC MASTER EQUATION

Following Ref. [3], we assume correlated effects in the
atomic ensemble to play a role only at time scales longer
than the interrogation time, i.e., the ensemble relaxation
and decoherence times T�

1; T
�
2 ≫ t [50] (in Ref. [3],

t ≈ 1 ms). We may then describe the dynamics by a master
equation where each atom evolves independently,

∂ρNðtÞ
∂t ¼

XN
n¼1

D½ρNðtÞ�; ðA1Þ

whereD generates the evolution for a single atom (assumed
to be the same for all atoms) and reads

D½ρðtÞ� ¼ −iΩB

2
½σ̂x; ρðtÞ� − i

ω

2
½σ̂yzðtÞ; ρðtÞ� ðA2Þ

þ 1

T2

½σ̂xρðtÞσ̂x − ρðtÞ� ðA3Þ

þ 1

T1

�
1

3

X3
i¼1

σ̂iρðtÞσ̂i − ρðtÞ
�
: ðA4Þ

The terms (A2) represent the Hamiltonian part of the
dynamics: ΩB ¼ 2κB is the Larmor frequency of the strong
field B (see Fig. 1), whereas ω ¼ 2κBrf is the frequency
corresponding to the weak field Brf being sensed. Having
Ref. [3] in mind, we allow Brf to rotate in the yz
plane, σ̂yzðtÞ ¼ cos θtσ̂z − sin θtσ̂y.
The term (A3) represents dephasing. It is a consequence

of B-field fluctuations independently affecting each atom
(e.g., arising from the atomic motion and/or local field
inhomogeneities). Equivalently, it may be derived by
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considering an average description of a noiseless evolution
but with ΩB fluctuating according to a Gaussian distribution
with variance 4=ðT2tÞ (note that the variance diverges in the
t → 0 limit manifesting the Markovianity of the noise). Such
fluctuations define the spin-decoherence time T2 [50] and
constitute the transversal [27] noise, which is the main focus
of this paper.
The third term Eq. (A4) represents the spin-relaxation

process occurring predominantly due to spin-destruction
or spin-exchange atomic collisions [35] (the latter may
be eliminated in the accordingly called spin-exchange
relaxation-free magnetometers [55,56]). Note that
Eq. (A4) effectively yields a depolarizing channel [as
defined in Eq. (4)] with strength parametrized by the
spin-relaxation time T1 [36,50].
By moving to the rotating frame precessing with

the Larmor frequency, in which ρRFðtÞ ¼ eðiΩBt=2Þσ̂x×
ρðtÞe−ðiΩBt=2Þσ̂x , and by using eðiθ=2Þσ̂x σ̂y=ze−ðiθ=2Þσ̂x ¼
cos θσ̂y=z∓ sin θσ̂y=z, we obtain the single-atom master
equation in the RF as

∂ρRFðtÞ
∂t ¼ −iω

2
½sin δθtσ̂y þ cos δθtσ̂z; ρRFðtÞ�

þ 1

T2

½σ̂xρRFðtÞσ̂x − ρRFðtÞ�

þ 1

T1

�
1

3

X3
i¼1

σ̂iρRFðtÞσ̂i − ρRFðtÞ
�
; ðA5Þ

with δθt ¼ ðΩBt=2Þ − θt. As a consequence, if the Larmor
frequency is chosen to exactly match the rotation of Brf ,
i.e., θt ¼ ΩBt=2, and if we consider the limit T1 → ∞ in
which the spin relaxation is completely ignored (as in
Ref. [3]), then we indeed recover Eq. (8) in the main text.
Note that Eq. (A5) indicates that by not exactly matching

θt with the Larmor frequency we nonetheless preserve
the required transversal geometry between the dephasing
noise Eq. (A3) and the ω-encoding part, so that the
perpendicular-noise model Eq. (4) of Ref. [27], in principle,
still applies. However, let us emphasize that for our analysis
of squeezed states to be valid, the geometry of squeezing
must always be adjusted for a particular choice of Brf
direction in the RF, e.g., depicted in Fig. 1 for Brf chosen
to be stationary and pointing along z in the RF. In an
experiment, we expect there to be some mismatch between
the Brf -rotation frequency and ΩB, which would constitute
an extra source of global dephasing noise along x, i.e.,
decreasing the ensemble spin-decoherence time T�

2

neglected in Ref. [3]. In contrast, any such fluctuations felt
locally by atoms would just lower T2 in Eq. (A3), which
would thus not impair the robustness of the setup.
On the other hand, any geometrical misalignment

of the fields or any instabilities of θt can always
be modeled in Eq. (A5) by lowering the effective
spin-relaxation time T1. Importantly, the spin-relaxation

process may be interpreted as a nontransversal-noise
source, which we study in Sec. IV D. Similarly to the
parallel dephasing case [αz ¼ 1 in Eq. (4)], which is
known to asymptotically restrict the precision to 2γ=N
[24], it has been shown [32] that depolarizing noise
[αx ¼ αy ¼ αz ¼ 1=3 in Eq. (4)] yields a SQL-like asymp-
totic precision ð4γ=3Þ=N, thus giving just a 2=3-factor
improvement as compared to the pure parallel-noise
model.
A finite spin-relaxation time must thus impose an

asymptotic SQL-like behavior, which we may estimate
by taking 3=2 of T1 in Eq. (A5) to contribute solely to the
parallel-dephasing component. Then, after substituting for
ϵ ¼ 2T2=ð3T1 þ 2T2Þ and γ ¼ 2ð3T1 þ 2T2Þ=ð3T1T2Þ,
we can directly utilize Eq. (27) to obtain an asymptotic
bound with 2γϵ ¼ 8=ð3T1Þ dictated by the spin relaxation.
Crucially, the analysis of Sec. IV D thus shows that in the
regime of T1 ≫ T2, the optimal geometry of scenario (b)
not only allows the counterbalance of the spin-decoherence
effects, but also postpones the inevitable SQL-bounding
impact of spin relaxation to much higher N (see the
triangular marks in Fig. 3).

APPENDIX B: KRAUS OPERATORS

The map corresponding to evolution under the master
equation (2) during time t can be written as a composite
map of the form E⊗N

ω . Following Andersson et al. [58], the
single-qubit maps are then given by

EωðρÞ ¼
X3
i;j¼0

Sij ~σiρ ~σj; ðB1Þ

where ~σi are the normalized Pauli operators ~σi ¼ σ̂i=
ffiffiffi
2

p
and σ̂0 denotes the identity. All elements of the matrix S are
zero, except S00 ¼ Aþ þ Bþ, S11 ¼ A− þ ðΓ= ~αÞB−,
S22 ¼ A− − ðΓ= ~αÞB−, S33 ¼ Aþ − Bþ, S03 ¼ iðα−= ~αÞB−,
S03 ¼ −iðα−= ~αÞB−. Where we have defined Γ ¼ 2ω=γ,
α� ¼ αx � αy, and ~α ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2− − Γ2

p
, and the coefficients

A� ¼ 1

2
ð1� e−γtαþÞ; ðB2Þ

B� ¼ 1

2
e−ðγt=2Þð1þαz− ~αÞð1� e−γt ~αÞ: ðB3Þ

AKraus representation of the map Eω can be obtained by
diagonalizing the matrix S. Denoting the eigenvalues and
normalized eigenvectors of S by λi and vi, respectively, one
can find a valid set of Kraus operators for the channel:

Kj ¼
X4
i¼1

ffiffiffiffiffiffiffi
jλij

p
ðviÞj ~σj−1; ðB4Þ

with j ¼ 1;…; 4, which gives the set in Eq. (12). The
coefficients in Eq. (12) are rather involved, and we do not

J. B. BRASK, R. CHAVES, AND J. KOŁODYŃSKI PHYS. REV. X 5, 031010 (2015)

031010-9



explicitly state them here. Instead, we directly give the
expressions for ξx, χx, ξy, and χy of Eqs. (15) and (16).
For general noise, they read

ξx ¼ e−ðγt=2Þð1þαzÞ
�
cosh

�
γt
2
~α

�
þ α−

~α
sinh

�
γt
2
~α

��
;

χy ¼ −e−ðγt=2Þð1þαzÞ Γ
~α
sinh

�
γt
2
~α

�
; ðB5Þ

and

ξy ¼ e−ðγt=2Þð1þαzÞ
�
cosh

�
γt
2
~α

�
− α−

~α
sinh

�
γt
2
~α

��
;

χy ¼ e−ðγt=2Þð1þαzÞ Γ
~α
sinh

�
γt
2
~α

�
: ðB6Þ

In the case of perfectly transversal noise, they further
simplify, since αx ¼ 1 implies αz ¼ 0 and ~α ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Γ2

p
.

APPENDIX C: ANALYTICAL SCALING
FOR GHZ STATES

Stemming from the error-propagation method [see
Eq. (10)] utilized in the main text, we can also confirm
the results of Ref. [27] analytically for the GHZ input states,

jGHZi ¼ 1ffiffiffi
2

p ðj0;…; 0i þ j1;…; 1iÞ; ðC1Þ

by considering the parity operator in the x direction,

P̂x ¼ ⊗N
k¼1 σ̂

ðkÞ
x ; ðC2Þ

as the observable being measured. Similarly to the case of
collective-spin operators and Eq. (18), we may utilize
Eq. (15) to write the form of the parity operator at time t as

P̂xðtÞ ¼
X
s

K†
sP̂xKs ¼ ⊗N

k¼1ðξxσ̂ðkÞx þ χxσ̂
ðkÞ
y Þ: ðC3Þ

In the computational basis fj0i; j1ig⊗N , such an operator
just flips all of the qubits, and hence only the off-diagonal
terms contribute when calculating its expectation value for a
GHZ state Eq. (C1). Every σ̂x contributes a factor of 1 while
σ̂y contributes a factor of �i. Thus, the expectation value of
the measurement becomes

hP̂xiGHZ;t ¼
1

2
½ðξx þ iχxÞN þ ðξx − iχxÞN �; ðC4Þ

and, since P̂2
x ¼ 1, it follows that Δ2P̂x ¼ 1 − hP̂xi2.

We compute the mean-squared error of estimation via
Eq. (10), after setting the interrogation time to t ¼
ð3=γω2NÞ1=3, as was found in Ref. [27] from numerical

analysis. Expanding the corresponding Δ2ωT in 1=N, we
find the asymptotic scaling to read:

Δ2ωT ¼
N→∞

gðγ;ω; NÞðγω2Þ1=3 1

N5=3

≥
e2

31=3
ðγω2Þ1=3 1

N5=3 ; ðC5Þ

where gðγ;ω; NÞ represents oscillating terms that are lower
bounded by e2=31=3. The constant prefactor here is larger
than the prefactor 32=3=2, which was numerically verified to
be optimal—optimized over all possible measurements—
for GHZ states [27]. Nevertheless, although this suggests
that either parity measurement is suboptimal or the above
interrogation time t dependence should be improved in
the parity-based scenario, Eq. (C5) suffices to prove the
superclassical precision scaling, 1=N5=3, as well as the
ðγω2Þ1=3 behavior of the asymptotic coefficient.

APPENDIX D: NOTE ON VANISHING
PARAMETER VALUE

For ω ¼ 0, both the GHZ-achievable bound Eq. (7) and
the OATSS-based expression Eq. (24) vanish. This does not
mean that the precision is unbounded for the two cases, but
rather suggests that the results give no information in such a
limit. It is therefore not clear what precision scaling can
then be achieved.
In general, for the channel Eq. (B1) at ω ¼ 0, we get

ξ ¼ 1, χ ¼ 0, and ∂ξ=∂ω ¼ 0, ∂χ=∂ω ¼ ðe−tγ − 1Þ=γ.
For a GHZ state Eq. (C1) and parity measurement
Eq. (C2), one can show utilizing Eq. (10) that

Δ2ωT ¼
N→∞

tγ2

ð1 − e−tγÞ2
1

N2
; ðD1Þ

for fixed t. This is minimized at topt ¼ κ=γ, where κ is a
numerical constant. Similarly, at ω ¼ 0 for an OATSS
along y squeezed in x [as in scenario (b) of the main text]
with squeezing parameter μ ¼ ðN=4Þ−2=3, one finds

Δ2ωT ¼
N→∞

5

3 × 22=3
tγ2

ð1 − e−tγÞ2
1

N5=3 ; ðD2Þ

and again the optimal time is topt ¼ κ=γ.
Thus, on the one hand, the local estimation approach that

we employ above indicates that an improved scaling, even
reaching the Heisenberg limit for GHZ states, is possible at
the special ω ¼ 0 parameter value. Even if the value of ω is
a priori nonzero, one might then think that the precision
scaling can be improved by adopting an iterative, adaptive
strategy [59–61]. By applying a bias (e.g., in the case of
magnetometry, a magnetic field in opposite direction to the
estimated field) to decrease the parameter after obtaining its
first estimate, a better estimate is obtained with a precision
that is less heavily constrained by bounds Eqs. (7) and (24),
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due to the lower effective value of ω. On the other hand, the
prior information on ω required to adjust the bias may scale
prohibitively. We can compute the estimated mean-squared
error for GHZ states and parity measurements (see above)
and expand it in ω to obtain Δ2ωT ≈ cðγ; tÞ=N2 þOðω2Þ,
with c given by Eq. (D1). For the Heisenberg-scaling term
to dominate for a fixed t, the higher-order terms in the
expansion must be negligible in comparison. However, we
find (for even terms, odd terms vanish) that the kth term
scales as ωkNk−3, which implies that we need ω ≪
N−ðk−1Þ=k to neglect the higher-order terms. For this to
hold for all k, ω ≪ 1=N, which means that the prior
information on ω must already be Heisenberg limited, as
in the case of a decoherence-free local estimation scenario
[22,33]. At first sight, this may indicate that such an
adaptive scheme may not be successful for any prior
distribution of finite width, and that the value of ω must
be perfectly known and set to zero for the above improved
scalings to be observed. However, recent results [42], based
on the Bayesian approach to estimation, indicate that in the
decoherence-free case the Heisenberg scaling is attained
irrespectively of the prior knowledge of ω. Hence, we
expect the transversal-noise model to behave similarly due
to its decoherence-free-like regime at short interrogation
times, which would then prove the above adaptive strategy
to also be efficient.

APPENDIX E: BOUND FOR SCENARIO (a)

We give an analytical proof of Eq. (25) in the limit
ω → 0 and strong numerical evidence for arbitrary ω.
Following the method outlined at the beginning of

Sec. IV C, we find expressions for Δ2ωðaÞT and Δ2ωðbÞT.
We are looking for a lower bound on the former. From the
expressions, it can be seen that, in the case ω ¼ 0,

ðΔ2ωðaÞTÞ − e−2tγðΔ2ωðbÞTÞ ¼
γ2t cothðγt

2
Þ cos ðμ

2
Þ2−2N

N
:

ðE1Þ

Now, since both the prefactor e−2tγ and Δ2ωðbÞT are
positive, any lower bound on this quantity is also a lower
bound on Δ2ωðaÞT. The t-dependent factor t cothðγt=2Þ
is lower bounded by 2=γ (attained when t → 0), while
cos ðμ=2Þ2−2N is lower bounded by 1. It follows that
ðΔ2ωðaÞTÞ is lower bounded by 2γ=N as desired.
When ω > 0, the expressions for Δ2ωðaÞT and Δ2ωðbÞT

become significantly more complicated. However, we can
again look at a quantity

M ¼ ðΔ2ωðaÞTÞ −
�
A − B
Aþ B

�
2

ðΔ2ωðbÞTÞ; ðE2Þ

where

A ¼ cosh

�
1

2
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 4ω2

q �
; ðE3Þ

B ¼ γ sinh

�
1

2
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 4ω2

q �. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 4ω2

q
: ðE4Þ

Since ðA − BÞ2=ðAþ BÞ2 and Δ2ωðbÞT are positive, a
lower bound on M is again also a lower bound on
Δ2ωðaÞT. We have not been able to prove an analytical
bound for M, but for given values of ω, γ, N we can
numerically minimizeM over μ and t. In Fig. 4, we plot the
results of several such minimizations. As can be seen,
the numerics give very clear evidence that minM ¼ 2γ=N
and hence Δ2ωðaÞT is lower bounded by 2γ=N as claimed.
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