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We describe a universal scheme of quantum computation by state injection on rebits (states with real
density matrices). For this scheme, we establish contextuality and Wigner function negativity as
computational resources, extending results of M. Howard et al. [Nature (London) 510, 351 (2014)] to
two-level systems. For this purpose, we define a Wigner function suited to systems of n rebits and prove a
corresponding discrete Hudson’s theorem. We introduce contextuality witnesses for rebit states and discuss
the compatibility of our result with state-independent contextuality.
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I. INTRODUCTION

In quantum computation by state injection (QCSI) [1],
the set of quantum gates is, by construction, not universal.
This restriction is compensated by the injection of states
that could not be created within the scheme itself, the
so-called magic states.
Besides its promise for the realization of fault-tolerant

quantum computation, QCSI is of fundamental theoretical
interest. Since the magic states enable universality, one is
led to ask the following question: Precisely which quantum
properties of these states are responsible for the gain in
computational power?
Contextuality [2–5] and negativity of Wigner functions

have recently been proposed as the quintessential quantum
properties of magic states; see Refs. [6–8]. Contextuality is
an obstruction to modeling the inherent randomness of
quantum measurement in a statistical mechanics fashion,
namely, by a probability distribution over configurations
with predetermined measurement outcomes for all meas-
urable observables. Wigner functions [9–11] are the closest
quantum analogue of probability distributions over phase
space. The key difference is that Wigner functions can
assume negative values, and this negativity is taken as an
indication of quantumness. Despite their separate origins in
the fields of quantum optics and foundations of quantum
mechanics, Wigner function negativity and contextuality
are closely related indicators of nonclassical behavior
[6,12].
The reason for the appearance of Wigner functions in the

discussion of QCSI is their relation [7,11] to the stabilizer
formalism [13]. The stabilizer formalism is also relevant for

QCSI since the restricted gate set therein is typically chosen
to be the Clifford gates. These gates are indeed not
universal, and—if supplemented only with Pauli measure-
ments and stabilizer states—can be efficiently classically
simulated by stabilizer techniques.
The epitome for the link between Wigner functions and

QCSI via the stabilizer formalism is the discrete Hudson’s
theorem [11], which says that in Hilbert spaces of odd
prime-power (hence finite) dimension, the pure states with
positive Wigner functions are exactly the stabilizer states.
Thus, stabilizer states are “classical” from the perspectives
of both Wigner functions and QCSI. In the wake of this
result, contextuality and Wigner function negativity have
been established as quantum resources for QCSI with
qudits of odd prime dimension [6,8].
Extending these properties to two-level systems is

pertinent since quantum algorithms are typically formu-
lated in terms of qubits. But attempts to do so hit barriers:
As for the Wigner functions, many constructions cannot be
adapted to qubits [11,14], and for the remaining ones
[7,15], the discrete Hudson’s theorem breaks down. There
are qubit stabilizer states with negative Wigner functions.
As for contextuality, it now arises in its state-independent
form [16]. As a result, every quantum state of more than
one qubit can be considered contextual [6], which is at odds
with viewing contextuality as a resource possessed only by
special states.
Here, we establish Wigner function negativity and

contextuality as necessary resources for QCSI on two-level
systems. We achieve this at the price of restricting from
qubits to rebits, i.e., real density matrices of n two-level
systems. This restriction does not affect universality [17].
The role that was previously played by the stabilizer states
is now played by the Calderbank-Shor-Steane (CSS) states
[18], and the group of Clifford gates is replaced by the
subgroup of CSS-ness preserving Clifford gates. Within
this new setting, we resurrect a discrete Hudson’s theorem,
as well as a number of related properties of the Wigner
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function. Furthermore, the restriction to CSS-ness preserv-
ing operations permits us to carve out a computational
scheme of rebit QCSI that is free of state-independent
contextuality, even if this phenomenon exists in rebits.
This paper is organized as follows. Section II summa-

rizes the known results on the roles of contextuality and
negativity in qudit QCSI and defines our setting for rebits.
In Sec. III, we present a universal scheme of quantum
computation by state injection on rebits. In Sec. IV, we
construct a matching Wigner function, equipped with a
discrete Hudson’s theorem and extended Gottesman-Knill
theorem. In Sec. V, we provide necessary and sufficient
conditions for contextuality in terms of the Wigner func-
tion. Section VI contains our results on contextuality and
negativity as resources in rebit-QCSI. We conclude in
Sec. VII.

II. QUANTUM COMPUTATION
BY STATE INJECTION

QCSI has four operational quantum components: the
restricted unitary gates, the restricted measurements, the
cheap states, and the magic states. The cheap states are
those that can be produced from sequences of measure-
ments from the restricted set and restricted unitary gates,
possibly classically conditioned on measurement out-
comes. The classical side processing is unrestricted.
A typical choice for the restricted operations is that they

live within the stabilizer world. In other words, the
restricted set of unitary gates is in the group of Clifford
gates, the restricted set of observables are the Pauli
observables or a subset thereof, and the cheap states are
stabilizer states.

A. Summary of the qudit case

For the case of odd prime local dimension d, QCSI has
been investigated when the restricted gate set is the Clifford
gates [6,8]. For this scenario, two essential quantum proper-
ties of the magic states have been identified, namely, the
negativity of their Wigner function and their contextuality
with respect to stabilizer measurements. Specifically, it has
been established that

(i) Negativity in the Wigner function of raw magic
states is necessary for successful magic-state dis-
tillation (Theorem 3 in Ref. [8]) and for the hardness
of classical simulation of QCSI (Theorem 1 in
Ref. [8]).

(ii) Contextuality of magic states with respect to stabi-
lizer measurements is necessary for universality of
QCSI [6].

TheWigner function plays a dual role for QCSI. It is relevant
for the phenomenology observed (see above), but it is also
deeply involved in the mathematical description of the
computational scheme. This second role is revealed in the

following five properties, which hold for odd prime d when
the restricted operations belong to the stabilizer world.
(iii) The set of stabilizer states is singled out by a Hudson

theorem as the set of pure states with non-negative
Wigner functions [11].

(iv) The set of Clifford gates is singled out as the set
of unitaries that transform the Wigner function
covariantly [11].

(v) Clifford gates and stabilizer measurements preserve
positivity of the Wigner function [8].

(vi) Necessary and sufficient conditions for contextuality
with respect to the restricted set of measurements
can be expressed in terms of the Wigner function [6].

(vii) For one-qudit states, negativity of the Wigner
function and contextuality with respect to measure-
ments from the restricted set are the same [6].

The above physical properties (i) and (ii) are conse-
quences of the structural properties (iii)–(vii). For example,
an efficient classical simulation method for the evolution of
states with non-negative Wigner functions under the
restricted gates can be built on properties (iv) and (v) [8].
The existence of this simulation method directly implies (i).
Furthermore, Hudson’s theorem (iii) connects this simu-
lation method with the Gottesman-Knill theorem.

B. Trouble with qubits

For systems of qubits, both the employed contextuality
witnesses [19] and Wigner functions run into difficulty. As
for contextuality, if the goal is to establish it as a quantum
resource, one has to overcome a problem posed by the
phenomenon of state-independent contextuality, which is
revealed, for example, by the Mermin square and star [16].
Mermin’s square can be translated into a contextuality
witness for which all quantum states of n ≥ 2 qubits come
out contextual [6]. If contextuality is generic, then it cannot
be a resource.
As for the Wigner functions, many of the Wigner

functions proposed for Hilbert spaces of finite dimension
dn require, for their definition, the existence of 2−1 in Fd,
and thus, they do not apply to the qubit case d ¼ 2; for
examples, see, e.g., Refs. [11,14].
Yet, some Wigner functions do survive the transition to

d ¼ 2; see, e.g., Refs. [7,15]. However, in these cases, the
general connection with the stabilizer world breaks down.
Not all stabilizer states have non-negative Wigner func-
tions, and the Wigner function no longer transforms
covariantly under all Clifford operations.
For the construction [7,15], Wigner function negativity

of the magic states is necessary for universality. Therein,
not a single Wigner function is considered but instead the
whole class introduced in Ref. [10]. A “classical” state
must be positively represented for each of these Wigner
functions. The number of pure n-qubit states for which this
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holds is superexponentially small compared to the number
of n-qubit stabilizer states [11].

C. Rebits

In this paper, we discuss the case of local dimension
d ¼ 2. We present a universal scheme of QCSI for which
contextuality and Wigner function negativity are estab-
lished as necessary quantum resources. The price we pay is
that we have to restrict from qubits to rebits. Specifically,
we require that the density matrix of the processed quantum
state ρ is real; i.e., at each point in the quantum compu-
tation, it holds that

hxjρjyi ∈ R;

for all jxi, jyi in the computational basis.
For the discussed scheme of rebit QCSI, the set of cheap

states are the CSS states, the set of restricted gates are the
CSS-ness preserving Clifford gates, and the allowed
measurements are of observables from the set

O ¼ fXðaXÞ; ZðaZÞjaX; aZ ∈ Zn
2g: ð1Þ

In other words, in our construction, the restricted operations
belong to the CSS-stabilizer world rather than the more
general stabilizer world.

D. CSS states and CSS-ness preserving
Clifford operations

Calderbank-Shor-Steane (CSS) states are a subset of the
stabilizer states. They are defined by the property that
for any CSS state jψi, the corresponding Pauli stabilizer
group SðjψiÞ decomposes into an X and a Z part; i.e.,
SðjψiÞ ¼ SXðjψiÞ × SZðjψiÞ, where all elements of
SXðjψiÞ and SZðjψiÞ are of the form XðaXÞ and ZðaZÞ,
respectively. All CSS states are real, but not all real
stabilizer states are of CSS type.
We now characterize the CSS-ness preserving trans-

formations. We denote by Ω the set of pure CSS states and
by GCSS the subgroup of the n-qubit Clifford group Cn that
preserves the set Ω of CSS states,

GCSS ¼ fg ∈ CnjgjΨi ∈ Ω;∀jΨi ∈ Ωg: ð2Þ

The following can be said about the structure of GCSS.
Lemma 1: The n-rebit CSS-ness preserving group

GCSS is

GCSS ¼
D
⊗
n

i¼1
Hi;CNOTði; jÞ; Xi; Zi

E
; ð3Þ

where i; j ∈ f1; 2;…; ng and i ≠ j. We have the group
isomorphism

GCSS=f�Ig ¼ Z2n
2 ⋊ðGLnðZ2Þ⋊Z2Þ: ð4Þ

In Eq. (4), the component Z2n
2 corresponds to the Pauli

operators Tu, the component GLnðZ2Þ corresponds to the
group generated by the CNOT, and the subgroup Z2 is
generated by the simultaneous Hadamard gate ⊗i Hi.
Since the set O ¼ fZðuÞju ∈ Zn

2g∪fXðvÞjv ∈ Zn
2g is

mapped onto itself by conjugation under gates from the
group on the right-hand side of Eq. (3), it is clear that this
group is a subgroup of GCSS as defined in Eq. (2). That it is
indeed all of GCSS is proved in Appendix C.
The set Ω of “cheap” CSS states, the CSS-ness preserv-

ing unitary gates GCSS and the projective measurements of
observables in O form a compatible classical reference
structure for QCSI, in the sense that none of these
operations can map states inside Ω to states outside Ω.

III. UNIVERSAL QUANTUM COMPUTATION
BY STATE INJECTION ON REBITS

It has been shown in Ref. [17] that rebits are sufficient for
universal quantum computation. In that scheme, first, a
quantum state of n qubits,

jψi ¼
X
v∈Zn

2

rveiθv jvi;

is encoded into a state of nþ 1 rebits,

jψi¼
X
v∈Zn

2

ðrv cosθvjvi⊗ jRiþ rv sinθvjvi⊗ jIiÞ: ð5Þ

The additional rebit, with basis states jRi ¼ j0i and
jIi ¼ j1i, allows us to keep track of the real and imaginary
parts of the unencoded n-qubit state. Second, an encoded
set of gates is constructed which (i) is universal and
(ii) preserves realness of the states in Eq. (5).
Using the encoding Eq. (5), we construct a universal

scheme of QCSI on rebits. The restricted gate set therein
consists of CNOT gates, the simultaneous Hadamard gate

Hall ≔ ⊗
n

i¼1
Hi, and Pauli flips Xi, Zj; i.e.,

hGrestrictedi ¼ GCSS:

These unitary gates are supplemented by measurements of
observables in the set O or, without loss of generality, of
observables fZiji ¼ 1;…; ng.
The (unitary) Pauli operators and the simultaneous

Hadamard gate can be dispensed with because they can
be propagated past the readout measurements. This is a
consequence of the well-known propagation relations for
Pauli operators under conjugation by Clifford gates, and
CNOTði; jÞHall ¼ HallCNOTðj; iÞ. If those gates are elim-
inated, we are left with the CNOT gates and measurements
of Xi and Zi. We note that this is precisely the set of gates
that can be performed fault tolerantly on the surface code
[20] using defect braiding [21]. However, for the present
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purpose, we keep the redundant Hall and Pauli flips in the
restricted gate set.
For the universal gate set, we pick

Guniversal ¼ fCNOTði; jÞ; Hi; expðiπ=8ZiÞg;

supplemented with measurements of the Pauli observables
Zi, for i ¼ 1;…; n.
We now demonstrate that the encoded versions of these

gates can be realized only by using the gates from the
restricted set and the injection of two types of ancilla states,
jAi and jBi, defined as

jAi ¼ j0ijRi þ cos π
4
j1ijRi þ sin π

4
j1ijIiffiffiffi

2
p ;

jBi ¼ j0ijþi þ j1ij−iffiffiffi
2

p :

ð6Þ

The ancilla jAi is the encoded ðj0i þ eiπ=4j1iÞ= ffiffiffi
2

p
, with

respect to the encoding of Eq. (5).
(a) The measurement of Zi. Since the Pauli operator Z is

real, its measurement does not differentiate between
the real and imaginary parts of the measured state, and
Z̄i ≡ Zi. Graphically,

Zi
enc. Zi

I/R

.

(b) The CNOT gate between qubits i and j. The CNOT
gate is real and hence does not mix the real and
imaginary parts of the state it is applied to. Hence,
CNOTði; jÞ ¼ CNOTði; jÞ. Graphically,

enc.

I/R

i

j

i

j .

(c) The Hadamard gate Hi. The encoded Hadamard gate
is realized by injection of an ancilla jBi into the circuit

Z

X .

ZX
B

H

I/R

(d) The gate expðiπ=8ZiÞ. The encoded version of this
gate uses ancilla states jAi and jBi and proceeds in two
steps. The first step is a preprocessing jointly for all the
expðiπ=8ZiÞ gates in the circuit. Namely, at the
beginning of the computation, each ancilla state jAi
is in its own separate code block. In the preprocessing

step, all data and ancilla rebits are merged into the
same code block. The merging can be done two blocks
at a time, and the corresponding circuit is

X

I/R

I/R

ψ

φ

ψ φ (*)

.

For a pair of encoded input states jψi, jϕi, the result of the
code-merging circuit is jψi ⊗ jϕi or jψi ⊗ jϕi�, depend-
ing on the outcome of the X measurement (jϕi� denotes the
state obtained from jψi by complex conjugation with
respect to the computational basis).
We will only ever use the code-merging circuit for

encoding the ancilla jAi ¼ jπ=8i into a single code block.
Since jπ=8i and jπ=8i� ¼ j − π=8i allow us to perform the
π=8-phase gate with the same efficiency, the probabilistic
nature of the code-merging circuit does not affect the
computation.
The code-merging circuit contains a conditional phase

gate that is not part of the restricted gate set. It is realized
via the following state-injection circuit,

Z
B

Z

Z

Z

= .

The second step then is the encoded version of the standard
state injection circuit for the π=8 gate [22],

Z
.

in

A out
(7)

This circuit consists solely of operations whose encoded
versions we have already demonstrated.

IV. WIGNER FUNCTION FOR REBITS

In the last section, we described a universal scheme of
quantum computation by state injection on rebits, and here
we construct the matching Wigner function. We first
propose the rebit Wigner function and examine its basic
properties. Second, we prove a discrete Hudson’s theorem
for rebits. Third, we prove covariance of the rebit Wigner
function under CSS-ness preserving Clifford unitaries;
finally, we show that the evolution of states with a positive
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Wigner function under CSS-ness preserving Clifford uni-
taries and measurements can be efficiently classically
simulated.

A. Definition of a Wigner function for rebits

We now proceed to construct the Wigner function W for
n-rebit states, which is suited to describe the computational
scheme introduced in the previous section. It is a modi-
fication of the Wigner function ~W [6,8] for qubits. Of the
properties (i)–(vii) listed in Sec. II A for the Wigner
function on qudits, our rebit Wigner function has counter-
parts for properties (i)–(vi) but not for (vii).
In the qubit case, there are 4n Pauli operators Ta,

TðaZ;aXÞ ¼ ZðaZÞXðaXÞ; where aZ; aX ∈ Zn
2: ð8Þ

Therein, ZðaÞ ¼ Za1
1 ⊗ Za2

2 ⊗ … ⊗ Zan
n , for all

ðaX; aZÞ ∈ Zn
2 × Zn

2 . We denote

V ≔ fðaX; aZÞjaX; aZ ∈ Zn
2g ≅ Z2n

2 ; T ≔ fTaja ∈ Vg:

The Pauli operators T form an orthonormal basis of the
vector space of square matrices of size 2n with complex
coefficients endowed with the inner product defined by
ðA;BÞ ¼ ð1=2nÞTrðA†BÞ,

TrðT†
aTbÞ ¼ 2nδa;b; ∀ Ta; Tb ∈ T : ð9Þ

In the present work, we are interested in rebits, which are
defined by symmetric real density operators. We consider
the set

A ≔ fTajðaZ; aXÞ ¼ 0 mod 2g; ð10Þ
which is an orthonormal basis of the space of symmetric
matrices (see Lemma 19 in Appendix B), and define

WρðuÞ ≔
1

2n
TrðAuρÞ; ð11Þ

with

A0 ¼
1

2n

X
Ta∈A

Ta; and Au ¼ TuA0T
†
u: ð12Þ

For later use, denote VA ¼ fa ∈ Vjðaz; axÞ mod 2 ¼ 0g.
Note that the operator Au can also be written

Au ¼ 1

2n

X
Ta∈A

ð−1Þ½u;a�Ta; ð13Þ

where ½u; v� ¼ ðuZ; vXÞ þ ðvZ;uXÞ is the symplectic inner
product in Z2n

2 .
When considering real states, the family ðAuÞu∈V is not a

basis of the space of symmetric matrices since it contains
too many matrices. Nevertheless, in close analogy with

the qudit Wigner function [11,18], the rebit Wigner
function of Eq. (11) has the following properties (compare
with Ref. [23]):
(1) Any real density matrix ρ satisfies

ρ ¼
X
u

WρðuÞAu:

W is thus informationally complete.
(2) W transforms covariantly under the group of

CSS-ness preserving Clifford transformations.
(3) The CSS states are the only pure states with

non-negative W (discrete Hudson’s theorem).
(4) For all real density matrices ρ, σ,

Wρ⊗σ ¼ Wρ ·Wσ:

(5) The trace inner product is given as

TrðρσÞ ¼ 2n
X
u∈V

WρðuÞWσðuÞ: ð14Þ

(6) The phase point operators satisfy TrAu ¼ 1. Thus,
TrB ¼ P

uWBðuÞ for any symmetric operator B.
Property 1 is proven in Lemma 20 in Appendix B, Property
2 in Sec. IV B, and Property 3 in Sec. IV C. Property 4 is
shown in Appendix B. Properties 5 and 6 are immediate
consequences of Property 1.

B. Discrete Hudson’s theorem for rebits

The original Hudson theorem in infinite-dimensional
Hilbert space [24] singles out the Gaussian states as the
pure states with a positive Wigner function. This result has
a counterpart in finite, odd prime-power dimensions.
Namely, the pure states with a positive Wigner function
are the stabilizer states [11]. In this way, a connection
between Wigner functions and the discrete world of the
stabilizer formalism is established. For no known Wigner
function defined on multiple qubits does this result carry
over (see Ref. [25], however, for a single qubit).
Here, for the Wigner function defined in the previous

section, we find that for multiple rebits a discrete Hudson’s
theorem holds, with the stabilizer states replaced by the
more special CSS states.
Theorem 1: A pure real state jψi has a non-negative

Wigner function Wψ if and only if it is a CSS state.
Recall that a Wigner functionWρ for some density operator
ρ is said to be non-negative ifWρðuÞ ≥ 0 for all u ∈ V, and
it is said to be negative otherwise.
In order to prove this result, we follow the strategy

pursued by Gross for the qudit case [11]. First, we determine
the Wigner function of CSS states in Sec. IV B 1, proving
that these Wigner functions are non-negative. Then, in
Sec. IVB 2, we consider a pure state with a non-negative
Wigner function, and we prove that this function is precisely
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the Wigner function of a CSS state. Finally, the fact that the
Wigner function is informationally complete allows us to
conclude the proof of Theorem 1 in Sec. IV B 3.

1. Wigner function of CSS states

We start by computing the Wigner function of pure CSS
states.
Lemma 2: The Wigner function of a pure CSS state jψi

is of the form

Wψ ¼ 1

2n
δtþVS

;

where t is a vector of Z2n
2 and VS ¼ N⊥ × N for some

subspace N of Zn
2. Moreover, every such function 1

2n
δtþVS

is the Wigner function of a CSS state.

In particular, the Wigner function of a pure CSS state is
non-negative.
Proof of Lemma 2.—Let jψi be a CSS state. Its

stabilizer group S is generated by r independent operators
ð−1ÞαiZðaiÞ, for 1 ≤ i ≤ r, and n − r independent oper-
ators ð−1ÞαiXðbiÞ, for rþ 1 ≤ i ≤ n. Denote by N the
subspace of Zn

2 generated by the vectors bi, for
rþ 1 ≤ i ≤ n, so that its orthogonal complement
is N⊥ ¼ ha1; a2;…; ani.
The elements of S are thus of the form ð−1ÞαðvÞTv, where

v ∈ N⊥ × N. Moreover, we can easily check that the phase
ð−1ÞαðvÞ defines a character of N⊥ × N. Since every such
character can be written as v↦ ð−1Þ½t;v�, for some vector
t ∈ Z2n

2 , we have

S ¼ fð−1Þ½t;v�Tvjv ∈ N⊥ × Ng:
Denote by VS the subspace N⊥ × N of Z2n

2 ; then,

jψihψ j ¼ 1

2n

X
v∈VS

ð−1Þ½t;v�Tv:

This result, together with the definition Eq. (13) of Au,
leads to

Wψ ðuÞ ¼
1

2n
TrðAujψihψ jÞ

¼ 1

23n

X
v∈VS

X
a∈VA

ð−1Þ½t;v�ð−1Þ½u;a�TrðTaTvÞ

¼ 1

22n

X
v∈VS

X
a∈VA

ð−1Þ½t;v�þ½u;a�δa;v

¼ 1

22n

X
v∈VS

ð−1Þ½v;tþu�

¼ 1

2n
δVS

ðtþ uÞ

¼ 1

2n
δtþVS

ðuÞ:

To transition from the third to the fourth line above, we use
the property that VS ⊂ VA. ▪

2. Non-negative Wigner functions

To complete the proof of Theorem 1, we consider a pure
state that has a non-negative Wigner function, and we
determine itsWigner function.Wewill show that this function
coincideswith theWigner function of aCSSstate.By refining
the qudit proof of Gross [11], we will show the following.
Lemma 3: If a pure real state jψi has a non-negative

Wigner function Wψ , then its Wigner function is of the
form

Wψ ðuÞ ¼
1

2n
δTðuÞ; ð15Þ

where T ¼ ðp0 þ N⊥Þ × ðq0 þ NÞ, p0, q0 are two vectors
of Zn

2 , and N is a linear subspace of Zn
2 .

The proof of this result comprises the next 5 lemmas.
First, we find, by explicit computation, the following.

Lemma 4: The Wigner function Wψ of a pure real state
jψi, at some point ðp;qÞ ∈ Z2n

2 , is

Wψðp;qÞ ¼
1

2n

X
x∈Zn

2

ð−1Þðp;xÞψðqÞψðqþ xÞ;

where ψðxÞ denotes the inner product hψ jxi.
This result is proved in Appendix B.
This encourages us to study the function ψ : Zn

2 → R
defined by ψðxÞ ¼ hψ jxi. The support of ψ , denoted
suppðψÞ, is the set of vectors x ∈ Zn

2 such that ψðxÞ ≠ 0.
For fixed q, we consider the function Kðq; ·Þ defined by

Kψðq;xÞ ¼ ψðqÞψðqþ xÞ: ð16Þ
It is related to the Wigner function of the state jψi via a
Fourier transformation

FKψ ðq; ·Þ ¼ 2n=2Wψ ð·;qÞ: ð17Þ
The definition of the Fourier transform for the present
binary setting is recalled in Appendix A.
Equation (17) allows us to relate properties of jψi

and Wψ .
Lemma 5: Let jψi ¼ P

xψðxÞjxi be a pure real state. If
Wψ is non-negative, then the function ψ has a constant
absolute value over its support suppðψÞ.
Proof of Lemma 5.—By Lemma 4,Wð·;qÞ is the Fourier

transform of the function Kðq; ·Þ defined in Eq. (16), up to
multiplication by 2n=2, which means that Kðq; ·Þ has non-
negative Fourier transform. Therefore, we can apply
Bochner’s theorem, exactly as stated in Theorem 44 of
Ref. [11]. (This result and its proof are unchanged
in the binary setting.) This proves that the matrix
Ax
y ¼ Kðq;x − yÞ is positive semi-definite, where the
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tuples x and y are viewed as the binary writing of the matrix
indices. From a well-known characterization of positive
semi-definite matrices, every principal minor of the matrix
Ax
y is non-negative. In particular, the determinant

���� A
0
0 A0

x

Ax
0 Ax

x

���� ¼
���� ψðqÞ2 ψðqÞψðqþ xÞ
ψðqÞψðqþ xÞ ψðqÞ2

����
is non-negative. This implies the following inequality:

ψðqÞ4 ≥ ψðqÞ2ψðqþ xÞ2:

If q ∈ suppðψÞ and x ∈ Zn
2 , then we obtain

jψðqÞj ≥ jψðqþ xÞj ð18Þ

since ψðqÞ ≠ 0.
Now, consider two vectors q and q0 of suppðψÞ.

Applying Eq. (18) to q and x ¼ qþ q0, we find
jψðqÞj ≥ jψðqþ qþ q0Þj ¼ jψðq0Þj, and exchanging the
roles of q and q0, we obtain the reverse inequality of
Eq. (18). Thus,

jψðqÞj ¼ jψðq0Þj: ð19Þ

This proves that ψ has a constant absolute value over its
support suppðψÞ. ▪
Lemma 6: Let jψi ¼ P

xψðxÞjxi be a pure real state. If
Wψ is non-negative, then the support of ψ is an affine
subspace of Zn

2, suppðψÞ ¼ q0 þ N.
Proof of Lemma 6.—Let q, qþ x and qþ y be three

vectors in suppðψÞ. We have to show that qþ xþ y is also
in suppðψÞ. [In the qudit case [11], this result is deduced
from the qudit version of Eq. (18). This strategy cannot be
adapted here since Eq. (18) only involves two vectors q and
qþ x.] In order to obtain an equation relating more vectors
of Zn

2 , we consider the following 3 × 3 principal minor of
the matrix Ax

y , which is also non-negative by Bochner’s
theorem.

��������

A0
0 A0

x A0
y

Ax
0 Ax

x Ax
y

Ay
0 A0

y Ay
y

��������
≥ 0:

The expansion of this determinant leads to the inequality

ψðqÞ3ðψðqÞ3 þ 2ψðqþ xÞψðqþ yÞψðqþ xþ yÞÞ
− ψðqÞ4ðψðqþ xÞ2 − ψðqþ yÞ2 − ψðqþ xþ yÞ2Þ ≥ 0:

By contradiction, assume that ψðqþ xþ yÞ ¼ 0; then,
we have

ψðqÞ6 − ψðqÞ4ψðqþ xÞ2 − ψðqÞ4ψðqþ yÞ2 ≥ 0: ð20Þ

From Lemma 5, the three real numbers ψðqÞ, ψðqþ xÞ and
ψðqþ yÞ have the same absolute value. Therefore, Eq. (20)
cannot be satisfied since the three terms on the left-hand
side are equal and positive. This contradiction implies
that ψðqþ xþ yÞ ∈ suppðψÞ. Hence, suppðψÞ is an affine
space: suppðψÞ ¼ q0 þ N, where q0 ∈ Zn

2 and N is a linear
subspace of Zn

2. ▪
Lemma 7: Let jψi ¼ P

xψðxÞjxi be a pure real state. If
Wψ is non-negative, then for every q ∈ q0 þ N, the
function Wψ ð·;qÞ is

Wψð·;qÞ ¼ cδp0þN⊥ ;

where c ¼ cðqÞ ∈ R and p0 ¼ p0ðqÞ ∈ Zn
2 may both

depend on q. Moreover, if q ∉ q0 þ N, then Wψ ð·;qÞ ¼ 0.
Proof of Lemma 7.—First, we fix a vector q ∈ Zn

2, and
focus on the support of the function Wψ ð·;qÞ. From
Lemma 4, this function satisfies

Wψðp;qÞ ¼
1

2n

X
x∈Zn

2

ð−1Þðp;xÞψðqÞψðqþ xÞ:

Therefore, Wψ ð·;qÞ is the zero function when q does not
belong to the support of ψ , which is q0 þ N from Lemma 6.
In what follows, the vector q is chosen in q0 þ N. In the

above expression of Wψ , the term ψðqÞψðqþ xÞ can be
replaced by Kðq;xÞ, defined in Eq. (16). The support of the
function K is suppðKÞ ¼ ðq0 þNÞ ×N, where q0 þ N is
the support of ψ . Then, K can be restricted to its support.
This restriction gives

Wψðp;qÞ ¼
1

2n

X
x∈N

ð−1Þðp;xÞK0ðq;xÞ;

where K0 is the restriction of K to its support.
Now note that, for every vector q ∈ Zn

2 , the function
Wψ ð·;qÞ is constant over the cosets of N⊥. Therefore, this
function induces a function Wψð½·�;qÞ over Zn

2=ðN⊥Þ:

Wψð½·�;qÞ∶ Zn
2=ðN⊥Þ ⟶ R

½p� ¼ pþ N⊥↦Wψ ðp;qÞ:

The space Zn
2=ðN⊥Þ is isomorphic to the linear space N.

Indeed, the application from Zn
2 to the dual N� of N,

defined by x↦ ðx; ·Þ, induces an isomorphism between
Zn

2=ðN⊥Þ and N�. Moreover, N� is canonically isomorphic
to N.
Up to this isomorphism Zn

2=ðN⊥Þ≃ N, the functions
K0ðq; ·Þ and Wψð½·�;qÞ are both defined over the same
space, and Wψð½·�;qÞ is the Fourier transform of K0ðq; ·Þ
up to multiplication by 2n=2, that is, FK0ðq; ·Þ ¼
2n=2Wψð½·�;qÞ. Applying F to this equality, we obtain
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2−n=2K0ðq; ·Þ ¼ FWψð½·�;qÞ;

because F is involutive, from Lemma 18 in Appendix A.
The functionK0ðq; ·Þ has a constant absolute value overN

by Lemma 5; thus, we apply the second item of the Bochner
Theorem (Theorem 44 in Ref. [11]) to Wψð½·�;qÞ. This tells
us that Wψð½·�;qÞ is orthogonal to its translations, i.e.,

X
½p�

Wψð½p�;qÞWψð½p� þ ½t�;qÞ ¼ 0;

for every nonzero ½t� ∈ Zn
2=ðN⊥Þ. A positive function that

satisfies this orthogonality condition can be either zero or
proportional to an indicator function δ½p0�. But Wψ ð½·�;qÞ
cannot be zero. Otherwise, Kðq; ·Þ is also the zero function
by injectivity of the Fourier transform, and this cannot
happen when q is chosen in q0 þ N. ▪
The next lemma concludes the proof of Lemma 3.
Lemma 8: Let jψi ¼ P

xψðxÞjxi be a pure real state. If
Wψ is non-negative, then Wψ is of the form

Wψ ¼ 1

2n
δðp0þN⊥Þ×ðq0þNÞ;

where p0;q0 ∈ Zn
2 and N is a linear subspace of Zn

2 .
Proof of Lemma 8.—From Lemma 7, the global support

suppðWψÞ is the disjoint union

suppðWψÞ ¼ ⨆
q∈q0þN

ðp0ðqÞ þ N⊥Þ × fqg: ð21Þ

Our first goal is to prove that p0ðqÞ does not depend on q.
To this end, it is natural to separate the variables p and q in
the writing of Wψ obtained in Lemma 4. This separation
leads to

Wψðp;qÞ ¼ ð−1Þðp;qÞψ̂ðpÞψðqÞ; ð22Þ

where ψ̂ is the Fourier transform of ψ . Thus, the support of
Wψ is also suppðWψ Þ ¼ suppðψ̂Þ × suppðψÞ. This can be
satisfied if and only if p0 is independent of q in Eq. (21).
This proves that the support ofWψ is the Cartesian product

suppðWψÞ ¼ ðp0 þ N⊥Þ × ðq0 þ NÞ:

Now, let us prove that Wψ has a constant absolute value
over its support. Let ðp;qÞ ∈ suppðWψ Þ. Combining
Lemma 7 and Eq. (22), we find that the modulus of
Wψ ðp;qÞ is

jcðqÞj ¼ jψ̂ðpÞj · jψðqÞj;

where cðqÞ is the constant introduced in Lemma 7. Recall
that cðqÞ is independent of p. We proved in Lemma 5 that
jψðqÞj is constant; therefore, jcðqÞj is also independent

of q. This proves that jcj is constant over suppðψÞ.
By positivity of Wψ , we have c ¼ jcj and

Wψ ¼ cδðp0þN⊥Þ×ðq0þNÞ;

for some constant c ∈ R.
To conclude the proof, it remains to evaluate the

value of c. By the normalization of Property 6, of the
Wigner function, it suffices to compute the cardinality
of the support of Wψ . We find jsuppðWψÞj ¼
jN⊥j · jNj ¼ 2n−dimN · 2dimN ¼ 2n, which gives c ¼ 1=2n.
This concludes the proof. ▪

3. Proof of Hudson’s theorem for rebits

Lemma 2 and Lemma 3 enable us to prove a rebit version
of Hudson’s Theorem.
Proof of Theorem 1.—Lemma 2 implies that every CSS

state has a non-negative Wigner function.
Now, consider a pure real state jψi that admits a non-

negative Wigner function. In order to prove that this is a
CSS state, it is enough to prove that its Wigner function
coincides with the Wigner function of a pure CSS state jφi.
Indeed, since the Wigner function is informationally
complete (Property 1), this implies jψi ¼ jφi. We proved
in Lemma 3 that Wψ can be written

Wψ ¼ 1

2n
δðp0þN⊥Þ×ðq0þNÞ:

Since ðp0þN⊥Þ×ðq0þNÞ¼tþVS, where t ¼ ðp0;q0Þ
and VS ¼ N⊥ × N, this is indeed the Wigner function of
a CSS state by Lemma 2. ▪

C. Covariance of the rebit Wigner function

Our next goal is to demonstrate that the action of CSS-
ness preserving Clifford gates on Wigner functionsWρ can
be understood simply from the action of such gates on the
underlying phase space, cf. Lemma 11 below. To prepare
for this result, we make two observations.
Lemma 9: Let g ∈ GCSS. Then, there exists a unique

pair ðF;xÞ composed of a vector x ∈ Z2n
2 and a symplectic

matrix F ∈ Sp2nðZ2Þ such that

gTag† ¼ ð−1Þ½x;a�TFa; ∀ a ∈ VA: ð23Þ

The proof of Lemma 9 is given in Appendix C.
Furthermore, the action of a g ∈ GCSS on a translation

operator Ta ∈ T by conjugation induces a morphism from
the CSS Clifford group to the affine group AGL2nðZ2Þ.
Recall that an affine transformation of AGL2nðZ2Þ is an
application of the form AðF; tÞ: a↦ Faþ t, where F ∈
GL2nðZ2Þ is a linear application and t is a vector of Z2n

2 . In
the present work, F is often symplectic, and this affine map
is then called an affine symplectic map. The set of affine
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symplectic transformations of Z2n
2 is a subgroup of the

affine group denoted ASp2nðZ2n
2 Þ.

Lemma 10: Let F be the application

F∶ GCSS ⟶ ASp2nðZ2Þ
g↦ AðF; tÞ

such that gTag† ¼ ð−1Þ½t;Fa�TFa, for all a. Then, F is a
group morphism.

The proof of Lemma 10 is given in Appendix C. The
application F is well defined by uniqueness in Lemma 9.
The translation vector t and the vector x of Lemma 9 are
related by the equation t ¼ Fx.
We are now ready to state the covariance result.
Lemma 11: The n-rebit Wigner functionW is covariant

under GCSS, in the sense that for all ρ, for all u ∈ Z2n
2 , and

for all g ∈ GCSS, it holds that

Wg†ρgðuÞ ¼ WρðF ðgÞðuÞÞ: ð24Þ

Applying this result to gρg† ¼ ðg−1Þ†ρg−1, we find

Wgρg†ðuÞ ¼ WρðF ðgÞ−1ðuÞÞ ¼ WρðF−1ðuþ tÞÞ;

where F ðgÞ ¼ AðF; tÞ.
Proof of Lemma 11.—Let g ∈ GCSS and let

F ðgÞ ¼ AðF; tÞ be its induced affine symplectic map.
First, consider the image of Au by conjugation by g.
Using Eq. (13), we obtain

gAug† ¼
1

2n

X
a∈VA

ð−1Þ½u;a�gTag†

¼ 1

2n

X
a∈VA

ð−1Þ½u;a�þ½t;Fa�TFa

¼ 1

2n

X
a∈VA

ð−1Þ½Fuþt;Fa�TFa

¼ 1

2n

X
b∈VA

ð−1Þ½Fuþt;b�Tb

¼ AF ðgÞðuÞ;

where we have used ½u; a� ¼ ½Fu; Fa� and the fact that F
induces a bijection of the set VA. This leads to

2nWg†ρgðuÞ ¼ TrðAug†ρgÞ
¼ TrðgAug†ρÞ
¼ TrðAF ðgÞðuÞρÞ
¼ 2nWρðF ðgÞðuÞÞ;

which proves the covariance. ▪
For n ≥ 2, W is not covariant under all real Clifford

operations. As an example, consider n ¼ 2 and g ¼ H1,

which is real Clifford but not CSS-ness preserving. H1

converts a Bell state into a two-qubit graph state. The
former has a positive and the latter a negative Wigner
function. Hence, H1 does not transform W covariantly.

D. Efficient simulation of Clifford circuits

An operational justification for emphasizing positivity of
Wigner functions is the following result [8] for qudits:
Circuits of Clifford gates and stabilizermeasurements acting
on an initial state with a non-negative Wigner function can
be efficiently simulated classically. The discrete Hudson’s
theorem [11] ensures that for pure states, the simulation
method based onWigner functions has the same scope as the
Gottesman-Knill theorem. For mixed states, it is an exten-
sion of that theorem since not all states with non-negative
Wigner functions are mixtures of stabilizer states [11].
Here, we prove an analogue of the result [8] for the rebit

Wigner function W defined in Eqs. (11) and (12).
Theorem 2: Every circuit consisting of CSS-ness pre-

serving Clifford unitaries and measurements, acting on a

product state ρ ¼ ⊗
n

i¼1
ρi with a non-negative Wigner func-

tion Wρ, can be efficiently classically simulated.
Proof of Theorem 2.—We describe a simulation method

based on sampling. For a quantum state ρ represented by a
Wigner function Wρ, the probability of an outcome s
corresponding to the POVM element EðsÞ is

PðsÞ ¼
X
u

WρðuÞWEðsÞðuÞ:

For the allowed observables O ∈ O, the POVM elements
EðsÞ ¼ ðI þ sOÞ=2 all have positive Wigner function
WEðsÞ. Therefore, PðsÞ can be efficiently estimated if Wρ

is positive (i.e., is a probability distribution) and can be
efficiently sampled from. We show by induction that this is
indeed the case for all Wigner functions generated by the
above circuits.
First, the initial Wigner function for the state

ρð0Þ ¼ ρ1 ⊗ ρ2 ⊗ … ⊗ ρn, Wρð0Þ ¼ Wρ1Wρ2 ·… ·Wρn
can be efficiently sampled from. It is positive, and the
Wρi may be sampled from independently, which is efficient.
Now, we show that if the Wigner function WρðtÞ after

time step t can be efficiently sampled from, then so can the
Wigner function Wρðtþ1Þ after step tþ 1. We distinguish
two cases: (a) ρðtþ 1Þ ¼ gρðtÞg†, with g ∈ GCSS, and
(b) ρðtþ 1Þ ∼ ðI þ sOÞ=2 ρðtÞðI þ sOÞ=2, with O ∈ O,
s ¼ �1.
(a) Unitary evolution. The Wigner function transforms

covariantly under gates g ∈ GCSS,

Wρðtþ1ÞðFguþ tgÞ ¼ WρðtÞðuÞ:

Thus, sampling from Wρðtþ1Þ can be efficiently
reduced to sampling from WρðtÞ. In particular, gates
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in GCSS preserve the positivity of the Wigner
function.
(b) Projective measurement. We note the following.
Lemma 12: The Wigner function of the state ρ0 of the

system after measuring Ta ∈ O with the outcome
s ∈ f�1g is

Wρ0 ðuÞ ¼
�

1
2
ðWρðuÞ þWρðuþ aÞÞ if s · ð−1Þ½u;a� ¼ 1

0 otherwise

where ρ is the state before the measurement. In particular,
measurements of observables in O preserve the positivity
of the Wigner function of the system.

Wρðtþ1Þ is sampled from as follows. Repeat: (1) Call the
sampling routine for WρðtÞ, which returns a u ∈ V.

(2) Report the measurement outcome s ¼ ð−1Þ½u;a�.
(3) Flip a fair coin, and, depending on the outcome, report
u or uþ a as a sample from Wρðtþ1Þ.
This concludes the proof of Theorem 2, subject to the

proof of Lemma 12. ▪
Remark 1:—The locality of the initial state,

ρð0Þ ¼ ρ1 ⊗ ρ2 ⊗ … ⊗ ρn, is of no physical significance.
It is just one possible way to ensure that the positive Wρð0Þ
can be efficiently sampled from by a classical algorithm.
Remark 2:—The present simulation method is similar to

its qudit counterpart [23], but a difference occurs in
measurement. Here, mere positivity of the effect WEðsÞ
and positivity of Wρin for the input state ρin do not imply
positivity of the Wigner function Wρout for the output state
ρout. For example, the two-rebit state ρ ¼ ðI þ X1Z2Þ=4
has a positive Wigner function, and the POVM element
ðI þ Z1X2Þ=2 is also positively represented. However, the
state after measurement, a pure stabilizer state with stabi-
lizer group S ¼ hX1Z2; Z1X2i, has a negative Wigner
function. Note that Z1X2 ∉ O.
Proof of Lemma 12.—For all Ta ∈ A, Ty ∈ O, it holds

that

if ½Ta; Ty� ¼ 0; then TaTy ¼ Taþy: ð25Þ

This result is a consequence of all Ty ∈ O being entirely of
X type or Z type (by definition of O).
We define the set Ay as Ay ¼ fTa ∈ Aj½a; y� ¼ 0g. It

has the property that

TyAy ¼ Ay: ð26Þ

Equation (26) holds because ½Ta; Tx� ¼ 0, so Eq. (25)
guarantees that TyTa has the right sign and thus TyTa ∈ A.
Now, the update Wρ ↦Wρ0 under measurement of the

observable Ty ∈ O, with outcome s ¼ �1, is

Wρ0 ðuÞ ∼
1

2n
Tr

�
Au

I þ sTy

2
ρ
I þ sTy

2

�

¼ 1

22n
Tr

�
I þ sTy

2
Tu

�X
Ta∈A

Ta

�
T†
u
I þ sTy

2
ρ

�

¼ 1

22n
Tr

�
Tu

I þ sð−1Þ½u;y�Ty

2

� X
Ta∈Ay

Ta

�
T†
uρ

�

¼ 1

22n
1þ sð−1Þ½u;y�

2
Tr

�
Tu

� X
Ta∈Ay

Ta

�
T†
uρ

�

¼ δs;ð−1Þ½u;y�

2nþ1
Trð½Au þ TyAuTy�ρÞ

¼ δs;ð−1Þ½u;y�
2

ðWρðuÞ þWρðuþ yÞÞ:

When transitioning from the third to the fourth line above,
we used the property Eq. (26). ▪

V. CONTEXTUALITY

A. Scope of hidden variable models for rebit QCSI

A quantum-mechanical setting comprising quantum
states and measurements is said to be contextual if it
cannot be described by any noncontextual hidden variable
model. For the rebit scheme of quantum computation by
state injection considered here, we first need to determine
the scope of the phenomenology that any purported
noncontextual HVM must reproduce.
The set of quantum states is unrestricted. The candidate

HVM must yield the correct measurement statistics for any
real quantum state. However, the observables that can be
measured in rebit QCSI, and the sets of observables that can
be measured jointly, are restricted. To analyze the situation,
we first discuss a few examples and then impose a general
criterion.
First, the set of observables that can be physically

measured in rebit QCSI is O ¼ fXðaXÞ; ZðaZÞg. The
candidate HVM therefore needs to correctly reproduce
the probabilities of measurement outcomes for all observ-
ables O ∈ O and, furthermore, the correct joint outcome
probability distributions for any number of commuting
observables in O.
But there is more. For example, consider the two-rebit

observable X1Z2, which is in the set A but not in O. The
measurement outcome of X1Z2 can be obtained by meas-
uring the commuting observables X1; Z2 ∈ O, and then
postprocessing the outcomes. Therefore, a measurement of
X1Z2 can be reduced to measurements of commuting
observables in O. The same holds for all observables in
A. We therefore require that any candidate HVM must
reproduce the correct measurement statistics for all observ-
ables in A.
We now turn to the simultaneous measurement of

compatible observables. Continuing with the above
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example, it is possible to simultaneously measure the pair
of observables fX1; X1Z2g, namely, by the same operations
that measured X1Z2 alone.
Now, is it possible to simultaneously measure the

commuting observables X1Z2 and Z1X2? In the setting
of rebit QCSI, this is not the case. The measurement of
X1Z2 necessitates the measurement of X1 and Z2 sepa-
rately. Since these observables do not commute with Z1X2,
a subsequent measurement of Z1X2 is no longer guaranteed
to reveal the original value. Thus, commuting observables
in A need not be simultaneously measurable in the same
way as commuting observables in O.
Based on the phenomenology discussed above, we adopt

the following operational criterion to define the scope of
hidden variable models:
Criterion 1 Let M be a set of commuting observables.

Any hidden variable model describing M must correctly
predict the joint probability distribution pM of measure-
ment outcomes, if for all observablesO ∈ M, the outcomes
can be simultaneously obtained from measurements on a
single copy of the given quantum state.

We denote byM the set of measurement settingsM ⊂ A
admitted by Criterion 1. Given a quantum state ρ and a set
M of compatible observables, we denote by pM;ρ the
probability distribution for measurement outcomes corre-
sponding to M.
Definition 1 A hidden variable model describing the

physical setting ðρ;MÞ consists of (a) a nonempty set S of
internal states, (b) a probability distribution q over S, and
(c) conditional probabilities pðsMjuÞ, u ∈ S, for outcomes
sM ¼ ðs1; s2;…; sjMjÞ of measurements in M, M ∈ M,
such that

(i) For every u ∈ S, all observables O ∈ A have
definite values, λuðOÞ ¼ �1, and for all M ∈ M,

pðsMjuÞ ¼
Y

ijOi∈M

δsi;λuðOiÞ: ð27Þ

(ii) For all M ∈ M, all triples of commuting observ-
ables A;B; AB ∈ hMi, and all u ∈ S, the value
assignments are consistent,

λuðABÞ ¼ λuðAÞλuðBÞ: ð28Þ

(iii) Given the quantum state ρ, the probability distribu-
tion qρ reproduces all probability distributions of
measurement outcomes; i.e.,

pM;ρðsMÞ ¼
X
u∈S

pðsMjuÞqρðuÞ; ð29Þ

for all M ⊂ M, and all values of sM.

In Secs. V B and V C below, we derive necessary and
sufficient conditions for the existence of a hidden variable

model over M or, vice versa, for contextuality. These
conditions are expressed in terms of the rebit Wigner
function.
We conclude this section with a characterization of the

sets M ∈ M of simultaneously measurable observables in
QCSI that are admitted by Criterion 1.
Lemma 13: Let M ⊂ A be a set of commuting observ-

ables. Then, M ∈ M if and only if TaTb ¼ Taþb,∀Ta; Tb ∈ M.
Remark 3:—What is excluded here is the possibility

of TaTb ¼ −Taþb.
Proof of Lemma 13.—“If”: Assume that a set M ⊂ A

has the property that TaTb ¼ Taþb for all Ta; Tb ∈ M.
Since Taþb ¼ ð−1ÞaX ·bZTaTb, it follows that aX · bZ ¼
aZ · bX ¼ 0 (mod 2), for all Ta; Tb ∈ M.
Therefore, for all Ta ∈ M, the operators XðaXÞ and

ZðaZÞ commute with all M and among themselves. They
thus generate a CSS stabilizer

S ¼ hXðaXÞ; ZðaZÞjTa ∈ Mi:

By construction, M ⊂ S. Therefore, the measurement out-
comes for all observables O ∈ M can be obtained by mea-
suring the set of observables fXðaXÞ; ZðaZÞjTa ∈ Mg ⊂ O
and subsequent classical processing. The set M thus
satisfies Criterion 1.
“Only if”: Since physical measurements are restricted to

observables onO, the only way of measuring an observable
Ta ∈ A is to separately measure its X part XðaXÞ and Z part
ZðaZÞ, and then postprocess the measurement outcomes.
We assume that for a given setM ¼ fTag ⊂ A, Criterion 1
holds. Then, ½XðaXÞ; ZðbZÞ� ¼ 0, for all Ta; Tb ∈ M, or,
equivalently, aX · bZ ¼ 0, for all Ta; Tb ∈ M. Since
Taþb ¼ ð−1ÞaX ·bZTaTb, it follows that Taþb ¼ TaTb for
all Ta; Tb ∈ M. ▪
For an illustration of Lemma 13, we previously argued

that X1Z1 and Z1X2 cannot be simultaneously measured in
rebit QCSI; fX1Z1; Z1X2g ∉ M. Lemma 13 detects this as
follows: If Ta¼X1Z2 and Tb¼Z1X2, then Taþb ¼ −Y1Y2,
and therefore Taþb ¼ −TaTb.

B. A necessary condition for contextuality

Theorem 3: The setting ðρ;MÞ is contextual only
if Wρ < 0.
Proof of Theorem 3.—If Wρ > 0, then Wρ is a valid

noncontextual HVM for the setting ðρ;MÞ. To verify this
claim, we need to check that if Wρ > 0, then Wρ provides
the constructs (a)–(c) required in Definition 1 and that the
conditions (i)–(iii) therein are satisfied.
A projective measurement of a set M ∈ M of commut-

ing observables is represented by POVM elements EðsMÞ,

EðsMÞ ¼
Y

ijTaðiÞ∈M

I þ siTaðiÞ
2

; ð30Þ
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and si ¼ �1, for all i. With Eq. (14), the probability of
obtaining the outcomes sM in the measurement of the set of
observables M is

pM;ρðsMÞ ¼ TrðEðsMÞρÞ ¼ 2n
X
u∈V

WEðsMÞðuÞWρðuÞ:

We thus identify (a) V ¼ S, (b) Wρ ¼ q, and
(c) 2nWEðsMÞðuÞ ¼ pðsMjuÞ, for all u. V ¼ Z2n

2 is a valid
state space andWρ a valid probability distribution since, by
assumption, Wρ > 0.
It remains to show thatWEðsMÞ > 0 for allM ∈ M. First,

we compute WEðsÞ for EðsÞ ¼ ðI þ sTa=2Þ and Ta ∈ A.
Using the orthogonality relation TrðTaTbÞ ¼ 2nδa;b, we
find that 2nWEðsÞðuÞ ¼ δs;ð−1Þ½u;a� . Thus, for all observables
Ta ∈ A and all states u ∈ V, we obtain the value
assignment

λuðTaÞ ¼ ð−1Þ½u;a�: ð31Þ

We now generalize the above computation of the Wigner
function of effects from the observables in A to all sets
M ∈ M of measurements. To this end, we note that by
Lemma 13, the POVM elements EðsMÞ of Eq. (30) can be
rewritten as

EðsMÞ ¼
1

2jMj

�X
N⊂M

� Y
TaðiÞ∈N

si

�
TP

TaðiÞ∈N
aðiÞ

�
:

Hence, we obtain

2nWEðsMÞðuÞ ¼
Y

ijTaðiÞ∈M

δsi;ð−1Þ½u;aðiÞ� : ð32Þ

Thus, 2nWEðsMÞ does indeed represent conditional proba-
bilities, as required for 2nWEðsMÞðuÞ ¼ pðsMjuÞ.
Regarding (i), the assignment of Eq. (31) demonstrates

that for all states u ∈ S, all observables in A have definite
values, as required. Furthermore, for this value assignment,
the expression (32) for the conditional probability pðsMjuÞ
matches the required expression, Eq. (27).
Regarding (ii), the value assignment Eq. (31) leads to the

constraints

λuðTaþbÞ¼ λuðTaÞλuðTbÞ; ∀ u∈S; ∀ Ta;Tb;Taþb ∈A:

Since, by Lemma 13, Taþb ¼ TaTb for all
Ta; Tb; Taþb ∈ hMi, the value assignments of Eq. (31)
are consistent for all M ∈ M.
Finally, condition (iii) is satisfied by construction of the

Wigner function.
We have thus shown that if Wρ > 0, then Wρ provides a

noncontextual HVM for the setting ðρ;MÞ. The claim
follows by negation of this statement. ▪

Finally, as an application of Theorem 3, we briefly
discuss the state-dependent version of Mermin’s star [16].
Employing a Greenberger-Horne-Zeilinger (GHZ) state
ðj000i þ j111iÞ= ffiffiffi

2
p

in the rebit setting, there is neither
negativity nor contextuality. The GHZ state, being of CSS
type, has a non-negative Wigner function and hence, by
Theorem 3, is noncontextual. Correspondingly, Mermin’s
parity proof does not apply to rebits because the local Pauli
observables Yi are imaginary.

C. Sufficient condition for contextuality

Below we provide a sufficient criterion for contextuality
in terms of the Wigner function. It involves the notion of an
isotropic subspace. A subspace U ⊂ V ¼ Z2n

2 is isotropic
if, for all v;w ∈ U, ½v;w� ≔ ðvX;wZÞ þ ðvZ;wXÞ mod
2 ¼ 0. Such a space U is said to be maximally isotropic
if it is a maximal isotropic subspace of Z2n

2 with respect to
inclusion. This happens if and only if the dimension of the
isotropic subspace U is n.
Theorem 4: The n-rebit setting ðρ;MÞ is contextual if

there exists a maximal isotropic subspace U ⊂ Z2n
2 and a

vector ν ∈ Z2n
2 such thatX

v∈U
Wρðvþ νÞ < 0:

Comparing Theorems 3 and 4, we find that our necessary
and sufficient conditions for contextuality do not match.
This indicates the possibility of a Wigner-negative non-
contextual phase. Such a phase does indeed exist, as we
show in Sec. V D.
To prove Theorem 4, we construct a family of witness

functions W which can detect contextuality. Each such
function is based on an isotropic subspace U ⊂ Z2n

2 with a
basis BðUÞ ¼ fað1Þ; að2Þ;…; aðmÞg and can be evaluated
on points x ∈ Zm

2 , for any density operator ρ. Namely, we
define

WBðUÞ
ρ ðxÞ ¼

	X
z∈Zm

2

�Ym
i¼1

ð−1Þzixi
�
TP

i
ziaðiÞ



ρ

: ð33Þ

The contextuality witnesses WBðUÞ resemble the witnesses
discussed by Cabello, Severini, and Winter in [19] in the
following respect. They are linear operators for which the
range of expectation values allowed by quantum mechanics
is strictly greater than that allowed for noncontextual
HVMs. We make the following observation.
Lemma 14: The setting ðρ;MÞ is contextual if there

exists an isotropic subspace U ⊂ Z2n
2 such thatWBðUÞ

ρ < 0.

Before turning to the proof of Lemma 14, we illustrate
the contextuality witnesses, Eq. (33), in a specific case.
Example. Consider two rebits, and a maximal isotropic

subspace U ¼ Z2
2 ¼ spanðfa;bgÞ such that Ta ¼ X1Z2

and Tb ¼ Z1X2. With these specifications,
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Wfa;bg
ρ ð0Þ ¼ hI12 þ X1Z2 þ Z1X2 − Y1Y2iρ:

Note that Taþb ¼ −Y1Y2 ¼ −TaTb. If we choose ρ ¼
jK2ihK2j for a graph state jK2i with stabilizer relations

X1Z2jK2i ¼ Z1X2jK2i ¼ −jK2i, then Wfa;bg
jK2i ð0Þ ¼ −2.

The witness W can thus indeed take negative values, but
what does that say about contextuality?
To answer this question, assume that there exists a

noncontextual HVM in which all observables in A have
values λð·Þ ¼ �1 and that these values satisfy the compat-
ibility condition Eq. (28). Then, λðX1Z2Þ ¼ λðX1ÞλðZ2Þ
and λðZ1X2Þ ¼ λðZ1ÞλðX2Þ. Similarly, λð−Y1Y2Þ ¼
λðX1X2ÞλðZ1Z2Þ ¼ λðX1ÞλðX2ÞλðZ1ÞλðZ2Þ. Therefore, the
HVM version of the witness Wfa;bgð0Þ evaluates to

Wfa;bg
λ ð0Þ ¼ ð1þ λðX1ÞλðZ2ÞÞð1þ λðZ1ÞλðX2ÞÞ

and is thus non-negative for every value assignment λ to the
observables X1, X2, Z1, Z2. Hence, it is also non-negative
for all probabilistic mixtures over such assignments. A

negative value of Wfa;bg
ρ ð0Þ is therefore an indicator of

contextuality.
In addition, we observe that the witness Wfa;bg

ρ ð0Þ is
closely related to state-independent contextuality. Com-
bining the aforementioned relations for λðTa ¼ X1Z2Þ,
λðTb ¼ Z1X2Þ and λðTaþb ¼ −Y1Y2Þ, we find that
λðTaþbÞ ¼ λðTaÞλðTbÞ. From Eq. (28), this contradicts
the above operator relation Taþb ¼ −TaTb, giving rise
to a state-independent parity proof of contextuality. In fact,
the proof in question is a locally rotated version of
Mermin’s square [16] [also see Eq. (44)].
Proof of Lemma 14.—We prove the converse statement,

namely, that if ðρ;MÞ is noncontextual, then WBðUÞ
ρ > 0

for all isotropic subspaces U ∈ Z2n
2 and all bases thereof.

Assume there exists a noncontextual HVM describing
the setting ðρ;MÞ. Then, by property (i) of Definition 1,
the states of this HVM must have definite values �1 for all
observables inA. Furthermore, for any state u of the HVM,
these values must satisfy the consistency condition (ii) of
Definition 1.
Specifically, the set M ¼ fZðaZÞjaZ ∈ Zn

2g satisfies
Criterion 1. Therefore, by property (ii) of Definition 1,
λuðTðaZ;0ÞÞ ¼ λuðZðaZÞÞ ¼

Q
ij½aZ�i¼1λuðZiÞ. Likewise,

λuðTð0;aXÞÞ ¼ λuðXðaXÞÞ ¼
Q

ij½aX �i¼1λuðXiÞ. Analogously,
for any TðaZ;aXÞ ∈ A, the set M ¼ fTðaZ;0Þ; Tð0;aXÞ; TðaZ;aXÞg
satisfies Criterion 1 since, by definition of A, the Pauli
operators TðaZ;0Þ, Tð0;aXÞ commute, and TðaZ;0ÞTð0;aXÞ ¼
TðaZ;aXÞ. Therefore, by Eq. (28), λuðTðaz;axÞÞ ¼
λuðTðaz;0ÞÞλuðTð0;axÞÞ.
Combining the above three relations, we find that for all

Ta ∈ A, the value λðTaÞ follows from the values λðXiÞ,
λðZiÞ assigned to the local observables Xi and Zi, for
i ¼ 1;…; n. We may write this as

λuðTaÞ ¼ ð−1Þ½u;a�; ∀ u ∈ S; ð34Þ

and S ¼ Z2n
2 . We find that the same relation, Eq. (31),

which held for HVMs derived from the Wigner function
holds for all noncontextual HVMs.
As a consequence, for all u ∈ S, it holds that

λuðTaþbÞ ¼ λuðTaÞλuðTbÞ; ∀ Ta; Tb; Taþb ∈ A:

We rewrite this condition as

λuðTaþbÞ ¼ λuðTaÞλuðTbÞ;
∀ Ta; Tb ∈ A such that ½Ta; Tb� ¼ 0:

ð35Þ

We now evaluate the witness WBðUÞ
ρ ðxÞ under the

assumption of a noncontextual HVM. Assuming the system
is in the state u ∈ S of the HVM, and using the property
Eq. (35), the witness of Eq. (33) becomes

WBðUÞ
λu

ðxÞ ¼
X
z∈Zm

2

�Ym
i¼1

ð−1Þzixi
�
λuðTP

i
ziaðiÞÞ

¼
X
z∈Zm

2

Ym
i¼1

ðð−1ÞxiλuðTaðiÞÞÞzi

¼
Ym
i¼1

ð1þ ð−1ÞxiλuðTaðiÞÞÞ

≥ 0:

In transitioning from the first to the second line above, we
have used the property that U ¼ spanðfaðiÞgÞ is isotropic,
such that Eq. (35) can be applied.
As a result of the above inequality, for any probability

distribution qρ over S, the prediction of any noncontextual
HVM is

WBðUÞ ≥ 0;

for all isotropic subspaces U ⊂ Z2n
2 . The negation of this

statement proves the claim. ▪
Remark 4:—The connection between the witnesses

WBðUÞ and state-independent contextuality observed in
the earlier two-rebit example persists in the general case.
While the witnesses measure—as it is their purpose—
contextuality possessed by quantum states, they are linked
to state-independent parity proofs of contextuality as given
in Ref. [16]. Namely, a witness WBðUÞ can assume a
negative value only if the associated isotropic space U
contains two vectors a, b such that Taþb ¼ −TaTb.
Whenever that happens, a parity proof can be built from
Taþb, Ta, Tb and Pauli operators Xi, Zi; cf. Eq. (35).
We now relate the witnesses W to the rebit Wigner

function.
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Lemma 15: Consider an isotropic subspace U ⊂ Z2n
2

with basis BðUÞ ¼ fað1Þ; að2Þ;…; aðmÞg and a set ~B ¼
fbð1Þ;bð2Þ;…;bðmÞg such that ½aðiÞ;bðjÞ� ¼ δij for all
i; j ¼ 1;…; m. For every ηðxÞ ¼ P

ixiaðiÞ ∈ U, denote by
η̄ðxÞ the vector η̄ðxÞ ¼ P

ixibðiÞ ∈ Z2n
2 . Then,

WBðUÞ
ρ ðηðxÞÞ ¼ 2m

X
v∈U⊥

Wρðv þ η̄ðxÞÞ:

Proof of Lemma 15.—We may rewrite the witness
function W defined in Eq. (33) in terms of η, η̄ as

WBðUÞ
ρ ðηÞ ¼

	
T η̄

�X
u∈U

Tu

�
T†
η̄



ρ

: ð36Þ

We may further rewrite this expression as

WBðUÞ
ρ ðηÞ ¼ 2m

22n

	
T η̄

�X
v∈U⊥

Tvð
X
u∈Z2n

2

TuÞT†
v

�
T†
η̄



ρ

¼ 2m

2n

	
T η̄

�X
v∈U⊥

TvA0T
†
v

�
T†
η̄



ρ

¼ 2m
X
v∈U⊥

Wρðv þ η̄Þ;

which demonstrates the claimed relation. In transitioning
from the second to the third line above, we have used the
fact that ρ is real, and thus, TrTaρ ¼ 0, for all a with
ðaX; aZÞ mod 2 ¼ 1. ▪
Proof of Theorem 4.—The combined conclusion of

Lemmas 14 and 15 is that the n-rebit setting ðρ;MÞ is
contextual if there exists an isotropic subspace U ⊂ Z2n

2

with orthogonal complementU⊥ and a vector ν ∈ Z2n
2 such

that

X
v∈U⊥

Wρðv þ νÞ < 0: ð37Þ

We can further simplify this condition. Suppose thatP
v∈U⊥Wρðv þ νÞ ≥ 0 holds for all ν ∈ Z2n

2 when U is
maximally isotropic in Z2n

2 . Then, the same holds for all
isotropic subspaces of Z2n

2 . To verify this claim, consider a
maximally isotropic space U and an isotropic subspace ~U
of U. Then, there exists a space Ū ⊂ Z2n

2 such that
~U⊥ ¼ U⊥ ⊕ Ū. Hence,

X
v∈ ~U⊥

Wρðv þ νÞ ¼
X
v0∈Ū

�X
v∈U⊥

Wρðv0 þ v þ νÞ
�
:

If every term in brackets on the right-hand side is ≥ 0, so is
the left-hand side. Since every isotropic ~U can be
embedded in a maximally isotropic U, the above claim
follows. In other words, we may restrict the condition

Eq. (37) to maximally isotropic subspaces U. In those
cases, U⊥ ¼ U, which yields the condition stated in
Theorem 4. ▪
Finally, as an application of Theorem 4, we briefly

discuss the state-dependent version of Mermin’s star [16],
in a locally rotated form. It comprises the nonlocal
observables XXX, XZZ, ZXZ, ZZX and local observables
Xi, Zi, for i ¼ 1;…; 3. Furthermore, the rotated GHZ
state is a three-rebit graph state jK3i, with K3 being the
fully connected graph of three vertices; hence, jK3i is a
joint eigenstate of the above four nonlocal observables.
WjK3i takes negative values; see Fig. 1. WjK3i is, in fact, so
negative that it implies contextuality of jK3i by Theorem 4.
To see this, for the maximal isotropic subspaceU appearing
in the condition of Theorem 4, use U ¼ spanðfa;b; cgÞ
with Ta ¼ XZZ, Tb ¼ ZXZ, and Tc ¼ ZZX.
Correspondingly, in contrast to the original version dis-
cussed in Sec. V B, the rotated version of Mermin’s star
fully embeds into real quantum mechanics such that
Mermin’s parity proof of contextuality applies there.
Furthermore, the state-dependent version of this proof
applies to rebit QCSI.

D. Are negativity and contextuality the same?

We observe that the sufficient condition for contextuality
in Theorem 4 does not, in general, match the necessary
condition of Theorem 3. This means that either the
sufficient condition is not optimal or, for the present
setting, contextuality and negativity are inequivalent.
To address this question, we consider the general

one-rebit state

~ρðx; zÞ ¼ I þ xX þ zZ
2

: ð38Þ

The corresponding phase diagram is depicted in Fig. 2.
The set of physical states is constrained by x2 þ z2 ≤ 1.

a
a

z

x

0

000

111

111

000

FIG. 1. Wigner function of the three-rebit graph state ∣K3i
corresponding to the complete graph K3. The Wigner function
takes negative values, and furthermore this negativity is strong
enough to witness contextuality of ∣K3i with respect to CSS-ness
preserving Pauli measurements.
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By Theorem 3, ~ρðx; zÞ is noncontextual if jxj þ jzj ≤ 1 and,
by Theorem 4, contextual if jxj > 1∨jzj > 1. We thus find
that not a single physical one-rebit state can be classified as
guaranteed contextual by Theorem 4.
But this is not a failure of Theorem 4 to get traction. For

single qubits, noncontextual HVMs can be constructed
[2,16], and they imply noncontextual HVMs for single
rebits as a special case. The states ~ρðx; yÞ with x2 þ z2 ≤ 1
and jxj þ jzj > 1 are thus negatively represented but non-
contextual. Thus, for the present rebit setting, Wigner
function negativity and contextuality are not the same.
We have to explain how our finding relates to the result

by Spekkens [12] that negativity and contextuality, when
suitably defined, are equivalent notions of nonclassicality.
In Ref. [12], the following observations are made: (i) Non-
negativity in the quasiprobability distributions representing
quantum states is not sufficient for classicality; the condi-
tional probabilities representing measurements must also
be non-negative. (ii) A classical explanation cannot be
ruled out by considering a single quasiprobability repre-
sentation; negativity must be demonstrated for all such
representations. (iii) The requirement of outcome determin-
ism for sharp measurements should be dropped from the
definition of noncontextuality. In other words, given an
internal state u ∈ S of the HVM, the conditional proba-
bilities pðsMjuÞ for the measurement outcomes are not
required to be δ distributions.
Our setting satisfies the above criterion (i). All projectors

onto eigenspaces of the measurable observables O ∈ O are
non-negatively represented. This is important for the
efficient classical simulation method for states with non-
negative Wigner functions evolving under CSS-ness pre-
serving operations (cf. Sec. IV D).
Regarding (iii), here we keep the requirement of outcome

determinism. Hence, all conditional probability distribu-
tions pðsMjuÞ for measurement outcomes given a fixed
internal state are δ distributions, cf. Eq. (27) in Definition 1.

While not as general as Ref. [12], it is in accordance with
Ref. [19] (the contextuality measures employed in the qudit
counterpart [6] of the present work) and Ref. [16].
In addition, we point out that not just any δ distribution

will do for pðsMjuÞ. Rather, the δ distributions, Eq. (27),
are constrained by outcome compatibility, Eq. (28).
Regarding (ii), in contrast to Ref. [12], here we consider

only a single quasiprobability distribution—the Wigner
function defined in Eq. (11). This choice is motivated by
the present computational setting to which the notions of
negativity and contextuality are applied: QCSI. As
described in Secs. II C and II D, CSS states, the observables
inO, and the CSS-ness preserving unitaries form a classical
reference structure for QCSI on rebits. This result implies,
in particular, that, for the present setting, certain bases of
Hilbert space are preferred over others for state preparation
and measurement. This inequivalence carries over to
quasiprobability distributions.
In our setting, a classical explanation can be ruled out by

considering a single quasiprobability representation. While
mere negativity of the Wigner function is no guarantee for
contextuality, a setting ðρ;MÞ is contextual, hence non-
classical, if the Wigner functionWρ is sufficiently negative
to satisfy the condition of Theorem 4.
Having established that, for the present situation, neg-

ativity and contextuality are not equivalent, we turn to the
question of whether there are at least large families of states
for which the two notions agree. An example is the family
of two-rebit states

ρða; bÞ ¼ ðI þ aX1Z2ÞðI þ bZ1X2Þ
4

: ð39Þ

In this case, the conditions of Theorems 3 and 4 for
contextuality both read

1þ αaþ βb − αβab < 0;

for all combinations of α; β ¼ �1. The corresponding
phase diagram is depicted in Fig. 3. The physical states
fill the square with jaj; jbj ≤ 1. The corners of that square
represent the joint eigenstates of the Pauli operators XZ
and ZX, and they sit deep in the contextual phase. This fits
with our earlier observation that the commuting observ-
ables XZ and ZX cannot be simultaneously measured in
rebit QCSI. Hence, their joint eigenstates cannot be
prepared by the restricted gates. This example generalizes
as follows.

Lemma 16: Let ρ be a state diagonal in a real stabilizer
eigenbasis. Then, ρ is contextual if and only if Wρ < 0.
Proof of Lemma 16.—Denote by SU ¼ fTvjv ∈ Ug ⊂ A

the stabilizer in whose joint eigenbasis the state ρ
is diagonal; i.e., the corresponding maximal isotropic
subspace U is such that TvρT

†
v ¼ ρ for all v ∈ U.

1

-1

-1

1

x

z

FIG. 2. Phase diagramfor the families of states ~ρðx; yÞ ofEq. (38),
with x; y ∈ R. The medium-shaded area shows the physical states;
the dark-shaded area shows the states classified as noncontextual by
Theorem 3. The states classified as contextual by Theorem 4 lie
outside the square of jxj; jzj ≤ 1 and are thus not physical.
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Then, by covariance of the Wigner function under
translations,

WρðνÞ ¼ WTvρT
†
v
ðνÞ ¼ Wρðv þ νÞ; ∀ v ∈ U:

In this case, the expression on the left-hand side of the
condition in Theorem 4 simplifies to

X
v∈U

Wρðv þ νÞ ¼ 2nWρðνÞ:

And thus, Theorem 4 itself simplifies to the statement that if
WρðνÞ < 0 for some ν ∈ Z2n

2 , then ρ is contextual. This
statement, combined with Theorem 3, proves the claim. ▪
To summarize, unlike for qudits in odd prime dimensions

[6], for rebits, contextuality and Wigner function negativity
are not the same. Yet, they coincide on all states that are
diagonal in a real stabilizer basis. However, note that the
definition of contextuality in Ref. [6] is different from ours.
Specifically, in Ref. [6], one-qudit states can be classified as
contextual based on two-qudit measurements of the given
state and a completely depolarized ancilla.

VI. CONTEXTUALITY AND NEGATIVITY
IN QUANTUM COMPUTATION

A. Resources

We are now prepared to establish contextuality and
Wigner function negativity as necessary resources for
universality of QCSI on rebits.
Theorem 5: In quantum computing via state injection

on rebits, contextuality of the initial state is necessary for
computational universality.

Furthermore, we give the following corollary.

Corollary 1 In quantum computing via state injection
on rebits, Wigner function negativity of the initial state is
necessary for computational universality.

Corollary 1 is the combination of Theorems 3 and 5.
In preparation for the proof of Theorem 5, we note that

the witness functions WBðUÞ transform covariantly under
CSS-ness preserving unitaries, similar to the Wigner
function. Namely, every CSS-ness preserving unitary g
can be written as g ¼ TagF, where gFTbg

†
F ¼ TFb for all

Tb ∈ A, and ½Fb; Fc� ¼ ½b; c� for all b; c ∈ V. Then,
using the form Eq. (36) of the contextuality witnesses,

WBðUÞ
ρ ðηÞ ¼ WF−1BðUÞ

g−1ρg ðηþ āÞ: ð40Þ

On the right-hand side, F−1BðUÞ is again the basis of an
isotropic subspace since F and F−1 preserve the commu-
tation relations. As a result, for two density matrices ρ and
ρ0 related by a CSS-ness preserving Clifford unitary, if there
is a witness W that evaluates to x on ρ, then there is a
witness W 0 that evaluates to the same value x on ρ0.
Proof of Theorem 5.—If the discussed computational

scheme is universal, it must, in particular, be capable of
creating an encoded graph state jḠ2i, with stabilizer
hXZ; ZXi. Therein, the encoding is that of Rudolph and
Grover stated in Eq. (5),

X
k

rkeiϕk jki ⟶
X
k

rkjki ⊗ ðcosϕkj0iA þ sinϕkj1iAÞ:

For this encoding, for all qubits i ¼ 1;…; n, we have

X̄i ¼ Xi; Z̄i ¼ Zi; Ȳi ¼ Yi ⊗ YA; ð41Þ

where Y ≔ iXZ. With īI ¼ iYA, this is compatible with the
Pauli multiplication table Ȳ ¼ iZX ¼ iI X̄ Z̄.
All observables in A have an even number of Y ’s, and

therefore,

T̄ ¼ T; ∀T ∈ A: ð42Þ
For the state jḠ2i, the contextuality witness based on the
operators Ta ¼ XZ and Tb ¼ ZX is negative, namely,

Wfa;bg
jḠ2i ðð1; 1ÞÞ
¼ hḠ2jI − X1Z2 − Z1X2 − Y1Y2jḠ2i ¼ −2: ð43Þ

For two-dimensional isotropic subspaces U, −2 is the most
negative value that a witness WBðUÞ can yield. The final
state jḠ2i thus maximally reveals contextuality.
We now prove that the initial state fed into the compu-

tation must also maximally reveal contextuality. The proof
is by induction. We consider the circuit that created the state
jḠ2i and assume the gates are performed sequentially, one
in each step m. We show that if the state ρðmÞ after step m

1

-1

-1

1

a

b

FIG. 3. Phase diagram for the states ρða; bÞ of Eq. (39), with
a; b ∈ R. The medium-shaded area shows the physical states; the
dark-shaded are shows the states classified as noncontextual by
Theorem 3.
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maximally reveals contextuality, then so does the state
ρðm − 1Þ after step m − 1. In other words, if there exists
a witness W such that WρðmÞðηÞ ¼ −2, then there exists
another witness W 0 such that W 0

ρðm−1Þðη0Þ ¼ −2.
For the gates in the circuit, we distinguish between

unitaries and projective measurements. Case i: The gate in
step m is a unitary. Then, by construction of the computa-
tional scheme, the gate is a CSS-ness preserving Clifford
unitary. Thus, the claim of the induction step follows from
the covariance of the witness functions, Eq. (40).
Case ii: The gate in step m is a projective measurement.

Then, by construction of the computational scheme, it is the
measurement of an observable Tc ∈ O. Let the witness for
the state ρðmÞ be constructed from the isotropic subspace

spanned by faðmÞ;bðmÞg, such thatWfaðmÞ;bðmÞg
ρðmÞ ðηÞ ¼ −2,

for some η. There are two subcases to consider.
Case ii(a): Tc commutes with both TaðmÞ and TbðmÞ.

Then, the value of the witness WfaðmÞ;bðmÞgðηÞ is the same
for ρðmÞ and ρðm − 1Þ; hence, ρðm − 1Þmaximally reveals
contextuality.
Case ii(b): Tc does not commute with both TaðmÞ and

TbðmÞ. Then, Tc anticommutes with two of the three
operators TaðmÞ, TbðmÞ, TaðmÞþbðmÞ, and commutes with
the third. Wlog assumes that Tc anticommutes with TaðmÞ
and TbðmÞ, and commutes with TaðmÞþbðmÞ. Then,
hTaðmÞiρðmÞ ¼ hTbðmÞiρðmÞ ¼ 0. The witness for the

state ρðmÞ therefore reduces to WfaðmÞ;bðmÞg
ρðmÞ ðηÞ ¼

hI � TaðmÞþbðmÞiρðmÞ ≥ 0. This result contradicts the induc-

tion assumption. Hence, case ii(b) cannot occur.
Thus, irrespective of whether a given step in the circuit is

a unitary transformation or a projective measurement, if the
state after completing the step witnesses contextuality with
the maximum negative value, so does the state before the
step. By induction, the state before the first gate, i.e., the
injected state, witnesses contextuality. ▪

B. Coping with Mermin’s square

Mermin’s square [16] provides a beautifully simple
proof of the Kochen-Specker theorem [3] in dimension
four and higher, but for establishing contextuality of magic
states as a quantum computational resource, it poses a
problem. Namely, the square can be converted into a
contextuality witness of CSW type [19] for which all
two-qubit states come out contextual [6]. But if contex-
tuality is generic, then it is not a resource.
In more general terms, Mermin’s square exhibits the

phenomenon of state-independent contextuality. It repre-
sents an obstacle to viewing contextuality as a resource
possessed by some quantum states but not others.
When restricting to Pauli observables, state-independent

contextuality only occurs in Hilbert spaces of even dimen-
sions [26] and thereforewas not an issue inRef. [6]. However,
in the present situation, the Hilbert space dimension is even,

and furthermore, by a simple local rotation, Mermin’s square
can be embedded into real quantum mechanics.

XX

XZ

ZZ . (44)

ZX

Z1Z2

X1 X2

-YY

Since, as in qudit QCSI, in rebit QCSI contextuality is
attributed to quantum states, state-independent contextuality
seems likely to cause difficulty. Yet, in Theorem 5, we
established contextuality of magic states as a necessary
resource. We thus have to explain why Mermin’s square,
and more generally the phenomenon of state-independent
contextuality, did not, in fact, void the contextuality-
as-resource viewpoint.
To do so, we revisit the results established in Sec. V.

First, by Theorem 3, states with a non-negative Wigner
function are noncontextual. Hence, contextuality is not
generic, as required for a resource.
Next, we consider the rotated Mermin square, Eq. (44).

For all columns and all rows except the bottom one, the
included observables pairwise commute and generate a
stabilizer group of CSS type. They can therefore be
simultaneously measured in rebit QCSI. The measurement
outcomes�1must multiply toþ1 in each of these contexts,
which is implied by the identities among the observables,
X1 · X2 · X1X2 ¼ þI, etc.
For the bottom row, the included observables XZ, ZX,

and −YY still commute and thus generate a stabilizer
group, but this group is not of CSS type. As discussed at the
beginning of Sec. V, these observables cannot be simulta-
neously measured in rebit QCSI. Therefore, the predeter-
mined measurement outcomes λðXZÞ, λðZXÞ, and λð−YYÞ
need not satisfy the constraint λðXZÞλðZXÞλð−YYÞ ¼ −1
implied by the operator relation XZ · ZX · ð−YYÞ ¼ −I.
Therefore, λð·Þ ¼ þ1 for all observables in the rotated
Mermin square is a consistent value assignment with
respect to rebit QCSI. The algebraic contradiction vanishes
because we have effectively removed the bottom row from
the diagram (44).
This situation is handled by our definitions as follows:

By Criterion 1, fXZ; ZX;−YYg ∉ M, cf. Lemma 13.
Therefore, λuðXZÞλuðZXÞλuð−YYÞ ¼ −1 is not required
by Definition 1 of a noncontextual HVM [cf. condition (ii)].
Generalizing the above observation, the phenomenon of

state-independent contextuality does not come into play for
the present setting of rebit QCSI, even if it does exist for
systems of rebits. The reason for this is the restriction
of the physical measurements to observables inO, the set of
pure-X and pure-Z Pauli operators.
Lemma 17: Consider a system of n rebits where the

measurable observables are restricted to the set O.
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Then, the set S of consistent value assignments of a non-
contextual HVM, λu: A → f�1g, ∀u ∈ S, is nonempty.
Thus, there is no state-independent contextuality in rebit
QCSI. Contextuality may persist at the level of probability.
Proof of Lemma 17.—The value assignments λu:

A ⟶ f�1g, u ∈ Z2n
2 , of Eq. (34), all satisfy the con-

sistency condition Eq. (35), λuðTaþbÞ ¼ λuðTaÞλuðTbÞ, for
all Ta; Tb ∈ A such that ½Ta; Tb� ¼ 0. By Lemma 13, for
allM ∈ M and all Ta; Tb ∈ M (½Ta; Tb� ¼ 0), it holds that
Taþb ¼ TaTb, for all u ∈ Z2n

2 . The value assignments λuð·Þ
are thus consistent with the operator constraints. Hence,
Z2n

2 ⊆ S, and S ≠ ∅. ▪
Finally, in Sec. V C, we argued that the contextuality

witnesses W are closely related to state-independent
contextuality, cf. Remark 4. This relation is not in contra-
diction to the above statement that there is no state-
independent contextuality in rebit QCSI. Namely,
Remark 4 refers to rebit quantum mechanics (without
the CSS restriction), not to rebit QCSI (with CSS
restriction).
Let us revisit three facts from the preceding discussion.

Assume two vectors a;b ∈ VA, ½a;b� ¼ 0, such that
Taþb ¼ −TaTb. Then, (i) (and only then) the witness
Wfa;bg can detect state-dependent contextuality. (ii) A
state-independent contextuality proof can be constructed
from Taþb, Ta, and Tb and local Pauli operators Xi, Zi.
(iii) The observables Ta and Tb cannot be simultaneously
measured in rebit QCSI (cf. Lemma 13).
Now we note, in addition, that (iv) the states ρ stabilized

by such �Ta and �Tb make the witness Wfa;bg
ρ ðxÞ

maximally negative, i.e., Wfa;bg
ρ ðxÞ ¼ −2 for suitable

values of x. See Eq. (43) for an example. The sets of
commuting real Pauli operators that cannot be jointly
measured in rebit QCSI thus become stabilizer generators
for states that maximally violate noncontextuality. The
power of contextuality is transferred from measurement to
(magic) states, exactly as it should be in a scheme of QCSI.

C. CSS vs real Clifford transformations

It is instructive to examine what happens if the restricted
gate set of rebit QCSI is extended from the CSS-ness
preserving Clifford operations to the lager set of real
Clifford operations. This comprises, in particular, increas-
ing the set of physically measurable observables from O to
the larger set A of all real Pauli observables.
This change opens the door to state-independent con-

textuality; see Mermin’s square in Eq. (44). As discussed
in the previous section, this is not compatible with
viewing contextuality as a resource possessed only by
special quantum states.
As for the Wigner function in relation to contextuality,

for n ≥ 2 rebits, a positive Wigner function no longer yields
a noncontextual hidden variable model. Namely, with the
new measurement contexts available, the “predetermined”

measurement outcomes λu assigned by the Wigner function
via Eq. (31) to HVM states u ∈ V fail to satisfy Eq. (28) in
Definition 1 of a noncontextual HVM.
As for the Wigner function in relation to efficient

sampling, (i) W produces the correct quantum mechanical
expectation values for all observables in A via Eq. (14).
Hence, it also produces the correct expectation values for
all observables defined for real states. (ii) If Wρ > 0, then
for all A ∈ A, the expectation values hAiρ can be efficiently
estimated by sampling. However, (iii) allowing measure-
ments in the middle of the computation, those in AnO can
introduce negativity into the Wigner function, preventing
efficient sampling from it.
To summarize, as an example for tinkering with rebit

QCSI, if the restricted gate set of CSS-ness preserving
Clifford operations is replaced by the broader class of real
Clifford operations, then contextuality is undone as a
resource, the link between positive Wigner functions and
noncontextual hidden variable models breaks, and efficient
classical simulation, by sampling from the Wigner func-
tion, of rebit QCSI without magic states is obstructed (other
simulation methods [13,27] remain, though). These obser-
vations illustrate the intricate relation among the various
constituents of rebit QCSI.

VII. CONCLUSION

We have established that contextuality and Wigner
function negativity are necessary resources for computa-
tional universality of the discussed scheme of quantum
computation by state injection on rebits. To this end, we
have constructed the computational scheme itself and
supplemented it with a matching Wigner function (com-
plete with Hudson’s theorem and an efficient sampling
algorithm for positive Wigner functions) and contextuality
witnesses. These parts mutually reinforce each other:
Efficient sampling provides operational justification for
calling states with positive Wigner functions “classical,”
and Hudson’s theorem ensures that the notions of classi-
cality established by the Wigner function and by the gate
restrictions in rebit QCSI match. The absence of theWigner
function negativity and contextuality reveals the limitations
of the restricted gate set. Furthermore, our computational
scheme is constructed in such a way that state-independent
contextuality does not come into play, even if it is present in
rebits.
We have thus extended all the essential properties that

held for QCSI in the case of qudits of odd prime dimension
[6,8] to rebits, with the sole exception that for the present
rebit scheme, Wigner function negativity does not imply
contextuality.
To widen the scope of the discussion, we note that

contextuality has also been established as a resource
for measurement-based quantum computation (MBQC)
[28–30]. Namely, in MBQC, contextuality is necessary
for the ability to compute nonlinear Boolean functions.
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One may thus want to compare the roles played by
contextuality in QCSI and MBQC. But there is an obstacle:
The MBQC result has, to date, only been established for the
case of two-level systems, where most of the existing
results [6] do not apply. The present paper removes this
mismatch and thus prepares the ground for a comparison
between the two computational schemes.
We conclude with three open questions.
(i) In QCSI, contextuality is about speedup, as one

might expect for a scheme of quantum computation.
But in MBQC, it is about computability. What is the
reason for this dichotomy?

(ii) Because of the formulation in terms of a Wigner
function, covariance plays an important role for
QCSI. Is covariance also a useful concept in the
discussion of MBQC?

(iii) We noted that the restricted gate set in the present
scheme of rebit QCSI is precisely the gate set that
can be implemented by defect braiding and fusion
with surface codes [21]. There is more complicated
lattice surgery by which, in addition, the Hadamard
gate can be realized [31,32]. In this way, the full real
subgroup of the qubit stabilizer group becomes
available as the restricted gate set, and the real
stabilizer states are the “cheap” or nonmagic states.
Is there a Wigner function with matching Hudson’s
theorem and covariance property?
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APPENDIX A: FOURIER TRANSFORM
ON THE GROUP Zn

2

The Fourier transform of a function f: M → R defined
on a linear subspace M of Zn

2 is the function Ff or f̂
defined by

FfðuÞ ¼ 1ffiffiffiffiffiffiffijMjp X
x∈M

ð−1Þðu;xÞfðxÞ:

Lemma 18: The Fourier transform F is involutive, i.e.,
F∘F ¼ Id, or equivalently F is its own inverse.
Proof of Lemma 18.—Let us determine the image of a

function f: M → R by F∘F.

ððF∘F ÞðfÞÞðuÞ ¼ F ðF ðfÞÞðuÞ

¼ 1ffiffiffiffiffiffiffijMjp X
x∈M

ð−1Þðu;xÞFfðxÞ

¼ 1

jMj
X
x∈M

X
y∈M

ð−1Þðu;xÞð−1Þðx;yÞfðyÞ

¼ 1

jMj
X
y∈M

�X
x∈M

ð−1Þðx;uþyÞ
�
fðyÞ

¼
X
y∈M

δu;yfðyÞ

¼ fðuÞ;

which demonstrates the claim. ▪

APPENDIX B: PROPERTIES OF THE
REBIT WIGNER FUNCTION

Lemma 19: The set of Pauli operators A is an
orthonormal basis of the space S2nðRÞ of symmetric
matrices of size 2n endowed with the inner prod-
uct ðA;BÞ ¼ ð1=2nÞTrðATBÞ.
Proof of Lemma 19.—Denote by Ei;j the matrix with

entry 0 everywhere expect at the intersection of the ith row
and jth column where it is 1. The space SNðRÞ is generated
by the matrices ðEi;j þ Ej;iÞ with 1 ≤ i < j ≤ N and Ei;i

with 1 ≤ i ≤ N. Moreover, we can easily check that these
NðN þ 1Þ=2 matrices are independent. Thus, the dimen-
sion of SNðRÞ is NðN þ 1Þ=2. In our case, N ¼ 2n

and dim S2nðRÞ ¼ 22n−1 þ 2n−1.
The set A contains 22n−1 þ 2n−1 symmetric matrices.

These matrices are pairwise orthogonal; i.e., they satisfy
ð1=2nÞTrðTuTvÞ ¼ 0 when u ≠ v. Thus, they are linearly
independent. This proves that they form a basis of the space
of symmetric matrices. The orthonormality is a conse-
quence of the orthonormality of the Paulis. ▪
We show that from a given Wigner function, we can

obtain the corresponding real density operator, proving that
the Wigner function is informationally complete.
Lemma 20: Let ρ be a real density operator and let Wρ

be its Wigner function. Then, ρ satisfies

ρ ¼
X
u∈Z2n

2

WρðuÞAu:

Proof of Lemma 20.—We expand the right-hand side of
the above equation by inserting the definition Eq. (11) of
Wρ and Eq. (13) for Au, and we obtain

X
u∈Z2n

2

WρðuÞAu ¼ 1

23n

X
u∈Z2n

2
v;w∈VA

ð−1Þ½u;vþw�TrðTvρÞTw:

Now note that the sum
P

u∈Z2n
2
ð−1Þ½u;vþw� is 22nδv;w, which

is a standard property of characters. Hence,
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X
u∈Z2n

2

WρðuÞAu ¼ 1

2n

X
w∈VA

TrðTwρÞTw:

From Lemma 19, this sum is the decomposition of ρ in
the orthonormal basis A. This proves that we recover the
state ρ. ▪
Proof of Property 4—(Sec. IVA). With the definition

Eq. (12),

A0 ¼
1

2n

X
u∈VjðuX;uZÞ mod 2¼0

Tu

¼ 1

2nþ1

�Yn
i¼1

ðI þ ZiÞ
Yn
j¼1

ð1þ XjÞ

þ
Yn
i¼1

ðI þ XiÞ
Yn
j¼1

ð1þ ZjÞ
�

¼ 2n−1ðj0nih0njjþnihþnj þ jþnihþnjj0nih0njÞ;

and thus

A0 ¼ 2½ðn=2Þ−1�ðj0nihþnj þ jþnih0njÞ: ðB1Þ

Further using the properties that ρ is Hermitian and real,

WρðvÞ ¼
1ffiffiffi
2

p
n h0njT†

vρTvjþni:

Now, we consider the case where ρAB factorizes,
ρAB ¼ σA ⊗ τB. We may write any phase-space point v
as v ¼ vA þ vB, where vA (vB) acts nontrivially only on
system A (B). Then, Tv ¼ �TvATvB and

Wσ⊗τðvÞ ¼
h0nA ; 0nB jT†

vBT
†
vAσ ⊗ τTvATvB jþnA ;þnBiffiffiffi

2
p

nAþnB

¼ WσðvAÞWτðvBÞ:

Proof of Lemma 4.—By inserting into the Wigner func-
tion the expansion jψihψ j ¼ P

x;y∈Zn
2
ψðxÞψðyÞjxihyj, we

obtain

WψðuÞ ¼
1

2n

X
x;y∈Zn

2

ψðxÞψðyÞTrðTuA0T
†
ujxihyjÞ:

We use the expression Eq. (B1) for A0 and verify by direct
calculation that

TrðTuj0nihþnjT†
ujxihyjÞ ¼ ð−1ÞðxþuX;uZÞ

2n=2
δuX;y: ðB2Þ

Inserting Eq. (B2) in the above WψðuÞ gives

WψðuÞ ¼
1

2nþ1

�X
x∈Zn

2

ψðxÞψðuXÞð−1ÞðxþuX;uZÞ
�

þ 1

2nþ1

�X
y∈Zn

2

ψðuXÞψðyÞð−1ÞðyþuX;uZÞ
�

¼ 1

2n

X
x∈Zn

2

ð−1Þðx;uZÞψðuXÞψðuX þ xÞ;

as stated in Lemma 4. ▪

APPENDIX C: CSS-NESS PRESERVING
CLIFFORD GATES

Here, we prove Lemma 1 from Sec. [18], and Lemmas 9
and 10 from Sec. IV C, about the structure of the CSS-ness
preserving subgroup of the Clifford group.
Proof of Lemma 9.—First, we omit the phase �1 of Ta

and focus on the effect of the conjugation on the vector a.
Let g ∈ GCSS and let φg be the automorphism of the real
Pauli group PnðRÞ defined by conjugation by g:

φg∶ PnðRÞ ⟶ PnðRÞQ↦ gQg†: ðC1Þ

This morphism of PnðRÞ induces a morphism of its
quotient PnðRÞ=f�Ig, which is isomorphic to Z2n

2 ; that
is, φg induces a matrix F ∈ M2nðZ2Þ such that

gTag† ¼ λðaÞTFa;

where λðaÞ ∈ f�1g. Since φg is an automorphism,
F ∈ GL2nðZ2Þ. Moreover, the conjugation preserves the
commutation relation, and we know that Ta and Tb
commute if and only if ½a;b� ¼ 0. This proves that
F ∈ Sp2nðZ2Þ. ▪
Proof of Lemma 10.—Consider a pair g; g0 ∈ GCSS and

denote by F ðgÞ ¼ AðF; tÞ and F ðg0Þ ¼ AðF0; t0Þ their
images. The value of F ðgg0Þ is defined by the conjugation
by gg0. We obtain

gg0Taðgg0Þ† ¼ gðg0Tag0†Þg†
¼ gðð−1Þ½t0;F0a�TF0aÞg†
¼ ð−1Þ½t0;F0a�þ½t;FF0a�TFF0a

¼ ð−1Þ½Ft0þt;FF0a�TFF0a:

Therein, we have used ½t0; F0a� ¼ ½Ft0; FF0a�. This gives
F ðgg0Þ ¼ AðFF0; Ft0 þ tÞ, which is indeed the composi-
tion of F ðgÞ ¼ AðF; tÞ and F ðg0Þ ¼ AðF0; t0Þ. Hence,
F ðgg0Þ ¼ F ðgÞF ðg0Þ, for all g; g0 ∈ GCSS. ▪
Proof of Lemma 1.—Our first goal is to describe GCSS as

the normalizer of the special Pauli operators O.
Lemma 21: The group GCSS is the normalizer in

O2nðRÞ of the set O ¼ fZðuÞju ∈ Zn
2g∪fXðvÞjv ∈ Zn

2g
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of Pauli observables that have only an X part or only a
Z part.
Proof of Lemma 21.—If g belongs to the normalizer of

O, then it conserves CSS codes and CSS states.
In order to obtain the inverse implication, we show that

an operator g that preserves CSS states stabilizes the set of
all CSS groups by conjugation. Applying this argument to
rank-one groups hXii and hZii, we obtain the Lemma.
Thus, we want to prove that the image under conjugation
by g of a CSS group is also a CSS group. This is true
when S has rank n. We work by induction. Assume the
result for every CSS group of rank r, and let us prove that
it is also true for a CSS group S of rank r − 1. Let S0 be
the group gSg† obtained after conjugation, and let M be
the subspace

M ¼ fa ∈ Z2n
2 j � Ta ∈ S0g:

We associate with M two subspaces

MZ ¼ fuZ ∈ Zn
2j ∃ ðuZ;uXÞ ∈ Mg

and

MX ¼ fuX ∈ Zn
2j ∃ ðuZ;uXÞ ∈ Mg:

Note that M ⊂ MZ ⊕ MZ, and S0 is a CSS code if and
only if we have equality M ¼ MZ ⊕ MZ; in that case, MZ
and MX are two orthogonal subspaces. Assume that S0 is
not a CSS code; then, MZ ⊕ MX contains strictly M and
has dimension

dimMZ ⊕ MX > dimM ¼ r − 1:

Now, choose two logical operators X̄ and Z̄ for the code S
which anticommute. The two CSS groups hS; X̄i and
hS; Z̄i are sent onto CSS groups by conjugation. Denote
by N and R, respectively, the corresponding subspaces
of Z2n

2 , defined as M. These two spaces can be decom-
posed as

N ¼ NZ⊕
⊥
NX and R ¼ RZ⊕

⊥
RX:

These spaces both contain MZ ⊕ MX and have dimension
r; hence, we have MZ ⊕ MX ¼ N ¼ R. To find a contra-
diction, consider the operators gX̄g† ¼ λðaÞTa and
gZ̄g† ¼ λðbÞTb. By construction, we have a ∈ N and
b ∈ R. Using the equality N ¼ R, we can see that the
two inner products ðaZ;bXÞ and ðbZ; aXÞ are 0, which
implies that Ta and Tb commute. This is a contradiction
since g preserves the commutation relation. Finally, we
proved that S0 is a CSS group. The set of all CSS groups is
preserved by conjugation by g. ▪
We now return to the subject of Lemma 9 and further

characterize the matrices F appearing on the right-hand

side of Eq. (23). These matrices have one of the following
two block structures:

F ¼
�
FZ 0

0 FX

�
or F ¼

�
0 FX

FZ 0

�
; ðC2Þ

where FZ; FX ∈ GLnðZ2Þ and FX ¼ ðF−1
Z Þt. In what

follows, we denote by FCSS the set of symplectic
matrices introduced in Eq. (C2). The result is that every
CSS Clifford operator induces a pair ðF;xÞ ∈ FCSS × Z2n

2 .
To demonstrate Eq. (C2), note that the conjugation φg of

Eq. (C1) preserves the set of CSS operators XðuÞ and ZðvÞ.
Suppose an operator XðuÞ is sent onto Xðu0Þ and that XðvÞ
is sent onto Zðv0Þ. Then, the image of Xðuþ vÞ is
Xðu0ÞZðv0Þ, which is impossible. Therefore, φg has two
possible structures, either it conserves both sets fXðuÞju ∈
Zn

2g and fZðuÞju ∈ Zn
2g, or it exchanges these two sets.

This proves that the matrix F has one of the following two
block structures:

F ¼
�
FZ 0

0 FX

�
or F ¼

�
0 FX

FZ 0

�
;

where FZ; FX ∈ GLnðZ2Þ. Finally, FZ ¼ ðFt
XÞ−1 is a

consequence of the requirement that the F’s must preserve
the symplectic form.
The knowledge of the structure of the matrix F will now

be useful to determine the phase λðaÞ of the operator
gTag† ¼ λðaÞTFa. Since every character of Z2n

2 is of the
form a↦ ð−1Þ½x;a� for some vector x of Z2n

2 , it suffices to
show that λ is the restriction of such a character to the set
VA. Denote by ðeiÞ2ni¼1 the canonical basis of the space Z

2n
2

and denote by μ the character of Z2n
2 defined by

μðeiÞ ¼ λðeiÞ. To prove that μ ¼ λ on the set VA, it is
enough to show that

(i) If aX ¼ bX ¼ 0 or if aZ ¼ bZ ¼ 0, then we
have λðaþ bÞ ¼ λðaÞλðbÞ.

(ii) If a ¼ ðaZ; aXÞ ∈ VA, then we have λðaÞ ¼
λððaZ; 0ÞÞλðð0; aXÞÞ.

In what follows, we assume that F is block diagonal.
The proof is similar in the antidiagonal case. If
aX ¼ bX ¼ 0, then we have φgðTaþbÞ¼λðaþbÞTFðaþbÞ,
which is also φgðTaTbÞ¼λðaÞλðbÞTðFZaZ;0ÞTðFZbZ;0Þ ¼
λðaÞλðbÞTFðaþbÞ. The equality λðaþ bÞ ¼ λðaÞλðbÞ
follows. The proof of the second implication is
similar.
The above implies that λ coincides with the character μ

on the set VA, which means that λðaÞ ¼ ð−1Þ½x;a� for some
vector x ∈ Z2n

2 .
To illustrate the above with examples, we list the pairs

ðF;xÞ for a few gates g ∈ GCSS of special interest.
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(i) If g ¼⊗i Hi then

F ¼
�

0 In
In 0

�
and x ¼ 0: ðC3Þ

(ii) If g ¼ CNOTði; jÞ, then

F ¼
�
In þ Ei;j 0

0 In þ Ej;i

�
and x ¼ 0: ðC4Þ

The matrix Ei;j denotes the n × n binary matrix
whose only nonzero coefficient is in position ði; jÞ.

(iii) If g ¼ Tu, then

F ¼ In and x ¼ u: ðC5Þ

The fact that the pair ðF;xÞ associated with a Pauli operator
Tu is ð0;uÞ is a direct consequence of the commutation
relations between Pauli operators.
We now return to the subject of Lemma 10 and describe

the image of the map F . It holds that

ImF ¼ fAðF; tÞjF ∈ FCSS; t ∈ Z2n
2 g:

Recall that this application F is well defined by uniqueness
in Lemma 9. The translation vector t and the vector x of
Lemma 9 are related by the equation t ¼ Fx.
In order to determine the image of F , note that we

already know some elements of ImF . Indeed, from
Eq. (C4), all the transformations AðF; 0Þ with

F ¼
�
In þ Ei;j 0

0 In þ Ej;i

�

belong to this subgroup. The matrices In þ Ei;j are called
transvection matrices, and they are known to generate the
group SLnðZ2Þ, which coincides with GLnðZ2Þ. This
implies that ImF contains all the AðF; 0Þ associated with

F ¼
�
M 0

0 ðM−1Þt
�
; ðC6Þ

where M ∈ GLnðZ2Þ.
This means that ImF contains all the block-diagonal

matrices of FCSS. The antidiagonal matrices of FCSS can be
obtained by multiplication with the matrix F of Eq. (C3).
This shows that ImF contains all the affine maps AðF; 0Þ,
with F ∈ FCSS. Finally, to reach AðF; tÞ ¼ Að0; tÞAðF; 0Þ,
note that Að0; tÞ ∈ ImF by Eq. (C5). ▪
Thanks to this group morphism, we obtain a complete

description of the group GCSS. First, we have the group
isomorphism

GCSS=KerF ≃ ImF : ðC7Þ
By construction of F , its kernel is the set of orthogonal
matrices commuting with every matrix, f�I2ng. We have
seen above that ImF is generated by the images of
⊗i Hi;CNOTði; jÞ and Tu. Thus, from the previous iso-
morphism, the groupGCSS is generated by these three types
of operators and by KerðF Þ ¼ f�Ig. This proves the first
part of Lemma 1.
The affine group AGLðZ2Þ is known to be the semidirect

product of the group of translations by the general linear
group. We obtain a similar structure for ImF , which is the
semidirect product of the group of translations Að0; tÞ by
FCSS, implying

ImF ≃ Z2n
2 ⋊FCSS: ðC8Þ

To prove this decomposition, it is sufficient to check that
these two sets are subgroups of ImF , which jointly
generate ImF , and that the subgroup of translations is a
normal subgroup.
By definition, the group FCSS can also be decomposed as

a semidirect product

FCSS ≃ GLnðZ2Þ⋊Z2: ðC9Þ
The set of block-diagonal matrices of FCSS is a subgroup
isomorphic to GLnðZ2Þ, and it is normal since it is a
subgroup of index 2 of FCSS. The second component is the
subgroup of FCSS generated by the matrix F of Eq. (C3) of
order 2, and it is isomorphic to Z2. The second item of
Lemma 1 follows from Eqs. (C7), (C8), and (C9). ▪
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