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Bosonic topological insulators (BTIs) in three dimensions are symmetry-protected topological phases
protected by time-reversal and boson number conservation symmetries. BTIs in three dimensions were first
proposed and classified by the group cohomology theory, which suggests two distinct root states, each
carrying a Z2 index. Soon after, surface anomalous topological orders were proposed to identify different
root states of BTIs, which even leads to a new BTI root state beyond the group cohomology classification.
In this paper, we propose a universal physical mechanism via vortex-line condensation from a 3D
superfluid to achieve all three root states. It naturally produces a bulk topological quantum field theory
description for each root state. Topologically ordered states on the surface are rigorously derived by placing
topological quantum field theory on an open manifold, which allows us to explicitly demonstrate the
bulk-boundary correspondence. Finally, we generalize the mechanism to ZN symmetries and discuss
potential symmetry-protected topological phases beyond the group cohomology classification.
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I. INTRODUCTION

Symmetry-protected topological states (SPTs) in
strongly interacting bosonic and spin systems have been
studied intensively recently [1–5]. By definition, the bulk
of a SPT state only supports gapped bosonic excitations,
but its boundary may exhibit anomalous quantum phenom-
ena protected by global symmetry. As such, the usual three-
dimensional fermionic topological insulators (FTIs) [6–12]
can be literally viewed as a fermionic SPT state [13]. A
Haldane spin chain, which was proposed decades ago, is a
typical example of SPT states in 1D [1,14–18].
Mathematically, given both spatial dimension and sym-
metry group G as input data, one can apply the “group
cohomology theory with R=Z coefficient” to systemati-
cally classify SPT states [2]. Another mathematical tool,
“cobordism,” has also been applied, and some nontrivial
SPT states beyond group cohomology theory have been
proposed recently [19,20]. In addition to the above clas-
sification frameworks, a surge of broad interest has been
shown from different approaches [22–54].
In this paper, we study bulk topological quantum field

theory (TQFT) of bosonic topological insulators (BTIs) via
the so-called “vortex-line condensation” mechanism. As a
bosonic analog of the well-known FTIs, the so-called
“bosonic topological insulators” were proposed first based

on the group cohomology theory [2]. By definition, a BTI
state is a nontrivial SPT state protected by Uð1Þ ⋊ ZT

2

symmetry in three dimensions. Here, U(1) symmetry
denotes the conservation of boson number, while time-
reversal symmetry ZT

2 acts on bosons as T
2 ¼ 1 in the bulk.

In the framework of group cohomology theory, such SPT
states are classified byZ2 × Z2 [2,37,55]. In other words, in
comparisonwith the singleZ2 index in FTIs of free fermions
[6–12] which corresponds to the even or odd number of
Dirac cones on the surface, there are two independent Z2

indices to label distinct BTI states and each index allows us
to define a so-called “BTI root state” [55]. It was nicely
proposed in Ref. [47] that the surface of a BTI supports
topological order that (i) respects symmetry and (ii) cannot
be realized on a 2D plane alone unless symmetry is broken.
In the following, we briefly review all BTI root states.
The nontrivial phenomena of the first BTI root state can

be characterized by its surface Z2 topological order, where
both e andm quasiparticles carry half-charge. In addition, if
ZT
2 is explicitly broken on such a surface and the bulk is

fabricated in a slab geometry, one may expect a nontrivial
electromagnetic response featured by a quantum Hall effect
with odd-quantized Hall conductance on the surface and
bulk Witten effect with Θ ¼ 2πmod4π [47,49,56–58],
which is different from Θ ¼ πmod2π in FTI states of free
fermions [59]. BTIs labeled by this Z2 index have been
studied in detail via fermionic projective construction and
dyon condensation [49]. The physical signature of the
second BTI root state is characterized by its surface Z2

topological order, where both e and m quasiparticles are
Kramers doublets. Surprisingly, it has only recently been
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known that there is a new Z2 index that is beyond group
cohomology classification [19,20,47,48]. As the third BTI
root state, it supports a nontrivial surface with the so-called
“all-fermion” Z2 topological order, where all three non-
trivial quasiparticles are self-fermionic and mutual semi-
onic. Remarkably, an exactly solvable lattice model for this
BTI has been proposed via the so-called Walker-Wang
approach [45,60], which confirms the existence of the third
Z2 index.

II. OVERVIEW

Despite much progress in diagnosing surface phenomena
of BTI states, throughout the paper, we stress that a well-
defined bulk theory and bulk definition of symmetry arevery
crucial towards a controllable understanding of the surface
quantum states. This concern is also highlighted in the
conclusion section of Ref. [58]. If the bulk theory is
unknown, the uniqueness of a proposed surface state is
generically unclear. More concretely, one may understand
the importance of a bulk definition through the following
two aspects. First, given a 2D state that cannot be symmet-
rically realized in any 2D lattice model, it does not
necessarily mean that the state can be realized on the surface
of a 3D SPT phase. Second, when a surface phase transition
occurs, the bulk does not necessarily experience a bulk phase
transition, implying that a many-to-one correspondence
between boundary and bulk is generically possible.
Incidentally, a many-to-one correspondence was studied
in quantum Hall states with high Landau levels [61,62]. In
this paper, we also show that the first BTI root state (Sec. VI)
exhibits a many-to-one correspondence. It generalizes the
aforementioned descriptions of surface topological order
where only Z2 topological order is allowed.
One way to derive bulk field theory is the so-called

hydrodynamical approach that we apply in this paper. We
introduce this approach by briefly reviewing its application
in fractional quantum Hall effect (FQHE). FQHE is a
strongly correlated many-body quantum system, and it is
technically hard to derive the bulk low-energy field theory
by directly performing renormalization group analysis.
However, one may apply the hydrodynamical approach
whose main principle is to study collective modes of Hall
systems at low energies. Since the bulk is gapped, it is
sufficient to take quantum fluctuations of density ρ and
current ~j into account. Along this line of thinking, the bulk
Chern-Simons theory is obtained, which encodes various
“topological data” of the incompressible Hall state, such as
modular Sm and T m matrices, chiral central charge c−, and
other properties of edge conformal field theory [63–70].
Very recently, TQFT protected by global symmetry has also
been studied intensively. For example, Lu and Vishwanath
[24] imposed global symmetry to Chern-Simons theory and
successfully classified some 2D SPT states protected by
Abelian symmetry group. The success of such a hydrody-
namical approach in 2D SPT [24] motivates us to develop a

“universal hydrodynamical approach” for SPT phases
in 3D.
It is intricate to tackle bulk TQFTof all SPT states in 3D,

which is far beyond the scope of the present work. In this
paper, we restrict our attention to investigating the dynamic
topological quantum field theory of aforementioned BTI
states through considering exotic vortex-line condensa-
tions, which is pictorially illustrated in Fig. 1. Here, vortex
lines mean the configuration of topological line defects in
3D superfluid states, e.g., helium-4. Such a vortex-line
condensate state is shown to be described by a topological
action in the form of

Stop ¼ i
KIJ

2π

Z
bI ∧ daJ þ i

ΛIJ

4π

Z
bI ∧ bJ; ð1Þ

where aI are usual 1-form U(1) gauge fields and bI are
2-form U(1) gauge fields [71]. K and Λ are some N × N
integer matrices that we elaborate on in the main text,
I; J ¼ 1; 2;…; N. Surprisingly, we find that such a simple
physical picture is sufficient to produce all three root states
of 3D BTIs. More concretely, we find that the first two BTI
root states within group cohomology classification can be
achieved through a pure b ∧ da-type term where symmetry
transformations [either ZT

2 or U(1)] are defined in an

Superfluid 

BTI 
 (presence of b b 
term) 

1 

3 

          BTI 
(unusual symmetry 
transformation) 

Trivial Mott Insulator 

2 

FIG. 1. Phases obtained by vortex-line condensation. In the
phase transition 1, U(1) symmetry (i.e., boson number conser-
vation) is restored from superfluid to a trivial Mott insulator by
condensing strings (i.e., 2π vortex lines). Thus, the trivial Mott
insulator phase is formed by vortex-line condensation with
b ∧ da-type bulk field theory description. In the phase transition
2, strings are also condensed and the bulk field theory is also
b ∧ da type (see Secs. VI and VII), but the resultant Mott phase
is a nontrivial SPT state [i.e., bosononic topological insulator
(BTI)] since either U(1) or ZT

2 symmetry transformation is
defined in an unusual way. Thus, we end up with two different
BTI root states. In the phase transition 3, strings are condensed in
the presence of a nontrivial linking Berry phase term, or more
precisely, a nontrivial multicomponent b ∧ b-type term. The
nontrivial Mott phase is a BTI phase obtained in Sec. V, which is
a SPT root state beyond group cohomology classification and
supports “all-fermion” Z2 surface topological order. Here, ZT

2

denotes time-reversal symmetry with T 2 ¼ 1.
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unusual way. The third BTI root state beyond group
cohomology classification requires the presence of a non-
trivial b ∧ b term. As shown in Fig. 2, the topological term
b ∧ b contributes a U(1) phase to path-integral once two
loops change the mutual linking number via collision. A
brief summary is given in Table I. Our physical approach to
3D BTIs avoids the complication of advanced mathemati-
cal topics like cohomology theory and cobordism theory.
And we believe that this physical picture sheds light on a
more challenging question in the future: how to design
microscopic interaction terms that can realize those pro-
posed BTI states.
The vortex-line condensation picture is also formally

generalized to some other symmetry groups, e.g., the
unitary ZN group as discussed in Sec. VIII. It turns out
that there are more potentially nontrivial SPT states beyond
the group cohomology classification in 3D. The bulk
dynamical quantum field theory of the new ZN SPT state
is described by a single-component version of Eq. (1) with
nonvanishing Λ. Based on our results, we conjecture the
following.
Conjecture 1.—All SPT phases in 3D described by a

b∧ b term are beyond the group cohomology classification.

The remainder of the paper is organized as follows.
Section III is devoted to understanding the microscopic
origins of bulk dynamical TQFT for 3D BTIs through the
hydrodynamical approach. In this section, we start with a
superfluid state in 3D and derive the TQFT description of
the vortex-line condensate. In Sec. IV, some useful proper-
ties of the TQFT are studied when symmetry is not taken
into account. By taking symmetry into account, the BTI
state beyond group cohomology classification [20] is
obtained in Sec. V where a nontrivial presence of the
b ∧ b term plays an important role. In Secs. VI and VII, the
remaining two BTI root states within group cohomology
classification are obtained via a pure b ∧ da-type term by
defining either ZT

2 or U(1) symmetry transformation in an
unusual way. In Sec. VIII, we show that a b ∧ b term might
also lead to ZN SPT phases beyond the group cohomology
class. A concluding remark is made in Sec. IX, and some
future directions are also proposed.

III. HYDRODYNAMICAL APPROACH TO
TOPOLOGICAL QUANTUM FIELD THEORY

A. 3D superfluid state and its dual description

The exotic states discussed in this paper are built from a
well-known parent state: the 3D superfluid (SF) state
described by

L ¼ ρ

2
ð∂μθÞ2 ð2Þ

at low energies. Here, ρ is the superfluid density and θ is the
U(1) phase angle of the superfluid. The spatial gradient of θ
costs energy such that a spatially uniform value of θ is
picked up in the ground state, rendering a spontaneous
symmetry breaking of the global U(1) symmetry group
(i.e., the particle number conservation of bosons). In order
to capture the periodicity of θ in the continuum field theory,
we express θ in terms of a smooth part and a singular part:

TABLE I. A brief summary of main results in Secs. V–VII. As in the 1D chiral Luttinger liquid theory, which can be derived by putting
Chern-Simons action on a 2D disk with a 1D boundary, the surface of each BTI root state is also rigorously derived by putting the bulk
field theory on an open 3D manifold with a 2D boundary. Symmetry transformations [both U(1) and time reversal ZT

2 ] are rigorously
defined in the bulk. The first and second BTI root states are within the group cohomology classification and obtained by the changing
definition of either U(1) symmetry or ZT

2 symmetry in the bulk. The third BTI root state is beyond group cohomology and its realization
requires an addition of “cosmological constant term” b ∧ b term. More details (e.g., the integer matrices KIJ , ΛIJ) are present in the
main text.

BTI Bulk TQFT Surface topological order

The first BTI root state in
Sec. VI

ðKIJ=4πÞbIμν∂λaJρϵμνλρ Zp (p ¼ even) topological order with exotic electric
charge assignment. U(1) is defined in an unusual way.

The second BTI root
state in Sec. VII

ðKIJ=4πÞbIμν∂λaJρϵμνλρ Z2 topological order where both e and m carry Kramers
doublets. ZT

2 is defined in an unusual way.
The third BTI root state
in Sec. V (beyond
cohomology)

ðKIJ=4πÞbIμν∂λaJρϵμνλρþðΛIJ=16πÞbIμνbJλρϵμνλρ Z2 topological order where all e, m, and ϵ quasiparticles
are fermionic. Uð1Þ ⋊ ZT

2 is defined in a usual way.

z

x y 

(a)               (b)               (c)               (d)               

z

x yy

(a) (b) (c) (d)

FIG. 2. Physical meaning of b ∧ b topological term. In (a) the
larger loop denotes a vortex line that is static and located on the
xy plane. The smaller loop is perpendicular to the xy plane,
parallel to the yz plane, and moves toward the z direction. In (b),
two loops get closer to each other than (a). In (c), two loops
collide with each other. The blue dot in (c) denotes the
intersection of two loops. In (d), two loops are eventually linked
to each other. The presence of b ∧ b term will contribute a phase
through this unlinking-linking process.
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θ ¼ θs þ θv. By substituting this θ decomposition into
Eq. (2) and introducing a Hubbard-Stratonovich auxiliary
vector field J μ [72–74], one may express Eq. (2) in the
following equivalent formalism:

L ¼ 1

2ρ
ðJ μÞ2 þ iJ μð∂μθ

s þ ∂μθ
vÞ; ð3Þ

which goes back to Eq. (2) once J μ is integrated out. It is
obvious that J μ can be interpreted as a supercurrent of the
3D SF state. Integrating out θs leads to a constraint
δð∂μJ μÞ in the path-integral measure. This constraint
can be resolved by introducing a 2-form noncompact U
(1) gauge field bμν: J μdef¼ð1=4πÞϵμνλρ∂νbλρ. Both the

physical quantity J μ and the Lagrangian Eq. (3) are
invariant under the usual smooth gauge transformation:

bμν → bμν þ ∂ ½μξν�;

where ξμ is a smooth 4-vector. ∂ ½μξν� stands for ∂μξν − ∂νξμ.
Eventually, the Lagrangian Eq. (3) is transformed to the
following gauge theory:

L ¼ 1

48π2ρ
hμνλhμνλ þ

i
2
bμνΣμν; ð4Þ

where the field strength hμνλ is a rank-3 antisymmetric
tensor: hμνλdef¼∂μbνλ þ ∂νbλμ þ ∂λbμν. In order to simplify

notation, Lh is introduced via

Lhdef¼
1

48π2ρ
hμνλhμνλ; ð5Þ

which is the Maxwell term of the 2-form U(1) gauge field
bμν. The vortex-line (i.e., string) current operator Σμν,
which is antisymmetric, is defined through the singular θv:

Σμνdef¼
1

2π
ϵμνλρ∂λ∂ρθ

v; ð6Þ

which is generically nonzero for nontrivial homotopy
mapping. The gauge transformation shown above auto-
matically ensures that there is a continuity equation for Σμν,
i.e., ∂νΣμν ¼ 0. Hereafter, the nouns strings, vortex lines,
and closed loops are used interchangeably. The vortex-line
configuration is very dilute in superfluid. The factor 1

2
in the

coupling term 1
2
bμνΣμν naturally arises as a standard

convention for the antisymmetric tensor field coupling in
3þ 1D space-time.

B. Trivial Mott insulators realized
by condensing vortex lines (strings)

Considering strong correlation effects (like Hubbard
interactions), we expect that, passing through a critical

point where the tension of vortex lines decreases to zero,
the string configuration (denoted by the path-integral
measure DΣ) will be proliferated energetically. In other
words, vortex-line condensation [75,76] sets in. The path-
integral formalism of vortex-line condensation was given in
Refs. [76–78]. Here, we do not go into technical details but
briefly review the basic method. A single string can be
described by reparametrization-invariant Nambu-Goto
action. A wave function Ψ can be introduced in quantum
theory of strings. Similar to the usual quantum theory of
particles, after promoting the quantum mechanics of single
string to field theory of many strings, Ψ will be viewed as
the creation operator (in operator formalism) or the quan-
tum amplitude (in path-integral formalism) of a given string
configuration.
In condensate of bosons, the ground state is formed by

equal-weight superposition of all kinds of boson configu-
rations in real space, which leads to a macroscopic wave
function. The amplitude fluctuation of the condensate order
parameter is gapped, but the phase fluctuation θ is gapless
and governed by Eq. (2). Likewise, once vortex-line
condensation sets in, all vortex-line configurations have
the same quantum amplitude Ψ. In contrast to condensate
of bosons, the U(1) phase of Ψ of vortex-line condensate is

given by a Wilson line ei
R

dxμΘμ

and governed by the
Lagrangian

L ¼ 1

2
ϕ2
0ð∂ ½μΘν� − bμνÞ2 þ Lh; ð7Þ

where the antisymmetrization symbol is defined as usual:
∂ ½μΘν�def¼∂μΘν − ∂νΘμ. jϕ0j2 is the “phase stiffness” of the
vortex-line condensate. The presence of dynamical gauge
field bμν gaps out the gapless phase fluctuation from Θμ.
One may split the phase vector into the smooth part Θs

μ

and the singular part Θv
μ: Θμ ¼ Θs

μ þ Θv
μ, whereR

d3rð1=4πÞ∇ · ∇ ×Θv ∈ Z. Therefore, the gauge group
of bμν is compactified by absorbing Θv

μ. Note that, in the
dual Lagrangian Eq. (4) in the SF phase, bμν is not compact.
Based on Eq. (7), we may formally perform duality

transformation in this vortex-line condensation to obtain a
b ∧ da term where a is 1-form gauge field. For this
purpose, we introduce a Hubbard-Stratonovich auxiliary
tensor field Σμν:

L ¼ i
1

2
Σμνð∂ ½μΘν� − bμνÞ þ Lh þ

1

8ϕ2
0

ΣμνΣμν; ð8Þ

where the physical interpretation of Σμν is the same as the
one defined in Eqs. (4) and (6).
Integrating over Θs

μ in Eq. (8) yields a constraint
δð∂νΣμνÞ in the path-integral measure. This constraint
can be resolved by introducing a 1-form noncompact
U(1) gauge field aμ:
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Σμνdef¼ − 1

2π
ϵμνλρ∂λaρ; ð9Þ

indicating that aμ field strength is physically identified as
the “supercurrent” Σμν of vortex lines. The vector field aμ is
a gauge field since under the gauge transformation,

aμ → aμ þ ∂μη; ð10Þ

the physical observable Σμν is invariant. aμ takes values
smoothly on the whole real axis so that aμ is noncompact,
thereby, leading to ∂νΣμν ¼ 0. Then, the dual formalism of
Lagrangian Eq. (7) is given by

L ¼ i
1

4π
aμϵμνλρ∂νbλρ þ iaμj

μ
v þ Lh

þ 1

64π2ϕ2
0

fμνfμν: ð11Þ

The field strength tensor fμνdef¼∂ ½μaν� as usual. The

monopole current of the string condensate is given by
jμv ¼ −ð1=4πÞ∂ν∂ ½λΘv

ρ�ϵ
μνλρ. We may redefine b by absorb-

ing dΘv: bμν − ∂ ½μΘv
ν� → bμν. After removing the irrelevant

Maxwell terms Lh and fμνfμν at low energies, we end up
with the following topological BF Lagrangian:

L ¼ i
1

4π
ϵμνλρbμν∂λaρ: ð12Þ

As expected, the coefficient 1=4π of the first term in
Eq. (12) indicates that there is no ground-state degeneracy
(GSD) [79–85] on a 3-torus T⊯ [86–88]. In this sense, the
bulk state has no intrinsic topological order [79–85]. In
terms of exterior products, the term can be rewritten as
ð1=2πÞb ∧ da, where da≡ f is a 2-form field strength
tensor.

C. Adding a vortex line (string) linking Berry phase
term into the trivial Mott insulator

Here, we attempt to explore the possibility of nontrivial
Mott insulators. To begin, we add a topological Berry phase
term into Eq. (7) to describe a potential nontrivial topo-
logical vortex-line condensate:

L ¼ 1

2
ϕ2
0ð∂ ½μΘs

ν� − bμνÞ2 þ Lh

− i
Λ
16π

ϵμνλρð∂ ½μΘs
ν� − bμνÞð∂ ½λΘs

ρ� − bλρÞ; ð13Þ

where b is redefined by absorbing dΘv:
bμν − ∂ ½μΘv

ν� → bμν. By applying the duality transforma-

tion, this topological vortex-line condensate can be equiv-
alently described by the following “BFþ BB” TQFT:

Ltop ¼ i
1

4π
ϵμνλρbμν∂λaρ þ i

Λ
16π

ϵμνλρbμνbλρ: ð14Þ

In detail, in Eq. (13), the term ∼dΘs ∧ dΘs is a total
derivative term and can be neglected. Then, by introducing
a Hubbard-Stratonovich auxiliary tensor field Ξμν (anti-
symmetric), Eq. (13) is transformed to

L ¼ i
1

2
Ξμνð∂ ½μΘs

ν� − bμνÞ þ 1

8ϕ2
0

ΞμνΞμν

þ i
Λ
8π

ϵμνλρ∂ ½μΘs
ν�bλρ − i

Λ
16π

ϵμνλρbμνbλρ þ Lh

¼ iΘs
μ∂ν

�
Ξμν þ Λ

4π
ϵμνλρbλρ

�
− i

1

2
Ξμνbμν

− i
Λ
16π

ϵμνλρbμνbλρ þ
1

8ϕ2
0

ΞμνΞμν þ Lh: ð15Þ

Integrating out Θs
μ leads to the conservation constraint,

∂νðΞμν þ ðΛ=4πÞϵμνλρbλρÞ ¼ 0, which can be resolved by
introducing a 1-form noncompact U(1) gauge field aμ:

Ξμνdef¼ − 1

2π
ϵμνλρ∂λaρ − Λ

4π
ϵμνλρbλρ:

This is a modified version of Eq. (9), where the b ∧ b term
is absent. Plugging this expression into the second term in
Eq. (15) yields the topologically invariant Lagrangian
Eq. (14).
In Eq. (14), only topological terms are preserved. Lh,

which is defined in Eq. (5), is the Maxwell kinetic term of
bμν with scaling dimension more irrelevant than the two
topological terms in Eq. (14). In addition, we consider the
phase region that is deep in the string condensation phase
and far away from the phase boundary between SF
and string condensate. As such, the “phase stiffness”
jϕ0j2 → ∞ is taken. The first term in Eq. (14) is the
standard b ∧ da term that already exists in Sec. III B. What
is new here is the second term, b ∧ b. It was previously
introduced in mathematical physics [89]. It is also applied
to loop quantum gravity [90] with cosmological constant.
Its physical meaning is pictorially shown in Fig. 2. The
above topologically invariant Lagrangian is gauge invariant
under the following gauge transformations:

bμν → bμν þ ∂ ½μξν�; aμ → aμ þ ∂μη − Λξμ: ð16Þ

Formally, the above single-component theory can be
generalized into a multicomponent theory:

Ltop ¼ i
KIJ

4π
ϵμνλρbIμν∂λaJρ þ i

ΛIJ

16π
ϵμνλρbIμνbJλρ: ð17Þ

In terms of exterior products, the action (1) is obtained.
Without loss of generality, it is sufficient to consider a
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symmetric matrix ΛIJ and assume KIJ to be an identity
matrix of rank N, i.e.,

K ¼ diagð1; 1;…; 1ÞN×N ¼ I; ð18Þ
with I; J ¼ 1; 2;…; N. faIμg are noncompact 1-form U(1)
gauge fields and fbIμνg are compact 2-form U(1) gauge
fields, respectively, as a straightforward generalization of
the above one-component theory. The above topologically
invariant Eq. (17) Lagrangian with the particular K matrix
Eq. (18) is the central result of this paper [its abstract form
in terms of exterior products is given by Eq. (1)], and we
use it to describe all BTI phases as well as some new ZN
SPT phases. Physically, such a multicomponent theory can
be viewed as a collection of many 3D trivial Mott insulators
mutually entangled via a Λ term. Hereafter, we also call
indices I; J;… flavor indices.

IV. GENERAL PROPERTIES OF THE
TOPOLOGICAL QUANTUM

FIELD THEORY

In this section, we study the multicomponent topological
quantum field theory defined by Eq. (17) in a general
setting without any global symmetry implementation. In
this section as well as Sec. V, all analyses are done by
implicitly assuming K takes the form in Eq. (18) unless
otherwise stated [e.g., the gauge transformation and
GLðN;ZÞ transformation in Sec. IVA are valid for
general K].

A. Gauge transformation and
bulk GLðN;ZÞ transformation

As aforementioned, the presence of the b ∧ b term
drastically changes the gauge structures. The gauge
transformation of the multicomponent theory Eq. (17) is
given by

bIμν → bIμν þ ∂ ½μξIν�;

aIμ → aIμ þ ∂μη
I − ðK−1ΛÞII0ξI0μ ; ð19Þ

which generalizes Eq. (16).
To see the gauge transformation more clearly, we

reexpress the first two topological terms (denoted by
Ltop) in Lagrangian Eq. (17) as

Ltop ¼ i
ΛIJ

32π
ϵμνλρ½bIμν þ ðΛ−1KÞII0∂ ½μaI

0
ν��

· ½bJλρ þ ðΛ−1KÞJJ0∂ ½λaJ
0

ρ��: ð20Þ

From this expression, one may easily examine the correct-
ness of Eq. (19). To obtain this equivalent expression, we
apply the following two facts: (i) a closed space-time
manifold is taken and (ii) aμ is noncompact such that the
term ∼da ∧ da is a total derivative.

Then, we perform two independent general linear (GL)
transformations represented by matrices W;M∈GLðN;ZÞ,
on gauge fields bIμν and aIμ, respectively. GL transforma-
tions keep the quantization of gauge charges of both gauge
fields unaffected:

bIμν ¼ ðW−1ÞIJbJμν; aIμ ¼ ðM−1ÞIJaJμ; ð21Þ

where W;M are two N × N matrices with integer-valued
entries and j detWj ¼ j detMj ¼ 1. These transformations
are nothing but a relabeling of the same low-energy
physics. After the transformations, a new set of parameters
ðK;ΛÞ are introduced via

K ¼ WTKM; Λ ¼ WTΛW; ð22Þ

which leads to a new Lagrangian in the same form as
Eq. (17). W and M are two independent GL transforma-
tions. In any basis, j detKj rather than detK is invariant.
Therefore, our choice Eq. (18) is universal once bulk
topological order is absent.

B. Quantization conditions on path-integral
field variables

For simplicity, we merely consider the one-component
theory. It is straightforward to generalize all of the results
obtained below to multicomponent theory by adding
component indices. The action is given by

S ¼ i
1

4π

Z
d4xbμν∂λaρϵμνλρ

þ i
Λ
16π

Z
d4xbμνbλρϵμνλρ: ð23Þ

It is known that the classical action S alone is not enough to
define a quantum system. One must properly define the
partition function Z where the path-integral measure should
be properly defined in addition to the classical action. First,
a formal integration over the 1-form gauge field aμ leads to
a flat connection constraint on the 2-form gauge field with
local flatness db ¼ 0. Second, we note that there is a shift
in the microscopic justification of the single-component
action based on the mechanism vortex-line condensation:
bμν þ ∂ ½μΘv

ν� → bμν, which leads to a quantization condi-

tion of bμν. Quantitatively, we have the following quanti-
zation condition on b on a closed 2D manifold S embedded
in 4D space-time:

ZZ
◯

S
b ¼

ZZ
◯

S
dΘv ¼

ZZZ
V
ddΘv ¼ 2π × integer; ð24Þ

where S ¼ ∂V. In deriving the third BTI root state (see
Table I) that needs a nontrivial b ∧ b, we use this
quantization condition which is obtained based on the
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microscopic origin vortex-line condensation. As a matter of
fact, once the topological terms BFþ BB are formally
derived from our microscopic origin, we may extend our
discussion on the topological field theory to a more general
background. In other words, this quantization condition on
the b field can be derived in a more mathematically
rigorous way by formally introducing compactness of both
gauge fields, which are fundamentally constrained by two
conditions [i.e., Eqs. (A1) and (A2) given in Appendix A].
In Secs. VI and VII, where the derivation of the first and
second BTI root states (see Table I) are presented, respec-
tively, we continue to use this general method.
By using the condition Eq. (24), we derive the following

periodic shift (more details are presented in Appendix B):

Λ → Λþ 1: ð25Þ
Thus, Λ is compactified to a finite region ½0; 1Þ. Further,
one may consider a large gauge transformation, which
leads to quantization of Λ ∈ Z. The derivation of this result
may be considered as a special case of Eq. (71) with N ¼ 1.
Therefore, without time-reversal symmetry, any allowed
nonzero Λ is identified as Λ ¼ 0.
More generally, the above periodicity shift of the single-

component theory is also applicable to the diagonal entries
ΛII of a generic multicomponent theory. For off-diagonal
entries, the results are still unchanged. For example, since
the Λ13 term and the Λ31 term are equal to each other
(Λ13 ¼ Λ31), the total actions of the mixture of b1μν and b3μν
are actually 2 × ðΛ13=16πÞ R d4xϵμνλρb1μνb3λρ. We note that
there are eight equivalent copies in Eq. (B1) where the two
b fields are the same. However, in the Λ13 term where the
two b fields are different, there are only four equivalent
copies. Overall, loss and gain are balanced such that the
periodicity of Λ13 is still 1.
In addition, the condition Eq. (24) can also be applied to

derive the surface theory. Because of this condition, bI is
locally flat and a new 1-form compact gauge field ~aIμ for
each index I can be introduced via

bIμνdef¼∂ ½μ ~aIν� ¼ ~fIμν; ð26Þ

where ~fIμν is the field strength tensor of ~aIμ. For the sake of
convenience, μ; ν; λ ¼ 0; 1; 2 is implicitly assumed in all of
the surface variables. The compactness of ~aI can be easily
understood by substituting it into the quantization condition
of bI . Then, the magnetic flux of ~aI piercing a closed S is
allowed to be nonzero, which means that monopoles of ~aI

are allowed so that ~aI is compactified. After substituting
this expression into the b ∧ b term in Eq. (17), we end up
with the following surface Lagrangian:

L∂ ¼ ΛIJ

4π
ϵμνλ ~aIμ∂ν ~aJλ : ð27Þ

V. BOSONIC TOPOLOGICAL
INSULATORS IN THE PRESENCE
OF b ∧ b TOPOLOGICAL TERM

In this section, we implement symmetry and consider the
b ∧ b term and end up with the third BTI root state (the
last row in Table I) that is beyond group cohomology
classification.

A. Definition of time-reversal transformation

Given the microscopic origin of the topological quantum
field theory Eq. (17) in Sec. III, we know that bμν is
minimally coupled to vortex lines (i.e., strings), while aμ is
minimally coupled to bosonic particles. As a result, the
time-reversal transformations of all gauge fields and
excitations can be consistently defined in the following
usual way (the spatial directions are denoted by i ¼ 1; 2; 3):

T aI0T
−1 ¼ aI0; T aIiT

−1 ¼ −aIi ;
T j0T −1 ¼ j0; T jiT −1 ¼ −ji; ð28Þ

T bI0;iT
−1 ¼ −bI0;i; T bIi;jT

−1 ¼ bIi;j;

T Σ0;iT −1 ¼ −Σ0;i; T Σi;jT −1 ¼ Σi;j; ð29Þ

where every flavor transforms in the same way.
The pure b ∧ f term (i.e., the b ∧ b term is absent) in

Eq. (17) is invariant under these transformation rules. The
definition of time-reversal transformation in Eqs. (28)
and (29) implies that a pure b ∧ da term necessarily leads
to a trivial SPT state for the reason that bulk topological
order is absent and symmetry transformation is defined in a
usual way. The possibility of nontrivial SPT states arising
from pure a b ∧ da term is discussed in Secs. VI and VII,
where either U(1) or time-reversal symmetry has to be
modified unusually, as shown in Fig. 1. Therefore, in this
section, Λ ¼ 0 always results in a trivial SPT state, and a
nontrivial SPT state requires a nontrivial Λ matrix.

B. Quantization condition implemented
by time-reversal symmetry

Under the time-reversal symmetry transformation
Eq. (29), the b ∧ b term is transformed to
−ðΛIJ=16πÞϵμνλρbIμνbJλρ. Superficially, this sign change
implies that the ground state of topological field theory
labeled by Λ always “breaks” time-reversal symmetry.
However, we show that the periodicity shift of ΛIJ provides
a chance for restoring time-reversal symmetry. We derived
a periodic shift Eq. (25) on Λ where merely U(1) symmetry
is considered. A new problem arises: Is Eq. (25) still valid
in the presence of time-reversal symmetry?
We reconsider a simple one-component theory shown in

Eq. (23). In the presence of time-reversal symmetry,
the space-time manifold becomes unoriented such that
topological response can be probed [19,21]. A simple
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understanding is that a normal vector at each space-time
point changes sign under time-reversal symmetry such that
a time-reversal invariant system requires that each space-
time point is directionless. In an unoriented space-time
manifold, a π cubic flux of a 2-form gauge field bμν
becomes the minimally allowed value. To have a physical
picture for the flux quantization condition on an unoriented
manifold, we consider the simplest case—a flux insertion
process for a Möbius strip. Very different from a cylinder,
where the inserted flux must be in units of 2π, the Möbius
strip allows the inserted flux to be in units of π, namely,H
L Aμdlμ ¼ π × integer, because a particle on a Möbius
strip must pick up an even winding number to travel back to
its origin. In this sense, if we still use the same notations as
in Appendix B 1, N 0x and N yz now are half-integers
instead of integers. The last line in Eq. (B1) now equals
1
2
Λπ × integer, such that the periodicity of Λ is now

enhanced to

Λ → Λþ 4: ð30Þ

We now move on to the off-diagonal entries, e.g., Λ13 in a
multicomponent theory. At present, there are N compo-
nents of topological vortex-line condensations, which,
superficially, implies that there are N U(1) charge con-
servation symmetries. However, in our physical system,
only one U(1) should be taken into account. Then, when we
evaluate the sum of the Λ13 and Λ31 terms, either the b1

gauge group or b2 forms a π cubic flux, not both. Therefore,
the periodicity of Λ13 is enhanced from 1 to 2: i.e.,
Λ13 → Λ13 þ 2. In summary, all of the above results
indicate that ΛIJ in the presence of time-reversal symmetry
take the following values:

ΛII ¼ 0;�2; ΛIJ ¼ 0;�1 ðfor I ≠ JÞ: ð31Þ

This quantization condition is protected by time-reversal
symmetry.
We note that SPT states (including both trivial and

nontrivial states) are defined by the following two common
conditions: (i) bulk has no intrinsic topological order and
(ii) the bulk state respects symmetry. Condition (i) is always
satisfied in our construction since GSD ¼ 1, as shown in
Sec. IVA, where K ¼ I. If Λ entries are defined under the
requirement of Eq. (31), condition (ii) is also satisfied. Thus,
there are infinite number of Λ matrices that satisfy Eq. (31)
and can be viewed as SPT states with U(1)Uð1Þ ⋊ ZT

2

symmetry. But which are trivial and which are nontrivial?
For example, is Λ ¼ 2 a trivial or a nontrivial SPT? In
subsequent discussions, we aim to answer this question.

C. Trivial SPT states with jdetΛj ¼ 1

All Λ matrices (K ¼ I is implicit all the time) that satisfy
the quantization conditions Eq. (31) are SPT states.

Generically, with an open boundary condition, the surface
phenomena of SPT states are expected to capture informa-
tion of triviality and nontriviality. Therefore, one may
wonder what are nontrivial signatures of surface phenom-
ena? Conceptually, one should first find the set of physical
observables that describe the surface physics.
Definition 1: Surface physical observables.—The

physical observables of Eq. (27) are composed by
ground-state degeneracy, self-statistics, and mutual statis-
tics of gapped quasiparticles. All of this information can be
read out from modular Sm and T m matrices. Since there is
no further 1D boundary, chiral central charge c− is not an
observable on the surface. Notice that, for a topological
phase defined on a 2D plane, the physical observables are
Sm, T m, and c−.
Now our question is changed to, how can we use these

physical observables to tell a nontrivial SPT from a trivial
SPT? The essential physics is the so-called “obstruction” or
“anomaly.’. More precisely, we define it as follows.
Definition 2: Obstruction (quantum anomaly).—By

“obstruction,” we mean that the set of physical observables
(defined in Definition 1) of the surface theory cannot be
reproduced on a 2D plane by any local bosonic lattice
model with symmetry. Otherwise, the obstruction is free.
Nontriviality of a SPT state corresponds to the presence of
obstruction. Now, we are in the position to distinguish
trivial and nontrivial SPT states. We first consider a subset
of Λ matrices that satisfy Eq. (31):

j detΛj ¼ 1: ð32Þ

Mathematically, any Λ matrix in this subset can be
expressed in terms of two “fundamental blocks,” namely,
Λt1 and Λt2, given by the Cartan matrix of the E8 group
[62,91–93]:

Λt1 ¼
�
0 1

1 0

�
; Λt2 ¼

0
BBBBBBBBBBBBB@

2 1 0 0 0 0 0 0

1 2 1 0 0 0 0 0

0 1 2 1 0 0 0 1

0 0 1 2 1 0 0 0

0 0 0 1 2 1 0 0

0 0 0 0 1 2 1 0

0 0 0 0 0 1 2 0

0 0 1 0 0 0 0 2

1
CCCCCCCCCCCCCA

:

The subscript t in Λt1 and Λt2 stands for trivial (which we
explain below). One can show that all Λ matrices that
satisfy Eqs. (31) and (32) can be expressed as the following
canonical form, namely, a direct sum of several Λt1 and
�Λt2 up to an arbitrary GL transformation:

Λ¼WTðΛt1 ⊕ Λt1 ⊕ � � �⊕�Λt2 ⊕�Λt2 ⊕ � � �ÞW: ð33Þ
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Since GL transformation W does not affect physical
observables, whether SPT states in this subset are trivial
or not essentially depends on the properties of the two
fundamental blocks.
Λt1 gives a trivial SPT state (i.e., a trivial Mott insulator)

since its surface physical observables are trivial gapped
boson excitations and nothing else. Such surface states can
be realized on a 2D lattice model with symmetry.
According to Definition 2, the obstruction is free and,
thus, the 3D bulk state is trivial.
In contrast to Λt1 whose chiral central charge c− ¼ 0, the

very feature of Λt2 is that it has an “irreducible” value of
c− ¼ 8, which plays the role of the “generator” of all trivial
Λ matrices that admit nonzero c−. We call �Λt2 “c
generators.” By irreducible, we mean that one can prove
that c− ¼ 8 is the minimal absolute value of all Λ matrices
that satisfy Eqs. (31) and (32). Since c− ≠ 0, one may
wonder if the Λt2 surface state breaks time-reversal sym-
metry once it is laid on a 2D plane alone. To solve this
puzzle, we should, again, focus attention on physical
observables on the surface rather than the formal
Lagrangian in Eq. (27). On the grounds that a surface is
a 2D closed manifold by definition, there is no further 1D
edge so that c− is not detectable on the surface, which is
also summarized in Definition 1. Thus, Λt2 still gives a
trivial SPT state.
Technically, the triviality of Λt2 can also be understood

by using the following Gauss-Milgram sum formula
[61,94,95]:

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffij detΛjp X
a

ei2πJa ¼ ei2πic
−=8; ð34Þ

for a bosonic Abelian topological phase defined on a 2D
plane. Here, a denotes quasparticles and Ja is topological
spin, which is determined by the modular T m matrix. The
diagonal entries Taa

m ¼ ei2πJ
a
in a quasiparticle basis. The

chiral central charge c− is determined only modulo 8. We
consider a Λt2 surface state. According to Definition 1, the
surface physical observables are determined by Sm and T m.
The two modular matrices are given by Sm ¼ 1; T m ¼ 1,
both of which are just a number. Thus, the surface is
nothing but a trivial gapped bosonic phase with time-
reversal symmetry and supporting only trivial identity
particles. Then, one may wonder if the time-reversal
symmetry can be preserved when we define such a set
of physical observables on a 2D plane, because on a 2D
plane we need to further consider chiral central charge,
which is a signature of time-reversal breaking. The answer
is yes. The reason is that all possible states on a 2D plane
with the same Sm and same T m have c− ¼ 0 mod 8 due to
Eq. (34). Since c− ¼ 0 is a solution, a time-reversal
symmetric state on a 2D plane is achievable without any
difficulty. Thus, according to Definition 2, Λt2 labels a
trivial SPT state.

D. Trivial SPT states with jdetΛj > 1

The above discussion leads to a set of trivial SPT states
defined by Eqs. (31) and (32). All of these trivial states do
not admit topological order on the surface. How about
topologically ordered surface (i.e., j detΛj > 1)?
While the quantization conditions Eq. (31) guarantee

that the bulk is symmetric, surface might break symmetry.
If symmetry is manifestly broken on the surface, such a
surface state can be realized on a 2D plane, which is free of
obstruction from symmetry requirement. The correspond-
ing bulk state is a trivial SPT state. Therefore, hereafter we
merely focus on the symmetry-preserving surface state. But
the question arises, how can we judge that the symmetry is
preserved on the surface?
A symmetric surface governed by Eq. (27) with Λmatrix

must describe the same set of physical observables as those
on the surface with a −Λ matrix. In order to leave the
surface physical observables unaffected under time reversal
(i.e., Λ → −Λ), one obvious way is to consider the
following equivalence under GL transformation, namely,
“GL equivalence”:

WTΛW ¼ −Λ; ∃ W ∈ GLðN;ZÞ; ð35Þ

which does not change physical observables in Definition
1. We introduce the following symbol

Λ GL
¼

− Λ ð36Þ

to denote this equivalence relation. However, such a
topological order has no obstruction if it is defined on a
2D plane with symmetry since such a GL transformation
can also be regularly performed on a 2D plane. Thus, the
only way toward nontrivial SPT states is to find a new
method such that (i) it can transform Λ to −Λ leaving all
physical observables unaffected and (ii) it is forbidden to
be regularly done on a 2D plane. This is what we do in
Sec. V E where an “extended GL transformation” Eq. (37)
is defined.
Before proceeding further, we give some examples. The

simplest one is Λ ¼ 2, which can be connected to Λ ¼ −2
via neither Eq. (35) nor Eq. (37), so that the corresponding
bulk state is a trivial SPT with a symmetry-breaking
surface. Another example is Λ ¼ ð2

0
0
−2Þ, which can be

connected to Λ ¼ ð−2
0

0
2
Þ via Eq. (35), so that the corre-

sponding bulk state is a trivial SPT with a symmetry-
preserving surface.

E. Extended GL transformation
and nontrivial SPT states

In order to obtain nontrivial SPT states, again, we resort
to the fact that the chiral central charge on the surface is not
a physical observable as discussed in Sec. V C. We relax
the GL transformation by arbitrarily adding fundamental
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blocks like Λt1 and �Λt2 defined in Sec. V C along the
diagonal entries of the Λ matrix. This stacking is legitimate
since all fundamental blocks correspond to trivial SPT
states, which do not induce phase transitions.
Technically, we perform a so-called extended GL trans-

formation via the following equivalence relation:

WTðΛ⊕Λt1 ⊕Λt1 � � �ÞW
¼ð−ΛÞ⊕�Λt2⊕�Λt2 � � � ; ∃W ∈GLðN0;ZÞ; ð37Þ

which also leaves physical observables in Definition 1 unaf-
fected. Here, the left-hand side contains ½ðN0 − NÞ=2�Λt1
matrices, while the right-hand side contains ½ðN0 − NÞ=8�
“�Λt2” matrices. Here, Λ is N × N as usual. The extended
GL transformation for Λ means that adding several funda-
mental blocks to bothΛ and−Λ results in two new matrices;
we can then connect these two new matrices, i.e., ðΛ ⊕
Λt1 ⊕ Λt1…Þ and ð−ΛÞ ⊕ �Λt2 ⊕ �Λt2…, by performing
a GL transformation W.
Since ½Λt2 ⊕ ð−Λt2Þ�GL¼

P
8 ⊕ Λt1, the � signs reduce

to an overall sign, i.e.,

WTðΛ⊕Λt1 ⊕Λt1…ÞW
¼ ð−ΛÞ⊕ ½�ðΛt2 ⊕Λt2…Þ�; ∃W ∈GLðN0;ZÞ: ð38Þ

If Λ and −Λ are connected to each other via an extended
GL transformation, we define the symbol

Λ eGL
¼

− Λ

to denote their equivalence relation.
We find that there is a unique solution that supports

nontrivial SPT. It is the Cartan matrix of the SO(8) group,
denoted by Λso8 [91]:

Λso8 ¼

0
BBB@

2 1 1 1

1 2 0 0

1 0 2 0

1 0 0 2

1
CCCA: ð39Þ

More precisely, the following transformation exists:

WT

�
Λso8

X4
⊕ Λt1

�
W

¼ ð−Λso8Þ ⊕ Λt2; ∃ W ∈ GLð12;ZÞ:

Instead of looking directly for the explicit matrix form of
W, the existence of W can be justified by checking the
equivalence of the physical observables (see Definition 1)
between ðΛso8

P
4 ⊕ Λt1Þ-surface Chern-Simons theory

and ð−Λso8Þ ⊕ Λt2-surface Chern-Simons theory. Indeed,
both share the same excitation spectrum that is formed by
four distinct gapped quasiparticles, and they share the same
real Sm and T m matrices:

Sm ¼

0
BBB@

1 1 1 1

1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

1
CCCA;

T m ¼

0
BBB@

1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

1
CCCA: ð40Þ

From the above Sm and T m, we read much information. In
addition to the trivial boson excitations (identity quasipar-
ticles), there are three distinct fermions denoted by
f1; f2; f3. Braiding fi around fj (∀i; j, i ≠ j) once leads
to an Aharonov-Bohm phase eiπ ¼ −1. Consequently,
through the equivalence relation Eq. (37), we end up with
a SPT state whose surface has topological order.
Furthermore, it is a nontrivial SPT, i.e., a bosonic

topological insulator. To see its nontriviality clearly, one
may attempt to look for obstruction defined in Definition 2.
We put the set of physical observables (given by the
modular Sm and T m matrices of Λso8) on a 2D plane.
According to the Gauss-Milgram sum formula Eq. (34), the
chiral central charge c− ¼ 4 mod 8. Therefore, all states on
a 2D plane necessarily have nonzero chiral central charge,
indicating that time-reversal symmetry is necessarily bro-
ken. Thus, such an obstruction defined in Definition 2 gives
a 3D nontrivial SPT state labeled by Λso8.
To summarize, we derive a BTI state from our bulk field

theory where a nontrivial multicomponent b ∧ b term plays
an essential role. We stress that this BTI state is obtained
and examined rigorously from bulk to boundary step
by step.

VI. BOSONIC TOPOLOGICAL INSULATORS
FROM PURE b ∧ da TERM—(I)

In the above discussions, we consider the time-reversal
transformation defined by Eqs. (28) and (29) such that the
pure b ∧ da term always describes trivial SPT states, i.e.,
trivial Mott insulators in Fig. 1. In the following, we show
that the first BTI root state (the first row in Table I) can be
obtained by pure a b ∧ da topological term where U(1)
charge symmetry is defined in an unusual way.

A. Z2 nature of bulk U(1) symmetry definition

The unusual U(1) symmetry transformation can be
directly characterized by a Θ term F ∧ F in the response
theory, whereFμν is the field strength of the external electro-
magnetic field Aμ. Technically, one may start with a generic
b ∧ da theory with N components and then add an electro-
magnetic coupling term like

P
IðqI1=4πÞFμν∂λaIρϵμνλρ þP

IðqI2=4πÞAμ∂νbIλρϵ
μνλρ, where fqI1g; fqI2g are two integral

charge vectors. The first term is the coupling between face
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variableFμν and vortex-line current ð1=2πÞ∂λaρϵμνλρ, where
the additional 1

2
is due to the double counting of the pair

indices μ; ν. The second term is the coupling between the
link variable Aμ and the boson particle cur-
rent ð1=4πÞ∂νbλρϵμνλρ.
We may expect an electromagnetic response action with

the bulk Θ term in addition to the usual Maxwell terms:

SEM response ¼
Z

d4x
Θ

32π2
FμνFλρϵ

μνλρ þ � � � ; ð41Þ

where the centered dots denote Maxwell terms. For SPT
states, there are only two choices: Θ ¼ 0mod4π or
2πmod4π. This Z2 classification can be understood
through alternative insights, such as the charge lattice of
bulk quasiparticles [49] or the statistical Witten effect [58],
both of which rely on the pioneering studies of dyon
statistics in Ref. [57]. But the procedure of the integration
over aI and bI is quite subtle in the presence of background
gauge field A, since bI and aI are constrained by several
conditions. In the next section, we give an N ¼ 2 simple
example.

B. Example with N ¼ 2

We start with a b ∧ da theory with the following K
matrix:

K ¼
�
0 1

1 2

�
: ð42Þ

More explicitly, the total Lagrangian is given byZ
d4xL0 ¼

Z
i
1

2π
b1 ∧ da2 þ i

Z
1

2π
b2 ∧ da1

þ i
Z

2

2π
b2 ∧ da2: ð43Þ

Time-reversal symmetry is defined in the usual way shown
in Eqs. (28) and (29). All gauge fields are constrained by
Eqs. (A1) and (A2)) (by adding indices I; J;…).
Let us move on to the surface theory. Starting with

Eq. (43), one can integrate out compact a1 on an unoriented
manifold, leading to the quantization condition on b2:ZZ

◯
S
b2 ¼ π × integer; ð44Þ

which indicates that b2 is locally flat and a new 1-form
compact gauge field ~a2 can be introduced in a way that is
similar to Eq. (26):

b2μνdef¼∂ ½μ ~a2ν�: ð45Þ

Thus, by means of Eqs. (29), ~a2μ is transformed as a
pseudovector under time-reversal symmetry: ~a20 → − ~a20;
~a2i → ~a2i , i ¼ x; y; z.

The term ∼b2 ∧ da2 in Eq. (43) provides a surface
Chern-Simons term:

L∂ ¼ i
1

π
ϵμνλ ~a2μ∂νa2λ ; ð46Þ

which can also be reformulated by introducing a matrix
K∂def¼ð0

2
2
0
Þ in the standard convention of K-matrix Chern-

Simons theory [63]. a2μ and ~a2μ form a two-dimensional
vector ða2μ; ~a2μÞT. The ground state of Eq. (46) supports a Z2

topological order [96] associated with four gapped quasi-
particle excitations (1; e; m; ε). Here, “1” denotes identical
particles. Both e and m are bosonic, while ε is a fermion.
The particle e carries þ1 gauge charge of a2μ, while the
particlem carriesþ1 gauge charge of ~a2μ:ε carriesþ1 gauge
charges of both gauge fields. These three nontrivial
quasiparticles all have mutual semionic statistics; i.e., full
braiding one particle around another distinct particle leads
to a π Aharonov-Bohm phase.
To obtain BTI states, we expect the U(1) symmetry

transformation may be performed in an unusual way. For
this purpose, we add the following electromagnetic cou-
pling term to L0 in Eq. (43):

q1
4π

Fμν∂λa2ρϵμνλρ þ
q2
4π

Aμ∂νb2λρϵ
μνλρ: ð47Þ

Let us consider that a surface is located on z ¼ 0 plane. The
surface theory is described by Eq. (46). The coupling term
contributes the following surface electromagnetic coupling
terms:

q1
2π

ϵμνλAμ∂νa2λ þ
q2
2π

ϵμνλAμ∂ν ~a2λ ; ð48Þ

where Eq. (45) is applied. Based on the Chern-Simons term
in Eq. (46), one may calculate the electric charge carried by
each quasiparticle:

Qe ¼ ðq2; q1ÞðK∂Þ−1ð1; 0ÞT ¼ q1
2
;

Qm ¼ ðq2; q1ÞðK∂Þ−1ð0; 1ÞT ¼ q2
2
:

Physically, both e and m quasiparticles can always attach
trivial identity particles to change their charges by an
arbitrary integer so that q1 and q2 are integers mod 2;
namely,

q1 ∼ q1 þ 2; q2 ∼ q2 þ 2: ð49Þ

For this reason, it is sufficient to merely consider the
following four choices: ðq2;q1Þ¼ ð0;0Þ;ð0;1Þ;ð1;0Þ;ð1;1Þ.
The first three choices can be realized on a 2D plane
without breaking time-reversal symmetry since the Hall
conductance σxy ¼ ð1=2πÞqTðK∂Þ−1q ¼ ðq1q2=2πÞ ¼ 0

VORTEX-LINE CONDENSATION IN THREE DIMENSIONS: … PHYS. REV. X 5, 021029 (2015)

021029-11



on a 2D plane. However (1,1) necessarily breaks time-
reversal symmetry on a 2D plane since its Hall conductance
σxy ¼ ð1=2πÞqTðK∂Þ−1q ¼ ð1=2πÞq1q2 ¼ 1=2π is non-
zero. Thus, there is a nonvanishing chiral charge flow on
the 1D edge of the 2D plane. However, it does not break
time-reversal symmetry on the surface since chiral charge
flow is not a physical observable on the surface. Therefore,
the charge assignment (1,1) faces obstruction in being
realized on a 2D plane with Uð1Þ ⋊ ZT

2 symmetry and this
obstruction leads to a BTI in which both e andm carry half-
charge on the surface. Note that the q1-coupling terms in
Eqs. (47) and (48) change sign under time-reversal trans-
formation. However, the sign can be removed through
shifting q1 to −q1 following the identification in Eq. (49).
In a real transport experiment, one may explicitly break

time-reversal symmetry along the normal direction on the
surface with charge assignment (1,1) and put the 3D system
in a slab geometry. The surface quantum Hall conductance
is quantized at 1=2π, which corresponds to a surface
response action in the form of a Chern-Simons term:
ð1=4πÞAμ∂νAλϵ

μνλ. It can be formally extended to a bulk
Θ term, i.e., Eq. (41) with Θ angle given by Θ ¼ 2πmod4π
and the following generic relation:

Θ ¼ 4π2σxy: ð50Þ

The 4π periodicity corresponds to even-quantized Hall
conductance σxy ¼ ð1=2πÞ × 2k, which can be realized in
purely 2D bosonic systems. A projective construction on
such a BTI with Θ response has been made in detail
in Ref. [49].
Physically, e and m particles can be regarded as ends of

condensed vortex lines here, and we may think these
invisible vortex lines carry integer charge and form a
nontrivial 1D BTI phase. Thus, it is also not a surprise
that the end of these vortex lines will carry half-charge.

C. Many-to-one correspondence
between surface and bulk

The above discussion illustrates how the surface Z2

topological order arise with unusual U(1) symmetry trans-
formations. As a matter of fact, the surface may be of
different kinds while all share the same bulk that only
supports trivial boson excitations. In other words, the
surface topological order may be much richer.
One may replace the K matrix in Eq. (42) by

K ¼
�
0 1

1 p

�
; ð51Þ

where p is a nonzero positive integer. The surface term
Eq. (46) now becomes

L∂ ¼ i
p
2π

ϵμνλ ~a2μ∂νa2λ ; ð52Þ

which corresponds to a Zp topological order on the surface
labeled by K∂ ¼ ð0p p

0
Þ.

There are p2 types of quasiparticles (including the trivial
particle), which are labeled by quasiparticle vector
l ¼ ðl1; l2ÞT , with l1; l2 ¼ 0; 1;…; p − 1. The lth quasi-
particle carries the electric charge

Ql ¼ qTK−1∂ l ¼ 1

p
ðq1l2 þ q2l1Þ: ð53Þ

Physically, all quasiparticles can attach trivial identity
particles such that their charges can be changed by any
integer. Therefore, the following identification conditions
exist:

q1 ∼ q1 þ p; q2 ∼ q2 þ p: ð54Þ

We note that q1-coupling terms in Eqs. (47) and (48)
change sign under time-reversal transformation. However,
the sign can be removed through shifting q1 to −q1
following the identification in Eq. (54). Therefore, bulk
time-reversal symmetry requires that p ¼ even and only
two choices for the integer q1 are legitimate: q1 ¼ 0modp;
p
2
modp.
To determine whether or not the bulk is trivial, one may

again examine the surface Hall conductance which is
quantized at odd for nontrivial bulk. All even-quantized
parts can be removed by stacking several U(1) SPT states
on the surface. At present, the Hall conductance is given by
σxy¼ð1=2πÞqTK−1∂ q¼ð1=2πÞð2q1q2=pÞ. Combined with
the relation in Eq. (50), we end up with Table II. As a side
note, in the first two cases, by means of the identification in
Eq. (54), q2 may be shifted by p. Since p is even in these
two cases, the even or odd property of q2 is unchanged.
Thus, these two cases are consistent with the identification
conditions.
When p ¼ 2; q1 ¼ q2 ¼ 1, the theory goes back to

Sec. VI B. It is clear that the surface Z2 topological order
obtained in Sec. VI B is just one possible surface of BTI
states, which manifests the physics of many-to-one corre-
spondence between surface and bulk. For example, we may
choose p ¼ 4; q1 ¼ 2; q2 ¼ 1 such that the bulk is a BTI

TABLE II. The surface of the first BTI root states (shown in the
first row) labeled by three integers (p; q1; q2).

p q1, q2 Bulk

p ¼ even q1 ¼ p
2
modp, q2 ¼ odd The first BTI root states

p ¼ even q1 ¼ p
2
modp, q2 ¼ even Trivial states

p ¼ even q1 ¼ 0modp,
q2 ¼ any integers

Trivial states

p ¼ even q1 ≠ 0modp, q1 ≠
p
2
modp,

q2 ¼ any integers
ZT
2 is broken

p ¼ odd q1; q2 ¼any integers ZT
2 is broken
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state with nontrivial Witten effect. The electric charge
carried by totally 42 − 1 ¼ 15 nontrivial quasiparticles can
be calculated by Eq. (53): Ql ¼ ðl2=2Þ þ ðl1=4Þ. Such an
assignment of fractional charge on quasiparticles of Z4

topological order cannot be realized on a 2D plane unless
breaking time-reversal symmetry.

VII. BOSONIC TOPOLOGICAL INSULATORS
FROM PURE b ∧ da TERM (II)

In Sec. VI, we show that the first BTI root state can be
obtained by a pure b ∧ da topological term where U(1)
charge symmetry is defined in an unusual way. In the
following, we continue to show that the second BTI root
state (the second row in Table I) can be obtained by a pure
b ∧ da topological term where time-reversal symmetry is
defined in an unusual way.

A. Z2 nature of bulk time-reversal
symmetry definition

Let us consider the K matrix in the form of Eq. (18).
A time-reversal transformation acting on gauge fields
aIμ; bIμν can be formally expressed as

T aI0T
−1 ¼ Ta

IJa
J
0; T bI0iT

−1 ¼ Tb
IJb

J
0i; ð55Þ

T aIiT
−1 ¼ −Ta

IJa
J
i ; T bIijT

−1 ¼ −Tb
IJb

J
ij; ð56Þ

where Ta and Tb are two integer-valued matrices. In the
following, we simply call Ta and Tb “T matrices.” After
transforming twice, all gauge variables are unchanged, so
we have the constraint ðTaÞ2 ¼ ðTbÞ2 ¼ 1. It indicates that
j detTaj ¼ j detTbj ¼ 1, and both matrices belong to a
subset of GLðN;ZÞ group.
After GL transformations and time-reversal transforma-

tion, the K matrix is transformed to a new one, but
j detKj ¼ 1 is still valid such that the bulk still merely
supports trivial gapped boson excitations as before. From
this perspective, the bulk always keeps time-reversal
symmetry although the formal expression of the
Lagrangian is given by a new K matrix.
On the other hand, one may apply arbitrary GLðN;ZÞ

transformations on both sides of all equations in Eqs. (55)
and (56). Using the notation in Eq. (21), we obtain the
following equations:

T aI0T
−1 ¼ Ta

IJa
J
0; T bI0iT

−1 ¼ Tb
IJb

J
0i; ð57Þ

T aIiT
−1 ¼ −Ta

IJa
J
i ; T bIijT

−1 ¼ −Tb
IJb

J
ij; ð58Þ

where two T matrices are transformed to two new ones:

Tadef¼M−1TaM; Tbdef¼W−1TbW: ð59Þ
By keeping j detWj ¼ j detMj ¼ 1 in mind, it is clear

that the � sign of the determinant of the T matrices is
manifestly invariant under an arbitrary sequence of formal

GL transformations. For the sake of convenience, we
introduce a notation ða; bÞ that denotes such � signs of
determinants:

ða; bÞdef¼ðsign of detTa; sign of detTbÞ:

Because of the presence of this invariant, we are able to
understand the usual time-reversal transformation defined
in Eqs. (28) and (29) in a much more general background.
In terms of T matrices, the usual time-reversal trans-
formation defined in Eqs. (28) and (29) is denoted by

Ta ¼ −Tb ¼ diagð1; 1;…; 1ÞN×N; ð60Þ

where the K matrix is fixed as a unit matrix shown in
Eq. (18). This specific form of usual time-reversal trans-
formation in a given basis (i.e., K ¼ I) can be generalized
and replaced by the following invariant:

ða; bÞ ¼ ð1; ð−1ÞNÞ; ð61Þ
which is a universal property of all specific forms of usual
time-reversal transformations.
To summarize, we consider a 3D bulk state described by

an N-component b ∧ da term labeled by K with
j detKj ¼ 1. There are Ta and Tb matrices that define
time-reversal transformations. As discussed before, for the
purpose of exploring nontrivial SPT states, we consider the
cases that have a symmetry-preserving surface. Then, if
ða; bÞ ¼ ð1; ð−1ÞNÞ, the state admits a usual time-reversal
transformation and thereby a trivial SPT state. If
ða; bÞ ≠ ð1; ð−1ÞNÞ, the state is a nontrivial SPT state.
From this point of view, a Z2 classification is obtained by
attempting to change the definition of time-reversal trans-
formations. Along this line of thinking, in Sec. VII B, we
will N ¼ 2 as a simple example that reproduces the BTI
state labeled by the first Z2 index introduced in Sec. I.

B. Example with N ¼ 2

We still start with a b ∧ da theory with the K matrix
given by Eq. (42). The total Lagrangian is given by
Eq. (43). However, at present, the time-reversal trans-
formation is defined as

T a10T
−1 ¼ a10; T a1i T

−1 ¼ −a1i ; ð62Þ

T b10;iT
−1 ¼ b10;i; T b1i;jT

−1 ¼ −b1i;j; ð63Þ

T a20T
−1 ¼ −a20; T a2i T

−1 ¼ a2i ; ð64Þ

T b20;iT
−1 ¼ −b20;i; T b2i;jT

−1 ¼ b2i;j; ð65Þ

which is different from the usual definition Eqs. (28)
and (29). The associated T matrices of the time-reversal
operator T are given by
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Ta ¼
�
1 0

0 −1
�
; Tb ¼

�
1 0

0 −1
�
: ð66Þ

This definition of time-reversal symmetry transformation is
labeled by ða; bÞ ¼ ð−1;−1Þ, which is nontrivial according
to Eq. (61). Under the time-reversal transformation, the
b ∧ da term labeled byK is transformed to the term labeled
by K0 ¼ ð0

1
0
−2Þ. At first glance, time-reversal symmetry is

broken in the bulk. However, two b ∧ da theories labeled
by K0 and K are GL equivalent by using

W ¼
�
1 0

0 −1
�
; M ¼

�−1 0

0 1

�

defined in Eq. (22). More explicitly, these GL transforma-
tions lead to a sign change in both b2μν and a1μ while b1μν and
a2μ are invariant:

b2μν → −b2μν; a1μ → −a1μ; ð67Þ

b1μν → b1μν; a2μ → a2μ: ð68Þ

Let us move on to the surface theory Eq. (46). According
to the transformation of b2μν in Eq. (65), the time-reversal
transformation rule of ~a2μ defined in Eq. (45) is automati-
cally fixed:

T ~a20T
−1 ¼ − ~a20; T ~a2i T

−1 ¼ ~a2i : ð69Þ

Because of the time-reversal transformations in Eqs. (69)
and (64), both m and e, which carry unit gauge charges of
~a2μ and a2μ, respectively, are pseudolike particles on the
surface. Under these time-reversal transformations, a minus
sign appears in the Chern-Simons term in Eq. (46). Despite
that, the surface state does not break time reversal. More
precisely, the appearance of this minus sign leaves the set of
surface physical observables in Definition 1 unaffected
by noting that there is a GL equivalence relation:
PTð−K∂ÞP ¼ K∂ , where P ¼ ð1

0
0
−1Þ. Therefore, the surface

is symmetric under time-reversal transformation.
It is also beneficial to investigate the equations of motion

(EOMs) of gauge fields under time-reversal symmetry. By
adding two quasiparticle currents, jeμa2μ þ jmμ ~a2μ, where jeμ
and jmμ are e-particle and m-particle currents, respectively,
the EOMs of gauge fields are given by (only the zero
component is shown here without loss of generality)
πρe ¼ ∇ × ~a2def¼

~B; πρm ¼ ∇ × a2def¼B, where ρe ¼ je0
and ρm ¼ jm0 are density variables of e and m, respectively.
~B and B are the magnetic flux strength of ~a2 and a2,
respectively. Under time reversal, ρe and ρm change sign
since they are pseudolike: ρe → −ρe; ρm → −ρm. On
the other hand, both ~B and B are unchanged under

time-reversal transformations Eqs. (69) and (64). It seems
that EOMs break time reversal. However, time-reversal
symmetry is still unbroken due to the very existence of the
3D bulk. More concretely, the 3D bulk can source a trivial
particle that carries two units of a2μ gauge charge. One may
attach this trivial particle to a time-reversal partner of e
particles on the surface, rendering −ρe þ 2ρe ¼ ρe.
Likewise, the 3D bulk can source a trivial particle that
carries two units of ~a2μ gauge charge. One may attach this
trivial particle to a time-reversal partner of m particles,
rendering −ρm þ 2ρm ¼ ρm. As a result, both EOMs
respect time-reversal symmetry.
However, this Z2 topological order state on a 2D plane

(i.e., no 3D bulk) necessarily breaks time-reversal sym-
metry. In the absence of 3D bulk, all trivial particles that are
used to change sign of ρe and ρm can only come from the
2D state itself. Consequently, the magnetic fluxes generated
by these trivial particles will change

R
dxdy ~B and

R
dxdyB

to
R
dxdy ~B þ 2π and

R
dxdyB þ 2π, respectively. Thus,

EOMs always break time-reversal symmetry.
In summary, following the definition of obstruction in

Definition 2, the 3D bulk is a nontrivial SPT state, i.e., a
BTI state. Physically, the unique way to realize such a
time-reversal symmetry on gauge fields, i.e., Eqs. (69)
and (64), is to consider that both e and m are Kramers
doublets, and ρe; ρm should be regarded as spin density Sz
of a spin-1=2 particle. We note that by “spin 1=2” here, we
really mean a projective representation of time-reversal
symmetry and it has nothing to do with spin-rotational
symmetry. In the bulk, all particles must carry a linear
representation of time-reversal symmetry; therefore, the
spin-1=2 particle on the surface cannot be screened. Other
possibilities of Kramers degeneracy assignment (e.g., e is
a Kramers doublet while m is a Kramers singlet) can be
realized on a 2D plane without breaking time-reversal
symmetry [48,97]. This obstruction provides us a physical
way to understand the nontrivial BTI root phase generated
by exotic time-reversal symmetry. Indeed, both e and m
particles can be regarded as ends of vortex lines that are
condensed and invisible in the bulk. In terms of a simple
physical picture, we may think these invisible vortex lines
carry integer spin and form a nontrivial 1D SPT phase,
e.g., the Haldane phase. Therefore, it is not a surprise
that the ends of these vortex lines carry half-integer
spins which form Kramers doublets under time-reversal
symmetry.

VIII. ZN SPT IN THREE DIMENSIONS: BEYOND
GROUP COHOMOLOGY THEORY

In this section, we use the one component action Eq. (14)
to discuss possible ZN symmetry-protected phases beyond
the group cohomology class. Let us that assume a generic
ZN SPT in 3D can be described by
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L ¼ i
1

4π
aμ∂νbλρϵμνλρ þ i

Λ
16π

bμνbλρϵμνλρ;

where only one component is taken into account for
convenience. Here, aμ and bμν are still noncompact and
compact, respectively. In contrast to the previous discus-
sion of Uð1Þ ⋊ ZT

2 , where nonvanishing quantized Λ needs
the help of time-reversal symmetry, Λ in ZN SPT is
supposed to be quantized even without the help of time-
reversal symmetry. Following Ref. [34], we consider the
following gauge coupling to “probe the ZN SPT order”:

Lcoupling ¼ i
1

4π
Bμν∂λaρϵμνλρ þ i

N
4π

Bμν∂λAρϵ
μνλρ:

Several explanations are in order. First, the Bμν gauge field
in the B ∧ da term is a “2-form compact probe field”
that minimally couples to strings (2π vortex lines in the
ground state). It is this type of coupling that is missed
in the Dijkgraaf-Witten gauge theory [98] since
H4½ZN;Uð1Þ� ¼ Z1. The term B ∧ dA can be viewed as
a Higgs condensate term [34], where Aμ is a 1-form
compact gauge field introduced by Hubbard-Stratonovich
transformation. By means of this term, the probe field Bμν is
naturally Higgsed to a ZN discrete gauge field.
Now, we are in a position to integrate out all SPT degrees

of freedom. Integrating the noncompact field aμ renders
bμν ¼ Bμν. Consequently, we end up with an action in the
background fields B and A [71]:

S ¼ i
Z

d4x
N
4π

Bμν∂λAρϵ
μνλρ þ i

Z
d4x

Λ
16π

BμνBλρϵ
μνλρ

¼ i
N
2π

Z
B ∧ dAþ i

Λ
4π

Z
B ∧ B; ð70Þ

All possible values of Λ can be found by using the
procedures in Sec. IV B. Finally, we end up with the
following quantization condition (more details are found in
Appendix B):

Λ=N ∈ Z: ð71Þ

The constraints Eqs. (B2) and (71) suggest ZN different
SPT states protected by ZN symmetries in three
dimensions.
However, since the probe field here is a 2-form gauge

field with a flat connection, it cannot be regarded as the
symmetry twist of a usual condensed matter system where
symmetry charges are carried by pointlike particles.
Instead, we need to consider a system consisting of
stringlike objects carrying global symmetry quantum num-
bers, for example, in the context of “generalized global
symmetries” in string theory reported recently by Davide
et al. [99]. Although for solid-state systems we are not
aware of how to prepare stringlike objets carrying global

quantum numbers, we hope that certain artificial quantum
systems, e.g., cold atom systems, might be able to realize
these exotic quantum phases.

XI. CONCLUSIONS

In this paper, based on a physical process called “vortex-
line condensation” in three-dimensional superfluids, we
construct a bulk dynamical TQFT description Eq. (1) of all
three bosonic topological insulator states (BTI). The
schematic phase diagram is shown in Fig. 1. Such a
physical way of thinking allows us to understand the
physical meaning of each gauge field variable, and, most
importantly, symmetry definitions in the bulk. Our method
sheds light on a more challenging question of how to design
microscopic interactions to realize BTI states in solid-state
materials or ultracold-atom experiments. In particular, it is
quite interesting to explore the possible interaction terms to
realize the linking Berry phase contributed by b ∧ b as
shown in Fig. 2. For those two BTI states (Secs. VI and VII)
that do not need a b ∧ b term, one may attach either charge
or spin degrees of freedom to vortex lines, which may result
in BTI states after vortex lines condense.
We show that one of the three BTI states requires a

nontrivial existence of a b ∧ b term, which is beyond group
cohomology theory. The remaining two states are within
group cohomology theory and can be constructed from the
pure b ∧ da term. In contrast to previous works of BTI
where the surface topological order is always Z2 topologi-
cal order, now the surface topological order of the BTI state
within group cohomology classification can be a generic
Zp topological order with even p, as shown in Sec. VI. This
many-to-one correspondence between surface and bulk
explicitly indicates that knowledge about bulk field theory
is highly desirable, which is also explained in detail in
Sec. I. In addition to BTI, applying our construction of BTI
to 3D SPT with ZN unitary symmetry suggests some
nontrivial ZN SPT state in three dimensions beyond the
group cohomology classification. However, in contrast to
the usual quantum systems where the global symmetry
quantum number is carried by pointlike particles, the new
class of ZN SPT phases proposed here requires a stringlike
object to carry the global symmetry quantum number.
Finally, based on the results we obtain, we conjecture that
all SPT phases described by Eq. (1) with a nontrivial b ∧ b
term are generally beyond the group cohomology
classification.
In the future, it will be interesting to apply such a

physical derivation of bulk dynamical TQFT to other SPT
states, even including fermionic SPT states where a spin
manifold is required. A challenging problem is the bulk
dynamical TQFT (not response theory) description of
FTI both in free-fermionic [6–12] and interacting cases
[100–103]. There have been many previous important
efforts, such as Refs. [104,105]. In Ref. [106], functional
bosonization techniques are applied and the b ∧ b term
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appears. We believe that the basic methodology we present
in our work combined with the previous efforts will shed
light on this hard problem.
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APPENDIX A: QUANTIZATION CONDITIONS
AND EVALUATIONS OF PARTITION
FUNCTION ON CLOSED MANIFOLDS

In Sec. IV B, we obtain the quantization condition
Eq. (24) based on the physical approach, namely, the
microscopic origin vortex-line condensation. Although
in the whole derivation of the third BTI root state (see
Table I) we consider this physical approach and a is
noncompact, in this Appendix, we derive the same
quantization condition in a mathematical setting that is
independent of the microscopic origin. First of all, we
assume that both b and a satisfy the following compacti-
fication conditions:

ZZZ
V 0
db ¼ 2π × integer; ðA1Þ

ZZ
◯

S
da ¼ 2π × integer; ðA2Þ

where, both the 3D manifold V 0 and the 2D manifold S are
closed. Let us consider the partition function

Z ¼
Z

D½a�D½b�e−S; ðA3Þ

where the classical action S is given by Eq. (23). Integration
over da is a Poisson summation, which directly leads to the
quantization condition on b given by Eq. (24). Therefore,
both ways give the same answer. The treatment in the main
text can be viewed as a semiclassical way, while the new
way is more rigorous since the nontrivial shift in Eq. (16)
generally renders compactification of a once b is assumed
to be compact. A similar line of thinking was given recently
in Ref. [107].

We also check whether the addition of the b ∧ b term
induces fractionalization, namely, topological order in the
bulk. Following the spirit of the Laughlin thought experi-
ment for probing electron fractionalization in fractional
quantum Hall effects, we apply an external gauge field that
minimally couples to the conserved currents of matter
fields, i.e., bosonic point particles and strings (vortex lines).
In the present 3D state, we add a 2-form external gauge
field B through the minimal coupling term ð1=2πÞB ∧ da,
where ð1=2πÞ�da denotes the 2-form string (vortex-line)
current. The asterisk ( �) denotes Hodge dual. We choose B
instead of the usual 1-form external electromagnetic field A
to probe fractionalization because in the 3D state anyons do
not exist while possible fractionalization comes only from
fractionalization of flux strength of vortex lines; namely, 2π
becomes 2π=k, with k > 1; k ∈ Z.
Then the ground-state degeneracy (GSD) ratio in a given

space-time manifold between the theories with and without
b ∧ b is given by the ratio of partition functions in the
presence of external gauge field B:

Z
Z0

¼ 1

Z0

Z
D½a�D½b�e−i

R
½ð1=2πÞb∧daþðΛ=4πÞb∧b−ð1=2πÞa∧dB�;

ðA4Þ

where Z0 is given by Z0 ¼ Z½Λ ¼ 0� by definition.
Integration over a is a Poisson summation, which leads to

ZZ
◯

S
ðbþ BÞ ¼ 2π × integer; ðA5Þ

where S is a closed 2D manifold forming a surface of a 3D
space V, i.e., S ¼ ∂V.
We note that the probe field B satisfies the quantization

condition:

ZZ
◯

S
B ¼ 2π × integer: ðA6Þ

Thus, we set B ¼ b up to gauge transformation (including
the large one) in the b ∧ b term, which leads to the
following result:

Z
Z0

¼ ei
R
ðΛ=4πÞB∧B: ðA7Þ

In space-time with different topology, we may calculate
the ratio that is always a phase factor with unit length,
i.e., jZ=Z0j ¼ 1. For example, one may choose T 0x × T yz

topology and calculate the ratio. The calculation is com-
pletely the same as in Appendix B 1 by just replacing b by
B. In summary, the GSD ratio in the presence of b ∧ b is
still one in all kinds of space-time topology, since the pure
b ∧ da theory is at level 1 with GSD ¼ 1. Thus, the
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addition of b ∧ b does not induce new GSD and thus
fractionalization in our theory.

APPENDIX B: SOME TECHNICAL DETAILS

1. Physical understanding of Eq. (25)

We consider the two tori T 0x and T yz. The former is
formed by imaginary time direction and x direction.
The latter is formed by y and z directions. In both tori,
we have the following constraints due to the condition
Eq. (24):

ZZ
T0x

b0xdτdx ¼ 2π ×N 0x;

ZZ
Tyz

byzdydz ¼ 2π ×N yz;

where τ is imaginary time. Note that the above two integrals
are performed at fixed y; z and fixed τ; x, respectively. Since
the integrals in the lhs of both equations are smooth
functions of space-time, the integers N 0x (N yz) should
be independent of the coordinates y and z (τ and x).
Then, one may reformulate the b ∧ b term as

i
Λ
16π

Z
d4xϵμνλρbμνbλρ ¼ i

Λ
16π

ZZ
T0x

dτdxb0x

ZZ
Tyz

dydzbyzϵ0xyz þ ðx0yzÞ

þ ð0xzyÞ þ ðx0zyÞ þ ðyz0xÞ þ ðyzx0Þ þ ðzy0xÞ þ ðzyx0Þ

¼ i
8Λ
16π

ZZ
T0x

dτdxb0x

ZZ
Tyz

dydzbyz

¼ i
Λ
2π

2πN 0x2πN yz

¼ i2πΛN 0xN yz: ðB1Þ

By noting that the partition function is invariant if
R
L is

shifted by 2π in a quantized theory, we end up with the
periodicity shift shown in Eq. (25).

2. Derivation of Eq. (71)

The condition Eq. (24) leads to N 0x and N yz (see
Appendix B 1) quantized at 1=N such that the periodicity of
Λ is

Λ → Λþ N2: ðB2Þ

On the other hand, as a discrete gauge theory, the B ∧ B
term should also be invariant up to 2π under large gauge
transformation: Bμν → Bμν þ δBμν, where δBμν satisfiesR
S δBμνSμν ¼ 2π × integer (there is no implicit summation
over indices μ; ν here). Without loss of generality, we still
consider the pair of tori T 0x and Tyz:

R
T0x

δB0xdτdx ¼
2π × ~N 0x;

R
Tyz

δByzdydz ¼ 2π × ~N yz, The additional

terms δS arising from the large gauge transformation are
collected as follows:

Sþ δS ¼ i
Λ
16π

ZZ
T0x

dτdxðB0x þ δB0xÞ
ZZ

Tyz

dydzðByz þ δByzÞϵ0xyz

þ ðx0yzÞ þ ð0xzyÞ þ ðx0zyÞ þ ðyz0xÞ þ ðyzx0Þ þ ðzy0xÞ þ ðzyx0Þ

¼ Sþ 8Λ
16π

�
2π

N
N 0x2π

~N yz þ 2π ~N 0x
2π

N
N yz þ 2π ~N 0x2π

~N yz

�

¼ Sþ 2πΛ

�
1

N
N 0x

~N yz þ
1

N
~N 0xN yz þ ~N 0x

~N yz

�
: ðB3Þ

To keep the quantum theory invariant under the large gauge transformation, δS must equal to integer × 2π, leading to the
quantization condition Eq. (71).
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