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We discuss a general method for constructing nonreciprocal, cavity-based photonic devices, based
on matching a given coherent interaction with its corresponding dissipative counterpart; our method
generalizes the basic structure used in the theory of cascaded quantum systems and can render an extremely
wide class of interactions directional. In contrast to standard interference-based schemes, our approach
allows directional behavior over a wide bandwidth. We show how it can be used to devise isolators and
directional, quantum-limited amplifiers. We discuss in detail how this general method allows the
construction of a directional, noise-free phase-sensitive amplifier that is not limited by any fundamental
gain-bandwidth constraint. Our approach is particularly well suited to implementations using super-
conducting microwave circuits and optomechanical systems.
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I. INTRODUCTION

The general desire to break time-reversal symmetry and
reciprocity in engineered photonic structures has garnered
an immense amount of recent interest. Recall that while
time-reversal symmetry is only a useful notion in non-
dissipative systems, reciprocity is more general: It is
defined as the invariance of photon transmission ampli-
tudes under exchange of source and detector [1]. On a
fundamental level, the artificial breaking of time-reversal
symmetry allows the realization of truly new photonic
states, such as quantum Hall states and more general
topological states [2–6]. On a more practical level, nonre-
ciprocal devices can enable a number of signal-processing
applications and greatly simplify the construction of
photonic networks [7].
Nonreciprocal microwave-frequency devices are also

crucial to efforts at quantum-information processing with
superconducting circuits. Here, one necessarily needs to
use near quantum-limited amplifiers to efficiently read out
qubits; nonreciprocity is crucial to ensure the qubits are
protected from unwanted noise stemming from the amplifier.
The conventional solution is to use circulators employing
magneto-optical effects (Faraday rotation) to break reciproc-
ity. These devices have many disadvantages: They are bulky
and cannot be implemented on chip (hindering scaling-up
to multiqubit systems), and they use large magnetic fields,
which can be deleterious to superconducting devices. Their
use also typically leads to insertion losses.

A number of strategies have been developed to break
reciprocity without the use of magneto-optical effects in both
optical systems and superconducting circuits. For nonrecip-
rocal photon transmission, approaches based on refractive-
index modulation [8,9] have been considered, as well as
strategies using optical nonlinearity [10], optomechanical
interaction [11,12], and interfering parametric processes
[13–15]. Related strategies where the phases of external
driving fields generate an artificial gauge field in a lattice or
cavity array have also been discussed [16–19], as have
alternative methods that do not use modulation [20–22].
Nonreciprocal quantum amplifiers have also been developed
largely in the context of superconducting circuits [23–26].
They typically involve engineering complex interferences
betweenparametric processes.Understandinghow to achieve
such interferences can be difficult, though recently a graph-
theory approach was formulated by Ranzani et al. [25].
In this work, we present a simple yet general method for

generating nonreciprocal behavior in a photonic system,
one that can make a variety of cavity-cavity interactions
completely directional, including amplifying interactions
(see Fig. 1). It employs reservoir engineering [27], where a
structured dissipative environment generates useful quan-
tum behavior. In our approach, the dissipative reservoir
(which could simply be a damped auxiliary cavity mode)
generates an effective dissipative interaction between the
modes of interest. Nonreciprocal behavior is then obtained
by balancing this induced dissipative interaction against the
corresponding coherent version of the interaction.
As we discuss, this simple yet powerful trick allows one

to generate both isolators (which only allow unidirectional
transmission) and nonreciprocal, quantum-limited phase-
sensitive amplifiers (which have zero added noise)
as well as phase-preserving amplifiers (which add the
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quantum-limited amount of noise, a half quantum at the
signal frequency). While our approach uses a kind of
interference, it is markedly different from more typical
interference-based approaches, in that it allows perfect
directional behavior over a wide range of frequencies.
The method is also simple enough that it could be
implemented in a wide variety of architectures; in particu-
lar, it is extremely well suited to implementations using
superconducting circuits and optomechanics.
Our approach to nonreciprocity is intimately connected

to the theory of cascaded quantum systems [28,29]. This is
an effective theory developed to describe situations where a
nonreciprocal element is used to couple two quantum
systems [e.g., such that the output field of one cavity
drives a second cavity but not vice versa—see Fig. 1(c)].
We show that the effective interactions used in this theory
have exactly the form described above: One balances a
coherent “photon tunneling” interaction between the two
cavities against a corresponding dissipative version of this
interaction. We also demonstrate that cascaded quantum
systems theory is not simply an effective theory for
describing nonreciprocal transmission: It also serves as a
recipe for constructing nonreciprocal devices, one that can
be generalized to amplifying interactions. As we discuss,
the needed dissipative interactions can be obtained by
simply coupling to intermediate damped cavity modes; one
does not need to start with an explicitly nonreciprocal
reservoir (as assumed in the derivations of Refs. [28,29]).
The remainder of this paper is organized as follows. In

Sec. II, we introduce our basic approach of balancing

coherent and dissipation interactions, showing how this
can be used to generate both nonreciprocal photon trans-
mission and amplification. In Sec. III, we provide further
details on each of these schemes, discussing simple three-
mode implementations, as well as issues of bandwidth,
impedance matching, and added noise. We pay particular
attention to our scheme for a nonreciprocal cavity-based
phase-sensitive amplifier. In addition to being nonreciprocal
and quantum limited, we show that this system can also be
constructed so that there is no fundamental gain-bandwidth
limitation on its performance and so that it is perfectly
impedance matched at both its input and output (i.e., there
are no unwanted reflections at either port of the amplifier).

II. DIRECTIONALITY FROM DISSIPATIVE
INTERACTIONS

Throughout this work, we consider a generic situation
where we have a pair of cavity modes (annihilation
operators d̂1; d̂2), each coupled to input/output waveguides;
our goal is to engineer a nonreciprocal interaction between
them, thus enabling either nonreciprocal transmission or
amplification of signals incident on the two modes. Our
approach is sketched in Fig. 1(b): We allow both cavities to
interact with one another in two distinct ways. The first is
via a direct, coherent interaction described by an interaction
Hamiltonian Ĥcoh. While our approach can make a general
factorizable cavity-cavity interaction directional, we focus
here on simple bilinear interactions. The coherent inter-
action will thus be described by a quadratic Hamiltonian,
having the general form (ℏ ¼ 1)

Ĥcoh ¼ Jd̂†1d̂2 þ λd̂†1d̂
†
2 þ H:c:; ð1Þ

where J and λ are, in general, complex. We always work in
a rotating frame where the two cavities are effectively
resonant and where Ĥcoh is time independent. Each of the
two interactions in this Hamiltonian could be realized in
many ways; for example, one could start with three modes
and a generic three-wave mixing Hamiltonian and then
displace one of the modes with a coherent tone. The driven
mode act as pump; by a suitable choice of frequencies (i.e.,
at the difference and the sum of cavities 1 and 2 resonance
frequencies), one realizes the above Hamiltonian, with the
amplitudes and phases of the couplings J; λ being con-
trolled by the pump-mode amplitudes. Such an approach
has been exploited recently in superconducting circuits,
using the Josephson parametric converter (JPC) geometry
[30–33], as well as in quantum optomechanics [34].
The second required interaction involves controllably

coupling both cavities to the same dissipative reservoir
[Fig. 1(a)]. Eliminating this reservoir will generate an
effective dissipative interaction between the cavities (i.e.,
one that cannot be described by some direct Hamiltonian
coupling). The simplest setting is where this reservoir is

FIG. 1. (a) Basic recipe for generating directionality: Two
cavities are directly coupled to one another via a coherent
Hamiltonian Ĥcoh, and are also each coupled to the same
(nondirectional) dissipative environment. (b) The dissipative
environment in (a) mediates a reciprocal dissipative interaction
between the two cavities. This interaction can be modeled using a
Lindblad master equation and dissipative superoperator L½ẑ�
[cf. Eq. (2)]. By balancing the strength of coherent and bath-
induced dissipative interactions between the cavities, one can
break reciprocity. (c) Schematic cascaded quantum system, where
one cavity drives another via a waveguide supporting only a right-
propagating mode. The effective theory used to describe such
systems corresponds to (b).

A. METELMANN AND A. A. CLERK PHYS. REV. X 5, 021025 (2015)

021025-2



effectively Markovian and hence can be described using
dissipators in a Lindblad master equation for the reduced
density matrix ρ̂ of the two cavity modes. As we are
focusing here on a bilinear coherent interaction, the needed
interactions between the engineered reservoir and the two
cavities will also be linear. We are thus left with the general
master equation

d
dt

ρ̂ ¼ − i½Ĥcoh; ρ̂� þ ΓL½ẑ�ρ̂þ
X
j¼1;2

κjL½d̂j�ρ̂; ð2Þ

where

ẑ ¼
X
j¼1;2

ðujd̂j þ vjd̂
†
jÞ; ð3Þ

and the standard dissipative superoperator L½ô� is
defined as

L½ô�ρ̂ ¼ ô ρ̂ ô† −
1

2
ô†ô ρ̂−

1

2
ρ̂ô†ô: ð4Þ

The first term in Eq. (2) describes the coherent inter-
action between the two cavities, the second the interaction
with the engineered reservoir at rate Γ (including the
induced dissipative cavity-cavity interactions), and the last
the coupling of the cavities to their input-output ports at
rate κj. Note that an asymmetry in the couplings does not
change the basic physics in which we are interested; thus,
for simplicity, we take κ1 ¼ κ2 ≡ κ in what follows. The
coefficients uj and vj characterize the individual coupling
of each cavity to the engineered bath. As we see in what
follows, the engineered reservoir need not be anything too
exotic: It can simply be another (damped) cavity mode, or a
(nondirectional) transmission line. Also note that one does
not need to be in the strict Markovian limit, though it makes
it simpler to understand the physics. We discuss corrections
to the Markovian limit in Sec. III.
With these ingredients in place, obtaining directionality

involves first constructing Ĥcoh so that it gives the desired
behavior (amplification or transmission), and then precisely
balancing it with the corresponding dissipative interaction
(i.e., choice of Γ; uj, and vj). To illustrate this process, we
can derive the equations of motion for the expectation
values of the mode’s operators. Starting from the Lindblad
master equation in Eq. (2), we obtain

d
dt

hd̂1i ¼ −
Γ1 þ κ

2
hd̂1i

− i

�
J þ iμ

Γ
2

�
hd̂2i − i

�
λþ iν

Γ
2

�
hd̂†2i;

d
dt

hd̂2i ¼ −
Γ2 þ κ

2
hd̂2i

− i

�
J� þ iμ�

Γ
2

�
hd̂1i − i

�
λ − iν

Γ
2

�
hd̂†1i; ð5Þ

with Γn ¼ Γðjunj2 − jvnj2Þ, ðn ∈ 1; 2Þ, describing the local
damping induced by the engineered reservoir, and the
definitions μ ¼ v1v�2 − u2u�1 and ν ¼ v1u�2 − v2u�1. The
engineered reservoir mediates a nonlocal damping force
on each mode; thus, it couples the two modes in a similar
manner as the coherent interaction. Crucially, because of
the difference in the coupling coefficients, we can decouple
cavity 1 from cavity 2 by setting

J¼! − iμ
Γ
2
; λ¼! − iν

Γ
2
: ð6Þ

For this case, we obtain a unidirectional interaction, where
cavity 2 is driven by cavity 1 but not vice versa. Moreover,
it is straightforward to show that this decoupling works
for all operators: The evolution of any cavity-1 operator
is independent of cavity 2, while cavity-2 operator expect-
ations are influenced by cavity 1 (cf. Appendix A).
In what follows, we show how this general recipe of

balancing coherent and dissipative interactions can be used
to construct an isolator and nonreciprocal quantum-limited
amplifiers (both phase-preserving and phase-sensitive
kinds). The basic recipe here will, in fact, allow any
factorizable cavity-cavity interaction to become directional,
including nonlinear interactions (see Appendix A). It thus
represents a powerful approach for constructing a wide
variety of nonreciprocal behaviors.

A. Unidirectional photon hopping: Dissipative isolator

We first discuss how our basic recipe can be used to
obtain directional transmission between ports 1 and 2. We
want an effective interaction between the two cavities,
which only allows photons to tunnel from cavity 1 to 2 (and
not vice versa). This is precisely the kind of behavior
described by standard cascaded quantum systems theory
[28,29,35]. We show here how this fits into our general
framework, where directionality results from balancing
coherent and dissipative interactions. We also show how
it can be simply realized using an auxiliary cavity or
reciprocal transmission line and thus does not require an
explicitly directional reservoir.
To obtain nonreciprocal tunneling between the cavities,

we first need to identify coherent and dissipative versions
of a tunneling interaction. The coherent version is simple:
Choosing λ ¼ 0 in Eq. (1), we obtain a standard hopping
(or beam-splitter) Hamiltonian,

Ĥcoh → Jd̂†1d̂2 þ H:c:≡ Ĥhop: ð7Þ

For the dissipative version of a hopping interaction, we
need a zero-temperature engineered reservoir that is able to
absorb quanta from either cavity; crucially, there needs to
be coherence between absorption of a photon from cavity 1
versus cavity 2. The jump operator ẑ in our master
equation (2) thus needs to take the form
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ẑ → d̂1 þ eiφd̂2 ≡ ẑhop: ð8Þ

The general master equation (2) thus reduces to

d
dt
ρ̂¼− i½Ĥhop; ρ̂�þΓL½d̂1þeiφd̂2�ρ̂þκ

X
j∈1;2

L½d̂j�ρ̂: ð9Þ

The second term describes the dissipative hopping inter-
action: The engineered reservoir can absorb a photon from
either cavity 1 or cavity 2, and there is coherence between
these possibilities (relative phase φ). The rate for this
process is Γ. Note that via a gauge transformation, the
phase φ can be shifted into the phase of J. We thus set
φ ¼ 0 in what follows but keep J complex.
Before discussing how to engineer such a nonlocal

dissipator, let us discuss the consequences. Using
Eq. (9), the equations of motion for mode expectation
values are

d
dt

hd̂1i ¼ −
κ þ Γ
2

hd̂1i −
�
Γ
2
þ iJ

�
hd̂2i;

d
dt

hd̂2i ¼ −
κ þ Γ
2

hd̂2i −
�
Γ
2
þ iJ�

�
hd̂1i: ð10Þ

Note that the engineered nonlocal dissipation in Eq. (9)
couples the two cavity lowering operators in an analogous
manner to the coherent tunneling interaction J. On a
heuristic level, this is because the engineered reservoir
gives rise to nonlocal damping: The damping force on
cavity 1 depends on the amplitude of cavity 2 (and vice
versa). If we only have the coherent hopping interaction
(i.e., Γ ¼ 0), or only the dissipative interaction (i.e., J ¼ 0),
the coupling between the cavities would be reciprocal.
Note, however, that the coherent coupling involves J in the
first line of Eq. (10) and J� in the second line. Thus, it
becomes possible to have the two coupling terms cancel in
one of the two equations. By setting, e.g.,

J¼! iΓ
2
; ð11Þ

we obtain a unidirectional interaction: Cavity 2 is driven by
cavity 1 but not vice versa [see Fig. 2(c)].
With this tuning of J, our master equation (9) takes

the standard form used in cascaded quantum systems
theory [35]:

d
dt
ρ̂¼ðΓþκÞ

X
n¼1;2

L½d̂n�ρ̂−Γf½d̂†2;d̂1ρ̂�− ½ρ̂d̂†1; d̂2�g: ð12Þ

We are most interested in the evolution of the extra-
cavity fields, i.e., signals entering and leaving the two
cavities via the coupling waveguides. Treating our engi-
neered dissipative reservoir using a Markovian oscillator

bath (which is equivalent to the above Lindblad descrip-
tion), one can use standard input-output theory to calculate
the relation between the input fields incident on the two
cavities, d̂n;in, and the output fields leaving the cavities,
d̂n;out (see Sec. III A for details). Using the input-output
boundary condition d̂n;out ¼ d̂n;in þ

ffiffiffi
κ

p
d̂n [36,37], and

letting D½ω� ¼ ðd̂1½ω�; d̂2½ω�ÞT , scattering between the
cavity in/out fields is described by a 2 × 2 scattering
matrix s½ω�:

Dout½ω� ¼ s½ω�Din½ω� þ ~̂ξ½ω�: ð13Þ

Here, ξ̂½ω� describes (operator-valued) noise incident on the
cavities from the engineered reservoir, and the zero-
frequency (i.e., on-resonance) scattering matrix is

s½0� ¼
� Γ−κ

κþΓ 0

4κΓ
ðκþΓÞ2

Γ−κ
κþΓ

�
: ð14Þ

As expected, there is transmission from port 1 to port 2
but not vice versa. Note that s is, in general, not unitary, and
hence the noise ξmust be nonvanishing in order to preserve
canonical commutators of the output fields; we discuss this
noise in more detail in Sec. III A, showing that it can indeed

FIG. 2. (a) Realization of the engineered reservoir via an
auxiliary cavity mode that is damped at a rate κ0. For strong
damping κ0 ≫ κ, this setup corresponds to a Markovian reservoir.
(b) Implementation based on a transmission line, which supports
propagation of photons in both directions. (c) Scattering matrix
elements for the dissipative isolator setup at zero frequency, as a
function of the coherent hopping J; the phase of J is fixed so that
argðJ=ΓÞ ¼ π=2. When J is tuned as per Eq. (11), the system
only allows directional transmission between cavities 1 and 2. We
have fixed the dissipative coupling strength Γ to be equal to the
cavity damping rate κ and have taken the Markovian limit for the
engineered reservoir (κ0 ≫ κ). (d) Scattering matrix elements as a
function of frequency, when the directionality condition of
Eq. (11) is fulfilled. In the Markovian limit, directionality holds
over all frequencies.
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have the minimal amount required by quantum mechanics.
We also show that the vanishing of s12 can be made to
extend up to frequencies comparable to the relaxation
rate of the engineered reservoir (i.e., much larger than κ)
[see Fig. 2(d)].
Equation (14) still does not have the ideal scattering

matrix of an isolator [7], as the incident signal on cavity 1
could be partially reflected. To suppress such reflections,
we simply impedance match the system, i.e., tune Γ ¼ κ.
We then obtain the ideal isolator scattering matrix
(on resonance)

s½0� ¼
�
0 0

1 0

�
: ð15Þ

On a physical level, interference causes signals incident
on cavity 2 to be perfectly dumped into the dissipative
reservoir. Interference also ensures that signals incident on
cavity 1 never end up in this reservoir but instead emerge
from cavity 2.
We still have not specified how one obtains the required

nonlocal dissipator. The original works on cascaded quan-
tum systems assumed an inherently nonreciprocal, unidi-
rectional reservoir (i.e., a chiral transmission line) and then
derived the effective master equation (12). However, the
above dynamics can be obtained without needing an
explicitly directional reservoir. One simple choice would
be a one-dimensional transmission line, cf. Fig. 2(b),
supporting both right-moving and left-moving modes,
which couples to cavity j at position xj,

ĤSB¼−
ffiffiffiffiffiffiffiffi
ΓvG
2

r X
j¼1;2

ðd̂†j ½ĉRðxjÞþ ĉLðxjÞ�þH:c:Þ; ð16Þ

where ĉL;RðxÞ denote the left- and right-moving fields in
the waveguide and vG is the waveguide velocity. For a
suitable choice of jx1 − x2j, one again obtains the master
equation (2) with jump operator ẑ as per Eq. (8). Further
details are provided in Appendix B.
Another simple implementation involves taking a

damped auxiliary mode as the engineered reservoir
(annihilation operator ĉ) [see Fig. 2(a)], which interacts
with the two principle modes via a Hamiltonian:

ĤSB ¼ J0ĉ†ðd̂1 þ d̂2Þ þ H:c: ð17Þ

Such a quadratic interaction can be realized in a tunable
fashion by starting with a three-wave mixing Hamiltonian
and pumping one of the modes at an appropriate frequency;
this is the same strategy used to implement the coherent
direct interaction in Eq. (1) (see discussion following that
equation). As we show in Sec. III A, if the damping of the
auxiliary mode κ0 is sufficiently large, it can be adiabati-
cally eliminated, yielding the scattering matrix given above.

For this particular realization, our isolator reduces to a
three-mode system with an asymmetric choice of damping
rates. Furthermore, the required phase of J in the direc-
tionality matching condition of Eq. (11) corresponds to
having the three-mode system pierced by an effective
magnetic flux of a quarter-flux quantum. We stress that
in many physical implementations, the couplings J and J0
are tunable simply by controlling the amplitude and phases
of the relevant pump modes. Thus, the directional inter-
action we finally obtain is not the result of having used an
explicitly directional reservoir, but rather, it results from the
control of relative phases in a driven system. Note that this
three-mode realization of our dissipative isolator was also
discussed by Ranzani et al. [25]. It is also interesting
that this three-mode implementation directly yields the
scattering matrix of an ideal circulator (see Sec. III A); it is
closely analogous to previous proposals for nonmagnetic
circulators [20,25,38,39].

B. Directional phase-preserving quantum amplifier

We next use our general recipe to construct a nonrecip-
rocal, phase-preserving amplifier, a topic that is of con-
siderable interest to the superconducting qubit community
[23–25]. We again consider a two-mode system as sketched
in Fig. 1(b). Our goal is a dynamics that leads to signals
incident on cavity 1 emerging amplified from cavity 2,
while at the same time, signals (and noise) incident on
cavity 2 are prevented from emerging from cavity 1.
Our basic recipe is the same as the previous subsection:

Engineer both coherent and dissipative versions of the
desired interaction and then balance them to obtain direc-
tionality. The coherent interaction needed corresponds to a
nondegenerate parametric amplifier (NDPA), as obtained
by setting J ¼ 0 in Eq. (1):

Ĥcoh → λd̂†1d̂
†
2 þ λ�d̂1d̂2 ≡ ĤPA: ð18Þ

This textbook interaction results in the amplification of an
input signal (or noise) incident on either cavity, in both
transmission and reflection (see, e.g., Refs. [37,40]).
We next need to add the dissipative version of this NDPA

interaction, as mediated by an appropriately chosen dis-
sipative reservoir. This kind of dissipative amplification
was recently introduced in our previous work, Ref. [41].
The dissipative reservoir now needs to be able to absorb
photons from one cavity and to emit photons to the other,
with coherence between these possibilities. The jump
operator ẑ associated with the reservoir [cf. Eq. (2)] thus
needs to take the general form

ẑ →
ffiffiffi
2

p
ðcos θd̂1 þ eiφ sin θd̂†2Þ≡ ẑPA; ð19Þ

where the angle θ parametrizes the asymmetry between the
two kinds of processes. The relative phase φ can again be
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gauged away into the phase of λ; we thus set it to zero in
what follows.
With this choice of coherent Hamiltonian and dissipator,

the two-cavity system is again described by the master
equation (2), with Γ parametrizing the strength of the
coupling to the engineered reservoir and hence of the
dissipative amplifier interaction. To see clearly that
the dissipation here leads to amplification, we consider
the equations of motion for the means of lowering
operators. One obtains

d
dt
hd̂1i¼−

κþ2Γcos2θ
2

hd̂1i−
�
Γ
2
sin2θþ iλ

�
hd̂†2i;

d
dt
hd̂†2i¼−

κ−2Γsin2θ
2

hd̂†2iþ
�
Γ
2
sin2θþ iλ�

�
hd̂1i: ð20Þ

The crucial terms behind the amplification are the last term
in each line, which cause d̂1 to be driven by d̂†2 and vice
versa. Again, both the coherent interaction and the dis-
sipative interaction give rise to such terms; each interaction
thus facilitates amplification that can be quantum limited
but that is not directional [41]. To obtain a unidirectional
interaction, we again simply tune the amplitude and phase
of the coherent interaction with respect to the dissipative
interaction, so as to cancel the coupling term in the first
equation, i.e.,

λ¼! iΓ
2
sin 2θ: ð21Þ

To see that this choice gives the desired behavior
of the output fields, we model the dissipative bath as a
Markov reservoir and calculate the scattering matrix for
the system using input-output theory. Letting Din=out½ω� ¼
ðd̂1;in=out½ω�; d̂†2;in=out½ω�ÞT , the input-output relations take

the form of Eq. (13). ~̂ξ again describes noise incident from
the engineered reservoir, while the 2 × 2 scattering matrix s
takes the following explicitly nonreciprocal form at zero
frequency,

s½0� ¼

0
B@ 2Ccos2θ−1

2Ccos2θþ1
0

4C sin 2θ
½2Ccos2θþ1�½2Csin2θ−1�

2Csin2θþ1
2Csin2θ−1

1
CA: ð22Þ

Here, the cooperativity is defined as C ¼ ðΓ=κÞ.
If we further tune θ so that

cos2θ¼! 1=ð2CÞ ð23Þ

(possible as long as C > 1=2), we cancel all reflections of
input signals incident on cavity 1. With this tuning, the
scattering matrix becomes

s½0� ¼
�

0 0ffiffiffi
G

p ffiffiffiffiffiffiffiffiffiffiffiffi
Gþ 1

p
�
; ð24Þ

with G ¼ ½ð2C − 1Þ=ðC − 1Þ2�. As claimed, we have a
scattering matrix describing nonreciprocal, phase-preserv-
ing amplification, with a gain that diverges as C approaches
1. Signals incident on cavity 1 are never reflected and
emerge from cavity 2 with an amplitude gain s21 ¼

ffiffiffi
G

p
,

whereas signals incident on cavity 2 do not emerge at the
output from cavity 1. The system exhibits a standard
parametric instability when C > 1 (analogous to the
instability in a standard, coherent NDPA).
The frequency dependence of the scattering coefficients

is discussed in Sec. III B. Strikingly, the directionality
property s12½ω� ¼ 0 holds for all frequencies for which the
Markovian bath approximation is valid. The system is
limited by a standard gain-bandwidth constraint (in contrast
to the purely dissipative amplification process, which has
no such constraint [41]). We also discuss the added noise of
the amplifier in Sec. III B, showing that it is quantum
limited in the large gain limit as long as there is no thermal
noise incident on cavity 2; surprisingly, the engineered
reservoir need not be at zero temperature.
While there are many ways to realize the engineered

reservoir used in this scheme, the simplest choice is a
damped third auxiliary mode (see Sec. III B). With this
particular choice, our scheme reduces to the three-cavity
amplifier discussed by Ranzani and Aumentado in
Ref. [25]. Our analysis thus generalizes this scheme and
provides insight into the underlying mechanism. It also
shows the crucial importance of the auxiliary mode damp-
ing κ0 being much larger than that of the principle modes; in
this Markovian limit, one has directionality over the full
amplification bandwidth (see Fig. 3).

FIG. 3. s-matrix elements of the directional, phase-preserving
amplifier, as a function of scaled frequency; the cooperativity
C≡ Γ=κ ¼ 0.95, where Γ is the dissipative interaction strength
and κ is the damping rate of cavities 1 and 2. (a) Auxiliary mode
damping κ0 ¼ κ, indicating a strong deviation from the Marko-
vian limit; while perfect isolation exists at ω ¼ 0, it is rapidly lost
for nonzero frequencies. (b) Auxiliary mode damping κ0 ¼ 100κ,
closer to the Markovian limit. The directionality is much better at
finite frequencies, while the gain is unchanged.
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C. Directional phase-sensitive amplifier

As a third application of our recipe for nonreciprocity,
we construct a phase-sensitive amplifier. Phase-sensitive
amplifiers only measure a single quadrature of an incident
signal; as a result, quantum mechanics allows them to
amplify without adding any added noise [37,42]. Our
general approach allows one to construct a nonreciprocal
and noiseless version of such an amplifier, again using the
two-cavity-plus-reservoir setup in Fig. 1(b). The resulting
amplifier has another striking advantage over a standard
paramp: It does not suffer from any fundamental gain-
bandwidth limitation, a point we discuss more fully in
Sec. III C.
As before, the first step is to construct a coherent

interaction that gives the desired amplification. The stan-
dard choice would be a degenerate parametric amplifier
(DPA) Hamiltonian involving just a single mode, of
the form Ĥint ¼ λd̂ d̂þλ�d̂†d̂†. In contrast, to be able to
implement our recipe for directionality, we want an
interaction that couples two modes.
Surprisingly, there is a simple coherent two-mode

interaction that accomplishes this and that yields ideal
amplification properties (zero added noise, no gain-
bandwidth limitation). One needs to use the kind of quantum
nondemolition (QND) interaction discussed extensively in
the context of Gaussian cluster-state generation [43–45].
Suppose we want to amplify the P quadrature of cavity 1,
i.e., the operator P̂1 ¼ −iðd̂1 − d̂†1Þ=

ffiffiffi
2

p
. We then use an

interaction Hamiltonian that commutes with this operator
but that takes information in the P1 quadrature and dumps it
into a cavity 2 quadrature (i.e., P2). The required coherent
Hamiltonian is obtained by setting J ¼ λ ¼ iλQND=2
ðλQND ∈ RÞ in Eq. (1), i.e.,

Ĥcoh → λQNDP̂1X̂2 ≡ ĤQND; ð25Þ

with X̂2 ¼ ðd̂2 þ d̂†2Þ=
ffiffiffi
2

p
. It is straightforward to see from

the Heisenberg equations of motion that ĤQND causes P2 to
be driven by P1, and hence P2 will contain information on
P1 (see Fig. 4). The same holds for the extra-cavity fields:
The P quadrature of a signal incident on cavity 1 will emerge
in the P quadrature of a signal leaving cavity 2.
Note that P̂1 and X̂2 are QND variables: They commute

with the Hamiltonian in Eq. (25) and are undisturbed by the
amplification process. It follows that there is no possibility
of feedback in this system, and hence the system is stable
irrespective of the value of λQND. By increasing λQND, one
can thus achieve increasing amounts of phase-sensitive
gain. Furthermore, as the amplification mechanism here
does not involve coming close to an instability, the
amplification bandwidth is always close to κ, irrespective
of the gain.
Following our recipe for directionality, we next need to

construct the dissipative counterpart to the coherent

interaction in Eq. (25). We need the jump operator ẑ
characterizing the engineered reservoir to also preserve
the QND structure of the coherent Hamiltonian. Taking
u1 ¼ u2 ¼ v2 ¼

ffiffiffi
2

p
and v1 ¼ −

ffiffiffi
2

p
in Eq. (3) yields

ẑ → X̂2 þ iP̂1 ≡ ẑQND: ð26Þ

This dissipative interaction is the counterpart of the
coherent interaction in Eq. (25): With this choice of ẑ,
the dissipative terms in Eq. (2) alone lead to amplification
of the P quadrature of signals incident on cavity 1. The
heuristic interpretation of this dissipative amplification is
similar to that presented in Ref. [41] for the phase-
preserving case: The engineered reservoir “measures”
the QND quadrature P̂1 and then dumps this information
into the non-QND quadrature P̂2 (see Fig. 4, as well as
Sec. III C).
With these choices for Ĥcoh and ẑ in Eq. (2), we have

both coherent and dissipative phase-sensitive amplifying
interactions between the cavities. Using this master equa-
tion, the equations of motions for the quadrature means
have the expected form

d
dt

hP̂1i ¼ −
κ

2
hP̂1i;

d
dt

hX̂2i ¼ −
κ

2
hX̂2i;

d
dt

hX̂1i ¼ −
κ

2
hX̂1i þ ½λQND − Γ�hX̂2i;

d
dt

hP̂2i ¼ −
κ

2
hP̂2i − ½λQND þ Γ�hP̂1i: ð27Þ

P1 and X2 are QND variables and thus undisturbed by
either interaction. In contrast, both interactions cause P2 to
become an amplified copy of P1.

FIG. 4. Schematic illustrating the directional phase-sensitive
amplifier. The coherent QND Hamiltonian of Eq. (25) causes the
cavity-1 P quadrature to drive the cavity-2 P quadrature, and the
cavity-2 X quadrature to drive the cavity-1 X quadrature (blue
arrows); there is gain associated with each of these drivings,
cf. Eq. (27). The engineered reservoir [jump operator described
by Eq. (26)] also mediates the same drivings (green and magenta
arrows), again with gain. By balancing these interactions,
one can cancel the X2 → X1 driving, resulting in directional
amplification.
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We can now finally apply the last step of our general
recipe: balance the dissipative and coherent interactions to
break reciprocity. This process simply involves setting

Γ¼! λQND; ð28Þ

which ensures that cavity 1 is insensitive to the state of
cavity 2.
Finally, we are, as usual, interested in the behavior of

the output fields from the cavity. Treating the engineered
reservoir as a Markovian bath and using input-output
theory, we can again calculate the scattering matrix of
the system. Writing this matrix in a quadrature representa-
tion, we find that on-resonance (i.e., at zero frequency)

Zout ¼ s Zin þ ~̂ξ with

s½0� ¼

0
BBBBB@

−1 0 0 0

0 −1 0 0

0 0 −1 0

0
ffiffiffiffiffiffi
Gϕ

p
0 −1

1
CCCCCA; Z ¼

0
BBBBB@

X̂1

P̂1

X̂2

P̂2

1
CCCCCA: ð29Þ

Here, the zero-frequency amplitude gain is given
by

ffiffiffiffiffiffi
Gϕ

p ¼ ð8λQND=κÞ.
The input-output relations in Eq. (29) describe an ideal

directional degenerate amplifier: The P quadrature of
signals incident on cavity 1 emerge with gain from cavity
2, whereas signals or noise incident on cavity 2 never
emerge from cavity 1. Note further that there is no
unwanted amplification in reflection of incident signals
and noise. The amplifier also has several other remarkable
properties: It is quantum limited (i.e., no added noise in the
large gain limit) and does not suffer from any fundamental
gain-bandwidth limitation. The directionality is also main-
tained over a large range of frequencies (see Fig. 5). These
properties (along with the possibility of eliminating
unwanted reflections) are discussed in more detail in
Sec. III C.

III. NOISE, BANDWIDTH, AND THREE-CAVITY
IMPLEMENTATION

A. Dissipative isolator: Additional details

1. Auxiliary-cavity implementation
of the engineered reservoir

To demystify the engineered reservoirs used in our
schemes, we provide more details here on the simplest
possible realization: a damped auxiliary cavity mode. In the
limit where the damping rate κ0 of this auxiliary mode is
large, this model describes a general Markovian reservoir.
We stress that this setup is just one of many ways to
implement the necessary dissipative dynamics. In
Appendix B, we explicitly show how coupling two cavities
to a (nondirectional) one-dimensional transmission line

or waveguide also generates the needed dissipative
dynamics.
Consider the dissipative isolator described by the master

equation (9), and take the engineered reservoir to be an
auxiliary mode with lowering operator ĉ which is damped
at rate κ0 by a coupling to a Markovian reservoir. 1=κ0 will
act as the correlation time of our engineered reservoir. As
discussed in Sec. II A, we need this auxiliary mode (i.e., the
engineered reservoir) to interact with the principle modes
via the interaction Hamiltonian in Eq. (17). The simplest
limit is where κ0 is much larger than all other frequency
scales; in this limit, the ĉ mode will itself act as a
Markovian reservoir for the system modes d̂1; d̂2. One
could then recover the master equation (9) using standard
adiabatic elimination techniques [35].
Alternatively, one can eliminate the auxiliary mode

within a Heisenberg-Langevin formalism, using the coher-
ent Hamiltonian Ĥ ¼ Ĥhop þ ĤSB. Solving the equation of
motion for ĉ in the large-damping (adiabatic) limit yields

ĉ ¼ −
2ffiffiffiffi
κ0

p ĉin − i
2J0

κ0
ðd̂1 þ d̂2Þ; ð30Þ

where all operators are evaluated at the same time and ĉin
describes thermal and vacuum fluctuations stemming from
the mode’s internal dissipation. Substituting this equation

FIG. 5. Gain Gϕ½ω� and reverse gain Ḡϕ½ω� of the directional
phase-sensitive amplifier, plotted as a function of signal fre-
quency ω and coherent coupling strength λQND [cf. Eq. (25)],
assuming that the dissipative coupling Γ always satisfies the
matching condition Γ ¼ λQND [cf. Eq. (28)]. Gϕ½ω� describes the
amplification in transmission of signals incident on the cavity-1 P
quadrature, while Ḡϕ½ω� describes the amplification in trans-
mission of signals incident on the cavity-2 X quadrature. We have
taken the engineered reservoir to be an auxiliary cavity mode with
damping rate κ0=κ ¼ 100 (see Sec. III C). In this limit, deviations
from the Markovian-reservoir approximation are small.
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into the equations of motion for the principle cavity
operators d̂j then yields

d
dt

d̂1 ¼ −
κ þ Γ
2

d̂1 −
ffiffiffi
κ

p
d̂1;in þ i

ffiffiffi
Γ

p
ĉin −

�
Γ
2
þ iJ

�
d̂2;

d
dt

d̂2 ¼ −
κ þ Γ
2

d̂2 −
ffiffiffi
κ

p
d̂2;in þ i

ffiffiffi
Γ

p
ĉin −

�
Γ
2
þ iJ�

�
d̂1;

ð31Þ

where we take J0 ∈ R without loss of generality and define
Γ≡ 4J02=κ0. Taking average values, we recover the master-
equation result of Eq. (10).
Using the Heisenberg-Langevin approach, we can now

calculate the full scattering matrix for the system, which
includes the scattering of noise incident from the engi-
neered reservoir. Letting Y½ω� ¼ ðd̂1½ω�; d̂2½ω�; ĉ½ω�ÞT , the
full scattering relations take the form Yout½ω� ¼ ~s½ω�
Yin½ω�. Consider first the Markovian limit, where
κ0 ≫ ω; κ;Γ. Assuming that the system has been tuned
to satisfy both the directionality condition J ¼ iðΓ=2Þ
[cf. Eq. (11)] and the impedance matching condition
κ ¼ Γ, the full scattering matrix in this limit is

ð32Þ

The upper left 2 × 2matrix is the scattering matrix s for the
reduced, two-mode system, cf. Eq. (14). The elements ~s13
and ~s23 describe the scattering of noise from the engineered
reservoir to the main cavity modes. This then explicitly

yields the noise operator in Eq. (13) as ~̂ξ ¼ ½~s13; ~s23�Tĉin.
We see that directionality holds for all frequencies in this
Markovian limit, i.e., ~s12½ω� ¼ 0. In contrast, the imped-
ance matching (which ensures no reflections at the input of
cavity 1) only holds for ω ≪ κ.
Finally, note that at zero frequency, the full scattering

matrix becomes

ð33Þ

In this ideal case, signals incident on cavity 2 are perfectly
transmitted to the engineered reservoir, while the input field
on the reservoir (i.e., the ĉmode) is perfectly transmitted to
mode 1. If the engineered reservoir is at zero temperature,
we see that the output from cavity 1 is simply vacuum

noise. Amusingly, the above unitary scattering matrix is
that of a perfect circulator: The effective magnetic field
associated with the phase of J breaks the degeneracy of
right- and left-circulating eigenmodes of the coherent three-
mode hopping Hamiltonian. In the case of symmetric decay
rates, i.e., κ0 ¼ κ, this kind of circulator has been discussed
in the context of superconducting circuit setups [20,25] and
just recently experimentally demonstrated by Sliwa and
co-workers [39]. An analogous circulator for phonons has
been discussed in the context of optomechanics [38].

2. Non-Markovian corrections

We can also consider deviations from the Markovian
limit, where the internal damping rate of the engineered
reservoir κ0 is not arbitrarily large. The scattering matrix
follows simply from solving the full (linear) Langevin
equations without any adiabatic assumption. We quote
only the results for the forward and reverse transmission
probabilities, again assuming that the directionality
and impedance matching conditions have been met.
We find

j~s21½ω�j2 ¼
ð1þ ω2

κ02Þ
½ω2

κ02 ð1þ 4ω4

κ4
Þ − 4ω4

κ3κ0 þ ð1þ ω2

κ2
Þ2� ;

j~s12½ω�j2 ¼
ω2

κ02

½ω2

κ02 ð1þ 4ω4

κ4
Þ − 4ω4

κ3κ0 þ ð1þ ω2

κ2
Þ2� : ð34Þ

One clearly sees that the directionality only holds for
frequencies that are small compared to the inverse
correlation time 1=κ0 of the reservoir: For small ω,
j~s12½ω�j2 ∝ ω2=κ02. For nonzero ω=κ0, the engineered
reservoir gives rise to both dissipative and coherent
interactions. The extra induced coherent interaction ruins
the directionality matching condition of Eq. (11), leading to
a lack of perfect isolation.

B. Directional phase-preserving amplifier:
Additional details

1. Bandwidth and non-Markovian effects

We return now to the setup presented for directional
amplification in Sec. II B. As in the previous section, we
will investigate the frequency-dependent behavior of the
system using an auxiliary damped cavity mode ĉ to
represent the engineered reservoir. With this choice, the
system is analogous to that studied in Ref. [25], which was
recently implemented in a superconducting circuit experi-
ment [39]. We emphasize the importance of having a large
damping rate κ0 of the auxiliary mode, thus complementing
the discussion in Ref. [25].
For phase-preserving amplification, the coherent inter-

action between the principle modes d̂1; d̂2 has the NDPA
form of Eq. (18). To obtain the correct dissipative
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interaction, the coupling ĤSB between the principle cavity
modes and the auxiliary mode should have the form

ĤSB ¼
ffiffiffi
2

p
λ0ĉ†ðcos θd̂1 þ sin θd̂†2Þ þ H:c: ð35Þ

Taking the large κ0 limit and using standard adiabatic
elimination techniques, one recovers the master equation
described by Eqs. (2) and (19), with Γ ¼ 4λ02=κ0.
One can again solve the full Heisenberg-Langevin

equations to obtain the full 3 × 3 scattering matrix for
the system at all frequencies. If we tune the couplings to
satisfy the directionality condition of Eq. (21) and the
impedance matching condition of Eq. (23), the “forward
photon number gain” of the amplifier takes the form

G½ω�≡ js21½ω�j2 ¼
ð2C− 1Þ

½ω2

κ2
þ 1�½ðC− 1Þ2þ ω2

κ2
� þO

�
ω

κ0

�
: ð36Þ

The corresponding reverse photon number gain (which
we ideally want to vanish) is given by

Ḡ½ω�≡ js12½ω�j2 ¼ G½ω�ω
2

κ02
þO

�
ω3

κ03

�
: ð37Þ

Consider first the limit where the engineered reservoir is
effectively Markovian, ω=κ0 → 0. The reverse gain always
vanishes, while the zero-frequency forward gain G½0� is
controlled by C and diverges as C → 1; the system is
unstable for larger C. In the large gain limit, G½ω� is a
Lorentzian as a function of frequency, with a bandwidth
Δω ¼ 2κð1 − CÞ that decreases as one increases the gain.
The amplifier has a finite gain-bandwidth limitation just
like a standard cavity-based NDPA (i.e., the productffiffiffiffiffiffiffiffi
G½0�p

Δω is fixed) [25]. Note that the dissipative para-
metric interaction on its own suffers from no such limita-
tion [41] but is of course not directional. Directionality is
thus obtained by introducing a coherent NDPA interaction,
with the price that this interaction naturally leads to a
conventional gain-bandwidth limit.
Turning to the non-Markovian effects, we see from

Eq. (37) that for finite ω=κ0, the reverse gain is nonzero,
implying that directionality is lost; this is also depicted in
Fig. 3. The loss of directionality here is analogous to what
happens in the directional isolator and occurs for the same
basic physical reason: For finite ω=κ0, the engineered
reservoir also induces a coherent interaction between the
two modes, and hence the perfect matching of coherent and
dissipative interactions needed for directionality is lost.

2. Added noise and quantum-limited behavior

In addition to directionality, for many applications it is
crucial that our amplifier reaches the fundamental quantum
limit on its added noise. This limit corresponds to adding
noise equivalent to half a quanta at the input, n̄add ≥ 1=2

[42]. The added noise follows directly from the full
scattering matrix ~s and will have contributions both from
noise incident on cavity 2 that is reflected and noise
emerging from the engineered reservoir (i.e., the auxiliary
ĉ mode). Assuming that the impedance matching and
directionality conditions have been fulfilled and letting
n̄Td2 and n̄

T
c represent the thermal occupancies (respectively)

of these two noise sources, we find

n̄add½0� ¼
�
1

2
þ n̄Td2

��
1þ 1

G½0�
�
: ð38Þ

Thus, in the large gain limit, the added noise is quantum
limited as long as there is no thermal noise incident
upon cavity 2 (i.e., nTd2 ¼ 0) [25]. Remarkably, thermal
noise in the engineered reservoir does not prevent one
from reaching the quantum limit; similar behavior is found
in a purely dissipative (nondirectional) phase-preserving
amplifier [41].
While not relevant to the quantum limit, from a practical

standpoint one also wants the noise leaving cavity 1 to be
small (so as not to damage the signal source). Using our
scattering matrix, it is straightforward to calculate the noise
of the output field from cavity 1. Characterizing this noise
by an effective thermal occupancy n̄T1;out, we find, at zero
frequency,

n̄T1;out ¼ n̄Tc : ð39Þ
Thus, while thermal noise in the engineered reservoir does
spoil quantum-limited performance, this noise does show
up in the output of cavity 1.

C. Directional phase-sensitive amplifier:
Additional details

1. Full scattering matrix and impedance matching

We now turn our attention to the scheme of Sec. II C for
directional and noiseless single-quadrature amplification.
As discussed in that section, we need to combine the
coherent QND interaction of Eq. (25) (QND variables
X2 and P1) with the corresponding dissipative interaction;
this dissipative interaction requires the jump operator
ẑ ¼ X̂2 þ iP̂1, as given in Eq. (26).
To generate the required dissipation, we again take the

engineered reservoir to be a damped auxiliary mode ĉ
(damping rate κ0). Writing this operator in terms of
quadratures as ĉ ¼ ðÛ þ iV̂Þ= ffiffiffi

2
p

, the required system-
bath interaction has the form

ĤSB ¼ Λ½P̂1V̂ þ X̂2Û�: ð40Þ

This interaction preserves the QND structure in the
coherent interaction, as it also commutes with X̂2 and
P̂1. One can again confirm that in the Markovian limit of a
large κ0, one recovers the master equation description, with
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the dissipative rate Γ in Eq. (2) being given by
Γ ¼ ð2Λ2=κ0Þ.
The dissipative interaction on its own generates phase-

sensitive amplification that can be quantum limited.
Heuristically, this can be understood as arising from a
kind of transduction mediated by the reservoir. From
Eq. (40), information in the P1 quadrature of cavity 1
drives the auxiliary mode U quadrature. The U quadrature
in turn drives the cavity-2 P2 quadrature, effectively letting
P1 drive P2. As P1 and X2 are QND variables, increasing Λ
simply increases the gain associated with this process, with
no possibility of instability. An analogous argument of
course shows that one obtains reverse gain: Signals incident
on X2 will emerge amplified in X1. Thus, the dissipative
amplification here is not directional; directionality is only
obtained when this process is matched against its coherent
counterpart, as described in Sec. II C.
The only small nonideality left in the directional phase-

sensitive amplifier of Sec. II C is the presence of reflections
at the input [cf. Eq. (29)]. Even though there is no gain
associated with these, one would ideally want them to be
exactly zero to protect the signal source. We now show that
this can be easily accomplished by modifying both the
coherent and dissipative interactions used in the scheme, so
as to slightly deviate the QND structure discussed above.
This modification also allows one to cancel reflections of
signals and noise at the amplifier output.
To impedance match, we first modify the system-bath

Hamiltonian in Eq. (40) to take the more general form

ĤSB ≡ ffiffiffi
2

p
ΛUÛðsin θX̂1 þ cos θX̂2Þ

þ
ffiffiffi
2

p
ΛVV̂ðcos θP̂1 þ sin θP̂2Þ: ð41Þ

For θ ¼ 0 and ΛU ¼ ΛV ¼ Λ=
ffiffiffi
2

p
, we recover Eq. (40). By

allowing ΛU ≠ ΛV , we modify the relative strength of the
two QND interactions. By letting θ deviate slightly from
zero, we break the QND structure of Eq. (40); this will
allow us to cancel the unwanted reflections from both
cavities. In what follows, it will be useful to parametrize the
system-bath couplings in terms of a cooperativity C̄ and
asymmetry parameter α:

C̄ ¼ 4ΛUΛV=ðκκ0Þ; ð42Þ

α ¼ ðΛV=ΛUÞ2: ð43Þ

The general structure of Eq. (41) implies that once the
auxiliary mode is eliminated, the cavity Xj modes will drive
one another in a nondirectional way; the same goes for the
cavity Pj quadratures. This structure is depicted schemati-
cally in Fig. 6(a). To obtain directionality, we need to cancel
the ability of the cavity-2 quadratures to drive the corre-
sponding cavity-1 quadratures. We do this in the usual
manner: We balance the dissipative quadrature-quadrature
interactions generated by Eq. (41) by the coherent versions
of these interactions. This process will require a coherent
Hamiltonian of the form

Ĥcoh ≡ λ1P̂1X̂2 þ λ2P̂2X̂1: ð44Þ

The second term here is new compared to Eq. (25), and it
breaks its QND structure. As usual, we balance the above
coherent interactions against their dissipative counterparts
[as generated by Eq. (41)] so that the cavity-1 quadratures
are not driven by the cavity-2 quadratures. Working
through the equations of motion, and focusing on the
Markovian limit, we obtain the directionality conditions

λ1 ¼ κC̄cos2θ; λ2 ¼ −κC̄sin2θ: ð45Þ

Using a standard Heisenberg-Langevin analysis, we find
the full scattering matrix of the system; tuning the coherent
interactions as per Eq. (45), the scattering will indeed be
directional. Insisting further that there are no reflections of
signals and noise incident on either cavity (i.e., impedance
matching) leads to an additional condition on the angle θ:

sin 2θ ¼ 1=C̄: ð46Þ

Note that for a large cooperativity C̄, the angle θ is very
close to zero, implying that one is very close to our original
scheme where P̂1 and X̂2 are QND variables.

FIG. 6. Properties of the directional phase-sensitive amplifier. (a) Sketch of couplings and drivings used to impedance match the
amplifier. (b) Reverse gain Ḡϕ½ω� for ω set to half of the amplification bandwidthΔω, for various choices of the auxiliary-mode damping
rate κ0. On resonance, we always have perfect directionality: Ḡϕ½0� ¼ 0. (c) Amplification bandwidthΔω as a function of zero-frequency
forward gain Gϕ for various values of κ0. The amplifier does not suffer from a standard gain-bandwidth constraint.
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Even after satisfying the above conditions, the cooper-
ativity C̄ and the asymmetry parameter α remain unspeci-
fied; they control the final form of the impedance-matched,
directional scattering matrix. Using the above conditions,
the full scattering matrix of the system (describing both the
principle modes and the auxiliary mode ĉ) takes a simple
form. Introducing the vector

W ¼ ð X̂1 P̂1 X̂2 P̂2 Û V̂ ÞT; ð47Þ
the scattering relations at each frequency then take the form
Wout ¼ ~s Win. At zero frequency, the scattering matrix is

ð48Þ

Gϕ describes the zero-frequency phase-sensitive photon
number gain of our amplifier, and it is given by

ffiffiffiffiffiffi
Gϕ

q
¼ C̄

�
1þ

ffiffiffiffiffiffiffiffiffiffiffi
1 −

1

C̄

r �
: ð49Þ

The upper 4 × 4 block describes an ideal, directional
phase-preserving amplifier. As for the full 6 × 6 scattering
matrix, it describes a kind of “squeezing circulator,” where
the input on port j emerges from port jþ 1 after having
undergone a squeezing transformation. Crucially, the
squeezing parameters or gains for each of these trans-
formations are not all equal.
While a squeezing circulator may have interesting

applications, if the goal is amplification, it represents a
potential hazard. As indicated by Eq. (48), incident noise
from the auxiliary mode will emerge from the output of
cavity 1, having undergone a squeezing transformation
with gain

ffiffiffiffiffiffiffiffi
αGϕ

p
. To protect the signal source at the

amplifier input, we do not want to amplify any fluctuations
emerging from the auxiliary mode. Hence, the ideal choice
is to null this effective gain by tuning the asymmetry α to
satisfy

α ¼ 1=Gϕ; ð50Þ

Tuning the asymmetry of the couplings to the auxiliary
cavity in this manner ensures that one can have large,
directional gain, without unduly large amounts of noise
emerging from the amplifier input port.

The presented phase-sensitive amplifier has several
highly desirable properties: It is quantum limited and
directional and has no gain-bandwidth limitation.
However, an experimental implementation in a supercon-
ducting circuit setting will also face some technical
challenges. Most notably, a straightforward implementation
requires six pump tones to be applied with excellent control
over their amplitudes and relative phases. While demand-
ing, experiments with analogous levels of complexity and
multiple pumps have recently been performed in circuit
QED architectures (see, e.g., Refs. [39,46]).

2. Frequency dependence

The full scattering matrix can also be easily calculated at
nonzero frequencies. The relevant forward gain of the
amplifier describes signals incident in the P quadrature of
cavity 1 emerging in the P quadrature of the output from
cavity 2. Assuming that we chose parameters to impedance
match (as described) and that we further tune the asym-
metry parameter α to minimize noise as per Eq. (50), the
forward photon number gain is given by

Gϕ½ω�≡ j~s42j2 ¼
Gϕð1þ ω2

κ02Þ
ð1þ ω2

κ2
Þ2 þ ω2

κ02 ð1þ 4ω4

κ4
Þ − 4ω4

κ3κ0
: ð51Þ

As already discussed, the zero-frequency gain Gϕ can be
made arbitrarily large by simply increasing the various
couplings (i.e., C̄); the linear system never exhibits any
instability. In the Markovian limit κ0 ≫ ω, the frequency
dependence of the gain is extremely simple: It is simply a
Lorentzian squared, with a bandwidth Δω ∼ κ, which is
independent of the zero-frequency gain. Thus, this ampli-
fier is not constrained by any fundamental gain-bandwidth
limitation.
Including non-Markovian effects (i.e., finite ω=κ0), the

frequency dependence is slightly more complex, but the
ultimate bandwidth is still set by κ, irrespective of the size
of the zero-frequency gain.
While deviations from the Markovian limit do not

degrade amplification, they impact the directionality of
the amplifier. In the ideal Markovian limit, signals incident
on cavity 2 in either quadrature never emerge from cavity 1.
For finite ω=κ0, this is no longer true: Now, the reverse-gain
scattering matrix element ~s13 becomes nonzero, implying
that incident signals on X̂2 can emerge from X̂1. We find

Ḡϕ½ω�≡ j~s13j2 ¼
Gϕðω2

κ02Þ
ð1þ ω2

κ2
Þ2 þ ω2

κ02 ð1þ 4ω4

κ4
Þ − 4ω4

κ3κ0
: ð52Þ

As expected, the optimal situation is clearly in the
Markovian limit where κ0 ≫ κ. In this limit, one has purely
directional amplification over the full bandwidth κ of the
principle cavity modes.
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3. Added noise for finite frequency

An ideal phase-preserving amplifier can amplify a single
quadrature without any added noise [42]. From the scatter-
ing relations of Eq. (48), it immediately follows that our
scheme reaches this quantum limit on resonance. For
completeness, we also present the added noise at finite
frequency, again focusing on the impedance-matched
version of the amplifier. We calculate the added noise of
our amplifier in the standard manner [37], by calculating
the noise in the cavity-2 output P quadrature (symmetrized
spectral density S̄P2

½ω�) and then referring this back to the
input. Expressing this added noise as an effective number
of thermal quanta and focusing on the Markovian limit
κ0 ≫ κ, we find

n̄P2;add½ω� ¼
ω2

κ2

�
n̄Tc þ 1

2ffiffiffiffiffiffiffiffi
Gϕα

p þ
�
1þ ω2

κ2

� ðn̄T2 þ 1
2
Þ

Gϕ

�
þO

�
ω

κ0

�
:

ð53Þ

Note that we have left the asymmetry parameter α
[cf. Eq. (43)] unspecified here. The added noise always
vanishes at ω ¼ 0, irrespective of the gain. Furthermore,
for a fixed value of α, the added noise vanishes at all
frequencies in the large gain limit, implying that it is
quantum limited at all frequencies. If, however, one tunes
α ¼ 1=Gϕ to minimize the noise hitting the input port, then
the added noise is nonzero at finite frequencies even in the
large gain limit.

IV. CONCLUSION

We have presented an extremely general yet simple
method for achieving directional behavior in coupled
photonic systems, based on matching a given (reciprocal)
coherent interaction with the corresponding dissipative
version of the interaction. We demonstrated how this
principle could be used to construct both isolators and
directional, quantum-limited amplifiers. In particular, our
approach allows the construction of a directional phase-
sensitive amplifier that is not limited by a standard gain-
bandwidth constraint. The recipe we present is not tied to a
particular realization, and could be implemented in pho-
tonic systems, microwave superconducting circuits, and
optomechanical systems.
Finally, while our focus here has been on bilinear

interactions between two principle cavity modes, a similar
approach of balancing coherent and dissipative interactions
could be used to make nonlinear interactions directional,
and it could be used in more complex cavity lattice
structures. Understanding how this form of reciprocity
breaking leads to useful functionalities and possibly new
photonic states in such systems will be the subject of
future work.
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APPENDIX A: GENERAL APPROACH
TO DIRECTIONALITY

We show here that our basic recipe of balancing coherent
and dissipative interactions can make any factorizable
interaction between two quantum systems directional.
Consider two bosonic systems 1 and 2, and consider a
general interaction Hamiltonian of the form

Ĥcoh ¼
λ

2
ðô1ô2 þ ô†2ô

†
1Þ: ðA1Þ

Here, ôj is a system j operator (j ¼ 1; 2), implying that

½ôð†Þ1 ; ôð†Þ2 � ¼ ½ô1; ô†2� ¼ ½ô†1; ô2� ¼ 0: ðA2Þ

The operators ôj are otherwise arbitrary; in the case where
our systems are cavity modes, they could be nonlinear
combinations of creation and destruction operators and/or
non-Hermitian.
To make the above general interaction directional, we

need to introduce its dissipative counterpart. We do this by
coupling to a suitably engineered reservoir which couples
to both subsystems and which gives rise to a Lindblad
master equation of the form

d
dt

ρ̂ ¼ − i½Ĥcoh; ρ̂� þ ΓL½ô1 þ eiφô†2�ρ̂: ðA3Þ

We have a single dissipator with jump operator
ẑ ¼ ô1 þ eiφô†2, with a dissipative rate Γ. The phase φ
appearing in ẑ will be kept general for the moment; we see
that by tuning it correctly, we obtain the desired
directionality.
It is now straightforward to calculate the equations of

motion for some arbitrary operators Ân; ðn ∈ 1; 2Þ for each
subsystem; as usual, all system-1 operators commute with
all system-2 operators. Using the above Lindblad master
equation, we obtain

d
dt
hÂ1i¼−

i
2
½λþΓe−i ~φ�h½Â1; ô1�ô2ρ̂i

−
i
2
½λþΓei ~φ�h½Â1;ô

†
1�ô†2ρ̂iþΓhÂ1L½ô1�ρ̂i;

d
dt
hÂ2i¼−

i
2
½λ−Γe−i ~φ�h½Â2;ô2�ô1ρ̂i

−
i
2
½λ−Γei ~φ�h½Â2; ô

†
2�ô†1ρ̂iþΓhÂ2L½ô†2�ρ̂i; ðA4Þ
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with ~φ ¼ φ − ðπ=2Þ. The first two terms on the right-hand
side of each equation describe the effects of interactions
between the two systems (both dissipative and coherent),
while the third term describes a local, generalized damping
induced by the engineered reservoir. To obtain direction-
ality, we take φ ¼ π=2. Focusing only on the terms
coupling the two cavities, the EOM take the form

d
dt
hÂ1i¼−

i
2
½λþΓ�fh½Â1; ô1�ô2ρ̂iþh½Â1; ô

†
1�ô†2ρ̂ig;

d
dt
hÂ2i¼−

i
2
½λ−Γ�fh½Â2; ô2�ô1ρ̂iþh½Â2; ô

†
2�ô†1ρ̂ig; ðA5Þ

where, again, we have dropped the local generalized
damping terms. This form makes it obvious that for
Γ ¼ λ, we decouple system 2 from system 1: System-2
observables are not influenced at all by system 1, whereas
system 1 is influenced by system 2. We thus have made the
original, general interaction described by Ĥcoh directional
by picking a suitable form for the dissipative jump operator
and for the corresponding dissipative rate. This simply
corresponds to our general recipe of balancing a given
coherent interaction against its dissipative counterpart.
Note that if we had instead made the choice φ ¼ −π=2,
the direction of the final nonreciprocal interactions would
be flipped, with cavity 1 now influencing cavity 2.
As an example, we consider the directional DPA dis-

cussed in Sec. II C. There, we would have the correspon-
dence ô1 ¼ X̂2 and ô2 ¼ P̂1. Taking these together with the
equations for the expectation values in Eq. (A5), we recover
that the QND observables X̂2 and P̂1 are not affected by the
interaction, but the expectation values for the remaining
quadratures, i.e., setting Â1 ¼ P̂2 and Â2 ¼ X̂1, become

d
dt

hP̂2i ¼ −½λþ Γ�hP̂1i;
d
dt

hX̂1i ¼ þ½λ − Γ�hX̂2i; ðA6Þ

which coincides with our former result, cf. Eq. (27).
Finally, the above construction also applies directly to

fermionic systems, if one takes the operators ôj, Âj to be
even in creation or destruction operators (implying that
cavity-1 and cavity-2 operators commute with one another).

APPENDIX B: WAVEGUIDE AS AN
ENGINEERED RESERVOIR

We show here how a simple 1D transmission line or
waveguide can be used as the engineered reservoir needed
in the dissipative isolator scheme of Sec. II A [i.e., it
generates the dissipator in the master equation (2) with
jump operator ẑ ¼ d̂1 þ d̂2]. We take a standard approach
for the case where the waveguide dispersion is linear
over all frequencies of interest (see, e.g., Appendix A of

Ref. [47]). Working in an interaction picture at the
frequency ωcav of the two principle cavities, the
Hamiltonian of the waveguide takes the form

ĤW ¼ ℏvG

Z
dxðĉ†Rð−i∂x − k0ÞĉR þ ĉ†Lði∂x − k0ÞĉLÞ;

ðB1Þ
where k0 ¼ ωcav=vG, and we have omitted the explicit x
dependence of the waveguide fields ĉRðxÞ, ĉLðxÞ.
Using the total Hamiltonian Ĥ ¼ ĤW þ ĤSB [where

ĤSB is given in Eq. (16)], we find the equation of motion�
1

vG
∂t þ ∂x

�
ĉRðx; tÞ ¼ ik0ĉRðx; tÞ

þ i
X
j¼1;2

Γ
2vG

δðx − xjÞd̂j; ðB2Þ

with an analogous equation for ĉLðx; tÞ. The delta-function
source term leads to a discontinuity in each waveguide
field, e.g.,

cRðxj þ η; tÞ ¼ cRðxj − η; tÞ þ i
Γ
2vG

d̂jðtÞ: ðB3Þ

Introducing input and output R fields associated with cavity
j in the natural manner, this takes the form of a standard
input-output relation:

cR;outðxj; tÞ ¼ cR;inðxj; tÞ þ i
Γ
2vG

d̂jðtÞ: ðB4Þ

A similar equation (and definition of input and output
fields) holds for the L field.
Using the fact that fields propagate freely between the

cavities and l≡ x2 − x1 > 0, we have

ĉR;in½x2;ω� ¼ eik½ω�lĉR;out½x1;ω�; ðB5Þ

ĉL;in½x1;ω� ¼ eik½ω�lĉL;out½x2;ω�; ðB6Þ

where we have Fourier transformed in time and defined
k½ω� ¼ k0 þ ω=vG. We can finally substitute these results
into the Heisenberg equations of motion for the cavity
operators d̂j. Fourier transforming, they take the form

 
−iωþ Γ

2
eik½ω�l Γ

2

eik½ω�l Γ
2

−iωþ Γ
2

! 
d̂1½ω�
d̂2½ω�

!
¼ i

ffiffiffi
Γ
2

r  
ξ̂1½ω�
ξ̂2½ω�

!
; ðB7Þ

where the noise operators ξj are

ξ1½ω� ¼ ffiffiffiffiffiffi
vG

p ðĉR;in½x1;ω� þ eik½ω�lĉL;in½x2;ω�Þ; ðB8Þ

ξ2½ω� ¼ ffiffiffiffiffiffi
vG

p ðeik½ω�lĉR;in½x1;ω� þ ĉL;in½x2;ω�Þ: ðB9Þ
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Note that we have only retained terms associated with the
coupling to the waveguide, as our goal here is to see the
form of the dynamics it induces for the cavities.
Consider the case where for all frequencies of ω of

interest, ω ≪ 1=τ, where τ ¼ l=vG is the propagation time
between the cavities. In this case, we can omit the effects of
nonzero τ in Eq. (B7) and replace k½ω� by k0. Note that, in
general, we are only concerned with the cavity dynamics
on frequencies that are most comparable to κ; hence, this
approximation requires κτ ≪ 1. Once we make this
Markovian approximation, Eq. (B7) becomes local in time
and has the same structure as Eqs. (10) and (31) in the main
text. Comparing the form of the equations, we see that the
cavity induces both a coherent hopping interaction between
the cavities (amplitude Jind ¼ Γ sin k0l=2) and an induced
dissipative hopping interaction (strength Γind ¼ Γ cos k0l).
The induced coherent interaction here always corre-

sponds to a real hopping Jind. As such, we cannot use the
waveguide to provide both the interactions needed for our
isolator scheme [i.e., one cannot satisfy the directionality
condition of Eq. (11) using the waveguide alone]. Instead,
we can use the waveguide solely to provide the dissipative
interaction needed for the scheme. We thus require the
distance between the cavities to be chosen such that there is
no induced coherent hopping interaction, i.e.,

k0l ¼ nπ; n ∈ Z: ðB10Þ

If the integer n in Eq. (B10) is even, then the noise
operators in Eq. (B7) are identical: ξ̂1 ¼ ξ̂2. For this choice
(and in the Markovian limit), the dissipative interactions
induced by the waveguide are completely described by the
dissipator L½z� in Eq. (2) with the choice ẑ ¼ d̂1 þ d̂2 (as
can be shown using standard techniques [35]). The dis-
sipative interactions generated by the waveguide in this
limit are thus also equivalent to those generated by the
auxiliary cavity implementation [cf. Eq. (17)] discussed in
Sec. III A 1. For n odd in Eq. (B10), one generates the
dissipator L½z� with ẑ ¼ d̂1 − d̂2; upon making a gauge
change d̂2 → −d̂2, this is of course equivalent to having
ẑ ¼ d̂1 þ d̂2.
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