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It has been shown numerically that systems of particles interacting with isotropic “stealthy” bounded
long-ranged pair potentials (similar to Friedel oscillations) have classical ground states that are
(counterintuitively) disordered, hyperuniform, and highly degenerate. Disordered hyperuniform systems
have received attention recently because they are distinguishable exotic states of matter poised between a
crystal and liquid that are endowed with novel thermodynamic and physical properties. The task of
formulating an ensemble theory that yields analytical predictions for the structural characteristics and other
properties of stealthy degenerate ground states in d-dimensional Euclidean space Rd is highly nontrivial
because the dimensionality of the configuration space depends on the number density ρ and there is a
multitude of ways of sampling the ground-state manifold, each with its own probability measure for finding
a particular ground-state configuration. The purpose of this paper is to take some initial steps in this
direction. Specifically, we derive general exact relations for thermodynamic properties (energy, pressure,
and isothermal compressibility) that apply to any ground-state ensemble as a function of ρ in any d, and we
show how disordered degenerate ground states arise as part of the ground-state manifold. We also derive
exact integral conditions that both the pair correlation function g2ðrÞ and structure factor SðkÞmust obey for
any d. We then specialize our results to the canonical ensemble (in the zero-temperature limit) by exploiting
an ansatz that stealthy states behave remarkably like “pseudo”-equilibrium hard-sphere systems in Fourier
space. Our theoretical predictions for g2ðrÞ and SðkÞ are in excellent agreement with computer simulations
across the first three space dimensions. These results are used to obtain order metrics, local number
variance, and nearest-neighbor functions across dimensions. We also derive accurate analytical formulas
for the structure factor and thermal expansion coefficient for the excited states at sufficiently small
temperatures for any d. The development of this theory provides new insights regarding our fundamental
understanding of the nature and formation of low-temperature states of amorphous matter. Our work also
offers challenges to experimentalists to synthesize stealthy ground states at the molecular level.
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I. INTRODUCTION

The equilibrium structure and phase behavior of soft
matter systems span from the relatively simple, as found in
strongly repulsive colloidal particles, to the highly com-
plex, as seen in microemulsions and polymers [1–10]. Soft
matter has been fruitfully microscopically modeled as
classical many-particle systems in which the particles (or
metaparticles) interact with effective pair potentials.
Bounded (soft) effective interactions have been particularly

useful in modeling polymer systems, and they display zero-
temperature ground states with a rich variety of crystalline
structures, depending on the composition of the constitu-
ents and interaction parameters [1,4,7–10].
We have previously used a “collective-coordinate”

approach to generate numerically exotic classical ground
states of many particles interacting with certain bounded
isotropic long-ranged pair potentials in one-, two-, and
three-dimensional Euclidean space dimensions [11–17] as
well as with anisotropic potentials [18]. It was shown that
the constructed ground states across dimensions are the
expected crystal structures in a low-density regime
[11,12,14,19], but above some critical density, there is a
phase transition to ground states that are, counterintuitively,
disordered (statistically isotropic with no long-range order),
hyperuniform, and highly degenerate [20]. These unusual
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amorphous states of matter have been shown to be endowed
with novel thermodynamic and physical properties
[14–16,25–27] and belong to the more general class of
disordered “hyperuniform” systems, which have been
attracting attention recently, as detailed below.
The disordered ground states are highly degenerate with

a configurational dimensionality that depends on the
density, and there are an infinite number of distinct ways
to sample this complex ground-state manifold, each with its
own probability measure. For these reasons, it is theoreti-
cally very challenging to devise ensemble theories that
are capable of predicting structural attributes and other
properties of the ground-state configurations. A new type
of statistical-mechanical theory must be invented to char-
acterize these exotic states of matter. The purpose of this
paper is to take some initial steps in this direction.
However, to motivate the theoretical formalism, it is
instructive to first briefly review the collective-coordinate
numerical procedure that we have used to achieve disor-
dered ground states.
In the simplest setting, we previously examined pairwise

additive potentials vðrÞ that are bounded and integrable
such that their Fourier transforms ~vðkÞ exist. If N identical
point particles reside in a fundamental region F of volume
vF in d-dimensional Euclidean space Rd at positions rN ≡
r1;…; rN under periodic boundary conditions, the total
potential energy can be expressed in terms of ~vðkÞ as
follows:

ΦðrNÞ ¼ 1

2vF

�X
k

~vðkÞj ~nðkÞj2 − N
X
k

~vðkÞ
�
; ð1Þ

where ~nðkÞ ¼ P
N
j¼1 expð−ik · rjÞ is the complex collec-

tive density variable, which can be viewed as a nonlinear
transformation from the finite set of particle coordinates
r1;…; rN to the complex functions ~nðkÞ that depend on the
infinite set of wave vectors k in reciprocal space appro-
priate to the fundamental cell F. The crucial idea is that if
~vðkÞ is defined to be bounded and positive with support in
the radial interval 0 ≤ jkj ≤ K and if the particles are
arranged so that j ~nðkÞj2, a quantity proportional to the
structure factor SðkÞ, is driven to its minimum value of zero
for all wave vectors where ~vðkÞ has support (except
k ¼ 0), then it is clear from relation (1) that the system
must be at its ground state or global energy minimum. We
have referred to these ground-state configurations as
“stealthy” [14] because the structure factor SðkÞ (scattering
pattern) is zero for 0 < jkj ≤ K, meaning that they com-
pletely suppress single scattering of incident radiation for
these wave vectors and, thus, are transparent at the
corresponding wavelengths [28]. Various optimization
techniques were employed to find the globally energy-
minimizing configurations within an exceedingly small
numerical tolerance [11–18]. Generally, a numerically
obtained ground-state configuration depends on the

number of particles N within the fundamental cell, initial
particle configuration, shape of the fundamental cell, and
particular optimization technique employed.
As the number of k vectors for which j ~nðkÞj is con-

strained to be zero increases, i.e., as K increases, the
dimensionality of the ground-state configuration manifold
DC decreases. Because j ~nðkÞj is inversion symmetric, the
number of wave vectors contained in a sphere of radius K
centered at the origin must be an odd integer, say
2MðKÞ þ 1, and thusMðKÞ is the number of independently
constrained wave vectors [29]. The parameter

χ ¼ MðKÞ
dðN − 1Þ ; ð2Þ

which is inversely proportional to density, gives a measure
of the relative fraction of constrained degrees of freedom
compared to the total number of degrees of freedom
dðN − 1Þ (subtracting out the system translational degrees
of freedom). We show in Sec. IV B that the dimensionality
of the configuration space per particle is given by dð1 − 2χÞ
in the thermodynamic limit.
It is straightforward to see why, for sufficiently small χ,

ground states exist that are highly degenerate and typically
disordered for sufficiently large N; see Fig. 1. Clearly,
when the system is free of any constraints, i.e., if χ ¼ 0, it is
a noninteracting classical ideal gas. While it is unusual to
think of classical ideal-gas configurations as ground states,
at T ¼ 0, they indeed are global energy-minimizing states
that are highly degenerate and typically disordered for
large enough N. While the ground-state manifold contains
periodic configurations (e.g., Bravais lattices and lattices
with a basis), these are sets of zero measure in the
thermodynamic limit. Clearly, if χ is made positive but
very small, the ground states remain disordered and highly
degenerate, even if the dimensionality of the configuration
space DC has now been suddenly reduced due to the
imposed constrained degrees of freedom, the number of
which is determined by the radius K. From relation (2), we
see that if K is fixed, configurations with ideal-gas-like pair
correlation functions correspond to the limit χ → 0 or,
equivalently, to the limit ρ → ∞ [30]. The latter situation
runs counter to traditional understanding that ideal-gas
configurations correspond to the opposite zero-density
limit of classical systems of particles. The reason for this
inversion of limits is due to the fact that a compression of
the system in direct space leads to a dilation of the lattice
spacing in reciprocal space, as schematically shown in
Fig. 1. While it is not surprising that the configuration space
is fully connected for sufficiently small χ, quantifying its
topology as a function of χ for all allowable χ is an
outstanding problem, which is discussed further in the
Conclusions.
It is noteworthy that stealthy point patterns (disordered

or not) constitute a special class of so-called hyperuniform
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states of matter. Hyperuniform systems are characterized by
vanishing (normalized) density fluctuations at large length
scales; i.e., the structure factor SðkÞ tends to zero in the
limit jkj → 0 [31] (see Sec. II A for details). The hyper-
uniformity concept provides a means of categorizing
crystals, quasicrystals, and special disordered systems
according to the degree to which large-scale density
fluctuations are suppressed [31,32]. Disordered hyperuni-
form patterns, of which disordered stealthy systems are
special cases, behave more like crystals in the manner they
suppress large-scale density fluctuations, and yet they also
resemble typical statistically isotropic liquids and glasses
with no Bragg peaks. In this sense, they have a “hidden
order” on large length scales that is not apparent at small
length scales, even if short-range order is present; see Fig. 2
for a vivid illustration. During the last decade, a variety of
disordered hyperuniform states have been identified that

exist as both equilibrium and nonequilibrium phases,
including maximally random jammed particle packings
[33–36], jammed athermal granular media [37], jammed
thermal colloidal packings [38,39], cold atoms [40],
transitions in nonequilibrium systems [41,42], surface-
enhanced Raman spectroscopy [43], terahertz quantum
cascade laser [44], wave dynamics in disordered potentials
based on supersymmetry [45], avian photoreceptor patterns
[46], and certain Coulombic systems [47]. Moreover,
disordered hyperuniform materials possess novel physical
properties potentially important for applications in photon-
ics [25–27,48,49] and electronics [50–52].
The well-known compressibility relation from statistical

mechanics [54] provides some insights about the relation-
ship between temperature T and hyperuniformity for
equilibrium systems at number density ρ:

Sðk ¼ 0Þ ¼ ρkBTκT: ð3Þ

We see that any ground state (T ¼ 0) in which the
isothermal compressibility κT is bounded and positive
must be hyperuniform because the structure factor Sðk ¼
0Þ must be zero. This includes crystals as well as exotic
disordered ground states such as stealthy ones. However, in
order to have a hyperuniform system at positive T, the
isothermal compressibility must be zero; i.e., the system
must be incompressible [17] (see Refs. [31] and [47] for
some examples). Subsequently, we will use relation (3) to
draw some conclusions about the excited states associated
with stealthy ground states.
Our general objective is the formulation of a predictive

ensemble theory for the thermodynamic and structural
properties of stealthy degenerate disordered ground states
in arbitrary space dimension d that complements previous

Compression Dilation

Direct Space Reciprocal Space
S(k)

FIG. 1. Schematic illustrating the inverse relationship between
the direct-space number density ρ and relative fraction of con-
strained degrees of freedom χ for a fixed reciprocal-space
exclusion-sphere radius K (where dark blue k points signify
zero intensity with green, yellow, and red points indicating
increasingly larger intensities) for a stealthy ground state. A
compression of a disordered ground-state configuration with a
fixed number of particles N in direct space leads to a dilation of
the lattice spacing in reciprocal space. This means that during the
compression process, the k points for which j ~nðkÞj is zero
associated with the initial uncompressed system move out of the
exclusion zone; i.e., the value of MðKÞ [cf. Eq. (2)] decreases.
Since there are fewer constrained degrees of freedom (dimen-
sionality of the ground-state configuration manifold increases),
the disordered direct-space configuration becomes less spatially
correlated. For a fixed N in the limit ρ → ∞ (i.e., system volume
vF → 0), every k point (except the origin) is expelled from the
exclusion zone, and the system tends to an ideal-gas configura-
tion [30], even if it is not an ideal gas thermodynamically, as
shown in Sec. IV B.

FIG. 2. A disordered nonhyperuniform configuration (left
panel) and a disordered hyperuniform configuration (right panel).
We arrive at the configuration on the right by very small
collective displacements of the particles on the left via the
methods described in Ref. [12]. (Each particle on average moves
a root-mean-square distance that is about an order of magnitude
smaller than the mean-nearest-neighbor distance as measured by
the configuration proximity metric [53].) These two examples
show that it can be very difficult to detect hyperuniformity by eye,
and yet their large-scale density fluctuations are dramatically
different (“hidden order”).
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numerical work on this topic [11–16]. After providing basic
definitions and describing a family of isotropic stealthy
potentials (Secs. II and III), we derive general exact
relations for thermodynamic properties (energy, pressure,
and isothermal compressibility) that apply to any well-
defined ground-state ensemble as a function of the number
density or, equivalently, χ in any space dimension d
(Sec. IV). We subsequently derive some exact integral
conditions that both the pair correlation function g2ðrÞ and
structure factor SðkÞ must obey (Sec. V). The existence of
periodic stealthy ground states enables us to show how
disordered degenerate ground states arise as part of the
ground-state manifold for sufficiently small χ (Sec. VI).
Subsequently, we derive analytical formulas for the pair
statistics [g2ðrÞ and SðkÞ] for sufficiently small χ in the
canonical ensemble in the limit that the temperature T tends
to zero (Sec. VII) by exploiting an ansatz that stealthy states
behave like “pseudo”-equilibrium hard-sphere systems in
Fourier space. Our theoretical predictions for g2ðrÞ and
SðkÞ are in excellent agreement with computer simulations
across the first three space dimensions. These results are
then used to predict, with high accuracy, other structural
characteristics of stealthy ground states across dimensions,
such as order metrics, local number variance, and nearest-
neighbor functions (Secs. VIII and IX). Subsequently, we
derive analytical formulas for the structure factor and
thermal expansion coefficient for the associated excited
states for sufficiently small temperatures (Sec. X). Finally,
we provide concluding remarks in Sec. XI.

II. DEFINITIONS AND PRELIMINARIES

Roughly speaking, a point process in d-dimensional
Euclidean space Rd is a distribution of an infinite number
of points in Rd with the configuration r1; r2;… at a
well-defined number density (number of points per unit
volume). For a statistically homogeneous point process in
Rd at number density ρ [55], the quantity ρngnðrnÞ is the
probability density associated with simultaneously
finding n points at locations rn ≡ r1; r2;…; rn in Rd

[54]. With this convention, each n-particle correlation
function gn approaches unity when all of the points become
widely separated from one another. Statistical homogeneity
implies that gn is translationally invariant and hence
only depends on the relative displacements of the positions
with respect to any chosen system origin, e.g.,
gn ¼ gnðr12; r13;…; r1nÞ, where rij ¼ rj − ri.
The pair correlation function g2ðrÞ is a particularly

important quantity. If the point process is also rotationally
invariant (statistically isotropic), then g2 depends on the
radial distance r≡ jrj only, i.e., g2ðrÞ ¼ g2ðrÞ. Thus, it
follows that the expected number of points ZðRÞ found in a
sphere of radius R around a randomly chosen point of the
point process, called the cumulative coordination function,
is given by

ZðRÞ ¼ ρs1ð1Þ
Z

R

0

xd−1g2ðxÞdx; ð4Þ

where s1ðrÞ ¼ 2πd=2rd−1=Γðd=2Þ is the surface area of
a d-dimensional sphere of radius r. The total correlation
function hðrÞ is trivially related to g2ðrÞ as follows:

hðrÞ≡ g2ðrÞ − 1: ð5Þ

When there are no long-range correlations in the system,
hðrÞ → 0 or, equivalently, g2ðrÞ → 1 as jrj → ∞. The
structure factor SðkÞ, which plays a prominent role in this
paper, is related to the Fourier transform of hðrÞ, denoted
by ~hðkÞ, via the expression

SðkÞ≡ 1þ ρ ~hðkÞ: ð6Þ

A lattice Λ in Rd is a subgroup consisting of integer
linear combinations of vectors that constitute a basis forRd,
and thus, it represents a special subset of point processes.
Here, the space can be geometrically divided into identical
regions F called fundamental cells, each of which contains
just one point specified by the lattice vector

p ¼ n1a1 þ n2a2 þ � � � þ nd−1ad−1 þ ndad; ð7Þ

where ai are the basis vectors for a fundamental cell and ni
spans all the integers for i ¼ 1; 2;…; d. We denote by vF
the volume of F. A lattice is called a Bravais lattice in the
physical sciences. Unless otherwise stated, we will use the
term lattice. Every lattice has a dual (or reciprocal) lattice
Λ� in which the lattice sites are specified by the dual
(reciprocal) lattice vector q · p ¼ 2πm for all p, where
m ¼ 0;�1;�2;�3…. The dual fundamental cell F� has
volume vF� ¼ ð2πÞd=vF. This implies that the number
density ρΛ of Λ is related to the number density ρΛ� of
the dual lattice Λ� via the expression

ρΛρΛ� ¼ 1=ð2πÞd: ð8Þ
Some common d-dimensional lattices are mathematically
defined in Appendix A.
A periodic point process (crystal) is a more general

notion than a lattice because it is obtained by placing a
fixed configuration of N points (where N ≥ 1) within a
fundamental cell F of a lattice Λ, which is then periodically
replicated. Thus, the point process is still periodic under
translations by Λ, but the N points can occur anywhere in
F; see Fig. 3.

A. Hyperuniform point processes

Consider uniformly sampling the number of points that
are contained within a spherical window of radius R of a
point process in Rd. A hyperuniform point process has the
property that the local number variance σ2ðRÞ grows more
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slowly than Rd [31]. Because σ2ðRÞ is exactly related to a
d-dimensional volume integral of the structure factor SðkÞ
(see Sec. VIII), this implies that hyperuniform states of
matter possess infinite-wavelength density fluctuations
(appropriately normalized) that vanish; i.e., SðkÞ obeys
the condition

lim
jkj→0

SðkÞ → 0; ð9Þ

which means they are poised at an “inverted” critical point
with associated scaling exponents [31]. For a Poisson
(spatially uncorrelated) point process and many disordered
point patterns, including typical liquids and structural
glasses, the number variance grows like the volume of
the window, i.e., σ2ðRÞ ∼ Rd, implying that SðkÞ is positive
at k ¼ 0. All perfect crystals and quasicrystals are hyper-
uniform such that σ2ðRÞ ∼ Rd−1; in other words, the
variance grows like window surface area. By contrast, it
is much more unusual to find disordered systems that are
also hyperuniform. In recent years, evidence has been
emerging that disordered hyperuniform many-particle sys-
tems can be regarded as new distinguishable states of
disordered matter (see examples given in the Introduction).
Whenever the structure factor goes to zero with the power-
law form SðkÞ ∼ jkjα, the number variance has the follow-
ing large-R asymptotic scaling that depends on the value of
the exponent α [17,32]:

σ2ðRÞ ∼
8<
:

Rd−1 lnR α ¼ 1

Rd−α α < 1

Rd−1 α > 1

ðR → þ∞Þ: ð10Þ

Since disordered as well as ordered stealthy states can be
viewed as systems in which α tends to infinity, we see
from Eq. (10) that they have the asymptotic scaling
σ2ðRÞ ∼ Rd−1. We give theoretical predictions for the
variance of disordered stealthy ground states in Sec. VIII.

III. FAMILIES OF STEALTHY PAIR POTENTIALS

As we see in the next section, the specific form of a
stealthy potential does not affect the ground-state energy
manifold, but it can affect other thermodynamic properties,
such as the pressure. This has consequences in simulations

of such properties, especially with respect to convergence
issues. Hence, it is instructive to remark on some math-
ematical aspects of the long-range nature of the direct-space
stealthy potentials, which are very similar to the weakly
decaying Friedel oscillations of the electron density in a
variety of systems, including molten metals as well as
graphene [56,57]. As we will see, in some cases, stealthy
potentials may mimic effective interactions that arise in
certain polymer systems [10].
Here, we will limit ourselves to pair potentials vðrÞ that

are radial functions in Rd, where r ¼ jrj (i.e., isotropic pair
interactions), and therefore, their Fourier transforms ~vðkÞ
are also radial functions in Rd, where k≡ jkj is a wave
number. The d-dimensional Fourier transform of any
integrable radial function fðrÞ in Rd is given by [31]

~fðkÞ ¼ ð2πÞd=2
Z

∞

0

rd−1fðrÞ Jðd=2Þ−1ðkrÞðkrÞðd=2Þ−1 dr; ð11Þ

and the inverse transform of ~fðkÞ is given by

fðrÞ ¼ 1

ð2πÞd=2
Z

∞

0

kd−1 ~fðkÞ Jðd=2Þ−1ðkrÞðkrÞðd=2Þ−1 dk; ð12Þ

where JνðxÞ is the Bessel function of order ν.
Consider the class of stealthy radial potential functions

~vðkÞ in Rd that are bounded and positive with compact
support in the radial interval 0 ≤ k ≤ K, i.e.,

~vðkÞ ¼ VðkÞΘðK − kÞ; ð13Þ
where, for simplicity, VðkÞ is infinitely differentiable in the
open interval ½0; KÞ and

ΘðxÞ ¼
�
0 x < 0

1 x ≥ 0
ð14Þ

is the Heaviside step function. The corresponding direct-
space radial pair potential vðrÞ is necessarily a delocalized,
long-ranged function that is integrable in Rd. Moreover,
without any loss of generality, it will be assumed that
VðkÞ ≤ v0.
For concreteness and purposes of illustration, we will

examine properties of two specific families of potentials
that fall within the aforementioned wide class of stealthy
interactions: “power-law” and “overlap” potentials.

A. Power-law potentials

The power-law potentials are defined in Fourier space as
follows:

~vðkÞ ¼ v0ð1 − k=KÞmΘðK − kÞ; ð15Þ
where the exponent m can be any whole number. The
corresponding direct-space potential vðrÞ will depend on d
for any given m and is exactly given by

FIG. 3. (Bravais) lattice with one particle per fundamental cell
(left panel) and a periodic crystal with multiple particles per
fundamental cell (right panel).
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vðrÞ
v0

¼ KdΓðmþ 1ÞΓ½ðdþ 1Þ=2� · 1F2ða1; b1; b2; xÞ
Γð1þmþ dÞπðdþ1Þ=2 ;

ð16Þ
where a1 ¼ ðdþ 1Þ=2, b1 ¼ 1þ ðmþ dÞ=2, b2 ¼
ð1þmþ dÞ=2, x ¼ −ðKrÞ2=4 and 1F2ða1; b1; b2; xÞ is a
special case of the generalized hypergeometric function
pFqða1;…; ap; b1;…; bq; xÞ [58]. Because the potential
(16) is derived from the Fourier power-law potential (15),
we will refer to Eq. (16) as the direct-space power-law
potential. In the instance when m ¼ 0 in Eq. (15) (i.e.,
simple step function), this expression for vðrÞ simplifies as
follows:

vðrÞ
v0

¼
�

K
2πr

�
d=2

Jd=2ðKrÞ; ð17Þ

for which the large-r asymptotic behavior is given by

vðrÞ
v0

∼
�
K
2π

�ðd−1Þ=2 cosðKr − ðdþ 1Þπ=4Þ
πrðdþ1Þ=2 ðr → ∞Þ:

ð18Þ
For any fixed d and m ≥ d, the direct-space power-law
potential has the asymptotic form

vðrÞ
v0

∼
sðr;m; dÞ

rdþ1
ðr → ∞Þ; ð19Þ

where sðr;m; dÞ is a bounded function (a sinusoidal
function or constant of order one). For any fixed d and
1 ≤ m < d, the long-range oscillations of vðrÞ are con-
trolled by an envelope that decays like 1=rβ, where
ðdþ 1Þ=2 < β ≤ dþ 1.
In Fig. 4, we plot the Fourier power-law potential for

selected values of m (which applies in any dimension)
and the corresponding direct-space potentials for d ¼ 3.
In all cases, we set v0 ¼ K ¼ 1. It is to be noted that the
amplitudes of the oscillations in vðrÞ decrease as m
increases for a fixed dimension.

B. Overlap potentials

Let αðr;RÞ represent the intersection volume of two
identical d-dimensional spheres of radius R (scaled by the
volume of sphere) whose centers are separated by a
distance r. This quantity is known analytically in any
space dimension and has a variety of representations [59],
including the following:

αðr;RÞ ¼ cðdÞ
Z

cos−1ðr=ð2RÞÞ

0

sindðθÞdθ; ð20Þ

where cðdÞ is the d-dimensional constant given by

cðdÞ ¼ 2Γð1þ d=2Þ
π1=2Γððdþ 1Þ=2Þ : ð21Þ

For d ¼ 1, 2, 3, and 4, we respectively have

αðr;RÞ ¼ Θð2R − rÞ
�
1 −

r
2R

�
; ð22Þ

αðr;RÞ ¼ Θð2R − rÞ
�
2

π

�
cos−1

�
r
2R

�
−

r
2R

�
1 −

r2

4R2

�
1=2

��
; ð23Þ

αðr;RÞ ¼ Θð2R − rÞ
�
1 −

3

4

r
R
þ 1

16

�
r
R

�
3
�
; ð24Þ

αðr;RÞ ¼ Θð2R − rÞ
�
2

π

�
cos−1

�
r
2R

�
−
�
5r
6R

−
1

12

�
r
R

�
3
��

1 −
r2

4R2

�
1=2

��
: ð25Þ
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m=4

~
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r
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0.01
v(r)
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m=4

d=3

FIG. 4. Left panel: Fourier power-law potential ~vðkÞ for the special cases m ¼ 0, 2, and 4 that apply for any d. Right panel:
Corresponding direct-space power-law potentials vðrÞ in the instance d ¼ 3. Here, we set v0 ¼ K ¼ 1.
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Consider the class of “overlap” potentials, which for any
dimension is given by

~vðkÞ ¼ v0αðr ¼ k; R ¼ K=2Þ: ð26Þ

Note that for d ¼ 1, the overlap potential is identical to the
power-law potential when d ¼ 1 and m ¼ 1. The thermo-
dynamics of the ground-state manifold of this potential in
the special case d ¼ 2 was numerically investigated in
Refs. [15] and [16]. It follows from Eq. (26) that the
corresponding direct-space overlap potential is given by

vðrÞ
v0

¼ Γð1þ d=2Þ
πd=2

J2d=2ðKr=2Þ
rd

; ð27Þ

which is clearly non-negative for all r. Its large-r asymp-
totic behavior is given by

vðrÞ
v0

∼
4Γð1þ d=2Þ

πd=2þ1

cos2ðKr=2− ðdþ 1Þπ=4Þ
rdþ1

ðr→∞Þ;

ð28Þ

revealing that the long-ranged decay of the direct-space
overlap potential has an envelope controlled by the inverse
power law 1=rdþ1.
Figure 5 depicts the overlap potential ~vðkÞ for the first

three space dimensions and the corresponding direct-space
overlap potentials vðrÞ, the latter of which vividly shows
the increasing decay rate of vðrÞ with increasing dimen-
sion. The direct-space overlap potential vðrÞ is similar in
functional form to effective positive pair interactions that
arise in multilayered ionic microgels [10].

IV. ENSEMBLE THEORY FOR STEALTHY
DISORDERED GROUND STATES: EXACT

RESULTS FOR THERMODYNAMIC PROPERTIES

Our general objective is the formulation of an ensemble
theory for the thermodynamic and structural properties of
stealthy degenerate disordered ground states that we
previously investigated numerically [11–16]. In this sec-
tion, we derive general exact relations for thermodynamic

properties that apply to any well-defined ensemble as
generated by a particular way to sample the stealthy
disordered ground-state manifold as a function of number
density ρ. In the subsequent section, we derive some exact
results for the pair statistics for general ensembles.

A. Preliminaries

To begin, consider a configuration of N identical
particles with positions rN ≡ r1;…; rN in a large region
of volume V in d-dimensional Euclidean space Rd. For
particles interacting via a pair potential vðrÞ, the total
potential energy ΦðrNÞ is given by

ΦðrNÞ ¼
X
i<j

vðrijÞ; ð29Þ

where rij ¼ rj − ri. Of particular interest are classical
ground states, i.e., those configurations that minimize
the energy per particle ΦðrNÞ=N.
The ensemble average of the energy (29) per particle u in

the thermodynamic limit can be written in terms of the pair
correlation function g2ðrÞ:

u≡
�
ΦðrNÞ
N

	
¼ ρ

2

Z
Rd

vðrÞg2ðrÞdr

¼ ρ

2

Z
Rd

vðrÞdrþ ρ

2

Z
Rd

vðrÞhðrÞdr; ð30Þ

where angular brackets denote an ensemble average and ρ
is the number density in the thermodynamic limit.
Because the collective-coordinate approach relies on the

Fourier representation of the energy, we recast Eq. (30) in
terms of the structure factor SðkÞ by applying Parseval’s
theorem to the second line of Eq. (30):

u ¼ ρ

2
~vðk ¼ 0Þ þ ρ

2ð2πÞd
Z
Rd

~vðkÞ ~hðkÞdk

¼ ρ

2
~vðk ¼ 0Þ − 1

2
vðr ¼ 0Þ þ 1

2ð2πÞd
Z
Rd

~vðkÞSðkÞdk;

ð31Þ
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FIG. 5. Left panel: Fourier overlap potential ~vðkÞ for the first three space dimensions. Right panel: Corresponding direct-space overlap
potentials vðrÞ, which oscillate but are always non-negative. Here, we set v0 ¼ K ¼ 1.
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where ~vðkÞ and ~hðkÞ are the Fourier transforms of vðrÞ and
hðrÞ, respectively, both of which are assumed to exist, k is a
wave vector, and SðkÞ is the structure factor defined in
relation (6). Note that the structure factor is a non-negative,
inversion-symmetric function, i.e.,

SðkÞ ≥ 0 for all k; SðkÞ ¼ Sð−kÞ: ð32Þ

B. Ground-state energy and dimensionality of its
configuration space

Consider a radial (isotropic) stealthy potential function
~vðkÞ with support in 0 ≤ k ≤ K of the class specified by
Eq. (13). In light of Eq. (31), it is clear that whenever
particle configurations in Rd exist such that SðkÞ is con-
strained to achieve its minimum value of zero for
0 ≤ k ≤ K, the system must be at its ground state or global
energy minimum. This follows because the integrand
~vðkÞSðkÞ in the nontrivial term on the right side of
Eq. (31) is identically zero because of the conflicting
demands of the step functions. When such configurations
exist, the average ground-state energy per particle in any
well-defined ensemble is given exactly by

u ¼ ρ

2
v0 −

1

2
vðr ¼ 0Þ; ð33Þ

which is a structure-independent constant, depending on
the density ρ, v0 ≡ ~vðk ¼ 0Þ, vðr ¼ 0Þ and d, as explicitly
shown below. Importantly, because u is a constant inde-
pendent of the structure, its value has no effect on the
ground-state manifold, which is generally degenerate;
hence, this manifold is invariant to the specific choice of
the stealthy function ~vðkÞ at fixed ρ and d.
We would like to express the energy (33) in terms of the

parameter χ, defined by relation (2), which measures the
relative number of independently constrained degrees of
freedom for a finite system under periodic boundary
conditions. Note that, in the thermodynamic limit, MðKÞ
in Eq. (2) is simply half of the volume of a sphere of radius
K [due to the inversion symmetry of SðkÞ] multiplied by
the density ρΛ� of the dual lattice [cf. Eq. (8)], i.e.,

MðKÞ ¼ ρΛ�
v1ðKÞ
2

¼ v1ðKÞ
2ð2πÞdρ ; ð34Þ

where we have used the fact that ρ → NρΛ in this
distinguished limit. Hence, from Eq. (2), we obtain the
following expression for χ in the thermodynamic limit:

ρχ ¼ v1ðKÞ
2dð2πÞd ; ð35Þ

where

v1ðRÞ ¼
πd=2Rd

Γð1þ d=2Þ ð36Þ

is the volume of a d-dimensional sphere (hypersphere) of
radius R. We see that for fixed K and d, which fixes the
potential, χ is inversely proportional to ρ, which is the
situation that we usually consider in this paper [60].
Hence, as χ tends to zero, ρ tends to infinity, which

configurationally corresponds counterintuitively to the
uncorrelated ideal-gas limit (Poisson distribution), as dis-
cussed in the Introduction. As χ increases from zero, the
density ρ decreases and the dimensionality of the ground-
state configuration manifold DC decreases. The configu-
rational dimensionality per particle in the thermodynamic
limit, dC, can easily be obtained from the relation DC ¼
dN − 2MðKÞ for a finite system [61]; specifically,

dC ¼ dð1 − 2χÞ; ð37Þ

where dC ¼ limDC→∞;N→∞DC=N.
Equations (33) and (35) yield the average ground-state

energy per particle to be

u ¼ v0

�
ρ

2
− γdρχ

�
; ðρ�min ≤ ρ < ∞Þ; ð38Þ

where ρ�min is the minimal density associated with the dual
of the densest Bravais lattice in direct space (as elaborated
in Sec. VI), and

γ ¼
R
Rd ~vðkÞdk
v0v1ðKÞ

¼ ð2πÞdvðr ¼ 0Þ
v0v1ðKÞ ð39Þ

is a constant whose value depends on the specific form of
the stealthy-potential class ~vðkÞ defined by Eq. (13) and
hence must lie in the interval ð0; 1�, where γ ¼ 1 corre-
sponds to the step-function choice ~vðkÞ ¼ v0ΘðK − kÞ.
While the system in the limit χ → 0 (ρ → ∞) corresponds
configurationally to an ideal gas in so far as the pair
correlation function is concerned, as we will explain in
detail in Sec. VII A, thermodynamically, it is nonideal; see
Eq. (38) for u and Eq. (41) for the pressure.

C. Energy route to pressure and isothermal
compressibility

The pressure in the thermodynamic limit at T ¼ 0 can be
obtained from the energy per particle via the relation

p ¼ ρ2
�∂u
∂ρ

�
T
: ð40Þ

Therefore, for stealthy potentials, we see from Eq. (33) that
the ground-state pressure, for all possible values of ρ or χ, is
given by the following simple expression:
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p ¼ ρ2

2
v0; ðρ�min ≤ ρ < ∞Þ: ð41Þ

Hence, the isothermal compressibility κT ≡ ρ−1ð∂ρ=∂pÞT
of such a ground state is

κT ¼ v0
ρ2

: ð42Þ

We see that as ρ tends to infinity, the compressibility tends
to zero.
Two important remarks are in order. First, estimates of

the pressure obtained from simulations that we previously
performed for d ¼ 2 [15,16], as well as those carried out in
the present study across the first three space dimensions
(Appendix B), are in very good agreement with the exact
result (41) across a wide range of densities, thus validating
the accuracy of the simulations. Second, the fact that the
pressure (41) is a continuous function of density implies
that any phase transition that may take place could be a
continuous one, the implications of which are discussed in
the Conclusions.

D. Virial route to pressure and isothermal
compressibility

An alternative route to the pressure for a radial pair
potential function vðrÞ is through the “virial” equation,
which at T ¼ 0 in the thermodynamic limit, is given by

p ¼ −
ρ2

2d
s1ð1Þ

Z
∞

0

rd
dv
dr

g2ðrÞdr: ð43Þ

Although the pressure obtained via the virial route is
generally expected to be equivalent to that obtained from
the energy route (as described in the previous section), we
will show that, for a certain class of stealthy potentials, the
pressure obtained from Eq. (43) is either ill defined or
divergent. This has practical implications for what types
of stealthy potentials can be used in constant-pressure
simulations.
It is convenient to rewrite the virial relation (43) in the

following form:

p ¼ −
ρ2

2d

�Z
Rd

r
dv
dr

drþ
Z
Rd

r
dv
dr

hðrÞdr
�

¼ −
ρ2

2d

�
~Fðk ¼ 0Þ þ 1

ð2πÞd
Z
Rd

~FðkÞ ~hðkÞdk
�
; ð44Þ

where ~FðkÞ is the Fourier transform of FðrÞ≡ rdv=dr,
when it exists, and we have used Parseval’s theorem and
definition (5) for the total correlation function hðrÞ.
To continue with this analysis, we make use of the

following lemma.

Consider a bounded radial function ~zðkÞ with compact
support on the radial interval ½0; K� in Rd that is infinitely
differentiable in the open interval ½0; KÞ. Therefore, its
Fourier transform zðrÞ exists.
Lemma 1.—The Fourier transform of the radial function

wðrÞ ¼ rdz=dr in Rd is given by

~wðkÞ ¼ −d · ~zðkÞ − d~z
dk

: ð45Þ

Proof.—Differentiation of ~zðkÞ [defined via Eq. (11)]
with respect to k leads to the following identity:

k
d~z
dk

¼ −ð2πÞd=2
Z

∞

0

krdzðrÞ Jðd=2ÞðkrÞðkrÞðd=2Þ−1 dr: ð46Þ

The Fourier transform of wðrÞ is given by

~wðkÞ ¼ ð2πÞd=2
Z

∞

0

rd
dz
dr

Jðd=2Þ−1ðkrÞ
ðkrÞðd=2Þ−1 dr: ð47Þ

Integrating relation (47) by parts and using Eq. (46) proves
the lemma.
Corollary.—It immediately follows from Lemma 1 that

~wðkÞ has the same support as ~zðkÞ and

~wðk ¼ 0Þ ¼ −d · ~zðk ¼ 0Þ; ð48Þ

meaning that the volume integral of rdz=dr over all space is
proportional to the corresponding volume integral of zðrÞ.
Note that by the Corollary of Lemma 1,

~Fð0Þ ¼ −d · ~vð0Þ, and hence we can rewrite the virial
relation (44) as

p ¼ ρ2

2d

�
d~vðk ¼ 0Þ þ d

ð2πÞd
Z
Rd

~FðkÞ ~hðkÞdk
�

¼ ρ2

2d

�
d~vðk ¼ 0Þ − d

ρð2πÞd
Z
Rd

~FðkÞdk
�

¼ ρ2

2
v0: ð49Þ

The second term in the second line of Eq. (49) follows
because ρ ~hðkÞ ¼ −ΘðK − kÞ inside the exclusion sphere of
radius K [see also Eq. (52) below] and has support in this
exclusion zone by the Corollary of Lemma 1. But this
second term must vanish in light of the trivial identity

Fðr ¼ 0Þ ¼
�
r
dv
dr

�
r¼0

¼ 1

ð2πÞd
Z
Rd

~FðkÞdk ¼ 0: ð50Þ

We see that the virial ground-state pressure (49) agrees with
that of the pressure obtained via the energy per particle
[cf. Eq. (41)] provided that ~FðkÞ exists. Since the latter is a
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stronger condition than the existence of ~vðkÞ, it is possible
to devise a stealthy function ~vðkÞ for which ~FðkÞ does not
exist and hence a virial pressure that either diverges or is
nonconvergent. For example, this problem occurs for the
power-law potential (15) withm ¼ 0 (step function) for any
dimension d. By contrast, the virial pressure is always well
defined for the overlap potential (26) in any dimension
[62]. This example serves to illustrate the mathematical
subtleties that can arise because of the long-ranged nature
of stealthy potentials in direct space.

V. ENSEMBLE THEORY FOR STEALTHY
DISORDERED GROUND STATES: EXACT
INTEGRAL CONDITIONS ON THE PAIR

STATISTICS

Here, we derive some exact integral conditions that must
be obeyed by both the pair correlation function g2ðrÞ and
the structure factor SðkÞ for stealthy ground states that
apply to general ensembles. These analytical relations can
be profitably employed to test corresponding computer-
simulation results.

A. General properties

In any stealthy ground state, the structure factor attains
its minimum value SðkÞ ¼ 0 for 0 < k ≤ K and hence has
the form

SðkÞ ¼ Θðk − KÞ½1þ ~QðkÞ�; ð51Þ
where ΘðxÞ is the Heaviside step function defined by
Eq. (14) and ~QðkÞ ¼ SðkÞ − 1 is a function that obeys the
inequality ~QðkÞ ≥ −1. Therefore, from Eq. (6), we have
that the Fourier transform of the total correlation function
hðrÞ has the form

ρ ~hðkÞ ¼ ~fðkÞ þ ~PðkÞ; ð52Þ
where

~fðkÞ ¼ −ΘðK − kÞ ð53Þ
and

~PðkÞ ¼ Θðk − KÞ ~QðkÞ: ð54Þ

It is noteworthy that the function ~fðkÞ is identical to the
Mayer-f function for an equilibrium hard-sphere system in
direct space.
Taking the inverse Fourier transform of Eq. (52) yields

the direct-space total correlation function, given by

ρhðrÞ ¼ fðrÞ þ PðrÞ; ð55Þ

where

fðrÞ ¼ −
�

K
2πr

�
d=2

Jd=2ðKrÞ ð56Þ

and

PðrÞ ¼ 1

ð2πÞðd=2Þ
Z

∞

K
kd−1 ~QðkÞ Jðd=2Þ−1ðkrÞðkrÞðd=2Þ−1 dk

≥
�

K
2πr

�
d=2

Jd=2ðKrÞ − ρ; ð57Þ

where the lower bound on PðrÞ indicated in Eq. (57)
follows from the fact that hðrÞ ≥ −1 for all r for any point
pattern. It trivially follows that since ρ ~hðk ¼ 0Þ ¼
ρ
R
Rd hðrÞdr ¼ −1, the volume integral of PðrÞ must be

zero, i.e.,

Z
Rd

PðrÞdr ¼ 0: ð58Þ

Less trivially, because the product ~vðkÞ ~PðkÞ is zero for all
k, by Parseval’s theorem, we have the integral condition

Z
Rd

vðrÞPðrÞdr ¼ 0: ð59Þ

Thus, the functions vðrÞ and PðrÞ are orthogonal to one
another. The exact integral conditions (58) and (59) can be
used to test the accuracy of numerical methods that yield
estimates of the pair correlation function.

B. Behavior of the pair correlation function
near the origin

It is instructive to determine the behavior of the pair
correlation function g2ðrÞ for small r. Substitution of the
general form (11) for ~hðkÞ into the definition of the total
correlation function hðrÞ as obtained from Eq. (12), and
expanding hðrÞ in a Taylor series around r ¼ 0 through
second order in the radial distance r, yields

hðrÞ ¼ hðr ¼ 0Þ þ 1

2

�∂2h
∂r2

�
r¼0

r2 þOðr4Þ; ð60Þ

where

hðr ¼ 0Þ ¼ −2dχ þ 2d2χ
Z

∞

K
kd−1 ~QðkÞdk; ð61Þ

and the corresponding curvature is

�∂2h
∂r2

�
r¼0

¼ 2d
dþ 2

χ − 2dχ
Z

∞

K
kdþ1 ~QðkÞdk: ð62Þ

Therefore, from Eq. (61), we see that the pair correlation
function at the origin is given by
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g2ðr ¼ 0Þ ¼ 1 − 2dχ þ 2d2χ
Z

∞

K
kd−1 ~QðkÞdk: ð63Þ

Since g2ðrÞ must be non-negative for all r, we have the
following integral condition on ~QðkÞ:

2d2χ
Z

∞

K
kd−1 ~QðkÞdk ≥ 2dχ − 1: ð64Þ

Hence, this integral must be positive for

χ ≥
1

2d
: ð65Þ

We also conclude from Eq. (62) that for hðrÞ or g2ðrÞ to
have positive curvature at the origin, ~QðkÞ must obey the
additional integral condition:

ðdþ 2Þ
Z

∞

K
kdþ1 ~QðkÞdk ≤ 1: ð66Þ

Finally, we note that when g2ðr ¼ 0Þ ¼ 0, the results above
yield the equality

Z
∞

K
kd−1 ~QðkÞdk ¼ 2dχ − 1

2d2χ
; ð67Þ

and, because the curvature must be positive in this instance,
the inequality (66) must generally be obeyed.
The inequality (64), conditional inequality (66), and

conditional equality (67) provide integral conditions to test
the accuracy of numerical methods that yield estimates of
the structure factor.

VI. EXISTENCE OF STEALTHY DISORDERED
DEGENERATE GROUND STATES

It is noteworthy that any periodic crystal with a finite
basis is a stealthy ground state for all positive χ up to its
corresponding maximum value χmax (or minimum value of
the number density ρmin) determined by its first positive
Bragg peak kBragg [minimal positive wave vector for which
SðkÞ is positive]. Tables I–IV list the pair χmax,ρmin for
some common periodic patterns in one, two, three, and four
dimensions, respectively, all of which are part of the
ground-state manifold; see Appendix A for mathematical

definitions. (The crystals denoted by Diad and Kagd are d-
dimensional generalizations of the diamond and kagomé
crystals, respectively, for d ≥ 2 [63].) While the mere
existence of such periodic ground states does not provide
any clues about their occurrence probability in some
ensemble, we will use these results here to show how
disordered degenerate ground states arise as part of the
ground-state manifold for sufficiently small χ.
At fixed d, the smallest value of ρmin listed in Tables I–IV,

which we call ρ�min, corresponds to the dual of the densest
Bravais lattice in direct space and represents the critical
density value below which a stealthy ground state does not
exist for all k ≤ jk�

Braggj. The fact that ρ�min corresponds to the
body-centered-cubic (BCC) lattice for d ¼ 3 was initially
shown analytically in Ref. [19] and subsequently numeri-
cally in Ref. [14]. We note that the values of ρmin for the
simple hexagonal lattice and hexagonal close-packed crystal
for d ¼ 3 reported in Ref. [19] are incorrect because those
calculations were based on the erroneous assumption that the
structure factors at the corresponding shortest reciprocal
lattice vectors have nonvanishing values.
Observe that in the case d ¼ 1, there is no non-Bravais

lattice (periodic structure with a basis n ≥ 2) for which χmax
is greater than 1=2, implying that the ground-state manifold
is nondegenerate (uniquely the integer lattice) for
1=2 < χ ≤ 1. This case is to be contrasted with the cases
d ≥ 2 where the ground-state manifold must be degenerate
[65] for 1=2 < χ < χ�max and nondegenerate only at the
point χ ¼ χ�max, as implied by Tables II–IV. Here, χ�max is the
largest possible value of χmax in some fixed dimension.
Lemma.—At fixed K, a configuration comprised of the

union (superposition) of m different stealthy ground-state
configurations in Rd with χ1; χ2;…; χm, respectively, is
itself stealthy with a χ value given by

χ ¼
�Xm
i¼1

χ−1i

�−1
; ð68Þ

which is the harmonic mean of the χi divided by m.
Proof.—Formula (68) is a direct consequence of the fact

that χ is inversely proportional to the number density ρ ¼P
m
i¼1 ρi of the union of the configurations in Rd, where ρi

is the number density associated with the ith configuration,
which is inversely proportional to χi.
This Lemma, together with the fact that any periodic

crystal with a finite basis is a stealthy ground state, can be
used to demonstrate rigorously how complex aperiodic
patterns can be ground states, entropically favored or not. A
sketch of such a proof would involve the consideration of
the union of m different periodic structures in Rd with
densities ρ1; ρ2;…; ρm, respectively, each of which are
randomly translated and oriented with respect to some
coordinate system such that m is very large but bounded
and ρi ≠ ρj for all i and j. It is clear that the resulting
configuration will be a highly complex aperiodic structure

TABLE I. Maximum values of χ and corresponding minimum
values of ρ for certain periodic stealthy ground states in R with
K ¼ 1. The configuration with the largest possible value of χmax
(smallest possible value of ρmin) corresponds to the integer lattice.

Structure χmax ρmin

Integer lattice (Z) 1 1=2π ¼ 0.15915…
Periodic with n-particle basis 1=n n=2π ¼ ð0.15915…Þn
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in Rd that tends toward a disordered stealthy pattern with a
value of χ that is very small but positive according to
relation (68).

VII. PAIR STATISTICS IN THE CANONICAL
ENSEMBLE: “PSEUDO” HARD SPHERES IN

FOURIER SPACE

The task of formulating an ensemble theory that yields
analytical expressions for the pair statistics of stealthy
degenerate ground states is highly nontrivial because the
dimensionality of the configuration space depends on
the density (or χ) and there is a multitude of ways of
sampling the ground-state manifold, each with its own
probability measure for finding a particular ground-state
configuration. Therefore, it is desirable to specialize to
equilibrium ensembles with Gibbs measures because the

characterization of the ground states (as well as the
corresponding excited states) would be most tractable
theoretically. In particular, our objective is to derive
analytical formulas for the pair statistics of stealthy dis-
ordered ground states for sufficiently small χ in the
canonical ensemble as temperature T tends to zero; i.e.,
the probability of observing a configuration is proportional
to exp½−ΦðrNÞ=ðkBTÞ� in the limit T → 0. We show here
that under such circumstances, the pair statistics in the
thermodynamic limit can be derived under the ansatz that
stealthy ground states behave remarkably like pseudo-
equilibrium hard-sphere systems in Fourier space. This
ansatz enables us to exploit well-known accurate expres-
sions for the pair statistics in direct space. As will be shown,
agreement with computer simulations is excellent for
sufficiently small χ.

A. Pseudo-hard-sphere ansatz

We have already noted that the step-function contribu-
tion to ρ ~hðkÞ for stealthy ground states, denoted by ~fðkÞ in
relation (52), is identical to the Mayer-f function for an
equilibrium hard-sphere system in direct space. This
implies that the corresponding contribution to SðkÞ is a
simple hard-core step function Θðk − KÞ, which can be
viewed as an equilibrium hard-sphere system in Fourier
space with “spheres” of diameter K in the limit that χ tends
to zero. Why is this the case? Because such a step function
is exactly the same as the pair correlation g2ðr ¼ kÞ of an
equilibrium hard-sphere system in direct space in the limit

TABLE III. Maximum values of χ and corresponding minimum values of ρ for certain periodic stealthy ground states in R3 with
K ¼ 1. Here, MCC refers to the mean-centered cuboidal lattice, which is a Bravais lattice intermediate between the BCC and FCC
lattices and has an equivalent dual lattice [64]. The configuration with the largest possible value of χmax (smallest possible value of ρmin)
corresponds to the BCC lattice.

Structure χmax ρmin

Pyrochlore crystal (Kag3) π=4
ffiffiffiffiffi
12

p ¼ 0.2267… 2=3
ffiffiffi
3

p
π3 ¼ 0.01241…

Diamond crystal (Dia3) π=2
ffiffiffiffiffi
12

p ¼ 0.4534… 1=3
ffiffiffi
3

p
π3 ¼ 0.00620…

Simple hexagonal lattice
ffiffiffi
3

p
π=9 ¼ 0.6045… 1=4

ffiffiffi
3

p
π3 ¼ 0.00465…

SC lattice (Z3 ≡ Z�
3) 2π=9 ¼ 0.6981… 1=8π3 ¼ 0.00403…

HCP crystal 8
ffiffiffi
6

p
π=81 ¼ 0.7600… 3

ffiffiffi
3

p
=32

ffiffiffi
2

p
π3 ¼ 0.00370…

FCC lattice (D3 ≡ A3) π=
ffiffiffiffiffi
12

p ¼ 0.9068… 1=6
ffiffiffi
3

p
π3 ¼ 0.00310…

MCC lattice 0.9258… 0.00303…
BCC lattice (D�

3 ≡D�
3) 2

ffiffiffi
2

p
π=9 ¼ 0.9873… 1=8

ffiffiffi
2

p
π3 ¼ 0.00285…

TABLE IV. Maximum values of χ and corresponding minimum
values of ρ for certain periodic stealthy ground states in R4

with K ¼ 1. The configuration with the largest possible value of
χmax (smallest possible value of ρmin) corresponds to the four-
dimensional checkerboard lattice D4 ≡D�

4.

Structure χmax ρmin

Kag4 crystal π2=40 ¼ 0.2467… 5=32π3 ¼ 0.001640…
Dia4 crystal π2=16 ¼ 0.6168… 1=16π3 ¼ 0.0006416…
Z4 lattice π2=16 ¼ 0.6168… 1=16π3 ¼ 0.0006416…
D4 lattice π2=8 ¼ 1.2337… 1=32π3 ¼ 0.0003208…

TABLE II. Maximum values of χ and corresponding minimum values of ρ for certain periodic stealthy ground states in R2 with
K ¼ 1. The configuration with the largest possible value of χmax (smallest possible value of ρmin) corresponds to the triangular lattice.

Structure χmax ρmin

Kagomé crystal (Kag2) π=3
ffiffiffiffiffi
12

p ¼ 0.3022… 3
ffiffiffi
3

p
=8π2 ¼ 0.06581…

Honeycomb crystal (Dia2) π=2
ffiffiffiffiffi
12

p ¼ 0.4534…
ffiffiffi
3

p
=4π2 ¼ 0.04387…

Square lattice (Z2 ¼ Z2�) π=4 ¼ 0.7853… 1=4π2 ¼ 0.02533…
Triangular lattice (A2 ≡ A�

2) π=
ffiffiffiffiffi
12

p ¼ 0.9068…
ffiffiffi
3

p
=8π2 ¼ 0.02193…
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that ρ tends to zero. That the structure factor must have the
behavior SðkÞ → Θðk − KÞ in the limit χ → 0 is perfectly
reasonable since a perturbation about the ideal-gas limit
[where SðkÞ ¼ 1 for all k] in which an infinitesimal fraction
of the degrees of freedom are constrained should only
introduce an infinitesimal change in SðkÞ of zero inside the
exclusion zone (constrained region). We call this the
weakly constrained limit, where a step function SðkÞ is
expected on maximum entropy grounds; it corresponds to
the most disordered (decorrelated) form of SðkÞ subject
to the impenetrability condition in Fourier space. We refer
to this phenomenon as equilibrated pseudo hard spheres in
Fourier space because there are actually no points in that
space that have a hard-core repulsion like true hard spheres
do in direct space.
On the same maximum entropy grounds, we expect that

a perturbation expansion about the weakly constrained limit
χ ¼ 0 will lead to a perturbation expansion in χ for SðkÞ
that can be mapped to the low-density expansion of g2ðrÞ
for equilibrium hard spheres. More generally, we make the
ansatz that, in the canonical ensemble as T → 0, this hard-
sphere analogy continues to hold as χ is increased from
zero to positive values, provided that χ is small enough,
implying that the collective coordinate variables ~nðkÞ
(defined in the Introduction) are weakly correlated.
Though the pseudo-hard-sphere picture must break down
in some intermediate range of χ, for d ¼ 1 and d ¼ 2, this
hard-sphere mapping is again exact when χ ¼ χmax, which
corresponds to the maximal value of the packing fraction η
in these dimensions (see Tables I and II). This exact
correspondence with the maximal value of η when χ ¼
χmax does not hold for d ¼ 3 or d ¼ 4, however. Thus, one
should only expect that χ and η are proportional to one
another, even at small χ values.
Under the pseudo-hard-sphere ansatz, the direct-space

pair correlation function gHS
2 ðr; ηÞ of a disordered hard-

sphere system at a packing fraction η for sufficiently small η
can be mapped into the structure factor Sðk; χÞ for a
disordered stealthy ground state derived from the canonical
ensemble at fixed χ for sufficiently small χ as follows:

Sðk; χÞ ¼ gHS
2 ðr ¼ k; ηÞ: ð69Þ

As alluded to above, the parameter χ can be viewed as an
effective packing fraction for pseudo hard spheres of
diameter K in reciprocal space that is proportional to η, i.e.,

η ¼ bðdÞχ; ð70Þ

where bðdÞ is a d-dependent parameter that is to be
determined. Let hHSðrÞ be the total correlation function
of a disordered equilibrium hard-sphere system in direct
space and let us define, for stealthy ground states,

~HðkÞ≡ SðkÞ − 1 ¼ ρ ~hðkÞ: ð71Þ

The ansatz is also defined by the alternative mapping

~HðkÞ ¼ hHSðr ¼ kÞ: ð72Þ
This mapping then enables us to exploit the well-known
statistical-mechanical theory of equilibrium hard-sphere
systems. In particular, we can employ a generalized
Ornstein-Zernike convolution relation that defines the
appropriate direct correlation function ~CðkÞ, namely,

~HðkÞ ¼ ~CðkÞ þ η ~HðkÞ ⊗ ~CðkÞ; ð73Þ
where the symbol ⊗ denotes the convolution operation in
Rd. Therefore, in direct space,HðrÞ is given by the relation
of the following form:

HðrÞ ¼ CðrÞ
1 − ð2πÞdηCðrÞ : ð74Þ

For example, for d ¼ 1,

~CðkÞ ¼ −Θð1 − kÞ ð1 − ηkÞ
ð1 − ηÞ2 : ð75Þ

Inverting this function yields

CðrÞ ¼ −r sinðrÞ þ ðr½sinðrÞ þ cosðrÞ� − 1Þη
πr2ð1 − ηÞ2 : ð76Þ

For d ¼ 2 and d ¼ 3, one can use the Percus-Yevick
closure of the Ornstein-Zernike integral equation [54],
which is highly accurate for low to intermediate densities
along the liquid branch, or when mapped to the stealthy
problem, for low to intermediate values of χ.
It is noteworthy that the exact low-density expansion of

hHSðrÞ, for practical purposes, is sufficient to produce
accurate estimates of ~HðkÞ ¼ ρ ~hðkÞ and its counterpart
ρhðrÞ for low to intermediate values of χ or η. In particular,
using the mapping (72), we obtain, for any dimension d, the
following low-χ expansion of ρ ~hðkÞ:

ρ ~hðkÞ ¼ −ΘðK − kÞ½1þ 2dbðdÞαðk;KÞχ þOðχ2Þ�;
ð77Þ

where bðdÞ is the proportionality constant in Eq. (70) and
αðk;KÞ is the scaled intersection volume of two identical d-
dimensional spheres of diameter K whose centers are
separated by a distance k [cf. Eq. (20)] [66]. This formula
indicates that SðkÞ develops a peak value at k ¼ K (over
and above the value of unity due to the step function in the
limit χ → 0) and then monotonically decreases until
k ¼ 2K, where it achieves its long-range value of unity
for all k > 2K, which we will see is verified by computer
simulations. Fourier inversion of Eq. (77), division by ρ,
and use of (35) yields a corresponding low-χ expansion of
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the total correlation function hðrÞ through second order in χ
and hence has an error term of order χ3.
To get an idea of the large-r asymptotic behavior of the

pair correlations, consider the limit χ → 0 for any d. In this
limit, the total correlation function hðrÞ for any r obtained
from Eq. (77) is given by

ρhðrÞ ¼ −
�

K
2πr

�
d=2

Jd=2ðKrÞ ðχ → 0Þ; ð78Þ

which for large r is given asymptotically by

ρhðrÞ ∼ −
1

rðdþ1Þ=2 cos½r − ðdþ 1Þπ=4� ðr → þ∞Þ:
ð79Þ

Thus, the longed-ranged oscillations of hðrÞ are controlled
by the power law −1=rðdþ1Þ=2. Equation (78) indicates that
in the limits χ → 0 and ρ → ∞, hðrÞ → 0, and therefore,
the pair correlation function tends to the ideal gas even
though the structure factor [Eq. (69)] cannot tend to the
ideal-gas form because of its stealthy property. This result is
in contrast to the situation considered in Fig. 1, where we
take the ρ → ∞ limit by fixing N and letting vF → 0. In
that case, both g2ðrÞ and SðkÞ tend to the associated ideal-
gas forms, i.e., g2ðrÞ ¼ 1 for all r and SðkÞ ¼ 1 for all k.

B. Comparison of theoretical predictions to simulations

In order to test our theoretical results for the pair statistics
of stealthy ground states in the canonical ensemble, we
have carried out computer simulations to generate and
sample such configurations, the details of which are
described in Appendix B. In all cases, we take K ¼ 1,
which sets the length scale. Our simulation results reveal
that the functional trends for SðkÞ and g2ðrÞ predicted by
the ansatz of pseudo hard spheres in Fourier space with an
effective packing fraction χ are remarkably accurate for a
moderate range of χ about χ ¼ 0. Because it is theoretically
highly challenging to ascertain the proportionality constant
bðdÞ in Eq. (70) that arises in Eq. (77), we must rely on the
simulations to guide us in its determination. First, we
observe that for d ¼ 1, the mapping between χ and η is one
to one, i.e., bð1Þ ¼ 1. Second, the simulation data suggest
that, to an excellent approximation, bðdÞ for d ≥ 2 is given
by assuming that the peak value of SðkÞ or ρ ~hðkÞ, achieved
at k ¼ K for sufficiently small χ, is invariant with respect to
this peak value as in the one-dimensional case, and
consequently bðdÞ ¼ ½αðK;KÞ2d�−1.
Figure 6 shows that the structure factor SðkÞ, as obtained

from Eqs. (71) and (77), is in excellent agreement with the
corresponding simulated quantities for χ ¼ 0.05, 0.1, and
0.143 for d ¼ 3. In Fig. 7, we compare our theoretical
results for the pair correlation function g2ðrÞ, as obtained
by Fourier inversion of Eq. (77), to corresponding simu-
lation results across the first three space dimensions.
Again, we see excellent agreement between theory and
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FIG. 6. Comparison of theoretical and simulation results for the structure factor SðkÞ for χ ¼ 0.05, 0.1, and 0.143 for d ¼ 3.
Here, K ¼ 1.
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FIG. 7. Comparison of theoretical and simulation results for the pair correlation function g2ðrÞ for χ ¼ 0.05, 0.1, and 0.143 across the
first three space dimensions. Here, K ¼ 1.
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simulations, which validates the pseudo-hard-sphere
Fourier-space ansatz. Figure 8 depicts our theoretical
predictions for g2ðrÞ for χ ¼ 0.15 across the first four
space dimensions. It is seen that increasing dimensionality
increases short-range correlations.

C. Translational order or disorder metric

We have seen that both short- and long-scale correlations
increase as χ increases. A useful scalar positive order metric
that captures the degree to which translational order
increases with χ is given by

τ≡ 1

Dd

Z
Rd

h2ðrÞdr

¼ 1

ð2πÞdDd

Z
Rd

~h2ðkÞdk; ð80Þ

where we have used Parseval’s theorem and D is some
characteristic length scale [68]. Note that for an ideal gas
(spatially uncorrelated Poisson point process), τ ¼ 0
because hðrÞ ¼ 0 for all r. Thus, a deviation of τ from
zero measures translational order with respect to the fully
uncorrelated case. Because τ diverges for any perfect
crystal, it is a quantity that is better suited to distinguish
the degree of pair correlations in amorphous systems.
In the case of stealthy ground-state configurations, τ is

given explicitly by the relation

τ ¼ 1

ð2πÞdρ2Dd

Z
Rd

~H2ðkÞdk; ð81Þ

where ~HðkÞ is given by Eq. (71). Substitution of the
leading-order term in the χ expansion (77) into Eq. (81)
yields

τ ¼ 4d2ð2πÞd
v1ð1Þ

χ2 þOðχ3Þ; ð82Þ

where we have taken D ¼ K−1. Thus, for stealthy ground
states, the order metric τ grows quadratically with χ for

small χ. Since the error is of order χ3, we expect that this
quadratic form will be a very good approximation of τ up to
moderately large values of χ. Indeed, this is confirmed by
our simulations up to χ ¼ 0.25. Note that because stealthy
disordered ground states (for sufficiently small χ) are
pseudo-equilibrium hard-sphere systems in Fourier space,
the form of the order metric τ [Eq. (81)] ensures that it will
behave similarly to τ for equilibrium hard spheres in direct
space for low densities.

VIII. LOCAL NUMBER VARIANCE FOR
STEALTHY HYPERUNIFORM DISORDERED

GROUND STATES

Here, we investigate theoretically the local number
variance for stealthy disordered ground states as a function
of χ and then use these results to extract an order metric
[31] that describes the extent to which large-scale density
fluctuations are suppressed as χ increases in these hyper-
uniform systems (see Sec. II A). The local number variance
σ2ðRÞ associated with a general statistically homogeneous
and isotropic point process in Rd at number density ρ for a
spherical window of radius R is determined entirely by pair
correlations [31]:

σ2ðRÞ ¼ ρv1ðRÞ
�
1þ ρ

Z
Rd

hðrÞαðr;RÞdr
�

¼ ρv1ðRÞ
�

1

ð2πÞd
Z
Rd

SðkÞ ~αðk;RÞdk
�
; ð83Þ

where v1ðRÞ is the d-dimensional volume of a spherical
window [cf. Eq. (36)], hðrÞ is the total correlation function
[cf. Eq. (5)], αðr;RÞ is the scaled intersection volume of
two spherical windows of radius R, as given by Eq. (20),
and ~αðk;RÞ is the Fourier transform of αðr;RÞ, which is
explicitly given by [31]

~αðk;RÞ ¼ 2dπd=2Γð1þ d=2Þ ½Jd=2ðkRÞ�
2

kd
: ð84Þ

We have already noted that the stealthy ground states
considered in the present paper are hyperuniform, i.e.,
SðkÞ → 0 as k → 0 (see Sec. II A). This means that such
systems obey the sum rule ρ

R
Rd hðrÞdr ¼ −1 and, because

of the rapid manner in which SðkÞ vanishes in the limit
k → 0, the number variance has the following large-R
asymptotic behavior [31]:

σ2ðRÞ ¼ ΛðRÞRd−1 þOðRd−3Þ; ð85Þ
where ΛðRÞ is a bounded function that oscillates around an
average value

Λ̄ ¼ lim
L→∞

1

L

Z
L

0

ΛðRÞdR: ð86Þ
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FIG. 8. Theoretical predictions for the pair correlation function
g2ðrÞ for χ ¼ 0.15 across the first four space dimensions.
Here, K ¼ 1.
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The scaling (85) occurs for a broader class of hyperuniform
systems, as specified by relation (10). The parameter Λ̄ is
an order metric that quantifies the extent to which large-
scale density fluctuations are suppressed in such hyper-
uniform systems [31]. To compare different hyperuniform
systems, Torquato and Stillinger used the following
rescaled order metric:

B̄ ¼ Λ̄

ϕðd−1Þ=d ; ð87Þ

which is independent of the density, where ϕ ¼ ρv1ð1=2Þ.
Among all hyperuniform point patterns having the scaling
(85), B̄ is minimized (greatest suppression of large-scale
density fluctuations) for the integer, triangular, BCC, and
D4 lattices for d ¼ 1, 2, 3, and 4, respectively [31,32].
Using the analytical results for g2ðrÞ or SðkÞ described in

the previous section, we have computed relation (83) for
σ2ðRÞ versus R for selected values of χ across the first three
dimensions and compared them to our corresponding
simulation results; see Fig. 9. The analytical and numerical

results are in excellent agreement with one another. Table V
lists the order metric B̄ for various values of χ across the
first four dimensions for disordered stealthy ground states,
as obtained from the analytical estimates of σ2ðRÞ and
Eq. (87). These results are also compared to the corre-
sponding optimal values. As expected, B̄ decreases as χ
increases for fixed d.

IX. NEAREST-NEIGHBOR FUNCTIONS

Here, we obtain theoretical predictions for the nearest-
neighbor functions of stealthy disordered ground states.
Nearest-neighbor functions describe the probability of
finding the nearest point of a point process in Rd at some
given distance from a reference point in space. Such
statistical quantities are called “void” or “particle” near-
est-neighbor functions if the reference point is an arbitrary
point of space or an actual point of the point process,
respectively [71]. Our focus here is on the particle nearest-
neighbor functions.
The particle nearest-neighbor probability density func-

tion HPðrÞ is defined such that HPðrÞdr gives the prob-
ability that the nearest point to the arbitrarily chosen point
lies at a distance between r and rþ dr from this chosen
point of the point process. The probability that a sphere of
radius r centered at a point does not have other points,
called the exclusion probability EPðrÞ, is the associated
complementary cumulative distribution function and so
EPðrÞ ¼ 1 −

R
r
0 HPðxÞdx and hence HPðrÞ ¼ −∂EP=∂r.

The nearest-neighbor functions can be expressed as an
infinite series whose terms are integrals over n-body
correlation functions defined in Sec. II [71,72]. In general,
an exact evaluation of this infinite series is not possible
because the gn are not known accurately for n ≥ 3, except
for simple cases, such as the Poisson point process.
Theoretically, one must either devise approximations or
rigorous bounds to estimate nearest-neighbor quantities for
general models [71,73].

TABLE V. The order metric B̄ for various values of χ across the
first four dimensions for disordered stealthy ground states for
selected values of χ up to χ ¼ 0.25, as obtained from the
analytical estimates of σ2ðRÞ and Eq. (87). Included for com-
parison are the structures in each dimension that have the minimal
values of B̄, all of which are Bravais lattices [31,32].

χ d ¼ 1 d ¼ 2 d ¼ 3 d ¼ 4

0.05 2.071 1.452 2.164 4.560
0.1 1.051 1.040 1.738 3.875
0.143 0.745 0.880 1.558 3.576
0.2 0.54 0.755 1.411 3.327
0.25 0.439 0.683 1.325 3.179
Integer lattice 0.167
Triangular lattice 0.508
BCC lattice 1.245
D4 lattice 2.798
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FIG. 9. Comparison of analytical and numerical results for the
number variance for χ ¼ 0.05, 0.1, and 0.2 across the first three
space dimensions. Here, K ¼ 1.
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Torquato has given rigorous upper and lower bounds on
the so-called canonical n-point correlation function Hn for
point processes in Rd [72,74]. Since nearest-neighbor
functions are just special cases of Hn, then we also have
strict bounds on them for such models [71,72]. Here, we
employ upper and lower bounds on EPðrÞ, which relies on
knowledge of the pair correlation function:

EPðrÞ ≥ 1 − ZðrÞ; ð88Þ

EPðrÞ ≤ exp½−ZðrÞ�; ð89Þ

where ZðrÞ is the cumulative coordination number
[cf. Eq. (4)]. The upper bound (89) was presented
in Ref. [47].
These bounds are evaluated for stealthy ground-state

configurations using the analytical expression for the pair
correlation function given in Sec. VII. Figures 10 and 11
compare these bounds to our numerical results for both
χ ¼ 0.05 and χ ¼ 0.1 for d ¼ 2 and d ¼ 3, respectively.
We see that the bounds on EPðrÞ provide the correct
qualitative trends as a function of r, the upper bound being
the sharper of the two bounds for these cases.
The mean nearest-neighbor distance λ is defined as the

first moment of HPðrÞ or, equivalently, zeroth moment of
EPðrÞ, i.e.,

λ ¼
Z

∞

0

rHPðrÞdr ¼
Z

∞

0

EPðrÞdr: ð90Þ

For an ideal gas (Poisson point process) at number density
ρ, the mean nearest neighbor can be explicitly given in any
dimension [72]:

λIdeal ¼
Γð1þ 1=dÞ

2½ρv1ð1=2Þ�1=d
: ð91Þ

Using the upper bound (89) and relation (90), we plot in
Fig. 12 upper bounds on the mean nearest-neighbor
distance λ, scaled by the corresponding ideal-gas quantity
obtained from Eq. (91), as a function of χ for the first four
space dimensions. For fixed χ, the upper bounds on λ=λideal
decrease as the space dimension increases, as expected, and
tends to unity in the large-d limit, consistent with the so-
called “decorrelation” principle [47,59].
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FIG. 10. Comparison of the lower and upper bounds (88) and (89) to our numerical results for the exclusion probability function EPðrÞ
for χ ¼ 0.05 and χ ¼ 0.1 for d ¼ 2. Here, K ¼ 1.
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X. EXCITED STATES: STRUCTURE FACTOR
AND THERMAL EXPANSION COEFFICIENT

Here, we derive accurate analytical formulas for the
structure factor and thermal expansion coefficient for the
excited states associated with stealthy ground states at
sufficiently small temperatures. We see from the compress-
ibility relation (3) that if the isothermal compressibility κT
is bounded, then Sð0Þ must be zero for any ground state,
stealthy or not. Recall that for stealthy ground states, κT is
bounded according to Eq. (42). Now consider excited states
infinitesimally close to the stealthy ground states, i.e., when
temperature T is positive and infinitesimally small. Under
the highly plausible assumption that the structure of such
excited states will be infinitesimally near the ground-state
configurations for sufficiently small χ and T, then to an
excellent approximation, the pressure is given by

p ∼ ρT þ ρ2

2
; ð92Þ

where the first term is the ideal-gas contribution and the
second term is the configurational contribution, which,
under the stated conditions, is effectively the same as the
ground-state expression (41), where we have set
kB ¼ v0 ¼ K ¼ 1. Thus, relation (92) yields the isothermal
compressibility κT ¼ ½ρðρþ TÞ�−1, which, when substi-
tuted into Eq. (3) for large ρ (small χ) and small T, yields
that Sð0Þ varies linearly with T for such excited states:

Sð0Þ ∼ CðdÞχT; ð93Þ

in units kB ¼ v0 ¼ K ¼ 1, where CðdÞ ¼ 2dð2πÞd=v1ð1Þ
is a d-dependent constant.
Figure 13 shows that the prediction of relation (93) is in

excellent agreement with our MD simulation results
(Appendix B) in the case d ¼ 2. It is expected that this
positive value of Sð0Þ will be the uniform value of SðkÞ for
0 ≤ k ≤ K for the special case of the step-function power-
law potential ~vðKÞ [the casem ¼ 0 in Eq. (15)] for small χ.

This behavior of SðkÞ has indeed been verified by our
simulation results in various dimensions. For other stealthy-
potential function choices, SðkÞwill no longer be a constant
for 0 ≤ k ≤ K.
An interesting conclusion to be drawn from this analysis

is that, for a system, Sð0Þ can be arbitrarily close to zero at
positive temperatures, even if T is itself arbitrarily small.
This means that, for all practical purposes, such systems at
positive T are effectively hyperuniform. Perfect hyper-
uniformity is not necessarily required in order to achieve
novel physical properties in technological applications.
Usingthecyclic identityð∂ρ=∂TÞpð∂T=∂pÞρð∂p=∂ρÞT ¼

−1 and approximation (92), it immediately follows that
the thermal expansion coefficient α≡ −ρ−1ð∂ρ=∂TÞp, for
sufficiently small χ and T, is given by

α ∼ C2ðdÞχ2T: ð94Þ
We see that the thermal expansion is positive under such
conditions, which is to be contrasted with the anomalous
negative thermal expansion behavior for sufficiently large χ
over a low temperature range demonstrated in our earlier
numerical work [15,16].

XI. CONCLUSIONS AND DISCUSSION

Stealthy hyperuniform disordered ground states in Rd are
infinitely degenerate and arise from a class of bounded long-
ranged pair potentials with compactly supported Fourier
transforms. Such exotic many-particle states of matter were
previously studied only numerically. Because the configu-
rational dimensionality depends on the density (or χ), a
highly unusual situation, and there are an infinite number of
distinct ways to sample the ground-state manifold, each with
its own probability measure, it has been theoretically very
challenging to devise predictive ensemble theories. A new
type of statistical-mechanical theory needed to be invented.
This paper has initiated such a theoretical program.
Specifically, we have derived general exact relations for the

ground-state energy, pressure, and isothermal compressibility
that apply to any ensemble as a function of the number density
ρ in any dimension d. We demonstrated how disordered
degenerate ground states can arise as part of the ground-state
manifold.We also obtained exact integral conditions that both
the pair correlation function g2ðrÞ and structure factor SðkÞ
must satisfy in any ensemble. Then,we specialized our results
to the canonical ensemble in the zero-temperature limit by
exploiting an ansatz that stealthy states behave like pseudo-
equilibrium hard-sphere systems in Fourier space [75]. The
resulting theoretical predictions for g2ðrÞ and SðkÞ were
shown to be in excellent agreement with computer simu-
lations across the first three space dimensions for sufficiently
small χ. These results were used to theoretically obtain order
metrics, local number variance, and nearest-neighbor func-
tions across dimensions. We also derived accurate analytical
formulas for the structure factor and thermal expansion
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FIG. 13. Comparison of the theoretically predicted structure
factor at the origin Sð0Þ versus absolute temperature T, as
obtained from Eq. (93), to our corresponding simulation results
for a two-dimensional stealthy system at χ ¼ 0.1. Here, we take
kB ¼ v0 ¼ K ¼ 1.
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coefficient for the excited states associated with stealthy
ground states at sufficiently small temperatures. Our analyses
provide new insights onour fundamental understandingof the
nature and formation of low-temperature states of amorphous
matter. Our work also offers challenges to experimentalists to
synthesize stealthy ground states at the molecular level,
perhaps with polymers, as suggested in Sec. III.
There are many remaining open theoretical problems.

While the pseudo-hard-sphere system picture for the canoni-
cal ensemble is almost surely exact in the limit χ → 0, a future
challenge would be to provide rigorous justification for this
picture for positive but small χ. One possible avenue that
could be pursued is the formulation of an exact perturbation
theory for the pair statistics about theweakly constrained limit
(χ → 0).As noted in the Introduction,while the configuration
space is fully connected for sufficiently small χ, quantifying
its topology as a function of χ up to χ�max is an outstanding
open problem. At some intermediate range of χ, the topology
of the ground-state manifold undergoes a sequence of one or
more disconnection events, but this process is poorly under-
stood and demands future study. In the limit χ → χ�max, the
disconnection becomes complete at the unique crystal ground
state [77].
The simple constraint and degrees-of-freedom counting

arguments described earlier lead to definite predictions for
the entropically favored stealthy ground states derived from
the canonical ensemble in the limit T → 0. For χ between 0
and 1=2, the ground states are disordered and possess a
configurational dimension per particle dC of dð1 − 2χÞ; see
Eq. (37). At χ ¼ 1=2, the configurational dimensionality
per particle collapses to zero, and there is a concomitant
phase transition to a crystal phase. The fact that the pressure
is a continuous function of density [cf. Eq. (41)] for all χ up
to χ�max (see Tables I–IV) implies that any phase transition
could be continuous. While this eliminates a first-order
phase transition in which the phase densities are unequal, it
does not prohibit such a phase transition in which the two
distinct phases possess the same number density. At
χ ¼ 0.5, our numerical evidence indicates that the struc-
turally distinct fluid and crystal phases have equal free
energies. This does not necessarily imply that the two
phases could coexist side by side within the system
separated by an interface. This phase diagram is depicted
in Fig. 14, which applies to the first four space dimensions.
For d ¼ 1, the only crystal phase allowed is the integer
lattice (see Sec. VI), and hence there can be no phase
coexistence. For d ¼ 2, our simulations [14–16,76] indi-
cate that the crystal phase is the triangular lattice for
1=2 ≤ χ ≤ χ�max. However, for d ¼ 3, it is possible that
there may be more than one crystal phase. For example,
while for sufficiently high χ up to χ�max, we expect the stable
crystal to be the BCC lattice, our simulations cannot
eliminate the possibility that the FCC lattice is a stable
phase for some χ in the range 1=2 ≤ χ ≤ 0.9068…; for
χ > 0.9068…, the FCC lattice cannot be a ground state

(see Table III). Since four dimensions is more similar to two
dimensions in that the lattice corresponding to χ�max is
equivalent to its dual, we would expect that theD4 lattice is
the stable crystal for 1=2 ≤ χ ≤ χ�max, but this remains to be
confirmed.
All of our previous and current simulations for the first

three space dimensions [12–16] strongly suggest that all of
the energy minima attained were global ones for χ < 0.5,
but when χ > 0.5, the topography of the energy landscape
suddenly exhibits local minima above the ground-state
energies. The possible configurations that can arise as part
of the ground-state manifold for χ > 1=2, regardless of
their probability of occurrence, not only include periodic
crystals for d ≥ 2, as discussed in Sec. VI, but also
aperiodic structures, reflecting the complex nature of the
energy landscape. For example, for d ¼ 2, the manifold
includes generally aperiodic “wavy” phases, which have
been shown to arise via numerical energy minimizations
from random initial conditions with high probability in a
range of χ where the triangular lattice is entropically
favored [12,14]. A deeper understanding of such aspects
of the ground-state manifold would undoubtedly shed light
on the topography of the energy landscape.
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APPENDIX A: COMMON d-DIMENSIONAL
LATTICES

Common d-dimensional lattices include the hypercubic
Zd, checkerboard Dd, and root Ad lattices, defined,
respectively, by

Zd ¼ fðx1;…; xdÞ∶xi ∈Zg for d ≥ 1; ðA1Þ

Dd ¼ fðx1;…; xdÞ ∈ Zd∶x1 þ � � � þ xd eveng for d ≥ 3;

ðA2Þ

Ad ¼ fðx0; x1;…; xdÞ ∈ Zdþ1∶x0 þ x1 þ � � � þ xd ¼ 0g
for d ≥ 1; ðA3Þ

where Z is the set of integers (… − 3;−2;−1; 0; 1; 2; 3…);
x1;…; xd denote the components of a lattice vector of either

max
(

min
)

Disordered Crystal

FIG. 14. Phase diagram for the entropically favored stealthy
ground states in the canonical ensemble as a function of χ which
applies to the first four space dimensions.
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Zd or Dd; and x0; x1;…; xd denote a lattice vector of Ad.
The d-dimensional lattices Zd� , D�

d, and A�
d are the corre-

sponding dual lattices. Following Conway and Sloane [78],
we say that two lattices are equivalent or similar if one
becomes identical to the other possibly by a rotation,
reflection, and change of scale, for which we use the
symbol ≡. The Ad and Dd lattices can be regarded as d-
dimensional generalizations of the face-centered-cubic
(FCC) lattice defined by A3 ≡D3; however, for d ≥ 4,
they are no longer equivalent. In two dimensions, A2 ≡ A�

2

defines the triangular lattice with a dual lattice that is
equivalent. In three dimensions, A�

3 ≡D�
3 defines the body-

centered-cubic (BCC) lattice. In four dimensions, the
checkerboard lattice and its dual are equivalent, i.e.,
D4 ≡D�

4. The hypercubic lattice Zd ≡ Zd� and its dual
lattice are equivalent for all d.

APPENDIX B: SIMULATION PROCEDURE TO
GENERATE AND SAMPLE STEALTHY GROUND

STATES IN THE CANONICAL ENSEMBLE

To numerically sample the stealthy ground-state
manifold in the disordered regime in the canonical
ensemble in the T → 0 limit for d ¼ 1, 2, and 3, we
performed molecular dynamics (MD) simulations at
a very low dimensionless equilibration temperature
TE ≡ kBT=ðv0KdÞ, periodically took configurational
“snapshots,” and then used these configurations as input
to the L-BFGS optimization algorithm [79] to get the
corresponding ground states. The dimensionless temper-
atures that we use are TE ¼ 2 × 10−4 for d ¼ 1, TE ¼
2 × 10−6 for d ¼ 2, and TE ¼ 1 × 10−6 for d ¼ 3. The
equilibration temperature at a fixed dimension was chosen
so that no changes in the pair correlation function are
observed over some range of equilibration temperatures.
The MD simulations were first performed in the micro-
canonical ensemble using the velocity Verlet algorithm
[80]. The time steps were chosen so that the relative energy
change every 3000 time steps is less than 10−8. However, to
enforce the desired temperature, we also performed MD
simulations in the canonical ensemble using an Anderson
thermostat [80]. We employed fifteen million time steps to
equilibrate a system. After that, a snapshot was taken every
3000 time steps for further energy minimization. Because
stealthy potentials in direct space are long-ranged, the
energy is most accurately calculated in Fourier space using
Eq. (1). The numerical errors in the achieved ground-
state energies are extremely small, usually on the order of
10−20 (in units of v0Kd). The force on the jth particle is
calculated using the gradient of Eq. (1), yielding Fj ¼
−∇jΨðrNÞ ¼ ð1=vFÞ

P
kk ~vðkÞIm½ ~nðkÞ expðik · rjÞ�. The

number of particles in the simulation box, N, is calculated
from Eq. (2) for given d, χ, and MðKÞ. We chose MðKÞ ¼
50 for d ¼ 1, MðKÞ ¼ 54 for d ¼ 2, and MðKÞ ¼ 39
for d ¼ 3. The fundamental cell employed is the one

corresponding to the crystal with the largest value of
χmax in each dimension (see Tables I–IV).
Structural characteristics, such as the pair correlation

function g2ðrÞ, structure factor SðkÞ, number variance
σ2ðRÞ, and nearest-neighbor function EPðrÞ, are obtained
by sampling each generated configuration for a fixed value
of χ and ensemble averaging over at least 20000 configu-
rations. Two power-law potentials (15) were used: one with
m ¼ 0 and the other with m ¼ 2. As expected, both
potentials produced the same ensemble-averaged structural
properties to within small numerical errors (as explained in
Sec. IV B), the agreement of which provides a good test on
the validity of the simulation results. Our simulation results
for g2ðrÞ and SðkÞ also satisfied the exact integral con-
ditions presented in Secs. VA and V B. Additional simu-
lation details will be described elsewhere [76].
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