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We present an extensive study of angle-dependent transverse magnetoresistance in bismuth, with a
magnetic field perpendicular to the applied electric current and rotating in three distinct crystallographic
planes. The observed angular oscillations are confronted with the expectations of semiclassic transport
theory for a multivalley system with anisotropic mobility and the agreement allows us to quantify the
components of the mobility tensor for both electrons and holes. A quadratic temperature dependence is
resolved. As Hartman argued long ago, this indicates that inelastic resistivity in bismuth is dominated by
carrier-carrier scattering. At low temperature and high magnetic field, the threefold symmetry of the lattice
is suddenly lost. Specifically, a 2π=3 rotation of magnetic field around the trigonal axis modifies the
amplitude of the magnetoresistance below a field-dependent temperature. By following the evolution
of this anomaly as a function of temperature and magnetic field, we map the boundary in the (field,
temperature) plane separating two electronic states. In the less symmetric state, confined to low temperature
and high magnetic field, the three Dirac valleys cease to be rotationally invariant. We discuss the possible
origins of this spontaneous valley polarization, including a valley-nematic scenario.
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I. INTRODUCTION

Electric conduction in solids is affected by the application
of magnetic field in a variety of ways. The most prominent
is orbital magnetoresistance, which is the enhancement of
resistivity due to the Lorentz force suffered by charged
carriers in the presence of magnetic field. As early as 1928,
Kapitza discovered that the electric resistivity of bismuth
increases by many orders of magnitude upon the application
of a large magnetic field [1]. The large orbital magneto-
resistance is one manifestation of the extreme mobility of
carriers in bismuth, itself a consequence of the lightness
of electrons, the ultimate reason behind the singular role
played by this elemental semimetal in the history of scientific
exploration of electrons in metals [2].
During the past few years, bismuth has attracted new

attention (a recent review can be found inRef. [3]).A number
of intriguing observations on bismuth crystals exposed to
strong magnetic fields have been reported [4–8]. The angle-
resolved Landau spectrum has been found to become excep-
tionally complex in high magnetic field. In spite of this
complexity (and in contrast to what was initially thought

[4,5]), the spectrum resolved by experiment [5,8–11] is in
agreement with theoretical expectations [9,10,12,13] based
on the band structure of the system and its fine details.
Open questions remain, however. The three small pockets

of Fermi surface residing at the L point of the Brillouin zone
host Dirac fermions with an extremely anisotropic mass
becoming as small as one-thousandth of the free-electron
mass along the bisectrix axis. These three Dirac valleys are
interchangeable upon a2π=3 rotation around the trigonal axis.
But according to two sets of experimental studies [11,14], the
three Dirac valleys become inequivalent at low temperature
and high magnetic field. The origin of this spontaneous loss
of threefold symmetry is yet to be understood.
Metals hosting a small concentration of high-mobility

carriers and displaying a large magnetoresistance have
attracted much recent attention. In dilute metals such as
WTe2 [15] or Cd3As2 [16], resistivity is enhanced by many
orders of magnitude upon the application of a magnetic
field of 10 T. This is also the case of bismuth [6,7,17] and
graphite [17,18], two well-known semimetals. Both the
amplitude of magnetoresistance and its field dependence
have been put under scrutiny and are explored and
discussed by experimentalists and theorists.
In this paper, we present an extensive study of trans-

verse angle-dependent magnetoresistance in bismuth and
establish a detailed map of transverse magnetoresistance
for all possible orientations of magnetic field from room
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temperature down to 2 K and up to a magnetic field of 14 T.
This study aims to address two distinct issues. The first
concerns the amplitude of magnetoresistance in a compen-
sated semimetal such as bismuth. Our results show that
in any real material, the knowledge of all components of
the mobility tensor is required to compute the magnitude
of magnetoresistance. The emergence of a valley-polarized
state is the second issue addressed in this study.
Numerous studies of angular oscillations of magneto-

resistance in strongly correlated electron systems have
been reported in the past. For three case studies, see
Refs. [19–21]. These investigations used angular magneto-
resistance as a probe, knowing that it shows an extremum
when the peculiar topology of the Fermi surface modifies
the dimensionality of the cyclotron orbit at a “magic” angle
(dubbed either Lebed or Yamaji, after those who conceived
these commensurability effects). Our experimental con-
figuration is different. The magnetic field is rotated in such
a way as to keep the magnetic field ~B and charge current ~j
perpendicular to each other and the transverse magneto-
resistance is measured. In this configuration, the macro-
scopic Lorentz force between ~B and ~j is constant. If the
mobility were a scalar, no angular variation would arise.
Large angular oscillations are visible even at room temper-
ature and in fields as small as 0.7 T in bismuth [14], because
carriers have drastically anisotropic mobilities.
Our results provide an opportunity to test the semiclassic

transport theory in a particularly constraining format. Since
the structure of the three electron ellipsoids and the single
hole ellipsoid in bismuth is well known, one can attempt to
fit the experimental data by assuming reasonable values for
the components of the mobility tensors of electrons and
holes and establish their temperature and field dependence.
We find that, except for a number of important details,
our experimental results are in reasonable agreement with
the expectations of the semiclassic theory. This paves the
way to a quantitative understanding of transverse mag-
netoresistance in bismuth with obvious implications for
other semimetals and dilute metals.
We also present a detailed study of the configuration in

which the current is applied along the trigonal axis and the
magnetic field is rotating in the (binary, bisectrix) plane.
We confirm the loss of threefold symmetry at low temper-
ature and high magnetic field previously reported by
transport [14] and thermodynamic studies [11] and find
a boundary in the (field, temperature) plane separating two
electronic states. The underlying threefold symmetry of the
zero-field crystal lattice is lost in the low-temperature–
high-field state, but it is kept in the high-temperature–low-
field state. A phase transition between these two states is
clearly detectable at low magnetic field. With increasing
magnetic field, the transition shifts to higher temperature
and becomes broader. We discuss possible origins of this
phase transition and consider the available theoretical
scenarios invoking Coulomb interaction among electrons

[22] or lattice distortion induced by magnetic field remi-
niscent of the Jahn-Teller effect [23]. None of the currently
available pictures provide an adequate description of the
whole range of experimental facts.

II. EXPERIMENTAL

Most measurements are performed using a Quantum
Design PPMS apparatus. These studies are complemented
with measurements in Seoul using a two-axis homemade
setup in particular to check for any artifact resulting from
misalignment. Three bismuth single crystals are cut in a
cuboid shape with typical dimensions of (3 × 4 × 5 mm3)
and are used for mapping the magnetoresistance in three
perpendicular planes. The typical residual resistivity of these
crystals is 1 μΩ cm. Taking a carrier concentration of
n¼ 3×1017 cm−3 for both holelike and electronlike carriers
and using the simple expression σ0 ¼ neðhμei þ hμhiÞ, the
zero-field conductivity implies that the sum of the average
mobility of electrons and holes is as large as hμei þ hμhi ¼
2 × 107 cm2V−1 s−1. As we show, the order of magnitude is
confirmed by our magnetoresistance data, but the mobility
is very different for electrons and holes and along different
orientations. Samples of various cross sections (circular,
square, triangular) are studied in order to check the effect
of sample geometry on the loss of threefold symmetry. No
significant difference between crystals of different origin
(commercial versus homegrown) are observed.

III. ANGULAR OSCILLATIONS OF TRANSVERSE
MAGNETORESISTANCE IN THREE

PERPENDICULAR PLANES

The Fermi surface of bismuth consists of a hole ellipsoid
and three electron ellipsoids [24]. The hole ellipsoid has a
longer axis, which is 3 times longer than the two other
shorter axes and lies along the trigonal axis. The longer
axis of each electron ellipsoid is about 14 times longer than
the two shorter axes and lies in a (bisectrix, trigonal) plane,
slightly tilted off the bisectrix axis. In the absence of
magnetic field, charge conductivity in bismuth is almost
isotropic. But behind this quasi-isotropy hides an intricate
structure of opposite and compensating anisotropies,
which reveals itself by the application of a rotating
magnetic field.
Figure 1 presents polar plots of transverse magneto-

resistance as the electric current is applied along one crystal
axis and the magnetic field is rotated in the plane
perpendicular to the applied current. The figure compares
the data obtained for three perpendicular planes at a
temperature of 30 K and a magnetic field of 0.5 T. The
three polar plots illustrate how the structure of the Fermi
surface leads to very different patterns in each case.
When the current is applied along the trigonal axis

[Fig. 1(a)], magnetoresistance shows sixfold angular oscil-
lations. The system has a C3̄ symmetry and remains
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invariant when the magnetic field rotates by 2π=3. In this
configuration, the hole conductivity does not depend on
the orientation of the magnetic field. On the other hand,
electrons show a large variation in their magnetoresistance.
It becomes largest when the field is aligned along a
bisectrix orientation, since for this orientation of magnetic
field, the Fermi velocity of electrons and the microscopic
Lorentz force they feel are maximum. When the current
is applied along the bisectrix axis and the field rotates
in the perpendicular plane [Fig. 1(b)], magnetoresistance
respects two angular symmetries. It is mirror symmetric
[i.e., ρðθÞ ¼ ρð−θÞ] and it keeps the inversion symmetry
[i.e., ρðθÞ ¼ ρðπ þ θÞ]. When the current is applied
along the binary axis and the field rotates in the third
plane [Fig. 1(c)], only the last (inversion) symmetry is kept.
For the last two configurations, one expects a maximal
magnetoresistance for holes when the magnetic field is
along the trigonal axis. Added to the sum of the contri-
butions of the three electron pockets, this leads to complex
patterns. As seen in panels b and c of Fig. 1, the total
magnetoresistance peaks at intermediate angles off the
high-symmetry axes.
These polar plots resemble those reported by Mase,

von Molnar, and Lawson half a century ago [25]. These

authors presented a study of the galvanometric tensor of
bismuth for an arbitrary orientation of the magnetic field
for a single temperature (20.4 K) and a single magnetic
field (0.576 T). The angular variation of our data is in good
agreement with their data. However, the absolute amplitude
of the magnetoresistance in our data at 20 K and 0.5 T is
roughly 2 times lower.
The extreme sensitivity of magnetoresistance in bismuth

upon the orientation of magnetic field permits one to use a
rotating magnetic field to tune the contribution of each
electron pocket (i.e., each of three valleys) to the total
conductivity in the configuration presented in Fig. 1(a)
[14]. This provides an interesting opportunity for valleytronics
[26,27], an emerging field of research focused on manipula-
tion of the valley degree of freedom. Such angle-dependent
magnetoresistance is expected to be observable in any
multivalley system with anisotropic valleys, as was recently
demonstrated in the case of SrMnBi2 [28].What distinguishes
bismuth, however, is the visibility of such angular oscillations
at room temperature and in magnetic fields lower than 1 T
[14]. This is a consequence of the large mobility of electrons,
which exceeds 104 cm2 V−1 s−1 at room temperature, and
their very anisotropic mass. No solid other than bismuth is
currently known to present such properties.

(a) (b) (c)

FIG. 1. Polar plots of transverse magnetoresistance as a function of the orientation of the magnetic field at T ¼ 30 K and B ¼ 0.5 K.
The three plots show the data for three perpendicular planes, Left: Field rotates in the (binary, bisectrix) plane. Middle: Field rotates in
the (binary, trigonal) plane. Right: Field rotates in the (biscetrix, trigonal) plane. The electric current is always applied along the crystal
axis perpendicular to the rotating plane. Upper panels show the projection of the Brillouin zone, as well as the hole and electron pockets
of the Fermi surface in each rotating plane.
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The evolution of the angle-dependent magnetoresistance
in bismuth when the field rotates in the (binary, bisectrix)
plane was previous reported and the data were found to be
described by an empirical formula for multivalley conduc-
tivity [14]. In this paper, extending the measurements to the
two other planes, our aim is to see if transverse magneto-
resistance in bismuth can be explained for the whole solid
angle with a single theoretical model based on a Boltzmann
semiclassical picture. We show that this is indeed the case
and the empirical formula used in Ref. [14] is an approxi-
mation of a more general formula for multivalley systems.
We perform an extended study on several crystals in a

wide range of temperature (2 < T < 300 K) and magnetic
field (B < 12 T). A selection of data for B ¼ 0.5 T and
T < 75 K is presented in Figs. 2–4. Figure 2 shows the
thermal evolution of the angular magnetoresistance when
the current is applied along the trigonal axis and the
magnetic field rotates in the (binary, bisectrix) plane.
This configuration is identical to the one studied in
Ref. [14], and the results are quite similar. The evolution

of the angle-dependent transverse magnetoresistance with
decreasing temperature for the two other planes of rotation
is shown in Figs. 3 and 4. In all three cases, the evolution
is smooth with increasing magnetoresistance as temper-
ature decreases. This is a consequence of the fact that all
components of the mobility tensor enhance with decreasing
temperature. At zero magnetic field, the enhancement in
mobility with decreasing temperature leads to an enhance-
ment of conductivity. In the presence of a field as small as
0.5 T, on the other hand, it leads to an increase in resistivity
with decreasing temperature. This is because the amplitude
of the orbital magnetoresistance is set by the mobility and it
exceeds by far the zero-field resistivity of the system in this
“strong-field” limit.
The thermal evolution of the morphology of the three

curves is instructive. For the first configuration (I∥ trigonal),
there is no visible change in the structure of angle-
dependent magnetoresistance with cooling. In the case of
the other configurations, a qualitative evolution is observ-
able and new extrema emerge in ρðθÞ curves as the system
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is cooled down. Note also the gradual saturation in ampli-
tude of magnetoresistance below 7 K, indicating that
mobility has attained its maximum amplitude in this temper-
ature range.
For a quantitative treatment of the data, we need to revise

the semiclassic transport theory applied to the case of a
multivalley system with anisotropic valleys.

IV. SEMICLASSIC TRANSPORT THEORY

Following an earlier work by Abeles and Meiboom [29],
Aubrey [30] wrote the following equation for the charge
conduction by a Fermi pocket with a carrier concentration n
in the presence of electric and magnetic fields:

~j ¼ σ̂ · ~E ¼ neμ̂ ~Eþμ̂ ~j×~B: ð1Þ
Here, e is the electric charge and σ̂ and μ̂ are the

conductivity and the mobility tensors. In the absence of
magnetic field, Eq. (1) becomes the familiar expression:
σ̂ðB ¼ 0Þ ¼ neμ̂.

Abeles and Meiboom [29] argued that one can derive
Eq. (1) starting from the linearized Boltzmann equation,
which can be stated in the following manner [31]:

e
∂f0k
∂ϵk vk

! · ~Eþ e
ℏ
ðvk!× ~BÞ · ∇kgk

��! ¼ − gk
τ
: ð2Þ

Here, f0k is the Fermi-Dirac distribution in equilibrium,
gk represents the deviation from this equilibrium distribu-
tion, ϵk is the energy, vk

! is the velocity of an electron with a
wave vector k, and τ is the relaxation time. In this picture,
the charge current is defined as

~j ¼ e
Z

vk
!gk ~dk: ð3Þ

Equation (1) condenses all material-dependent parameters
in the mobility tensor defined as

μ̂ ¼ τm̂−1: ð4Þ
Here, m̂−1 is the inverse of the mass tensor. In the

simplest case, derivation τ is a scalar. However, this is not
necessary, and one can easily generalize to a case with
different relaxation times along x, y, z.
Aubrey’s important contribution was to find that by

defining a tensor B̂, whose components are projections of
magnetic field along the three perpendicular orientations,
one can write a general solution to Eq. (1) in the following
manner [30]:

σ̂ ¼ neðμ̂−1 þ B̂Þ−1: ð5Þ
The components of the matrix B̂ are

B̂ ¼

0
B@

0 −B3 B2

B3 0 −B1

−B2 B1 0

1
CA:

Here, B1, B2, and B3 are the projections of the magnetic
field along the three principal axes:

~B ¼

0
B@

B1

B2

B3

1
CA:

It is worth noting that no assumption has been made on
the magnitude of the magnetic field. This is to be contrasted
with treatments based on the Jones-Zener expansion, which
are valid only in the weak-field limit (μB < 1) [32]. The
Aubrey approach [30], on the other hand, is most appro-
priate in the strong-field limit (μB > 1).
Now, to see the physics behind this picture, consider a

spherical Fermi surface with an isotropic (i.e., scalar)
mobility of μ. In this case, the orientation of the magnetic
field has no importance. Let us assume it is oriented along
the z axis (that is, B1 ¼ B2 ¼ 0 and B3 ¼ B). In this case,
the solution implied by Eq. (5) becomes
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σ̂ ¼

0
B@

σ⊥ σH 0

−σH σ⊥ 0

0 0 σ∥

1
CA:

Here, the transverse (σ⊥), Hall (σH), and longitudinal
(σ∥) components of the conductivity tensor take the
following familiar expressions:

σ⊥¼ neμ
1þμ2B2

; σH ¼ neμ
1þμ2B2

μB; σ∥ ¼ neμ: ð6Þ

In other words, the magnetic field modifies only the
transverse conductivity and leaves the longitudinal con-
ductivity unchanged. Moreover, the Hall component out-
weighs the transverse magnetoresistance in the high-field
(μB > 1) limit. Now, consider an ellipsoidal Fermi surface,
with an anisotropic mobility:

μ̂ ¼

0
B@

μ1 0 0

0 μ2 0

0 0 μ3

1
CA:

Rotating the magnetic field in the (1,2) plane and
measuring electric conductivity along the third axis,
according to Eq. (2), one would expect to find

σ33 ¼
neμ3

1þ B2μ3ðμ2 cos2 θ þ μ1 sin2 θÞ
: ð7Þ

Here, θ is the angle between the magnetic field and the
binary (i.e., second) axis. When μ1 ≫ μ2, this equation
becomes identical to the empirical formula used to fit the
data obtained for the field rotating in the (binary, bisectrix)
plane [14].
We now turn to a multivalley system where the total

conductivity is the sum of the contributions by each valley.
In the specific case of bismuth, one can write

σ̂tot ¼
X
i¼1−3

σ̂ei þ σ̂h: ð8Þ

Here, σ̂h is the conductivity tensor of the hole pocket
and σ̂ei is the conductivity tensor of the electron pocket
indexed i.
The structure of electron ellipsoids in bismuth is complex.

They have no circular cross sections and do not lie along any
symmetry axis. Their mobility tensor, like their effective
mass tensor [33], has four distinct and finite components.
In the case of the electron ellipsoid, which has its longer
axis in the (x, z) plane, this tensor can be expressed as

μ̂e1 ¼

0
B@

μ1 0 0

0 μ2 μ4

0 μ4 μ3

1
CA:

The three electron pockets are equivalent to each other
through a 2π=3 rotation. Therefore, the mobility tensor for
the two other electron ellipsoids is

μ̂e2 ¼ R̂−1
2π=3 · μ̂

e
1 · R̂2π=3; μ̂e3 ¼ R̂−1

4π=3 · μ̂
e
1 · R̂4π=3:

Here, R̂θ is the rotation matrix for a rotation angle of θ
around the trigonal axis:

R̂θ ¼

0
B@

cos θ − sin θ 0

sin θ cos θ 0

0 0 1

1
CA:

The hole pocket is an ellipsoid with a circular cross
section perpendicular to the trigonal axis. It has identical
projections in the binary and bisectrix planes. Therefore,
there are only two distinct and finite components, and its
mobility tensor ν̂ can be written as

ν̂ ¼

0
B@

ν10 0 0

0 ν1 0

0 0 ν3

1
CA:

Using this formalism, one can compute the components of
a total conductivity tensor for a given set of seven parameters
(μ1–4, ν1;3, and n). In order to compare with the experiment,
one needs to invert the calculated tensor and obtain the
relevant component of the resistivity tensor (ρ̂ ¼ σ̂−1). In our
particular case, we measure resistivity, ρ11, ρ22, ρ33, along
three principal axes. The link between ρii and the compo-
nents of the conductivity tensor can be written as

ρii ¼
1

σii þ δσii
; ð9Þ

where

δσ11 ¼
σ12σ23σ31 þ σ13σ21σ32 − σ22σ13σ31 − σ33σ12σ21

σ22σ33 − σ23σ32
;

ð10Þ

δσ22 ¼
σ12σ23σ31 þ σ13σ21σ32 − σ11σ23σ32 − σ33σ12σ21

σ11σ33 − σ13σ31
;

ð11Þ

δσ33 ¼
σ12σ23σ31 þ σ13σ21σ32 − σ11σ23σ32 − σ22σ13σ31

σ11σ22 − σ12σ21
:

ð12Þ
One may wonder if there is any room for harmless

approximations here. These expressions contain numerous
off-diagonal components. Onsager relations imply that
σijðBÞ ¼ −σjið−BÞ. Agköz and Saunders have detailed
the restrictions imposed by Onsager reciprocity relations
for all 32 crystallographic point groups [34]. They demon-
strated that, in the case of A7 structure of bismuth and
antimony, the off-diagonal components of the conductivity
tensor can have both even and odd parts. In particular, when
the field is along the binary axis, there is a so-called Umkehr
effect, leading to the inequality σ23ðB1Þ≠−σ32ðB1Þ.
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This means that the first two terms of the nominators in
Eqs. (10)–(12) do not cancel out.
It is true that in a compensated semimetal with an equal

concentration of electrons and holes, the opposite Hall
response of electrons and holes can cancel each other.
In the case of negligible off-diagonal components, one
would simply find ρii ≃ σ−1ii . When the magnetic field is
aligned along each of the three high-symmetry axes, one can
experimentally verify that ρij ≪ ρii, and thus, σij ≪ σii.
However, for arbitrary orientations of the magnetic field, the
magnitude of the off-diagonal components is large enough
to generate non-negligible effects. We find that in order
to find a satisfactory fit, the full expressions of Eqs. (9)–(12)
are to be used. In particular, in the case of the third
configuration, i.e., the field rotating in the (bisectrix, trigonal)
plane, without taking δσii into account, even a qualitative
agreementwith the experimental data is impossible to obtain.
In 1974, Sümengen, Türetken, and Saunders [35]

employed this formalism to quantify the components of
the mobility tensor in bismuth using the experimental data
published a decade before by Mase and co-workers [25] for

a single temperature (20.4 K) and a single magnetic field
(0.576 T). They found that experimentally observed angu-
lar variation can be theoretically reproduced and the
extracted components of the mobility tensor match those
found by measuring components of resistivity, ρij in the
low-field (μB ≪ 1) limit [36,37]. In the next section, we
use this procedure for our extensive set of data.

V. MOBILITY TENSOR

According to the theoretical frame described in the
previous section, the angle-dependent transverse magneto-
resistance can be fit usingEqs. (9)–(12)with seven adjustable
parameters. These are the four components of the mobility
tensor of electrons, μ1–4, the two components of the mobility
tensor of holes, ν1;3, and the carrier density of holes, nh,
which is equal to the sum of the carrier densities of the three
electron pockets: (nh ¼ ne1 þ ne2 þ ne3).
We tried such fits and find that good fits with plausible

parameters can be achieved. Polar plots comparing the
experimental data and the expectations of the theory are
shown in Fig. 5. This agreement establishes that the large

0.0

0.5

1.0

0

30

60

90

120

150

180

210

240

270

300

330

0.0

0.5

1.0

(m
 c

m
)

100 K 
 Data
 Fit

0

3

6

0

30

60

90

120

150

180

210

240

270

300

330

0

3

6

 (
m

 c
m

)

50 K 
 Data
 Fit

0

50

100

0

30

60

90

120

150

180

210

240

270

300

330

0

50

100

(m
 c

m
)

10 K
 Data
 Fit

0.0

0.2

0.4
0

30

60

90

120

150

180

210

240

270

300

330

0.0

0.2

0.4

 (
m

 c
m

)

100 K 
 Data
 Fit

0

1

2
0

30

60

90

120

150

180

210

240

270

300

330

0

1

2

 (
m

 c
m

)

50 K
 Data
 Fit

0

3

6

0

30

60

90

120

150

180

210

240

270

300

330

0

3

6

 (
m

cm
)

20 K 
 Data
 Fit

0.0

0.1

0.2

0.3

0

30

60

90

120

150

180

210

240

270

300

330

0.0

0.1

0.2

0.3

 (
m

 c
m

)

100 K 
 Data
 Fit

0.0

0.5

1.0

1.5
0

30

60

90

120

150

180

210

240

270

300

330

0.0

0.5

1.0

1.5

 (
m

 c
m

)

50 K 
 Data
 Fit

0

5

10
0

30

60

90

120

150

180

210

240

270

300

330

0

5

10

 (
m

 c
m

)

15 K 
 Data
 Fit

(a)

(b)

(c)

FIG. 5. Comparison between the data and the theoretical fit based on the optimal parameters at B ¼ 0.5 T and three different
temperatures for (a) magnetic field rotating in the (binary, bisectrix) plane, (b) magnetic field rotating in the (trigonal, bisectrix) plane,
(c) magnetic field rotating in the (trigonal, binary) plane.

ANGLE DEPENDENCE OF THE ORBITAL … PHYS. REV. X 5, 021022 (2015)

021022-7



anisotropic magnetoresistance of bismuth can be, mostly if
not entirely, explained by the semiclassic theory. At lower
temperatures and higher magnetic fields, the fits become
less satisfactory.
There are several reasons for the gradual inadequacy of

the model as the temperature lowers and the magnetic field
increases. First of all, Landau quantization becomes sharp
enough to introduce additional angular structure not
expected by the model used here. The second reason is
the loss of the threefold symmetry, which will be discussed
in detail in the following section. A third reason is the
apparent effect of the applied magnetic field on the
components of the mobility tensor. This last feature appears
only after putting under scrutiny the details of the fitting
procedure.
We find that in some cases two different sets of fitting

parameters could both yield satisfactory fits of compa-
rable quality. In order to minimize this uncertainty, we
attempt to reduce the number of adjustable parameters by
excluding the carrier density and the tilt angle as variable
parameters.
It has been known that carrier density in bismuth

remains constant up to 50 K and then begins to increase
as thermally excited carriers are introduced across the
small gap at the L point [38]. We take a fixed value of
ne ¼ nh ¼ 3 × 1017 cm−3 (the magnitude obtained from
de Hass–van Alphen measurements [39]) for T < 50 K
and let it evolve as a free parameter for temperatures
above.
The tilt angle θ between the longer axis of the electron

ellipsoid and the crystalline bisectrix axis generates the
fourth mobility component, μ4. If the relaxation time tensor
happens to be aligned along the high-symmetry crystals
axes, the mobility tensor and the mass tensor should
have identical tilt angles. It is measured to be 6.4° by
de Haas–van Alphen effect studies [39] and its controver-
sial sign is settled by a refined comparison between the data
on structural and electronic properties [40]. The recent
study of angle-resolved Landau spectrum [9] found a tilt
angle (∼6.2°) close to the previous reports.
In the case of the mobility tensor, the tilt angle can be

expressed as [35,36]

θ ¼ 1

2
arctan

�
2μ4

μ2 − μ3

�
: ð13Þ

Hartman found that the tilt angle of the mobility tensor is
very close to this value and concluded that the relaxation
time tensor has little or no tilt [36]. We find that the best fits
to our data point to a value close to 6.8°, and in order to
reduce the fitting uncertainty imposed, this as a constraint
to our fitting procedure.
Figures 6 and 7 show the temperature dependence of the

mobility components of electrons and holes extracted from
our fits to the data at B ¼ 0.5 T. Our data are compared

with zero-field values extracted from the galvanometric
coefficients of bismuth in the low-magnetic-field limit.
Several remarks are in order.
First of all, the sheer magnitude of the mobility of Dirac

electrons in bismuth is remarkably large. At 10 K, μ1 in
bismuth becomes as large 1000 T−1 or 107 cm2V−1 s−1.
This is slightly lower than what Hartman found at the same
temperature. According to his results, μ1 becomes as large

FIG. 6. Temperature dependence of the components of the
electron mobility tensor μi obtained by fitting our angle-
dependent magnetoresistance data at B ¼ 0.5 T for a current
applied along the trigonal axis. Also shown are the results
reported for zero magnetic field by Hartman below 15 K [36]
and by Michenaud and Issi above 77 K [37]. Solid lines represent
a T−2 temperature dependence (no data on μ4 were reported in the
latter case).

FIG. 7. Temperature dependence of the components of the hole
mobility tensor νi, obtained by fitting our angle-dependent
magnetoresistance data at B ¼ 0.5 T for current applied along
the binary or bisectrix axis. Also shown are the results reported
for zero magnetic field by Hartman below 15 K [36] and by
Michenaud and Issi above 77 K [37] (no ν3 was reported in the
latter case).
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as 108 cm2 V−1 s−1. Therefore, and this may be worth
being recalled, electrons in bismuth are by far more mobile
than carriers seen in any other three-dimensional solid [16].
Second, the mobility tensor is anisotropic. Qualitatively,

this reflects the anisotropy of the band mass. The
anisotropy is larger for electrons, which have a more
anisotropic mass, than holes. The mobility of electrons
is lowest along the bisectrix, which is the direction for
which the electrons are heaviest. As for holes, they are
lighter and more mobile perpendicular to the trigonal axis
than parallel to it. However, the correspondence between
the two tensors remains qualitative. The mass anisotropy of
electrons, extracted from studies of quantum oscillations
[9,39], is as large as 200. The anisotropy of mobility does
not exceed 40. This implies an anisotropic relaxation time
tempering the mass anisotropy.
It is instructive to compare our mobilities at B ¼ 0.5 T

for various orientations of magnetic field to those reported
by previous authors in the zero-field limit [36,37]. As seen
in Fig. 6 in the case of electrons, a reasonable match is
observed between the different sets of results. In the case of
holes, on the other hand, as seen in Fig. 7, a difference is
visible at low temperature: the mobilities extracted from
the data saturate to values significantly lower than what
is found in the zero-field limit. This may be due to a
difference in the ultimate carrier mean-free path in different
samples. The residual resistivity in our samples is an order
of magnitude larger than those studied by Hartman. It may
also partially arise from a field-induced decrease in the
magnitude of ν1 and ν3.
The effect of magnetic field on the various components

of mobility tensor shows itself in another fashion. Figure 8
compares the magnitude of the components of the mobility
tensor of electrons for the three rotating planes. As is seen
in the figure, the discrepancy remains within the error
margin at high temperatures but exceeds it in the low-
temperature regime. Moreover, the discrepancy has a clear
pattern. All μ1–4 components become lower in the case of
the third configuration, with the current applied along the
bisectrix axis and the magnetic field rotating in the (binary,
trigonal) plane. This indicates that the components of the
mobility tensor are affected by the magnitude and orienta-
tion of magnetic field in the low-temperature limit.
Hartman [36] noticed that the components of the

mobility tensor present a quadratic decrease with temper-
ature over a wide temperature window. This T−2 temper-
ature dependence of mobility (and consequently zero-field
conductivity) is a hallmark of electron-electron scattering.
Long ago, Baber [41] argued that, in a metal with multiple
electron reservoirs coupled to the lattice thermal bath,
electron-electron scattering should give rise to a T2

inelastic resistivity. In the case of metals hosting correlated
electrons, this T2 resistivity has been extensively docu-
mented and is one of the two main ingredients of the much-
discussed Kadowaki-Woods ratio [42].

One aspect of our data remains currently beyond our
understanding. In the first configuration, in which the
current is applied along the trigonal axis and the field is
rotating in the (binary, bisectrix) plane, the contribution of
the hole pocket is expected to be independent of the
orientation of magnetic field. Indeed, for this configuration,
the hole conductivity becomes simply

σh33 ¼
3neν3

1þ ν1ν3B2
: ð14Þ

Therefore, the fit to the experiment at a fixed magnetic
field B yields only a single parameter proportional to the
right-hand side of this equation and not an independent
estimation of ν1 and ν3. The mystery is that the ν1 and the
ν1ν3 found from the data obtained in this configuration are
5 times larger than what is found for the two other
configurations. This discrepancy is well beyond our uncer-
taintymargin. It remains themain failure of the semiclassical
model employed here and points to an additional transport
process not taken into account in the picture employed here.

VI. EMERGENCE OF A VALLEY-POLARIZED
STATE

We now turn our attention to the loss of valley symmetry,
a feature reported in two previous experimental studies
[11,14]. In order to explore this feature, we perform
extensive measurements with numerous samples in two
different laboratories (Paris and Seoul) to document the
emergence of spontaneous valley polarization.
When an electric current is applied along the trigonal

axis, the three electron valleys remain degenerate. Of
course, this degeneracy is lifted by a magnetic field applied

FIG. 8. Temperature dependence of the components of the
electron mobility tensor μi, obtained by fitting our angle-depen-
dent magnetoresistance data at B ¼ 0.5 T for the three planes of
rotation. The discrepancy increases with decreasing temperature.
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along an arbitrary orientation in the (binary, bisectrix)
plane. However, the C3̄ symmetry of the system implies
that a 2π=3 rotation of the magnetic field around the
trigonal axis should not affect the physical properties, since
the degeneracy remains lifted in exactly the same way.
Therefore, a magnetic field rotating in the (binary, bisec-
trix) plane should generate an angle-dependent magneto-
resistance keeping a sixfold symmetry in a polar plot,
resulting from the combination of the C3 symmetry and the
inversion symmetry. This is indeed the case of our data at
high temperature and/or low magnetic field. At low temper-
ature and high magnetic field, on the other hand, this
symmetry is found to be lost in all of the samples studied.
Figure 9 presents a detailed study on a bismuth single

crystal with a square cross section. Each panel of the figure
shows polar plots of ρ−1 at a given temperature for different
magnetic fields. In the following, ρ−1 is called “conduc-
tivity,” keeping in mind that, because of the contribution of
the off-diagonal elements, σ ≠ ρ−1. At each temperature, the
data are normalized to the maximum value of ρ−1 to allow
an easy examination of the evolution as the temperature
decreases and the magnetic field increases. One can see that

the sixfold symmetry clearlypresent at 100K for allmagnetic
fields is lost at 5 K for all magnetic fields. In the intermediate
temperature range, the sixfold symmetry is present at low
magnetic field but is lost at higher fields.
The loss of threefold symmetry with cooling, originally

reported in Ref. [14], is confirmed in more than ten
different crystals of bismuth with different shapes and
cut from three different mother single crystals and using
different experimental setups in Paris and in Seoul. The
low-temperature asymmetries found in various samples are
different from one another. In particular, the departure from
threefold symmetry is more striking in samples with a
square cross section than in samples with a cylindrical or a
triangular cross section. On the other hand, the temperature
and magnetic-field thresholds for the loss of symmetry are
roughly similar.
Various possible experimental artifacts as the source of

the loss of threefold symmetry can be ruled out. Two-axis
rotation experiments performed have found a similar loss of
threefold symmetry [14]. Therefore, it cannot be a conse-
quence of uncontrolled misalignment between the magnetic
field, the crystal axes, and applied electric current. The fact
that the frequency of quantum oscillations remains identical
for different orientations of magnetic field [11] (see also
below) rules out any possible role of internal uncontrolled
strain, since experiments under strain have shown that the
presence of strain would have caused a detectable variation
among the three electron pockets [43]. Our bismuth crystals
are twinned and, therefore, in addition to the dominant
domain, there are three minority domains. The presence
of these minority domains generates a secondary set of
Landau peaks visible by the Nernst measurements [10].
But we cannot think of any way their presence can distort
the threefold symmetry of the dominant domain, the only
source of magnetoresistance in our study.
By following the evolution of this loss of symmetry, we

succeed in identifying a visible signature of a phase
transition associated with this loss of symmetry at low
magnetic fields. It is in the low-field window that an abrupt
change becomes visible. As we show in Fig. 10, at
B ¼ 0.1 T, the magnitude of magnetoresistance for mag-
netic field aligned along one bisectrix axis suddenly
deviates from its average value at a temperature.
Because of the residual experimental misalignment, the
amplitude of resistivity for magnetic field oriented along
each of the three bisectrix axes is slightly different.
However, as seen in the figure, this departure from unity
is almost constant at higher temperature. Suddenly, below a
field-dependent threshold temperature, an abrupt deviation
on top of the experimental misalignment can be clearly
detected. As seen in the figure, in two other samples studied
at B ¼ 0.1 T, a similar abrupt jump occurring at an almost
identical temperature is found. This implies that the
boundary marking the loss of threefold symmetry is an
intrinsic property of bismuth.
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FIG. 9. Evolution of the angle-dependent magnetoconductivity
with decreasing temperature. Each panel shows a polar plot of the
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In two samples, P1, a cylinder with a circular cross
section, and P2, a cuboid with a cleaved square cross
section, we make extensive measurements up to 8 T in
order to follow the evolution of this jump. The data for
sample P1 are shown in Fig. 11. As the magnetic field
rotates, Landau levels are filled and evacuated and this adds
additional substructure to the background. This substruc-
ture evolves as the magnetic field increases and finally
vanishes at 8 T, since no more filling or evacuation occurs.
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Nevertheless, the jump associated with the loss of threefold
symmetry can be extracted by the same procedure. The
result is shown in Fig. 12. There are two distinct visible
effects of the magnetic field on the phase transition. With
increasing magnetic field, the transition shifts to higher
temperatures and becomes wider. In a field as high as 8 T,
the loss of symmetry occurs over a temperature range as
wide as 20 K. On the other hand, the magnitude of the
maximum deviation from unity does not change with
magnetic field and remains a few percent in the whole
range of investigation.
Using this data, we can construct a phase diagram

drawing the boundaries of the state in which the symmetry
of the three valleys is lost. This phase diagram is shown in
Fig. 13. Each symbol represents the position of the inter-
section between the low-temperature and high-temperature
behaviors detected in Fig. 12. The C3 symmetry is
preserved in the low-field–high-temperature region and
lost in the high-field–low-temperature region. A very

similar phase diagram is found for sample P2, which is
a cuboid with a square cross section. As seen in the figure,
while the cross section does have a signature in the
ultimate pattern of angular magnetoresistance in the low-
temperature–high-field state, it does not modify the boun-
dary in a significant way. This provides further evidence
that this transition is intrinsic to bulk bismuth. We do not
find any evidence for hysteresis in these measurements.
We also study the quantum oscillations of resistivity (the

Shubnikov–de Haas effect) for different orientations of
magnetic field along the three binary and the three bisectrix
axes. We find that, while the frequency of oscillations is
identical for the three equivalent orientations, there is a
detectable difference in the amplitude of oscillations. This
result is similar to what was reported by Küchler et al. in
the case of the quantum oscillations of magnetostriction
[11] and the quantum oscillations of the Nernst coefficient
[8]. While there is no visible difference between the angle-
resolved Landau spectrum of the three electron valleys, the
intensity of the signal generated by emptying a Landau
level is different among valleys. As seen in Fig. 14, the
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amplitudes of oscillations obtained after subtracting a
smooth background are different for three nominally
equivalent orientations of magnetic field. However, the
oscillations have identical frequencies. Moreover, there is
no visible difference in the oscillations of the second
derivative of resistivity, which wipes out any field-linear
magnetoresistance. Therefore, it is tempting to conclude
that the difference in amplitude of quantum oscillations for
the three valleys is roughly linear in magnetic field, like the
monotonic background.
In summary, this study confirms the emergence of valley

polarization in low-temperature and high-magnetic field
reported previously [11,14]. In addition and for the first
time, an abrupt change reminiscent of a phase transition can
be clearly seen in the data, and the boundary of the valley-
polarized state (for a magnetic field perpendicular to the
trigonal axis) can be established by following the evolution
of this anomaly with field and temperature. Thus, there is

now a body of experimental results pointing to valley
polarization in bismuth, a phenomenon that is still not
understood. While several theoretical ideas have emerged,
none of them offer a satisfactory explanation of the whole
spectrum of the observations.
One appealing line of thought is to follow the idea of

valley nematicity proposed for quantum Hall systems with
multiple eccentric valleys [22]. Abanin and co-workers
argued that in quantum Hall systems, i.e., two-dimensional
systems subject to quantizing magnetic fields, if the valleys
present an anisotropic effective mass, unequal occupation
of valleys would save exchange energy among electrons. As
a consequence, a ground state in which one of the valleys is
preferably occupied by electrons, dubbed a valley-nematic
state, can be induced by magnetic field. In this scenario, the
Coulomb interaction and the mass anisotropy in each valley
play an important role. The scenario is conceived mainly
with a two-dimensional system with C4 symmetry, such as
AlAs heterostructures [44]. Bulk bismuth has a C3 sym-
metry and is three dimensional. On the other hand, it has
a mass anisotropy 40 times larger than AlAs, making it a
potential candidate for this scenario.
Experiment, however, indicates that the three electron-

like pockets do not differ in their size. The identical
frequency of quantum oscillations implies identical valley
occupation. This does not conform to the expectations
along this line of thought. The three valleys may differ in
the density of states near the chemical potential. This is
what governs the magnitude of quantum oscillations as well
as the number of electrons participating in charge transport.
But how can the three valleys remain identical in size but
be different in their density of states near the chemical
potential? There is no satisfactory answer to this question.
However, Küchler et al. [11] recall the case of disordered
semiconductors, in which the combination of Coulomb
interaction and disorder opens a gap in the immediate
vicinity of the chemical potential [45]. It is still unclear how
one can use this idea in the case of a multivalley metal such
as bismuth.
Another possibility is a field-induced lattice distortion

driven by electron-phonon coupling. This idea, proposed
by Mikitik and Sharlai [23], is reminiscent of Jahn-Teller
distortion in insulators [46]. According to the Jahn-Teller
theorem, a number of exceptions notwithstanding, a geo-
metrical configuration of atoms becomes unstable in the
presence of electron degeneracy [47]. Lowering symmetry
allows the molecule to get rid of the costly electronic
degeneracy. In the case of bismuth, the degeneracy of the
three valleys has an energy cost, which may be reduced
thanks to lattice distortion. There is currently no evidence
for such a field-induced lattice distortion. There has also
been no attempt to pin it down if it exists.
Can a phase transition with a critical temperature of 9 K

be generated by a magnetic field as small as 0.1 T? To
address this question, one should recall that the cyclotron
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FIG. 14. Top: Comparison of quantum oscillations of mag-
netoresistance (the Shubnikov–de Haas effect) for magnetic field
along three equivalent bisectrix axes. The amplitude of the
oscillating signal, obtained after subtracting a smooth back-
ground for each angle, is different along the three orientations.
The difference becomes undetectable in the second derivative of
magnetoresistance along the three different orientations. Bottom:
The angle-resolved Landau spectrum revealed in a color plot of
d2ρ=dB2 keeps the threefold symmetry.
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energy is inversely proportional to the mass of electrons.
While for free electrons the cyclotron energy at 0.1 T is
only 0.13 K, in bismuth, where electrons are 1000 times
lighter along the bisectrix, the cyclotron energy becomes
orders of magnitude larger at the same magnetic field,
and a small magnetic field can cause a relatively robust
instability.

VII. CONCLUDING REMARKS

Decades ago, Wolff wrote, “The metal bismuth is one
of the most peculiar and intriguing of solids” [48]. This
peculiarity shows itself in numerous physical properties
ranging from its large diamagnetism to its remarkable
thermoelectric figure of merit. In the case of our study,
three basic facts are relevant: (i) carriers in bismuth are
extremely mobile, (ii) this mobility is extremely aniso-
tropic, (iii) the anisotropy is inverted for electronlike and
holelike carriers. There are other solids displaying these
features, but the magnitude of mobility, as well as the
intricate complexity of its anisotropy, puts bismuth in a
league of its own.
The first part of this study documents the evolution of

angle-dependent magnetoresistance with temperature and
magnetic field and finds that the complex angular variation
is within the reach of a semiclassical treatment if the
mobility is taken as a tensor. This paves the way for a
quantitative understanding of magnetoresistance in bismuth
at arbitrarily large fields. Upon the application of a
magnetic field as large as 65 T along the trigonal axis,
bismuth remains metallic with an electric resistance
increasing by 6 orders of magnitude [6]. This 106-fold
increase is even larger than what has been reported recently
in WTe2 [15] in a comparable field range. However, in
contrast to the latter and what is expected for a simple
compensated metal [49], the magnetoresistance does not
present a quadratic field dependence and cannot be
described by a simple power law over an extended field
window. One identified reason for this deviation is the
field-induced change in carrier density at high magnetic
fields. When the magnetic field exceeds 0.5 T, the degen-
eracy of Landau bands leads to a modification of the carrier
number, while preserving the charge conservation. This
feature, which has visible signatures in the high-field
Landau spectrum [9], should be taken into account in
any realistic description of high-field magnetoresistance.
Quantifying the components of mobility of electrons and
holes in the low-field limit is a beginning. Understanding
magnetoresistance at arbitrarily large magnetic field cannot
be achieved by a toy model of a compensated semimetal
with a scalar mobility. Future studies will tell if one can
describe the field dependence of magnetoresistance with
realistic assumptions on the amplitude of the mobility
components and their field dependence.
The second part of this study documents the emergence

of a valley-polarized state at low temperature and high

magnetic field. Currently, this state, in which the electron
fluid loses the threefold rotational symmetry of the under-
lying lattice, is poorly understood. Nematicity, a subject
of intense attention in strongly correlated electron systems,
is associated with the loss of rotational symmetry by the
electron fluid [50]. It is tempting, and maybe even
legitimate, to qualify the valley-polarized state found in
bismuth as valley nematic. However, one shall not forget
that the picture drawn by experimental results does not
easily fit in the most straightforward description of valley
nematicity. In the ordered state, the three electron valleys
remain identical in size but differ in their density of states
at the Fermi level. There is no satisfactory understanding
of how this can be achieved.
In summary, elemental bismuth hosts extremely mobile

and very anisotropic carriers, which scatter off each other
in a complex, yet increasingly documented, manner. This
looks like an appealing platform to explore the possible
existence of electronic equivalents of liquid crystals.
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