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We investigate the changes in spin and orbital patterns induced by magnetic transition-metal ions
without an orbital degree of freedom doped in a strongly correlated insulator with spin-orbital order. In this
context, we study the 3d ion substitution in 4d transition-metal oxides in the case of 3d3 doping at either
3d2 or 4d4 sites, which realizes orbital dilution in a Mott insulator. Although we concentrate on this doping
case as it is known experimentally and more challenging than other oxides due to finite spin-orbit coupling,
the conclusions are more general. We derive the effective 3d − 4d (or 3d − 3d) superexchange in a Mott
insulator with different ionic valencies, underlining the emerging structure of the spin-orbital coupling
between the impurity and the host sites, and demonstrate that it is qualitatively different from that
encountered in the host itself. This derivation shows that the interaction between the host and the impurity
depends in a crucial way on the type of doubly occupied t2g orbital. One finds that in some cases, due to the
quench of the orbital degree of freedom at the 3d impurity, the spin and orbital order within the host is
drastically modified by doping. The impurity either acts as a spin defect accompanied by an orbital vacancy
in the spin-orbital structure when the host-impurity coupling is weak or favors doubly occupied active
orbitals (orbital polarons) along the 3d − 4d bond leading to antiferromagnetic or ferromagnetic spin
coupling. This competition between different magnetic couplings leads to quite different ground states. In
particular, for the case of a finite and periodic 3d atom substitution, it leads to striped patterns either with
alternating ferromagnetic or antiferromagnetic domains or with islands of saturated ferromagnetic order.
We find that magnetic frustration and spin degeneracy can be lifted by the quantum orbital flips of the host,
but they are robust in special regions of the incommensurate phase diagram. Orbital quantum fluctuations
modify quantitatively spin-orbital order imposed by superexchange. In contrast, the spin-orbit coupling can
lead to anisotropic spin and orbital patterns along the symmetry directions and cause a radical modification
of the order imposed by the spin-orbital superexchange. Our findings are expected to be of importance for
future theoretical understanding of experimental results for 4d transition-metal oxides doped with 3d3 ions.
We suggest how the local or global changes of the spin-orbital order induced by such impurities could be
detected experimentally.
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I. INTRODUCTION

The studies of strongly correlated electrons in transition-
metal oxides (TMOs) focus traditionally on 3d materials
[1], mainly because of high-temperature superconductivity
discovered in cuprates and more recently in iron pnictides,
and also because of colossal magnetoresistance mangan-
ites. The competition of different and complex types of

order is ubiquitous in strongly correlated TMOsmainly due
to coupled spin-charge orbitals where frustrated exchange
competes with the kinetic energy of charge carriers. The
best-known example is spin-charge competition in cuprates,
where spin, charge, and superconducting orders intertwine
[2] and stripe order emerges in the normal phase as a
compromise between the magnetic and kinetic energy [3,4].
Remarkable evolution of the stripe order under increasing
doping is observed [5] and could be reproduced by the
theory based on the extended Hubbard model [6]. Hole
doping in cuprates corresponds to the removal of the spin
degree of freedom. Similarly, hole doping in the simplest
systemwith the orbital order in thed1 configuration removes
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locally orbital degrees of freedom and generates stripe
phases that involve orbital polarons [7]. It was predicted
recently that orbital domain walls in bilayer manganites
should be partially charged as a result of competition
between orbital-induced strain and Coulomb repulsion
[8], which opens a new route toward charge-orbital physics
in TMOs. We will show below that the stripelike order may
also occur in doped spin-orbital systems. These systems are
very challenging, and their doping leads to very complex and
yet unexplored spin-orbital-charge phenomena [9].
A prerequisite to the phenomena with spin-orbital-

charge-coupled degrees of freedom is the understanding
of undoped systems [10], where the low-energy physics
and spin-orbital order are dictated by effective spin-orbital
superexchange [11–13] and compete with spin-orbital
quantum fluctuations [14–16]. Although ordered states
occur in many cases, the most intriguing are quantum
phases such as spin [17] or orbital [18] liquids. Recent
experiments on a copper oxide Ba3CuSb2O9 [19,20] have
triggered renewed efforts in a fundamental search for a
quantum spin-orbital liquid [21–24], where spin-orbital
order is absent and electron spins are randomly choosing
orbitals which they occupy. A signature of strong quantum
effects in a spin-orbital system is a disordered state that
persists down to very low temperatures. A good example of
such a disordered spin-orbital liquid state is also FeSc2S4,
which does not order in spite of finite Curie-Weiss temper-
ature ΘCW ¼ −45 K [25] but shows instead signatures of
quantum criticality [26,27].
Spin-orbital interactionsmaybe evenmore challenging—

forinstance, previous attempts to find a spin-orbital liquid
in the Kugel-Khomskii model [14] or in LiNiO2 [28] turned
out to be unsuccessful. In fact, in the former case, certain
types of exotic spin order arise as a consequence of
frustrated and entangled spin-orbital interactions [29,30],
and a spin-orbital entangled resonating valence-bond state
was recently shown to be a quantum superposition of
striped spin-singlet covering on a square lattice [31]. In
contrast, spin and orbital superexchange have different
energy scales and orbital interactions in LiNiO2 are much
stronger and dominated by frustration [32]. Hence, the
reasons behind the absence of magnetic long-range order
are more subtle [33]. In all these cases, orbital fluctuations
play a prominent role and spin-orbital entanglement [34]
determines the ground state.
The role of charge carriers in spin-orbital systems is

under very active investigation at present. In doped
La1−xðSr;CaÞxMnO3 manganites, several different types
of magnetic order compete with one another and occur at
increasing hole doping [35–37]. Undoped LaMnO3 is an
antiferromagnetic (AF) Mott insulator, with large S ¼ 2

spins for 3d4 ionic configurations ofMn3þ ions stabilized by
Hund’s exchange, coupled via the spin-orbital superex-
change due to eg and t2g electron excitations [38]. The
orbital eg degree of freedom is removed by hole doping

when Mn3þ ions are generated, and this removal of the
orbital degree of freedom requires careful modeling in the
theory that takes into account both 3d4 and 3d3 electronic
configurations of Mn3þ and Mn4þ ions [39–44]. In fact,
the orbital order changes radically with increasing doping
in La1−xðSr;CaÞxMnO3 systems at the magnetic phase
transitions between different types of magnetic order [37],
as well as at La0.7Ca0.3MnO3=BiFeO3 heterostructures,
where it offers a new route to enhancing multiferroic
functionality [45]. The double-exchange mechanism [46]
triggers the ferromagnetic (FM) metallic phase at sufficient
doping; in this phase, the spin and orbital degrees of freedom
decouple and spin excitations are explained by the orbital
liquid [47,48]. Because of distinct magnetic and kinetic
energy scales, even low doping may suffice for a drastic
change in the magnetic order, as observed in electron-doped
manganites [49].
A rather unique example of a spin-orbital system with

strongly fluctuating orbitals, as predicted in the theory
[50–52] and seen experimentally [53–55], are the perovskite
vanadates with competing spin-orbital order [56]. In these
t2g systems, xy orbitals are filled by one electron and the
orbital order of active fyz; zxg orbitals is strongly influenced
by doping with Ca (Sr) ions that replace the Y (La) ones
in YVO3 (LaVO3). In this case, finite spin-orbit coupling
modifies the spin-orbital phase diagram [57]. In addition, the
AF order switches easily from the G-type AF (G-AF) to
C-type AF (C-AF) order in the presence of charge defects
in Y1−xCaxVO3. Already at low x≃ 0.02 doping, the spin-
orbital order changes and spectral weight is generatedwithin
the Mott-Hubbard gap [58]. Although one might imagine
that the orbital degree of freedom is thereby removed, a
closer inspection shows that this is not the case as the orbitals
are polarized by charge defects [59] and readjust near them
[60]. Removing the orbital degree of freedom in vanadates
would only be possible by electron doping, generating
instead d3 ionic configurations, but such a doping by charge
defects would be very different from the doping by
transition-metal ions of the same valence considered below.
Also, in 4d materials, spin-orbital physics plays a role

[61], as, for instance, in Ca2−xSrxRuO4 systems with Ru4þ

ions in a 4d4 configuration [62–66]. Recently, it has been
shown that unconventional magnetism is possible for Ru4þ
and similar ions where spin-orbit coupling plays a role
[67,68]. Surprisingly, these systems are not similar to
manganites but to vanadates where one also finds ions
with active t2g orbitals. In the case of ruthenates, the t42g
Ru4þ ions have low S ¼ 1 spin as the splitting between the
t2g and eg levels is large. Thus, the undoped Ca2RuO4 is a
hole analogue of a vanadate [50,51], with t2g orbital degrees
of freedom and S ¼ 1 spin per site in both cases. Such
systems give new opportunities to investigate spin-orbital
entangled states in the t2g system, observed recently by
angle-resolved photoemission [69].
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Here, we focus on a novel and very different doping from
all those considered above, namely, on a substitutional
doping by other magnetic ions in a plane built by transition-
metal and oxygen ions, for instance, in the ða; bÞ plane of a
monolayer or in perovskite ruthenates or vanadates. In this
study, we are interested primarily in doping of a TMO with
t2g orbital degrees of freedom, where doped magnetic ions
have no orbital degree of freedom and realize orbital
dilution. In addition, we deal with the simpler case of
3d doped ions where we can neglect spin-orbit interaction,
which should not be ignored for 4d ions. We emphasize that
in contrast to manganites where holes within eg orbitals
participate in transport and are responsible for the colossal
magnetoresistance, such doped holes are immobile due
to the ionic potential at 3d sites and form defects in the
spin-orbital order of a Mott insulator. We encounter here a
different situation from the dilution effects in the 2D eg
orbital system considered so far [70] as we deal with
magnetic ions at doped sites. It is challenging to inves-
tigate how such impurities modify locally or globally the
spin-orbital order of the host.
The doping that realizes this paradigm is by either Mn4þ

or Cr3þ ions with large S ¼ 3=2 spins stabilized by Hund’s
exchange, and orbital dilution occurs either in a TMO with
d2 ionic configuration as in the vanadium perovskites or
in 4d Mott insulators as in ruthenates. It has been shown
that dilute Cr doping for Ru reduces the temperature of
the orthorhombic distortion and induces FM behavior in
Ca2Ru1−xCrxO4 (with 0 < x < 0.13) [71]. It also induces
surprisingly negative volume thermal expansion via spin-
orbital order. Such defects, on one hand, can weaken the
spin-orbital coupling in the host but, on the other hand,
may open a new channel of interaction between the spin
and orbital degrees of freedom through the host-impurity
exchange; see Fig. 1. The consequences of such doping are
yet unexplored and are expected to open a new route in the
research on strongly correlated oxides.
The physical examples for the present theory are the

insulating phases of 3d − 4d hybrid structures, where
doping happens at d4 transition-metal sites, and the value
of the spin is locally changed from S ¼ 1 to S ¼ 3=2. As a
demonstration of the highly nontrivial physics emerging in
3d − 4d oxides, remarkable effects have already been
observed, for instance, when Ru ions are replaced by
Mn, Ti, Cr, or other 3d elements. The role of Mn doping in
the SrRuO Ruddlesden-Popper series is strongly linked to
the dimensionality through the number n of RuO2 layers
in the unit cell. The Mn doping of the SrRuO3 cubic
member drives the system from the itinerant FM state to
an insulating AF configuration in a continuous way via a
possible unconventional quantum phase transition [72].
Doping by Mn ions in Sr3Ru2O7 leads to a metal-to-
insulator transition and AF long-range order for more than
5% Mn concentration [73]. Subtle orbital rearrangement
can occur at the Mn site, as, for instance, the inversion of

the crystal field in the eg sector observed via x-ray
absorption spectroscopy [74]. Neutron-scattering studies
indicate the occurrence of an unusual E-type antiferromag-
netism in doped systems (planar order with FM zigzag
chains with AF order between them) with moments aligned
along the c axis within a single bilayer [75].
Furthermore, themoreextended4dorbitalswouldapriori

suggest a weaker correlation than in 3d TMOs due to a
reduced ratio between the intra-atomic Coulomb interaction
and the electron bandwidth. Nevertheless, the (effective) d
bandwidth is reduced by the changes in the 3d-2p-3d bond
angles in distorted structures that typically arise in these
materials, bringing them on the verge of a metal-insulator
transition [76] or even into the Mott-insulating state
with spin-orbital order; see Fig. 2. Hence, not only do
4d materials share common features with 3d systems, but

FIG. 1. (a) Schematic view of the orbital dilution when the 3d3

ion with no orbital degree of freedom and spin S ¼ 3=2
substitutes the 4d4 one with spin S ¼ 1 on a bond having specific
spin and orbital character in the host (gray arrows). Spins are
shown by red arrows, and doubly occupied t2g orbitals (doublons)
are shown by green symbols for the a and c orbitals, respectively.
(b) If an inactive orbital along the bond is removed by doping, the
total spin exchange is AF. (c) On the contrary, active orbitals at
the host site can lead to either FM (top) or AF (bottom) exchange
coupling, depending on the energy-level mismatch and difference
in the Coulomb couplings between the impurity and the host. We
show the case when the host site is unchanged in the doping
process.
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they are also richer due to their sensitivity to the lattice
structure and to relativistic effects due to larger spin-orbit
[77] or other magnetocrystalline couplings.
To simplify the analysis, we assume that on-site

Coulomb interactions are so strong that charge degrees
of freedom are projected out, and only virtual charge
transfer can occur between 3d and 4d ions via the oxygen
ligands. For convenience, we define the orbital degree of
freedom as a doublon (double occupancy) in the t42g
configuration. The above 3d doping then leads effectively
to the removal of a doublon in one of the t2g orbitals which
we label as fa; b; cg (this notation is introduced in Ref. [16]
and explained below) and to replacing it by a t32g ion. To our
knowledge, this is the only example of removing the orbital
degree of freedom in the t2g manifold realized so far, and
below, we investigate possible consequences of this
phenomenon. Another possibility of orbital dilution that
awaits experimental realization would occur when a t2g
degree of freedom is removed by replacing a d2 ion by a d3

one, as, for instance, by Cr3þ doping in a vanadate—here, a
doublon is an empty t2g orbital, i.e., filled by two holes.
Before presenting the details of the quantitative analysis,

let us concentrate on the main idea of the superexchange
modified by doping in a spin-orbital system. The d3 ions
have singly occupied all three t2g orbitals and S ¼ 3=2
spins due to Hund’s exchange. While a pair of d3 ions, e.g.,
in SrMnO3, is coupled by AF superexchange [48], the
superexchange for the d3 − d4 bond has a rather rich
structure and may also be FM. The spin exchange depends,
then, on whether the orbital degree of freedom is active and
participates in charge excitations along a considered bond,
or electrons of the doublon cannot move along this bond
due to the symmetry of the t2g orbital, as explained in
Fig. 1. This qualitative difference to systems without active
orbital degrees of freedom is investigated in detail in Sec. II.

The main outcomes of our analysis are (i) the determi-
nation of the effective spin-orbital exchange Hamiltonian
describing the low-energy sector for the 3d − 4d hybrid
structure, (ii) establishing that a 3d3 impurity without an
orbital degree of freedom modifies the orbital order in the
4d4 host, (iii) providing the detailed way how the micro-
scopic spin-orbital order within the 4d4 host is modified
around the 3d3 impurity, and (iv) suggesting possible spin-
orbital patterns that arise due to periodic and finite sub-
stitution (doping) of 4d atoms in the host by 3d ones. The
emerging physical scenario is that the 3d impurity acts as
an orbital vacancy when the host-impurity coupling is weak
and as an orbital polarizer of the bond’s active t2g doublon
configurations when it is strongly coupled to the host. The
tendency to polarize the host orbitals around the impurity
turns out to be robust and independent of spin configura-
tion. Otherwise, it is the resulting orbital arrangement
around the impurity and the strength of Hund’s coupling
at the impurity that set the character of the host-impurity
magnetic exchange.
The remainder of the paper is organized as follows. In

Sec. II, we introduce the effective model describing the
spin-orbital superexchange at the 3d − 4d bonds, which
serves to investigate the changes of spin and orbital order
around individual impurities and at finite doping. We arrive
at a rather general formulation that emphasizes the impurity
orbital degree of freedom, being a doublon, and present
some technical details of the derivation in Appendix A.
The strategy we adopt is to analyze first the ground-state
properties of a single 3d3 impurity surrounded by 4d4

atoms by investigating how the spin-orbital pattern in the
host may be modified at the nearest-neighbor (NN) sites to
the 3d atom. This study is performed for different spin-
orbital patterns of the 4d host with special emphasis on the
alternating FM chains (C-AF order) which coexist with
G-type alternating orbital (G-AO) order; see Fig. 2. We
address the impurity problem within the classical approxi-
mation in Sec. III A. As explained in Sec. III B, there are
two nonequivalent cases that depend on the precise
modification of the orbital order by the 3d impurity, doped
either to replace a doublon in the a orbital (Sec. III C) or the
one in the c orbital (Sec. III D).
Starting from the single-impurity solution, we next

address periodic arrangements of 3d atoms at different
concentrations. We demonstrate that the spin-orbital order
in the host can be radically changed by the presence of
impurities, leading to striped patterns with alternating FM
or AF domains and islands of fully FM states. In Sec. IVA,
we consider the modifications of spin-orbital order that
arise at periodic doping with macroscopic concentration.
Here, we limit ourselves to two representative cases:
(i) commensurate x ¼ 1=8 doping in Sec. IV B and (ii) two
doping levels x ¼ 1=5 and x ¼ 1=9 being incommensurate
with underlying two-sublattice order (Fig. 2), which
implies simultaneous doping at two sublattices, i.e., at

a

b

FIG. 2. Schematic view of C-AF spin order coexisting with
G-AO orbital order in the ða; bÞ plane of an undoped Mott
insulator with 4d4 ionic configurations. Spins are shown by
arrows, while doubly occupied xy and yz orbitals (c and a
doublons; see the text) form a checkerboard pattern. Equivalent
spin-orbital order is realized for V3þ ions in the ðb; cÞ planes of
LaVO3 [56], with orbitals standing for empty orbitals (holes).
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both the a- and c-doublon sites, as presented in Secs. IV C
and IV D. Finally, in Sec. VA, we investigate the mod-
ifications of the classical phase diagram induced by
quantum fluctuations, and in Secs. V B and V C, we
discuss representative results obtained for finite spin-orbit
coupling. (Calculation details of the treatment of spin-orbit
interaction are presented in Appendix B.) The paper is
concluded by a general discussion of possible emerging
scenarios for the 3d3 impurities in a 4d4 host, a summary of
the main results, and the perspective of future experimental
investigations of orbital dilution in Sec. VI.

II. THE SPIN-ORBITAL MODEL

In this section, we consider a 3d impurity in a strongly
correlated 4d TMO and derive the effective 3d3 − 4d4

spin-orbital superexchange. It follows from the coupling
between 3d and 4d orbitals via oxygen 2p orbitals due to
the p − d hybridization. In a strongly correlated system,
it suffices to concentrate on a pair of atoms forming a
bond hiji, as the effective interactions are generated by
charge excitations d4i d

4
j ⇋ d5i d

3
j along a single bond [12].

In the reference 4d host, both atoms on the bond hiji are
equivalent and one considers

Hði; jÞ ¼ Htði; jÞ þHintðiÞ þHintðjÞ: ð1Þ

The Coulomb interaction HintðiÞ is local at site i, and we
describe it by the degenerate Hubbard model [78];
see below.
We implement a strict rule that the hopping within the t2g

sector is allowed in a TMO only between two neighboring
orbitals of the same symmetry that are active along
the bond direction [15,79,80] and neglect the interorbital
processes originating from the octahedral distortions
such as rotation or tilting. Indeed, in ideal undistorted
(perovskite or square lattice) geometry, the orbital flavor is
conserved as long as the spin-orbit coupling may be
neglected. The interorbital hopping elements are smaller
by at least 1 order of magnitude and may be treated as
corrections in cases where distortions play a role to the
overall scenario established below.
The kinetic energy for a representative 3d-2p-4d bond,

i.e., after projecting out the oxygen degrees of freedom, is
given by the hopping in the host ∝ th between sites i and j

Htði; jÞ ¼ −th
X
μðγÞ;σ

ðd†iμσdjμσ þ d†jμσdiμσÞ: ð2Þ

Here, d†iμσ are the electron-creation operators at site i in the
spin-orbital state ðμσÞ. The bond hiji points along one of
the two crystallographic directions γ ¼ a; b in the two-
dimensional (2D) square lattice. Without distortions, only
two out of three t2g orbitals are active along each bond hiji
and contribute to Htði; jÞ, while the third orbital lies in

the plane perpendicular to the γ axis and thus the hopping
via oxygen is forbidden by symmetry. The symmetry of
the t2g connectivity motivates a convenient notation as
follows [15]:

jai≡ jyzi; jbi≡ jxzi; jci≡ jxyi; ð3Þ

with the t2g orbital inactive along a given direction
γ ∈ fa; b; cg labeled by the index γ. We consider a
2D square lattice with transition-metal ions connected via
oxygen orbitals as in a RuO2 ða; bÞ plane of Ca2RuO4

(SrRuO3). In this case, jai (jbi) orbitals are active along
the b (a) axis, while jci orbitals are active along both the
a and b axes.
To derive the superexchange in a Mott insulator, it is

sufficient to consider a bond that connects nearest-neighbor
sites hiji≡ h12i. Below, we consider a bond between an
impurity site i ¼ 1 occupied by a 3d ion and a neighboring
host 4d ion at site j ¼ 2. The Hamiltonian for this bond can
be then expressed in the following form:

Hð1; 2Þ ¼ Htð1; 2Þ þHintð1Þ þHintð2Þ þHionð2Þ: ð4Þ

The total Hamiltonian contains the kinetic energy term
Htð1; 2Þ describing the electron-charge transfer via
oxygen orbitals, the on-site interaction terms HintðmÞ
for the 3d ð4dÞ ion at site m ¼ 1, 2, and the local potential
of the 4d atom Hionð2Þ, which takes into account the
mismatch of the energy-level structure between the two
(4d and 3d) atomic species and prevents valence fluctua-
tions when the host is doped, even in the absence of local
Coulomb interaction.
The kinetic energy in Eq. (4) is given by

Htð1; 2Þ ¼ −tX
μðγÞ;σ

ðd†1μσd2μσ þ d†2μσd1μσÞ; ð5Þ

where d†mμσ is the electron-creation operator at sitem ¼ 1, 2
in the spin-orbital state ðμσÞ. The bond h12i points along
one of the two crystallographic directions γ ¼ a; b, and
again the orbital flavor is conserved [15,79,80].
The Coulomb interaction on an atom at site m ¼ 1, 2

depends on two parameters [78]: (i) intraorbital Coulomb
repulsion Um and (ii) Hund’s exchange JHm. The label m
stands for the ion and distinguishes between these terms at
the 3d and 4d ions, respectively. The interaction is
expressed in the form

HintðmÞ ¼ Um

X
μ

nmμ↑nmμ↓ − 2JHm
X
μ<ν

~Smμ · ~Smν

þ
�
Um − 5

2
JHm

�X
μ<ν
σσ0

nmμσnmνσ0

þ JHm
X
μ≠ν

d†mμ↑d
†
mμ↓dmν↓dmν↑: ð6Þ
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The terms standing in the first line of Eq. (6) contribute to
the magnetic instabilities in the degenerate Hubbard model
[78] and decide about spin order, both in an itinerant system
and in a Mott insulator. The remaining terms contribute to
the multiplet structure and are of importance for the correct
derivation of the superexchange that follows from charge
excitations; see below.
Finally, we include a local potential on the 4d atom that

encodes the energy mismatch between the host and the
impurity orbitals close to the Fermi level and prevents
valence fluctuations on the 4d ion due to the 3d doping.
This term has the following general structure:

Hionð2Þ ¼ Ie2
�
4 −X

μ;σ
n2μσ

�
2
; ð7Þ

with μ ¼ a; b; c.
The effective Hamiltonian for the low-energy processes

is derived fromHð1; 2Þ (4) by a second-order expansion for
charge excitations generated by Htð1; 2Þ and treating the
remaining part of Hð1; 2Þ as an unperturbed Hamiltonian.
We are basically interested in virtual charge excitations in
the manifold of degenerate ground states of a pair of 3d
and 4d atoms on a bond; see Fig. 3. These quantum states
are labeled as fek1g with k ¼ 1;…; 4 and fep2g with
p ¼ 1;…; 9, and their number follows from the solution
of the on-site quantum problem for the HamiltonianHintðiÞ.
For the 3d atom, the relevant states can be classified
according to the four components of the total spin
S1 ¼ 3=2 for the 3d impurity atom at site m ¼ 1 and the
three components of S2 ¼ 1 spin for the 4d host atom at
site m ¼ 2, and for the three different positions of the
double occupied orbital (doublon). Thus, the effective

Hamiltonian will contain spin products ð~S1 · ~S2Þ between
spin operators defined as

~Sm ¼ 1

2

X
γ

d†mγα~σαβdmγβ ð8Þ

for m ¼ 1, 2 sites and the operator of the doublon position
at site m ¼ 2

DðγÞ
2 ¼ ðd†2γ↑d2γ↑Þðd†2γ↓d2γ↓Þ: ð9Þ

The doublon operator identifies the orbital γ within the t2g
manifold of the 4d ion with a double occupancy (occupied
by the doublon) and stands in what follows for the orbital
degree of freedom. It is worth noting that the hopping (5)
does not change the orbital flavor; thus, we expect that the
resulting Hamiltonian is diagonal in the orbital degrees of

freedom with only DðγÞ
2 operators.

Following the standard second-order perturbation expan-
sion for spin-orbital systems [12], we can write the matrix
elements of the low-energy exchange Hamiltonian

HðγÞ
J ði; jÞ for a bond h12i∥γ along the γ axis as follows:

hek1; el2jHðγÞ
J ð1; 2Þjek01 ; el

0
2i

¼ −X
n1;n2

1

εn1 þ εn2

× hek1; el2jHtð1; 2Þjn1; n2i × hn1; n2jHtð1; 2Þjek01 ; el
0
2i;
ð10Þ

with εnm ¼ En;m − E0;m being the excitation energies for
atoms at site m ¼ 1, 2 with respect to the unperturbed

ground state. The superexchange Hamiltonian HðγÞ
J ð1; 2Þ

for a bond along γ can be expressed in a matrix form by a
36 × 36 matrix, with dependence on Um, JHm, and Ie
elements. There are two types of charge excitations:
(i) the d31d

4
2 ⇋ d41d

3
2 one, which creates a doublon at the

3d impurity, and (ii) the d31d
4
2 ⇋ d21d

5
2 one, which adds

another doublon at the 4d host site in the intermediate state.
The second type of excitations involves more doubly
occupied orbitals and has much larger excitation energy.
It is therefore only a small correction to the leading term (i),
as we discuss in Appendix A.
Similarly to the case of doped manganites [48],

the dominant contribution to the effective low-energy
spin-orbital Hamiltonian for the 3d − 4d bond stems from
the d31d

4
2 ⇋ d41d

3
2 charge excitations, as they do not involve

an extra double occupancy and the Coulomb energy U2.
The 3d314d

4
2 ⇋ 3d414d

3
2 charge excitations can be analyzed

in a similar way as the 3d3i 3d
4
j ⇋ 3d4i 3d

3
j ones for an hiji

bond in doped manganites [48]. In both cases, the total
number of doubly occupied orbitals does not change, so the
main contributions come due to Hund’s exchange. In the
present case, one more parameter plays a role:

Site 1 Site 2

FIG. 3. Schematic representation of one configuration belong-
ing to the manifold of 36 degenerate ground states for a
representative 3d − 4d bond as given by the local Coulomb
Hamiltonian HintðmÞ (6) with m ¼ 1, 2. The dominant exchange
processes considered here are those that move one of the four
electrons on the 4d atom to the 3d neighbor and back. The
stability of the 3d3-4d4 charge configurations is provided by the
local potential energy Ie2; see Eq. (7).
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Δ ¼ Ie þ 3ðU1 −U2Þ − 4ðJH1 − JH2 Þ; ð11Þ

which stands for the mismatch potential energy (7) renor-
malized by the on-site Coulomb interactions fUmg and by
Hund’s exchange fJHmg. On a general ground, we expect Δ
to be a positive quantity, since the repulsion Um should be
larger for smaller 3d shells than for the 4d ones and Um is
the largest energy scale in the problem.
Let us have a closer view on this dominant contribution

of the effective low-energy spin-orbital Hamiltonian for
the 3d − 4d bond, given by Eq. (A2). For the analysis
performed below and the clarity of our presentation, it is
convenient to introduce some scaled parameters related to
the interactions within the host and between the host and
the impurity. For this purpose, we employ the exchange
couplings Jimp and Jhost,

Jimp ¼
t2

4Δ
; ð12Þ

Jhost ¼
4t2h
U2

; ð13Þ

which follow from the virtual charge excitations generated
by the kinetic energy; see Eqs. (2) and (5). We use their
ratio to investigate the influence of the impurity on the spin-
orbital order in the host. Here, th is the hopping amplitude
between two t2g orbitals at NN 4d atoms, JH2 and U2 refer
to the host, and Δ (11) is the renormalized ionization
energy of the 3d − 4d bonds. The results depend as well on
Hund’s exchange element for the impurity and on the one
at host atoms

ηimp ¼
JH1
Δ

; ð14Þ

ηhost ¼
JH2
U2

: ð15Þ

Note that the ratio introduced for the impurity ηimp (14)
has here a different meaning from Hund’s exchange used
here for the host ηhost (15), which cannot be too large by
construction, i.e., ηhost < 1=3.
With the parametrization introduced above, the dominant

term in the impurity-host Hamiltonian for the impurity spin
~Si interacting with the neighboring host spins f~Sjg at

j ∈ N ðiÞ, deduced from HðγÞ
3d−4dð1; 2Þ Eq. (A2), can be

written in a rather compact form as follows:

H3d−4dðiÞ≃
X

γ;j∈N ðiÞ
fJSðDðγÞ

j Þð~Si · ~SjÞ þ EDD
ðγÞ
j g; ð16Þ

where the orbital- (doublon-) dependent spin couplings

JSðDðγÞ
j Þ and the doublon energy ED depend on ηimp.

The evolution of the exchange couplings is shown in

Fig. 4. We note that the dominant energy scale is Eγ
D, so

for a single 3d − 4d bond, the doublon will avoid occupy-
ing the inactive (γ) orbital and the spins will couple with

JSðDðγÞ
j ¼ 0Þ, which can be either AF if ηimp ≲ 0.43 or FM

if ηimp > 0.43. Thus, the spins at ηimp ¼ ηcimp ≃ 0.43 will

decouple according to the HðγÞ
J ði; jÞ exchange.

Let us conclude this section by writing the complete
superexchange Hamiltonian

H ¼ H3d−4d þH4d−4d þHSO; ð17Þ

where H3d−4d ≡P
iH3d−4dðiÞ includes all the 3d − 4d

bonds around impurities, H4d−4d stands for the effective
spin-orbital Hamiltonian for the 4d host bonds, and HSO is
the spin-orbit interaction in the host. The former term we
explain below, while the latter one is defined in Sec. V B,
where we analyze the quantum corrections and the conse-
quences of spin-orbit interaction. The superexchange in the
host for the bonds hiji along the γ ¼ a; b axes [81]

H4d−4d ¼ Jhost
X
hiji∥γ

fJðγÞij ð~Si · ~Sj þ 1Þ þ KðγÞ
ij g ð18Þ

depends on JðγÞij and KðγÞ
ij operators acting only in the orbital

space. They are expressed in terms of the pseudospin
operators defined in the orbital subspace spanned by the
two orbital flavors active along a given direction γ, i.e.,

JðγÞij ¼ 1

2
ð2r1 þ 1Þð~τi · ~τjÞðγÞ − 1

2
r2ðτzi τzjÞðγÞ

þ 1

8
ðninjÞðγÞð2r1 − r2 þ 1Þ − 1

4
r1ðni þ njÞðγÞ;

ð19Þ

FIG. 4. Evolution of the spin exchange JSðDðγÞ
2 Þ and the

doublon energy ED, both given in Eq. (16) for increasing Hund’s
exchange ηimp at the impurity.
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KðγÞ
ij ¼ r1ð~τi · ~τjÞðγÞ − r2ðτzi τzjÞðγÞ þ

1

4
ðr1 þ r2ÞðninjÞðγÞ

− 1

4
ðr1 þ 1Þðni þ njÞðγÞ; ð20Þ

with

r1 ¼
ηhost

1 − 3ηhost
; r2 ¼

ηhost
1þ 2ηhost

; ð21Þ

standing for the multiplet structure in charge excitations,

and the orbital operators f~τðγÞi ; nðγÞi g that for the γ ¼ c axis
take the form

~τðcÞi ¼ 1

2
ð a†i b†i Þ · ~σ · ð ai bi ÞT; ð22Þ

nðcÞi ¼ a†i ai þ b†i bi: ð23Þ

For the directions γ ¼ a; b in the considered ða; bÞ plane,
one finds equivalent expressions by cyclic permutation of
the axis labels fa; b; cg in the above formulas. This
problem is isomorphic with the spin-orbital superexchange
in the vanadium perovskites [50,51], where a hole in
the fa; bg doublet plays an equivalent role to the doublon
in the present case. The operators fa†i ; b†i ; c†i g are the
doublon- (hard-core boson-) creation operators in the
orbital γ ¼ a; b; c, respectively, and they satisfy the local
constraint

a†i ai þ b†i bi þ c†i ci ¼ 1; ð24Þ

meaning that exactly one doublon (9) occupies one of the
three t2g orbitals at each site i. These bosonic occupation
operators coincide with the previously used doublon

occupation operators DðγÞ
j , i.e., DðγÞ

j ¼ γ†jγj with γ¼ a;b;c.
Below, we follow first the classical procedure to determine
the ground states of single impurities in Sec. III and at
macroscopic doping in Sec IV.

III. SINGLE 3d IMPURITY IN 4d HOST

A. Classical treatment of the impurity problem

In this section, we describe the methodology that we
applied for the determination of the phase diagrams for a
single impurity reported below in Sec. III C and next at
macroscopic doping, as presented in Sec. IV. Let us
consider first the case of a single 3d impurity in the 4d
host. Since the interactions in the model Hamiltonian are
only effective ones between NN sites, it is sufficient to
study the modification of the spin-orbital order around the
impurity for a given spin-orbital configuration of the host
by investigating a cluster of L ¼ 13 sites shown in Fig. 5.
We assume the C-AF spin order (FM chains coupled
antiferromagnetically) accompanied by G-AO order within

the host, which is the spin-orbital order occurring for the
realistic parameters of a RuO2 plane [81]; see Fig. 2. Such a
spin-orbital pattern turns out to be the most relevant one
when considering the competition between the host and the
impurity as due to the AO order within the ða; bÞ plane.
Other possible configurations with uniform orbital order
and AF spin pattern, e.g., G-AF order, will also be
considered in the discussion throughout the manuscript.
The sites i ¼ 1; 2; 3; 4 inside the cluster in Fig. 5 have
active spin and orbital degrees of freedom, while the
impurity at site i ¼ 0 has only spin degrees of freedom.
At the remaining sites, the spin-orbital configuration is
assigned, following the order in the host, and it does not
change along the computation.
To determine the ground state, we assume that the spin-

orbital degrees of freedom are treated as classical variables.
This approximation implies that for the bonds between
atoms in the host, we use the Hamiltonian (18) and neglect
quantum fluctuations; i.e., in the spin sector, we keep only
the zth (Ising) spin components and in the orbital one only
the terms that are proportional to the doublon occupation
numbers (9) and to the identity operators. Similarly, for the
impurity-host bonds, we use the Hamiltonian Eq. (16) by
keeping only the zth projections of spin operators. Since we
do neglect the fluctuation of the spin amplitude, it is enough
to consider only the maximal and minimal values of hSzi i for
spin S ¼ 3=2 at the impurity sites and S ¼ 1 at the host
atoms. With these assumptions, we can construct all the
possible configurations by varying the spin and orbital
configurations at the sites from i ¼ 1 to i ¼ 4 in the cluster
shown in Fig. 5. Note that the outer ions in the cluster all

FIG. 5. Schematic top view of the cluster used to obtain the
phase diagrams of the 3d impurity within the 4d host in an ða; bÞ
plane. The impurity is at the central site i ¼ 0 that belongs to the
c-orbital host sublattice. For the outer sites in this cluster, the
spin-orbital configuration is fixed and determined by the undoped
4d host (with spins and c orbitals shown here) having C-AF or
G-AO order; see Fig. 2. For the central i ¼ 0 site, the spin state,
and for the host sites i ¼ 1;…; 4, the spin-orbital configurations
are determined by minimizing the energy of the cluster.
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belong to the same sublattice, so two distinct cases have to be
considered to probe all the configurations. Since physically
it is unlikely that a single impurity will change the orbital
order of the host globally, thus we will not compare the
energies from these two cases and analyze two classes of
solutions separately; see Sec. III B. Then, the lowest energy
configuration in each class provides the optimal spin-orbital
pattern for the NNs around the 3d impurity. In the case of
degenerate classical states, the spin-orbital order is estab-
lished by including quantum fluctuations.
In the case of a periodic doping analyzed in Sec. IV, we

use a similar strategy in the computation. Taking the most
general formulation, we employ larger clusters having both
size and shape that depend on the impurity distribution and
on the spin-orbital order in the host. For this purpose, the
most natural choice is to search for the minimum energy
configuration in the elementary unit cell that can reproduce
the full lattice by a suitable choice of the translation vectors.
Such analysis is computationally expensive but doable for a
periodic distribution of the impurities that is commensurate
to the lattice because it yields a unit cell of relatively small
size for doping around x ¼ 0.1. Otherwise, for the incom-
mensurate doping, the size of the unit cell can lead to a
configuration space of a dimension that impedes finding of
the ground state. This problem is computationally more
demanding, and to avoid the comparison of all the energy
configurations, we have employed the Metropolis algo-
rithm at low temperature to achieve the optimal configu-
ration iteratively along the convergence process. Note that
this approach is fully classical, meaning that the spins of the
host and impurity are treated as Ising variables and the
orbital fluctuations in the host’s Hamiltonian Eq. (18) are
omitted. They will be addressed in Sec. VA.

B. Two nonequivalent 3d doping cases

The single-impurity problem is the key case to start with
because it shows how the short-range spin-orbital correla-
tions are modified around the 3d atom due to the host and
host-impurity interactions in Eq. (17). The analysis is
performed by fixing the strength between Hund’s exchange
and Coulomb interaction within the host (6) at ηhost ¼ 0.1,
and by allowing for a variation of the ratio between the
host-impurity interaction (16) and the Coulomb coupling at
the impurity site. The choice of ηhost ¼ 0.1 is made here
because this value is within the physically relevant range
for the case of the ruthenium materials. Small variations of
ηhost do not affect the obtained results qualitatively.
As we have already discussed in the model derivation,

the sign of the magnetic exchange between the impurity
and the host depends on the orbital occupation of the 4d
doublon around the 3d impurity. The main aspect that
controls the resulting magnetic configuration is then given
by the character of the doublon orbitals around the
impurity, depending on whether they are active or inactive
along the considered 3d − 4d bond. To explore such a

competition quantitatively, we investigate G-AO order for
the host with alternation of a- and c-doublon configurations
accompanied by theC-AF spin pattern; see Fig. 2. Note that
the a orbitals are active only along the b axis, while the
c orbitals are active along both the a and b axes [80]. This
state has the lowest energy for the host in a wide range of
parameters for Hund’s exchange, the Coulomb element,
and the crystal-field potential [81].
Because of the specific orbital pattern of Fig. 2, the 3d

impurity can substitute one of two distinct 4d sites that are
considered separately below, either with the a or with the
c orbital occupied by the doublon. Since the two 4d atoms
have nonequivalent surrounding orbitals, not always active
along the 3d − 4d bond, we expect that the resulting ground
statewill have amodified spin-orbital order. Indeed, if the 3d
atom replaces the 4d one with the doublon in the a orbital,
then all the 4d neighboring sites have active doublons along
the connecting 3d − 4d bonds because they are in the
c orbitals. On the contrary, the substitution at the 4d site
with c-orbital doublon configuration leads to an impurity
state with its neighbors having both active and inactive
doublons. Therefore, we do expect a more intricate com-
petition with frustrated host-impurity interactions for the
latter case of an impurity occupying the 4d sitewith c-orbital
configuration, as we show in Sec. III D.

C. Doping removing a doublon in an a orbital

We start by considering the physical situation where the
3d impurity replaces a 4d ion with the doublon within the a
orbital. The ground-state phase diagram and the schematic
view of the spin-orbital pattern are reported in Fig. 6 in
terms of the ratio Jimp=Jhost (14) and the strength of Hund’s
exchange coupling ηimp (12) at the 3d site. There are three
different ground states that appear in the phase diagram.
Taking into account the structure of the 3d − 4d spin-
orbital exchange (16), we expect that, in the regime where
the host-impurity interaction is greater than that in the host,
the 4d neighbors to the impurity tend to favor the spin-
orbital configuration set by the 3d − 4d exchange. In this
case, since the orbitals surrounding the 3d site already
minimize the 3d − 4d Hamiltonian, we expect that the
optimal spin configuration corresponds to the 4d spins
aligned either antiferromagnetically or ferromagnetically
with respect to the impurity 3d spin.
The neighbor spins are AF to the 3d spin impurity in the

AFa phase, while the FMa phase is just obtained from AFa
by reversing the spin at the impurity and having all the
3d − 4d bonds FM. It is interesting to note that due to the
host-impurity interaction, the C-AF spin pattern of the host
is modified in both the AFa and the FMa ground states.
Another intermediate configuration that emerges when the
host-impurity exchange is weak is the intermediate frus-
trated spin at a site (FSa) phase where the impurity spin is
undetermined and its configuration in the initialC-AF phase
is degenerate with the one obtained after the spin-inversion
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operation. This FSa phase realizes a singular physical
situation because the impurity does not select a specific
direction even if the surrounding host has a given spin-
orbital configuration. Such a degeneracy is clearly verified at
the critical point ηcimp ≃ 0.43 where the amplitude of the
3d − 4d coupling vanishes when the doublon occupies the
active orbital. Interestingly, such a degenerate configuration
is also obtained at Jimp=Jhost < 1 when the host dominates
and the spin configurations at the 4d sites around the
impurity are basically determined by Jhost. In this case,
due to theC-AF spin order, twobonds are always FMand the
other two always have AF order, independently of the spin

orientation at the 3d impurity, thus implying that both FM
andAF couplings along the 3d − 4d bonds perfectly balance
each other, which results in the degenerate FSa phase.
It is worth pointing out that there is a quite large region of

the phase diagram where the FSa state is stabilized and the
spin-orbital order of the host is not affected by doping with
the possibility of having large degeneracy in the spin
configuration of the impurities. On the other hand, by
inspecting the c orbitals around the impurity (Fig. 6) from
the point of view of the full host’s Hamiltonian Eq. (18) with
orbital flips included ðτγþi τγ−j þ H:c:Þ, one can easily find
out that the frustration of the impurity spin can be released
by quantum orbital fluctuations. Note that the c orbitals
around the impurity in thea (b) direction have quite different
surroundings. The ones along the a axis are connected
by two active bonds along the b axis with orbitals a, as in
Fig. 7(a), while the ones alongb are connectedwith only one
active a orbital along the same b axis. Therefore in the
perturbative expansion, the orbital flips will contribute only
along the b bonds (for the present G-AO order) and admix
the a-orbital character to c orbitals along them, while such
processes will be blocked for the bonds along the a axis, as
also for b orbitals along the b axis; see Fig. 7(b).
This fundamental difference can easily be included in

the host-impurity bond in the mean-field manner by
setting hDi�b;γi ¼ 0 for the bonds along the b axis and
0 < hDi�a;γi < 1 for the bonds along the a axis. Then, one
can easily check that for the impurity spin pointing
downward, we get the energy contribution from the
spin-spin bonds, which is given by E↓ ¼ αðηhostÞhDi�a;γi,
and for the impurity spin pointing upward, we have
E↑ ¼ −αðηhostÞhDi�a;γi, with αðηhostÞ > 0. Thus, it is clear
that any admixture of the virtual orbital flips in the host’s
wave function polarizes the impurity spin upward so that
the C-AF order of the host will be restored.

D. Doping removing a doublon in a c orbital

Let us move to the case of the 3d atom replacing the
doublon at the c orbital. As anticipated above, this
configuration is more intricate because the orbitals sur-
rounding the impurity, as originated by the C-AF or AO
order within the host, lead to nonequivalent 3d − 4d bonds.

FIG. 6. Top: Phase diagram of the 3d impurity in the ða; bÞ
plane with the C-AF or G-AO order in the 4d host for the
impurity doped at the sublattice with an a-orbital doublon.
Different colors refer to local spin order around the impurity
(AF and FM), while FS indicates the intermediate regime of
frustrated impurity spin. Bottom: Schematic view of spin-orbital
patterns for the ground-state configurations shown in the top
panel. The 3d atom is at the central site; the dotted frame
highlights the 4d sites where the impurity induces a a spin
reversal. In the FSa phase, the question mark stands for the
frustrated impurity spin within the classical approach, but
frustration is released by the quantum fluctuations of the NN
c orbitals in the a direction, resulting in small AF couplings along
the a axis, and spins obey the C-AF order (small arrow). The
labels FMa and AFa refer to the local spin order around the 3d
impurity site with respect to the host—these states differ by spin
inversion at the 3d atom site.

Orbital Orbital

FlipFlip

FIG. 7. Schematic view of the two types of orbital bonds found
in the 4d host: (a) an active bond with respect to orbital flips
ðτγþi τγ−j þ H:c:Þ and (b) an inactive bond where orbital fluctua-
tions are blocked by the orbital symmetry—here, the orbitals are
static and only Ising terms contribute to the ground-state energy.
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There are two bonds with the doublon occupying an
inactive orbital (and having no hybridization with the t2g
orbitals at the 3d atom) and two remaining bonds with
doublons in active t2g orbitals.
Since the 3d − 4d spin-orbital exchange depends on the

orbital polarization of 4d sites, we do expect a competition
that may modify significantly the spin-orbital correlations
in the host. Indeed, one observes that three configurations
compete, denoted as AF1c, AF2c, and FMc; see Fig. 8.
In the regime where the host-impurity exchange dominates,
the system tends to minimize the energy due to the
3d − 4d spin-orbital coupling, and thus, the orbitals
become polarized in the active configurations compatible
with the C-AF or G-AO pattern, and the host-impurity spin
coupling is AF for ηimp ≤ 0.43 while it is FM otherwise.
This region resembles orbital polarons in doped manganites
[39,42]. Also, in this case, the orbital polarons arise
because they minimize the double-exchange energy [46].

On the contrary, for weak spin-orbital coupling between
the impurity and the host, there is an interesting cooperation
between the 3d and 4d atoms. Since the strength of the
impurity-host coupling is not sufficient to polarize the
orbitals at the 4d sites, it is preferable to have an orbital
rearrangement to the configuration with inactive orbitals on
3d − 4d bonds and spin flips at 4d sites. In this way, the
spin-orbital exchange is optimized in the host and also on
the 3d − 4d bonds. The resulting state has an AF coupling
between the host and the impurity as it should when all the
orbitals surrounding the 3d atoms are inactive with respect
to the bond direction. This modification of the orbital
configuration induces the change in spin orientation. The
double-exchange bonds (with inactive doublon orbitals)
along the b axis are then blocked and the total energy is
lowered, in spite of the frustrated spin-orbital exchange
in the host. As a result, in the AF1c state, the spins
surrounding the impurity are aligned and antiparallel to the
spin at the 3d site.
Concerning the host C-AF orG-AO order, we note that it

is modified only along the direction where the FM
correlations develop and spin defects occur within the
chain doped by the 3d atom. The FM order is locally
disturbed by the 3d defect antiferromagnetically coupled
spins surrounding it. Note that this phase is driven by the
orbital vacancy as the host develops more favorable orbital
bonds to gain the energy in the absence of the orbital
degrees of freedom at the impurity. At the same time, the
impurity-host bonds do not generate too big energy losses
as (i) either ηimp is so small that the loss due to ED is

compensated by the gain from the superexchange ∝
JSðDðγÞ

j ¼ 1Þ (all these bonds are AF) (see Fig. 4) or
(ii) Jimp=Jhost is small, meaning that the overall energy
scale of the impurity-host exchange remains small.
Interestingly, if we compare the AF1c with the AF2c
ground states, we observe that the disruption of the C-AF or
G-AO order is anisotropic and occurs either along the FM
chains in the AF1c phase or perpendicular to the FM chains
in the AF2c phase. No spin frustration is found here, in
contrast to the FSa phase in the case of a-doublon doping;
see Fig. 6.
Finally, we point out that a very similar phase diagram

can be obtained assuming that the host has the FM orG-AO
order with a and b orbitals alternating from site to site.
Such a configuration can be stabilized by a distortion that
favors the out-of-plane orbitals. In this case, there is no
difference in doping at one or the other sublattice. The main
difference is found in energy scales—for the G-AF or
C-AO order, the diagram is similar to the one of Fig. 8 if we
rescale Jimp by half, which means that the G-AF order is
softer than the C-AF one. Note also that in the peculiar
AF1c phase, the impurity does not induce any changes in
the host for the FM or AO ordered host. Thus, we can safely
conclude that the observed change in the orbital order for

FIG. 8. Top: Phase diagram of the 3d impurity in the 4d host
with C-AF or G-AO order and the impurity doped at the
c-doublon sublattice. Different colors refer to local spin order
around the impurity: AFc1, AFc2, and FM. Bottom: Schematic
view of spin-orbital patterns for the two AF ground-state
configurations shown in the top panel; the FMc phase differs
from the AFc2 one only by spin inversion at the 3d atom. The 3d
atom is at the central site and has no doublon orbital; the frames
highlight the spin-orbital defects caused by the impurity. As in
Fig. 6, the labels AF and FM refer to the impurity-spin orientation
with respect to the neighboring 4d sites.
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the C-AF host in the AF1c phase is due to the presence of
the c orbitals, which are not directional in the ða; bÞ plane.
Summarizing, we have shown the complexity of local

spin-orbital order around t32g impurities in a 4t42g host. It is
remarkable that such impurity spins not onlymodify the spin-
orbital order around them in a broad regime of parameters
but also are frequently frustrated. Hence, the behavior of
the impurity highlights the importance of quantum effects
beyond the present classical approach that release frus-
tration, as we show in Sec. VA.

IV. PERIODIC 3d DOPING IN A 4d HOST

A. General remarks on finite doping

In this section, we analyze the spin-orbital patterns due to
a finite concentration x of 3d impurities within the 4d host
with C-AF or G-AO order, assuming that the 3d impurities
are distributed in a periodic way. The study is performed for
three representative doping distributions—the first one
x ¼ 1=8 is commensurate with the underlying spin-orbital
order and the other two are incommensurate with respect
to it, meaning that in such cases, doping at both the a- and
c-doublon sites is imposed simultaneously.
As the impurities lead to local energy gains due to the

3d − 4d bonds surrounding them, we expect that the most
favorable situation is when they are isolated and have
maximal distances between one another. Therefore, we
select the largest possible distances for the three doping
levels used in our study: x ¼ 1=8, x ¼ 1=5, and x ¼ 1=9.
This choice allows us to cover different regimes of
competition between the spin-orbital coupling within the
host and the 3d − 4d coupling. While single impurities may
only change spin-orbital order locally, we use here a high
enough doping to investigate possible global changes in
spin-orbital order, i.e., whether they can occur in the
respective parameter regime. The analysis is performed
as for a single impurity, by assuming the classical spin and
orbital variables and by determining the configuration with
the lowest energy. For this analysis, we set the spatial
distribution of the 3d atoms and we determine the spin and
orbital profile that minimizes the energy.

B. C-AF phase with x ¼ 1=8 doping

We begin with the phase diagram obtained at x ¼ 1=8 3d
doping; see Fig. 9. In the regime of strong impurity-host
coupling, the 3d − 4d spin-orbital exchange determines the
orbital and spin configuration of the 4d atoms around the
impurity. The most favorable state is when the doublon
occupies c orbitals at the NN sites to the impurity. The spin
correlations between the impurity and the host are AF
(FM), if the amplitude of ηimp is below (above) ηcimp, leading
to the AFa and FMa states; see Fig. 9. The AFa state has a
stripelike profile with AF chains alternated by FM domains
(consisting of three chains) along the diagonal of the square
lattice. Even if the coupling between the impurity and the

host is AF for all the bonds in the AFa state, the overall
configuration has a residual magnetic moment originating
by the uncompensated spins and by the cooperation
between the spin-orbital exchange in the 4d host and
that for the 3d − 4d bonds. Interestingly, at the point
where the dominant 3d − 4d exchange tends to 0 (i.e.,
for ηimp ≃ ηcimp), one finds a region of the FSa phase that is
analogous to the FSa phase found in Sec. III C for a single

FIG. 9. Top panel: Ground-state diagram obtained for periodic
3d doping x ¼ 1=8. Different colors refer to local spin order around
the impurity: AFa, AFc, FSa, and FMa. Bottom panel: Schematic
view of the ground-state configurations within the four eight-site
unit cells (indicated by dashed blue lines) for the phases shown in
the phase diagram. The question marks in the FSa phase indicate
frustrated impurity spins within the classical approach—the spin
direction (small arrows) is fixed only by quantum fluctuations. The
3d atoms are placed at the sites where orbitals are absent.
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impurity; see Fig. 6. Again, the impurity spin is frustrated
in a purely classical approach, but this frustration is easily
released by the orbital fluctuations in the host so that the
C-AF order of the host can be restored. This state is stable
for the amplitude of ηimp being close to ηcimp.
The regime of a small Jimp=Jhost ratio is qualitatively

different—an orbital rearrangement around the impurity
takes place, with a preference to move the doublons into the
inactive orbitals along the 3d − 4d bonds. Such orbital
configurations favor the AF spin coupling at all the 3d − 4d
bonds, which is stabilized by the 4d − 4d superexchange
[38]. This configuration is peculiar because it generally
breaks inversion and does not have any plane of mirror
symmetry. It is worth pointing out that the original order in
the 4d host is completely modified by the small concen-
tration of 3d ions, and one finds that the AF coupling
between the 3d impurity and the 4d host generally leads to

patterns such as the AFc phase where FM chains alternate
with AF ones in the ða; bÞ plane. Another relevant issue is
that the cooperation between the host and impurity can lead
to a fully polarized FMa state which implies that doping
can release the orbital frustration that was present in the
host with the C-AF or G-AO order.

C. Phase diagram for periodic x ¼ 1=5 doping

Next, we consider doping x ¼ 1=5 with a given periodic
spatial profile that concerns both doublon sublattices. We
investigate the 3d spin impurities separated by the trans-
lation vectors ~u ¼ ði; jÞ and ~v ¼ ð2;−1Þ (one can show
that for general periodic doping x, j~uj2 ¼ x−1), so there is a
mismatch between the impurity periodicity and the two-
sublattice G-AO order in the host. One finds that the
present case (see Fig. 10) has a similar general structure of

FIG. 10. Ground-state diagram for an x ¼ 1=5 periodic concentration of 3d impurities (sites where orbitals are absent) with schematic
views of the ground-state configurations obtained for the unit cell of 20 sites. The spin and orbital orders are shown by arrows and
orbitals occupied by doublons; magnetic phases (AF, FS, and FM) are highlighted by different colors. The question marks in the FS
states (red circles) indicate frustrated impurity spins within the classical approach.
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the phase diagram to the case of x ¼ 1=8 (Fig. 9), with
AF correlations dominating for ηimp lower than ηcimp and
FM ones otherwise. Because of the specific doping dis-
tribution, there are more phases appearing in the ground-
state phase diagram. For ηimp < ηcimp, the most stable spin
configuration is with the impurity coupled antiferromag-
netically to the host as it happens both in the AF vacancy
(AFv) and the AF polaronic (AFp) ground states. The
difference between the two AF states arises due to the
orbital arrangement around the impurity. For the weak ratio
of the impurity to the host spin-orbital exchange Jimp=Jhost,
the orbitals around the impurity are all inactive ones. On
the contrary, in the strong impurity-host-coupling regime,
all the orbitals are polarized to be in active (polaronic)
states around the impurity. Both states have been found
as the AF1c and AF2c phases in the single-impurity
problem (Fig. 8).
More generally, for all phases, the boundary given by an

approximate hyperbolic relation ηimp ∝ J−1imp separates the
phases where the orbitals around impurities in the c-orbital
sublattice are all inactive (small ηimp) from those where all
the orbitals are active (large ηimp). The inactive orbital
around the impurity always stabilizes the AF coupling
between the impurity spin and host spins, whereas the
active orbitals can give either AF or FM exchange depend-
ing on ηimp (hence, ηcimp; see Fig. 4). Since the doping does
not match the size of the elementary unit cell, the resulting
ground states do not exhibit specific symmetries in the
spin-orbital pattern. They are generally FM due to the
uncompensated magnetic moments, and the impurity feels
screening by the presence of the surrounding host spins
being antiparallel to the impurity spin.
By increasing Hund’s exchange coupling at the 3d ion,

the system develops a fully FM state in a large region of the
ground-state diagram due to the possibility of suitable
orbital polarization around the impurity. On the other hand,
in the limit where the impurity-host bonds are weak, so
either for ηimp ≃ ηcimp and large enough Jimp=Jhost so that all
orbitals around the impurity are active, or just for small
Jimp=Jhost, we get the FS phases where the impurity spin at
the a-orbital sublattice is undetermined in the present
classical approach. A similar situation occurred in the
FSa phase of a single-impurity problem and at x ¼ 1=8
periodic doping (see Figs. 6 and 9), but there it was still
possible to identify the favored impurity-spin polarization
by considering the orbital flips in the host around the
impurity.
However, the situation here is different, as the host’s

order is completely altered by doping and has became
isotropic, in contrast to the initial C-AF order (Fig. 2),
which breaks the planar symmetry between the a and b
directions. It is precisely this symmetry breaking that
favors one impurity-spin polarization over the other one.
Here, this mechanism is absent—one can easily check

that the neighborhood of the c orbitals surrounding
impurities is completely equivalent in both directions
(see Fig. 11 for the view of these surroundings) so that
the orbital flip argument is no longer applicable. In such
a peculiar situation that occurs in the classical approach
we indicate frustration in the spin direction by question
marks in Fig. 10.
In Fig. 11, we can see that in both FS vacancy (FSv)

and FS polaronic (FSp) phases, the orbitals are grouped
in 3 × 3 clusters and 2 × 2 plaquettes, respectively, that
encircle the degenerate impurity spins. For the FSv phase,
we can distinguish between two kinds of plaquettes with
nonzero spin polarization differing by a global spin
inversion. In the case of FSp phases, we observe four
plaquettes with zero spin polarization arranged in two
pairs related by a point reflection with respect to the
impurity site. It is worthwhile to realize that these
plaquettes are completely disconnected in the orbital
sector; i.e., there are no orbitally active bonds connecting
them. (See Fig. 7 for the pictorial definition of orbitally
active bonds.) This lack of active bonds means that
quantum effects of a purely orbital nature can appear
only at the short range, i.e., inside the plaquettes.
However, one can expect that if for some reason the
two degenerate spins in a single elementary cell will
polarize, then they will also polarize in the same way in
all the other cells to favor long-range quantum fluctua-
tions in the spin sector related to the translational
invariance of the system.

D. Phase diagram for periodic x ¼ 1=9 doping

Finally, we investigate low doping x ¼ 1=9 with a
given periodic spatial profile; see Fig. 12. Here, the
impurities are separated by the translation vectors ~u¼ð0;3Þ
and ~v ¼ ð3; 0Þ. Once again, there is a mismatch between
the periodic distribution of impurities and the host’s two-
sublattice AO order, so we again call this doping incom-
mensurate as it also imposes doping at both doublon

FIG. 11. Isotropic surrounding of the degenerate impurity spins
in the FSv and FSp phases in the case of x ¼ 1=5 periodic doping
(Fig. 10). Frames mark the clusters that are not connected with
orbitally active bonds.
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sublattices. The ground-state diagram presents a gradually
increasing tendency toward FM 3d − 4d bonds with
increasing ηimp; see Fig. 12. These polaronic bonds polarize
as well the 4d − 4d bonds, and one finds an almost FM
order in the FMp state. Altogether, we have found the same
phases as at the higher doping of x ¼ 1=5 (see Fig. 10),
i.e., AFv and AFp at low values of ηimp and FMv and FMp
in the regime of high ηimp, separated by the regime of
frustrated impurity spins that occur within the phases: FSv,
FS1p, and FS2p.
The difference between the two AF (FM) states in

Fig. 12 is due to the orbital arrangement around the
impurity. As for the other doping levels considered so
far, x ¼ 1=8 and x ¼ 1=5, we find neutral (inactive)
orbitals around 3d impurities in the regime of low
Jimp=Jhost in the AFv and FMv phases which lead to spin

defects within the 1D FM chains in the C-AF spin order.
A similar behavior is reported for single impurities in the
low-Jimp regime in Sec. III. This behavior changes radically
above the orbital transition for both types of local magnetic
order, where the orbitals reorient into the active ones. One
finds that spin orientations are then the same as those of
their neighboring 4d atoms, with some similarities to those
found at x ¼ 1=5; see Fig. 10.
Frustrated impurity spins occur in the crossover regime

between the AF and FM local order around impurities
following from the local configurations around them,
which include two ↑ spins and two ↓ spins accompanied
by c orbitals at the NN 4d sites. This frustration is easily
removed by quantum fluctuations, and we suggest that this
happens again in the same way as for x ¼ 1=8 doping, as

FIG. 12. Ground-state diagram for an x ¼ 1=9 periodic concentration of 3d impurities with schematic views of the ground-state
configurations obtained for the unit cell of 36 sites. Spin order (AF, FS, and FM) is highlighted by different colors. The question marks in
the FS states (red squares) indicate frustrated impurity spins within the classical approach—the spin is fixed here by quantum
fluctuations (small arrows). Doped 3d atoms are at the sites where orbitals are absent.
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indicated by small arrows in the respective FS phases
shown in Fig. 12.

V. QUANTUM EFFECTS BEYOND THE
CLASSICAL APPROACH

A. Spin-orbital quantum fluctuations

So far, we have analyzed the ground states of 3d
impurities in the ða; bÞ plane of a 4d system using the
classical approach. Here, we show that this classical picture
may be used as a guideline and is only quantitatively
changed by quantum fluctuations if the spin-orbit coupling
is weak. We start the analysis by considering the quantum
problem in the absence of spin-orbit coupling (at λ ¼ 0).
The orbital doublon densities

Nγ ≡
X
i∈host

hniγi; ð25Þ

with γ ¼ a; b; c and total Sz are conserved quantities and
thus good quantum numbers for a numerical simulation. To
determine the ground-state configurations in the parameter

space and the relevant correlation functions, we diagonalize
exactly the Hamiltonian matrix (17) for the cluster of L ¼ 8
sites by means of the Lanczos algorithm. In Fig. 13(a), we
report the resulting quantum phase diagram for an eight-site
cluster having one impurity and assuming periodic boun-
dary conditions; see Fig. 13(b). The cluster configuration
appears to be optimal because it contains a number of sites
and connectivities that allow us to analyze separately the
interplay between the host-host and the host-impurity
interactions and to simulate a physical situation when
the interactions within the host dominate over those
between the host and the impurity. Such a problem is a
quantum analogue of the single unit cell presented in Fig. 9
for x ¼ 1=8 periodic doping.
As a general feature that resembles the classical phase

diagram, we observe that there is a prevalent tendency to
have AF-like (FM-like) spin correlations between the
impurity and the host sites in the region of ηimp below
(above) the critical point at ηcimp ≃ 0.43, which separates
these two regimes, with intermediate configurations having
frustrated magnetic exchange. As we shall discuss below, it
is the orbital degree of freedom that turns out to be more

FIG. 13. (a) Phase diagram for the quantum problem at zero spin orbit simulated on the eight-site cluster in the presence of one
impurity. Arrows and ellipsoids indicate the spin-orbital state at a given site i, while the shapes of ellipsoids reflect the orbital averages:
ha†i aii, hb†i bii, and hc†i cii (i.e., a circle in the plane perpendicular to the axis γ implies 100% occupation of the orbital γ). (b) The periodic
cluster of L ¼ 8 sites used, with the orbital dilution (3d3 impurity), at site i ¼ 8. The dotted lines identify the basic unit cell adopted for
the simulation with the same symmetries of the square lattice.
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affected by the quantum effects. Following the notation
used for the classical case, we distinguish various quantum
AF (QAF) ground states, i.e., QAFcn (n ¼ 1; 2) and
QAFan (n ¼ 1; 2), as well as a uniform quantum FM
(QFM) configuration, i.e., QFMa, and a quantum frustrated
one labeled as QFSa.
In order to visualize the main spin-orbital patterns

contributing to the quantum ground state, it is convenient
to adopt a representation with arrows for the spin and
ellipsoids for the orbital sector at any given host site. The
arrows stand for the on-site spin projection hSzi i, with the
length being proportional to the amplitude. The length
scale for the arrows is the same for all the configurations.
Moreover, in order to describe the orbital character of the
ground state, we employ a graphical representation that
makes use of an ellipsoid whose semiaxis fa; b; cg
lengths are given by the average amplitude of the squared
angular momentum components fðLx

i Þ2; ðLy
i Þ2; ðLz

i Þ2g or
equivalently by the doublon occupation Eq. (9). For
instance, for a completely flat circle (degenerate ellipsoid)
lying in the plane perpendicular to the γ axis, only the
corresponding γ orbital is occupied. On the other hand, if
the ellipsoid develops in all three directions fa; b; cg, it
implies that more than one orbital is occupied and the
distribution can be anisotropic in general. If all the
orbitals contribute equally, one finds an isotropic spherical
ellipsoid.
Because of the symmetry of the Hamiltonian, the

phases shown in the phase diagram of Fig. 13(a) can be
characterized by the quantum numbers for the zth
spin projection Sz and the doublon orbital occu-
pation Nα (25), ðSz; Na; Nb; NcÞ: QAFc1 ð−3.5; 2; 2; 3Þ,
QFSa2 ð−1.5; 3; 1; 3Þ, QAFa1 ð−5.5; 1; 3; 3Þ, QAFa2 and
QAFc2 ð−5.5; 2; 2; 3Þ, QFSa1 ð−0.5; 3; 0; 4Þ, and QFMa
ð−8.5; 2; 1; 4Þ. Despite the irregular shape of the cluster
[Fig. 13(b)], there is also symmetry between the a and b
directions. For this reason, the phases with Na ≠ Nb can be
equivalently described either by the set ðSz; Na; Nb; NcÞ
or ðSz; Nb; Na; NcÞ.
The outcome of the quantum analysis indicates that the

spin patterns are quite robust, as the spin configurations of
the phases QAFa, QAFc, QFSa, and QFMa are the
analogues of the classical ones. The effects of quantum
fluctuations are more evident in the orbital sector where
mixed orbital patterns occur if compared to the classical
case. In particular, orbital inactive states around the
impurity are softened by quantum fluctuations and on
some bonds we find an orbital configuration with a
superposition of active and inactive states. The unique
AF states where the classical inactive scenario is recovered
correspond to the QAFc1 and QAFc2 ones in the regime of
small ηimp. A small hybridization of active and inactive
orbitals along both the AF and FM bonds is also observed
around the impurity for the QFSa phases as one can note
by the shape of the ellipsoid at host sites. Moreover, in

the range of large ηimp where the FM state is stabilized, the
orbital pattern around the impurity is again like in the
classical case.
A significant orbital rearrangement is also obtained

within the host. We generally obtain an orbital pattern that
is slightly modified from the pure AO configuration
assumed in the classical case. The effect is dramatically
different in the regime of strong impurity-host coupling
(i.e., for large Jimp) with AF exchange (QAFa2) with the
formation of an orbital liquid around the impurity and
within the host, with doublon occupation represented by
an almost isotropic shaped ellipsoid. Interestingly, though
with a different orbital arrangement, the QFSa1 and the
QFSa2 states are the only ones where the C-AF order of
the host is recovered. For all the other phases shown in the
diagram of Fig. 13, the coupling between the host and the
impurity is generally leading to a uniform spin polarization
with FM or AF coupling between the host and the impurity
depending on the strength of the host-impurity coupling.
Altogether, we conclude that the classical spin patterns are
only quantitatively modified and are robust with respect to
quantum fluctuations.

B. Finite spin-orbit coupling

In this section, we analyze the quantum effects in the
spin and orbital order around the impurity in the presence
of the spin-orbit coupling at the host d4 sites. For the t42g
configuration, the strong spin-orbit regime has been con-
sidered recently by performing an expansion around the

atomic limit where the angular ~Li and spin ~Si momenta
form a spin-orbit singlet for the amplitude of the total

angular momentum ~Ji ¼ ~Li þ ~Si (i.e., J ¼ 0) [67]. The
instability toward an AF state starting from the J ¼ 0 liquid
has been obtained within the spin-wave theory [68] for the
low-energy excitations emerging from the spin-orbital
exchange.
In the analysis presented here, we proceed from the

limit of zero spin orbit to investigate how the spin and
orbital order are gradually suppressed when approaching
the J ¼ 0 spin-orbit-singlet state. This issue is addressed
by solving the full quantum Hamiltonian (17) exactly on
a cluster of L ¼ 8 sites including the spin-orbital exch-
ange for the host and that one derived for the host-
impurity coupling (17) as well as the spin-orbit term

HSO ¼ λ
X
i∈host

~Li · ~Si; ð26Þ

where the sum includes the ions of the 4d host and we
use the spin S ¼ 1 and the angular momentum L ¼ 1, as
in the ionic 4d4 configurations. Here, λ is the spin-orbit-
coupling constant at 4d host ions, and the components of
the orbital momentum ~Li ≡ fLx

i ; L
y
i ; L

z
ig are defined as

follows:
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Lx
i ¼ i

X
σ

ðd†i;xyσdi;xzσ − d†i;xzσdi;xyσÞ;

Ly
i ¼ i

X
σ

ðd†i;xyσdi;yzσ − d†i;yzσdi;xyσÞ;

Lz
i ¼ i

X
σ

ðd†i;xzσdi;yzσ − d†i;yzσdi;xzσÞ: ð27Þ

To determine the ground state and the relevant correlation
functions, we use again the Lanczos algorithm for the
cluster of L ¼ 8 sites. Such an approach allows us to
study the competition between the spin-orbital exchange
and the spin-orbit coupling on equal footing without any
simplifying approximation. Moreover, the cluster calcu-
lation permits us to include the impurity in the host and
deal with the numerous degrees of freedom without
making approximations that would constrain the interplay
of the impurity-host versus host-host interactions.
Finite spin-orbit coupling significantly modifies the

symmetry properties of the problem. Instead of the
SU(2) spin invariance, one has to deal with the rotational
invariance related to the total angular momentum per site
~Ji ¼ ~Li þ ~Si. Although the ~Li · ~Si term in Eq. (26) com-

mutes with both total ~J2 and Jz, the full Hamiltonian for the
host with impurities Eq. (17) has a reduced symmetry
because the spin sector is now linearly coupled to
the orbital, which has only the cubic symmetry. Thus,
the remaining symmetry is a cyclic permutation of the
fx; y; zg axes.
Moreover, Jz is not a conserved quantity due to the

orbital anisotropy of the spin-orbital exchange in the host
and the orbital character of the impurity-host coupling.
There, one has a Z2 symmetry associated with the parity
operator ð−1ÞJz. Hence, the ground state can be classified
as even or odd with respect to the value of Jz. This
symmetry aspect can introduce a constraint on the character
of the ground state and on the impurity-host coupling since
the Jz value for the impurity is only due to the spin
projection while in the host it is due to the combination of
the orbital and spin projection. A direct consequence is
that the parity constraint together with the unbalance
between the spin at the host and the impurity sites leads
to a nonvanishing total projection of the spin and angular
momentum with respect to a symmetry axis, e.g., the zth
axis. It is worth noting that a fixed parity for the impurity
spin means that it prefers to point in one direction rather
than the other one, which is not the case for the host’s
spin and angular momentum. Thus, the presence on the
impurity for a fixed P will give a nonzero polarization
along the quantization axis for every site of the system.
Such a property holds for any single impurity with a
half-integer spin.
Another important consequence of the spin-orbit cou-

pling is that it introduces local quantum fluctuations in the
orbital sector even at the sites close to the impurity where

the orbital pattern is disturbed. The spin-orbit term makes
the on-site problem around the impurity effectively analo-
gous to the Ising model in a transverse field for the orbital
sector, with nontrivial spin-orbital entanglement [34]
extending over the impurity neighborhood.
In Figs. 14 and 15, we report the schematic evolution of

the ground-state configurations for the cluster of L ¼ 8
sites, with one-impurity and periodic boundary conditions
as a function of increasing spin-orbit coupling. These
patterns have been determined by taking into account
the sign and the amplitude of the relevant spatial dependent
spin and orbital correlation functions. The arrows associ-
ated with the spin degree of freedom can lie in the xy plane
or out of plane (along z, chosen to be parallel to the c axis)
to indicate the anisotropic spin pattern. The out-of-plane
arrow length is given by the on-site expectation value of
hSzi i while the in-plane arrow length is obtained by
computing the square root of the second moment, i.e.,ffiffiffiffiffiffiffiffiffiffiffiffi
hðSxi Þ2

p
i and

ffiffiffiffiffiffiffiffiffiffiffiffi
hðSyi Þ2

p
i of the x and y spin components

corresponding to the arrows along a and b, respectively.
Moreover, the in-plane arrow orientation for a given

direction is determined by the sign of the corresponding
spin-spin correlation function assuming as a reference the
orientation of the impurity spin. The ellipsoid is con-
structed in the same way as for the zero spin-orbit case
above, with the addition of a color map that indicates the
strength of the average ~Li · ~Si (i.e., red, yellow, green, blue,
and violet correspond with a growing amplitude of the local
spin-orbit correlation function). The scale for the spin-orbit
amplitude is set to be in the interval 0 < λ < Jhost. The
selected values for the ground-state evolution are given by
the relation (with m ¼ 1; 2;…; 10)

λm ¼
�
0.04þ 0.96

ðm − 1Þ
9

�
Jhost: ð28Þ

The scale is set such that λ1 ¼ 0.04Jhost and λ10 ¼ Jhost.
This range of values allows us to explore the relevant
physical regimes when moving from 3d to 4d and 5d
materials with corresponding λ being much smaller that
Jhost∶ λ ∼ Jhost=2 and λ > Jhost, respectively. For the per-
formed analysis, the selected values of λ (28) are also
representative of the most interesting regimes of the ground
state as induced by the spin-orbit coupling.
Let us start with the quantum AF phases QAFc1,

QAFc2, QFSa1, QFSa2, QAFa1, and QAFa2. As one
can observe, the switching on of the spin-orbit coupling
(i.e., λ1 in Fig. 14) leads to anisotropic spin patterns with
unequal moments for the in-plane and out-of-plane com-
ponents. From weak to strong spin-orbit coupling, the
character of the spin correlations keeps being AF between
the impurity and the neighboring host sites in all the spin
directions. The main change for the spin sector occurs for
the planar components. For weak spin-orbit coupling, the
in-plane spin pattern is generally AF for the whole system
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in all the spatial directions (i.e., G-AF order). Further
increase of the spin orbit does not modify qualitatively the
character of the spin pattern for the out-of-plane compo-
nents as long as we do not go to maximal values of λ ∼ Jhost
where local hSzi i moments are strongly suppressed. In this
limit, the dominant tendency of the system is toward
formation of the spin-orbital singlets and the spin patterns
shown in Fig. 14 are the effect of the virtual singlet-triplet
excitations [68].
Concerning the orbital sector, only for weak spin-orbit

coupling around the impurity can one still observe a

reminiscence of inactive orbitals as related to the orbital
vacancy role at the impurity site in the AF phase. Such an
orbital configuration is quickly modified by increasing the
spin-orbit interaction, and it evolves into a uniform pattern
with almost degenerate orbital occupations in all the
directions and with preferential superpositions of c and
ða; bÞ states associated with dominating Lx and Ly orbital
angular components (flattened ellipsoids along the c
direction). An exception is the QAFc2 phase with the
orbital inactive polaron that is stable up to large spin-orbit
coupling of the order of Jhost.

FIG. 14. Evolution of the ground-state configurations for the AF phases for selected increasing values of spin-orbit coupling λm; see
Eq. (28). Arrows and ellipsoids indicate the spin-orbital state at a given site i. The color map indicates the strength of the average spin

orbit h~Li · ~Sii; i.e., red, yellow, green, blue, and violet correspond to the growing amplitude of the above correlation function. Small
arrows at λ5 and λ10 indicate quenched magnetization at the impurity by large spin-orbit coupling at the neighboring host sites.
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When considering the quantum FM configurations
QFMa1 in Fig. 14, we observe similar trends in the
evolution of the spin correlation functions as obtained
for the AF states. Indeed, the QFMa exhibits a tendency to
form FM chains with AF coupling for the in-plane
components at weak spin orbit that evolve into more
dominant AF correlations in all the spatial directions within
the host. Interestingly, the spin exchange between the

impurity and the neighboring host sites shows a changeover
from AF to FM for the range of intermediate-to-strong spin-
orbit amplitudes.
A peculiar response to the spin-orbit coupling is obtained

for the QFSa1 phase (see Fig. 15), which showed a
frustrated spin pattern around the impurity already in the
classical regime, with FM and AF bonds. It is remarkable
that due to the close proximity with uniform FM and the
AF states, the spin-orbit interaction can lead to a dramatic
rearrangement of the spin and orbital correlations for such a
configuration. At weak spin-orbit coupling (i.e., λ≃ λ1), the
spin pattern is C-AF and the increased coupling (λ≃ λ2)
keeps the C-AF order only for the in-plane components
with the exception of the impurity site. It also modulates the
spin-moment distribution around the impurity along the
z direction. Further increase of λ leads to complete spin
polarization along the z direction in the host, with anti-
parallel orientation with respect to the impurity spin. This
pattern is guided by the proximity to the FM phase. The
in-plane components develop a mixed FM-AF pattern with
a strong xy anisotropy most probably related to the different
bond exchange between the impurity and the host.
When approaching the regime of a spin-orbit coupling

that is comparable to Jhost, the out-of-plane spin compo-
nents dominate and the only out-of-plane spin polarization
is observed at the impurity site. Such a behavior is unique
and occurs only in the QFSa phases. The cooperation
between the strong spin-orbit coupling and the frustrated
host-impurity spin-orbital exchange leads to an effective
decoupling in the spin sector at the impurity with a
resulting maximal polarization. On the other hand, as for
the AF states, the most favorable configuration for a strong
spin orbit has AF in-plane spin correlations. The orbital
pattern for the QFSa states evolves similarly to the AF
cases with a suppression of the active-inactive interplay
around the impurity and the setting of a uniformlike orbital
configuration with unquenched angular momentum on site
and predominant in-plane components. The response of the
FM state is different in this respect, as the orbital active
states around the impurity are hardly affected by the spin
orbit while the host sites far from the impurity of the local
spin-orbit coupling are more pronounced.
Finally, to understand the peculiar evolution of the spin

configuration, it is useful to consider the lowest-order terms
in the spin-orbital exchange that directly couple the orbital
angular momentum with the spin. Taking into account the
expression of the spin-orbital exchange in the host (26) and
the expression of ~Li, one can show the low-energy terms on
a bond that get more relevant in the Hamiltonian when the
spin-orbit coupling makes a nonvanishing local angular
momentum. As a result, the corresponding expressions are

HaðbÞ
host ði; jÞ ≈ Jhostfa1~Si · ~Sj þ b1S

z
i S

z
jL

yðxÞ
i LyðxÞ

j g
þ λf~Li · ~Si þ ~Lj · ~Sjg; ð29Þ

FIG. 15. Evolution of the ground-state configurations for the
QFSa1 and QFSa2 phases for selected increasing values of spin-
orbit coupling λm; see Eq. (28). Arrows and ellipsoids indicate the
spin-orbital state at a given site i. The color map indicates the

strength of the average spin orbit h~Li · ~Sii; i.e., red, yellow, green,
blue, and violet correspond to the growing amplitude of the above
local correlation function.
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with positive coefficients a1 and b1 that depend on r1 and
r2 (21). A definite sign for the spin exchange in the limit
of vanishing spin-orbit coupling is given by the terms
that go beyond Eq. (29). Then, if the ground state has
isotropic FM correlations (e.g., QFMa) at λ ¼ 0, the term

SziS
z
jL

yðxÞ
i LyðxÞ

j would tend to favor AF-like configurations
for the in-plane orbital angular components when the
spin-orbit interaction is switched on. This opposite
tendency between the z and fx; yg components is
counteracted by the local spin-orbit coupling that pre-
vents us from having coexisting FM and AF spin-orbital
correlations. Such patterns would not allow us to opti-

mize the ~Li · ~Si amplitudes. One way out is to reduce the
zth spin projection and to get planar AF correlations in
the spin and in the host. A similar reasoning applies to
the AF states where the negative sign of the Szi S

z
j

correlations favors ferro-orbital alignment of the angular
momentum components. As for the previous case, the
opposite trend of in- and out-of-plane spin-orbital com-
ponents is suppressed by the spin-orbit coupling and the
in-plane ferro-orbital correlations for the fLx; Lyg com-
ponents lead to FM patterns for the in-plane spin part
as well.
In summary, by close inspection of Figs. 14 and 15, one

finds an interesting evolution of the spin patterns in the
quantum phases.

(i) For the QAF states (Fig. 14), a spin canting develops
at the host sites (i.e., the relative angle is between
0 and π) while the spins on impurity-host bonds are
always AF. The canting in the host evolves, some-
time in an inhomogeneous way, to become reduced
in the strong spin-orbit-coupling regime where
ferrolike correlations tend to dominate. In this
respect, when the impurity is coupled antiferromag-
netically to the host, it does not follow the tendency
to form spin canting.

(ii) In the QFM states (Fig. 15), at weak spin orbit, one
observes spin canting in the host and for the host-
impurity coupling that persists only in the host,
whereas the spin-orbit interaction is increasing.

C. Spin-orbit coupling versus Hund’s exchange

To probe the phase diagram of the system in the presence
of the spin-orbit coupling (λ > 0), we solve the same
cluster of L ¼ 8 sites as before along three different cuts
in the phase diagram of Fig. 13(a) for three values of λ,
i.e., small λ ¼ 0.1Jhost, intermediate λ ¼ 0.5Jhost, and
large λ ¼ Jhost. Each cut contains ten points, and the cuts
are parameterized as follows: (i) Jimp ¼ 0.7Jhost and
0 ≤ ηimp ≤ 0.7, (ii) Jimp ¼ 1.3Jhost and 0 ≤ ηimp ≤ 0.7,
and (iii) ηimp ¼ ηcimp ≃ 0.43 and 0 ≤ Jimp ≤ 1.5Jhost.
In Fig. 16(a), we show the representative spin-orbital
configurations obtained for λ ¼ 0.5Jhost along the first
cut shown in Fig. 16(b). Values of ηimp are chosen as

ηimp ¼ ηm ≡ 0.7
ðm − 1Þ

9
; ð30Þ

with m ¼ 1;…; 10, but not all the points are shown in
Fig. 16(a)—only the ones for which the spin-orbital
configuration changes substantially.
The cut starts in the QAFc2 phase, according to the

phase diagram of Fig. 16(b), and indeed we find a similar
configuration to the one shown in Fig. 14 for the QAFc2
phase at λ ¼ λ5. Moving up in the phase diagram from η1 to
η2, we see that the configuration evolves smoothly to the
one that we have found in the QAFa1 phase at λ ¼ λ5 (not
shown in Fig. 14). The evolution of spins is such that the
out-of-plane moments are suppressed while in-plane ones
are slightly enhanced. The orbitals become more spherical,

and the local spin-orbit average h~Li · ~Sii becomes larger
and more uniform; however, for the apical site i ¼ 7 in the
cluster [Fig. 13(b)], the trend is the opposite—initially,
the large value of the spin-orbit coupling drops toward the
uniform value. We skip the points between η3 and η7, as
the evolution is smooth and the trend is clear; however, the
impurity out-of-plane moment begins to grow above η5,
indicating proximity to the QFSa1 phase. For this phase at
intermediate and high λ, the impurity moment is much
larger than all the others (see Fig. 15).

FIG. 16. (a) Evolution of the ground-state configurations as
for increasing ηimp and for a fixed value of spin-orbit coupling
λ ¼ 0.5Jhost along a cut in the phase diagram shown in (b), i.e.,
for Jimp ¼ 0.7Jhost and 0 ≤ ηimp ≤ 0.7. Arrows and ellipsoids
indicate the spin-orbital state at a given site i. The color map

indicates the strength of the average spin orbit h~Li · ~Sii; i.e., red,
yellow, green, blue, and violet correspond to the growing
amplitude of the above correlation function.
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For ηimp ¼ η7, the orbital pattern clearly shows that we
are in the QFSa1 phase at λ ¼ λ5, which agrees with the
position of the η7 point in the phase diagram; see Fig. 16(b).
On the other hand, moving to the next ηimp point upward
along the cut [Eq. (30)], we already observe a configuration
that is very typical for the QFSa1 phase at intermediate λ.
(Here, λ ¼ λ7, as shown in Fig. 14, but also λ6, which is not
shown.) This indicates that the QFSa1 phase can still be
distinguished at λ ¼ 0.5Jhost, and its position in the phase
diagram is similar to the λ ¼ 0 case, i.e., as an intermediate
phase between the QAFa1ð2Þ and the QFMa one.
Finally, we have also found that the two other cuts that

were not shown here, i.e., for Jimp ¼ 1.3Jhost and increasing
ηimp and for ηimp ¼ ηcimp ≃ 0.43 and increasing Jimp, con-
firm that the overall character of the phase diagram of
Fig. 13(a) is preserved at this value of spin-orbit coupling;
however, first, the transitions between the phases are
smooth, and second, the subtle differences between the
two versions of QFSa, QAFa, and QAFc phases are no
longer present. The situation is similar for the smaller value
of λ, i.e., λ ¼ 0.1Jhost, but already for λ ¼ Jhost the out-of-
plane moments are so strongly suppressed (except for the
impurity moment in the QFSa1 phase) and the orbital
polarization is so weak (i.e., almost spherical ellipsoids)
that typically the only distinction between the phases can be
made by looking at the in-plane spin correlations and the

average spin orbit h~Li · ~Sii. In this limit, we conclude that
the phase diagram is (partially) melted by large spin-orbit
coupling, but for lower values of λ, it is still valid.

VI. SUMMARY AND CONCLUSIONS

We have derived the spin-orbital superexchange model
for 3d3 impurities replacing 4d4 (or 3d2) ions in the 4d (3d)
host in the regime of the Mott-insulating phase. Although
the impurity has no orbital degree of freedom, we have
shown that it contributes to the spin-orbital physics and
strongly influences the orbital order. In fact, it tends to
project out the inactive orbitals at the impurity-host bonds
to maximize the energy gain from virtual charge fluctua-
tions. In this case, the interaction along the superexchange
bond can be either antiferromagnetic or ferromagnetic,
depending on the ratio of Hund’s exchange coupling at
impurity (JH1 ) and host (JH2 ) ions and on the mismatch Δ
between the 3d and 4d atomic energies, modified by the
difference in Hubbard U’s and Hund’s exchange JH’s at
both atoms. This ratio, denoted by ηimp (14), replaces here
the conventional parameter η ¼ JH=U often found in the
spin-orbital superexchange models of undoped compounds
(e.g., in the Kugel-Khomskii model for KCuF3 [14]), where
it quantifies the proximity to ferromagnetism. On the other
hand, if the overall coupling between the host and impurity
is weak in the sense of the total superexchange Jimp with
respect to the host value Jhost, the orbitals next to the
impurity may be forced to stay inactive, which modifies the

magnetic properties—in such cases, the impurity-host bond
is always antiferromagnetic.
As we have seen in the case of a single impurity, the

above two mechanisms can have a nontrivial effect on the
host, especially if the host itself is characterized by
frustrated interactions, as it happens in the parameter
regime where the C-AF phase is stable. For this reason,
we have mostly focused on the latter phase of the host and
we have presented the phase diagrams of a single-impurity
configuration in the case when the impurity is doped on the
sublattice where the orbitals form a checkerboard pattern
with alternating c and a orbitals occupied by doublons. The
diagram for the c-sublattice doping shows that in some
sense, the impurity is never weak because even for a very
small value of Jimp=Jhost, it can release the host’s frustration
around the impurity site acting as an orbital vacancy. On the
other hand, for the a-sublattice doping when the impurity-
host coupling is weak, i.e., either Jimp=Jhost is weak or ηimp

is close to ηcimp, we have identified an interesting quantum
mechanism releasing frustration of the impurity spin (that
cannot be avoided in the purely classical approach). It turns
out that in such situations, the orbital flips in the host make
the impurity spin polarize in such a way that theC-AF order
of the host is completely restored.
The cases of the periodic doping studied in this paper

show that the host’s order can be completely altered already
for rather low doping of x ¼ 1=8, even if the Jimp=Jhost is
small. In this case, we can stabilize a ferrimagnetic type
of phase with a four-site unit cell having magnetization
hSzi i ¼ 3=2, reduced further by quantum fluctuations. We
have established that the only parameter range where the
host’s order remains unchanged is when ηimp is close to ηcimp

and Jimp=Jhost ≳ 1. The latter value is very surprising, as it
means that the impurity-host coupling must be large
enough to keep the host’s order unchanged—which is
another manifestation of the orbital vacancy mechanism
that we have already observed for a single impurity. Also,
in this case, the impurity spins are fixed with the help of
orbital flips in the host that lift the degeneracy that arises in
the classical approach. We would like to point out that the
quantum mechanism that lifts the ground-state degeneracy
mentioned above and the role of quantum fluctuations are
of particular interest for the periodically doped checker-
board systems with x ¼ 1=2 doping, which is a challenging
problem for future research.
From the point of view of generic, i.e., nonperiodic,

doping, the most representative cases are those of a doping
that is incommensurate with the two-sublattice spin-orbital
pattern. To uncover the generic rules in such cases, we have
studied periodic x ¼ 1=5 and x ¼ 1=9 doping. One finds
that when the period of the impurity positions does not
match the period of 2 for both the spin and orbital orders of
the host, interesting novel types of order emerge. In such
cases, the elementary cell must be doubled in both lattice
directions, which clearly gives a chance of realizing more
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phases than in the case of commensurate doping. Our
results show that indeed, the number of phases increases
from 4 to 7 and the host’s order is altered in each of them.
Quite surprisingly, the overall character of the phase
diagram remains unchanged with respect to the one for
x ¼ 1=8 doping, and, if we ignore the differences in
configuration, it seems that only some of the phases get
divided into two versions differing either by the spin bond’s
polarizations around impurities (phases around ηcimp) or by
the character of the orbitals around the impurities (phases
with inactive orbitals in the limit of small enough product
ηimpJimp versus phases with active orbitals in the opposite
limit). Orbital polarization in this latter region resembles
orbital polarons in doped manganites [42,43]—also, here,
such states are stabilized by the double exchange [46].
A closer inspection of underlying phases reveals, how-

ever, a very interesting degeneracy of the impurity spins at
x ¼ 1=5 that arises again from the classical approach, but
this time, it cannot be released by short-range orbital flips.
The degeneracy persists because the host’s order is already
so strongly altered that it is no longer anisotropic (as is the
case of the C-AF phase) and there is no way to restore the
orbital anisotropy around the impurities that could lead to
spin-bond imbalance and polarize the spin. In the case of
lower x ¼ 1=9 doping, such an effect is absent and the
impurity spins are always polarized, as happens for
x ¼ 1=8. It shows that such robust degeneracy is rather
a peculiarity of the x ¼ 1=5 periodic doping.
Indeed, one can easily notice that for x ¼ 1=5, every

atom of the host is a nearest neighbor of some impurity.
In contrast, for x ¼ 1=8, we can find three host’s atoms per
unit cell that do not neighbor any impurity, and for
x ¼ 1=9, there are 16 of them. For this reason, the impurity
effects are amplified for x ¼ 1=5, which is not unexpected,
although one may find it somewhat surprising that the
ground-state diagrams for the lowest and highest doping
considered here are very similar. Such similarity suggests
that the cooperative effects of multiple impurities are
indeed not very strong in the low-doping regime, so the
diagram obtained for x ¼ 1=9 can be regarded as generic
for the dilute doping regime with uniform spatial profile.
For the representative case of x ¼ 1=8 doping, we have

presented the consequences of quantum effects beyond the
classical approach. Spin fluctuations are rather weak for the
considered case of large S ¼ 1 and S ¼ 3=2 spins, and we
have shown that orbital fluctuations on superexchange
bonds are more important. They are strongest in the regime
of antiferromagnetic impurity-host coupling (which sug-
gests the importance of entangled states [34]) and enhance
the tendency toward frustrated impurity-spin configurations
but do not destroy other generic trends observed when the
parameters ηimp and Jimp=Jhost increase.
Increasing spin-orbit coupling leads to qualitative

changes in the spin-orbital order. When Hund’s exchange
is small at the impurity sites, the antiferromagnetic bonds

around it have reduced values of the spin-orbit-coupling
term, but the magnetic moments reorient and survive in the
ða; bÞ planes, with some similarity to the phenomena
occurring in the perovskite vanadates [57]. As a conse-
quence, the magnetic moments at 3d impurities are
quenched and orbital occupancies at the host sites are
almost uniform. In contrast, frustration of impurity spins is
removed and the impurity magnetization along the c axis
survives for large spin-orbit coupling.
We would like to emphasize that the orbital dilution

considered here influences directly the orbital degrees of
freedom in the host around the impurities. The synthesis of
hybrid compounds having both 3d and 4d transition-metal
ions will likely open a novel route for unconventional
effects in complex materials. There are several reasons for
expecting new scenarios in mixed 3d − 4d spin-orbital-
lattice materials, and we pointed out only some of them.
On the experimental side, the changes of local order could
be captured using inelastic neutron scattering or resonant
inelastic x-ray scattering (RIXS). In fact, using RIXS can
also bring an additional advantage: RIXS, besides being a
perfect probe of both spin and orbital excitations, can also
(indirectly) detect the nature of the orbital ground state
(supposedly also including the nature of impurities in the
crystal) [82]. Unfortunately, there are no such experiments
yet, but we believe that they will be available soon.
Short-range order around impurities could be investi-

gated by the excitation spectra at the resonant edges of the
substituting atoms. Taking them both at finite energy and
momentum can provide insights into the nature of the short-
range order around the impurity and then unveil informa-
tion of the order within the host as well. Even if there are no
elastic superlattice extra peaks, one can expect that the spin-
orbital correlations will emerge in the integrated RIXS
spectra providing information of the impurity-host cou-
pling and of the short-range order around the impurity.
Even more interesting is the case where the substituting
atom forms a periodic array with small deviation from the
perfect superlattice when one expects the emergence of
extra elastic peaks that will clearly indicate the spin-orbital
reconstruction. In our case, an active orbital diluted site
cannot participate coherently in the host spin-orbital order
but rather may restructure the host ordering [83]. At dilute
impurity concentration, we may expect broad peaks emerg-
ing at finite momenta in the Brillouin zone, indicating the
formation of coherent islands with short-range order around
impurities.
We also note that local susceptibility can be suitably

measured by making use of resonant spectroscopies (e.g.,
nuclear magnetic resonance, electron spin resonance,
nuclear quadrupole resonance, muon spin resonance,
etc.) that exploit the different magnetic or electric character
of the atomic nuclei for the impurity and the host in
the hybrid system. Finally, the random implantation of
the muons in the sample can provide information of the
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relaxation time in different domains with unequal dopant
concentration, which may be nonuniform. For the given
problem, the differences in the resonant response can give
relevant information about the distribution of the local
fields and the occurrence of local order and provide access
to the dynamical response within doped domains. The use
of local spectroscopic resonance methods has been widely
demonstrated to be successful when probing the nature
and the evolution of the ground state in the presence of
spin vacancies both for ordered and disordered magnetic
configurations [84–87].
In summary, this study highlights the role of spin defects

that lead to orbital dilution in spin-orbital systems. Using an
example of 3d3 impurities in a 4d4 (or 3d2) host, we have
shown that impurities change radically the spin-orbital
order around them, independently of the parameter regime.
As a general feature, we have found that doped 3d3 ions
within the host with spin-orbital order have frustrated spins
and polarize the orbitals of the host when the impurity-host
exchange as well as Hund’s exchange at the impurity are
both sufficiently large. This remarkable trend is indepen-
dent of doping and is expected to lead to global changes of
spin-orbital order in doped materials. While the latter effect
is robust, we argue that the long-range spin fluctuations
resulting from the translational invariance of the system
will likely prevent the ground state from being macroscop-
ically degenerate, so if the impurity spins in one unit cell
happen to choose its polarization, then the others will
follow. On the contrary, in the regime of weak Hund’s
exchange, 3d3 ions act as spin defects that not only order
antiferromagnetically with respect to their neighbors but
also induce doublons in inactive orbitals.
Finally, we remark that this behavior with switching

between inactive and active orbitals by an orbitally neutral
impurity may lead to multiple interesting phenomena at
macroscopic doping when global modifications of the spin-
orbital order are expected to occur. Most of the results were
obtained in the classical approximation, but we have shown
that modifications due to spin-orbit coupling do not change
the main conclusion. We note that this generic treatment
and the general questions addressed here, such as the
release of frustration for competing spin structures due to
periodic impurities, are relevant to double perovskites [88].
While the local orbital polarization should be similar, it is
challenging to investigate disordered impurities, both
theoretically and in experiment, to find out whether their
influence on the global spin-orbital order in the host is
equally strong.
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APPENDIX A: DERIVATION OF 3d − 4d
SUPEREXCHANGE

Here, we present the details of the derivation of the low-
energy spin-orbital Hamiltonian for the 3d3 − 4d4 bonds
around the impurity at site i. H3d−4dðiÞ follows from the
perturbation theory, as given in Eq. (10). Here, we consider
a single 3d3 − 4d4 bond hiji. Two contributions to the
effective Hamiltonian follow from charge excitations:

(i) HðγÞ
J;43ði; jÞ due to d3i d

4
j ⇋ d4i d

3
j and (ii) HðγÞ

J;25ði; jÞ
due to d3i d

4
j ⇋ d2i d

5
j . Therefore, the low-energy

Hamiltonian is

HðγÞ
J ði; jÞ ¼ HðγÞ

J;43ði; jÞ þHðγÞ
J;25ði; jÞ: ðA1Þ

Consider first the processes that conserve the number
of doubly occupied orbitals d3i d

4
j ⇋ d4i d

3
j . Then, by means

of spin and orbital projectors, it is possible to express

HðγÞ
J;43ði; jÞ for i ¼ 1 and j ¼ 2 as

HðγÞ
J;43ð1;2Þ

¼ −ð~S1 · ~S2Þ
t2

18

	
4

Δ
− 7

Δþ 3JH2
− 3

Δþ 5JH2




þDðγÞ
2 ð~S1 · ~S2Þ

t2

18

	
4

Δ
− 1

Δþ 3JH2
þ 3

Δþ 5JH2




þ ðDðγÞ
2 − 1Þ t

2

12

	
8

Δ
þ 1

Δþ 3JH2
− 3

Δþ 5JH2



; ðA2Þ

with the excitation energy Δ defined in Eq. (11). The
resulting effective 3d − 4d exchange in Eq. (A2) consists of
three terms: (i) The first one does not depend on the orbital
configuration of the 4d atom, and it can be FM or AF
depending on the values Δ and the Hund’s exchange on the
3d ion. In particular, if Δ is the largest or the smallest
energy scale, the coupling will be either AF or FM,
respectively. (ii) The second term has an explicit depend-
ence on the occupation of the doublon on the 4d atom via

the projecting operatorDðγÞ
2 . This dependence implies that a

magnetic exchange is possible only if the doublon occupies
the inactive orbital for a bond along a given direction γ.
Unlike in the first term, the sign of this interaction is always
positive, favoring an AF configuration at any strength of Δ
and JH1 . (iii) Finally, the last term describes the effective
processes that do not depend on the spin states on the 3d
and 4d atoms. This contribution is of a pure orbital nature,
as it originates from the hopping between 3d and 4d atoms
without affecting their spin configuration, and for this
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reason favors the occupation of active t2g orbitals along the
bond by the doublon.
Within the same scheme, we have derived the effective

spin-orbital exchange that originates from the charge-
transfer processes of the type 3d314d

4
2 ⇋ 3d2i 4d

5
j ,

HðγÞ
J;25ð1; 2Þ. The effective low-energy contribution to the

Hamiltonian for i ¼ 1 and j ¼ 2 reads

HðγÞ
J;25ð1; 2Þ

¼ t2

U1 þ U2 − ðΔþ 3JH2 − 2JH1 Þ

×

	
1

3
DðγÞ

2 ð~S1 · ~S2Þ þ
1

3
ð~S1 · ~S2Þ − 1

2
ðDðγÞ

2 þ 1Þ


:

ðA3Þ

By inspection of the spin structure involved in the elemen-

tal processes that generate HðγÞ
J;25ð1; 2Þ, one can note that it

is always AF independently of the orbital configuration on
the 4d atom exhibiting with a larger spin exchange and
an orbital energy gain if the doublon is occupying the
inactive orbital along a given bond. We have verified that

the amplitude of the exchange terms inHðγÞ
J;25ð1; 2Þ is much

smaller than the ones that enter in HðγÞ
J;43ð1; 2Þ, which

justifies that one may simplify Eq. (A1) for i ¼ 1 and
j ¼ 2 to

HðγÞ
J ð1; 2Þ≃HðγÞ

J;43ð1; 2Þ ðA4Þ

and neglect HðγÞ
J;25ð1; 2Þ terms altogether. This approxima-

tion is used in Sec. II.

APPENDIX B: ORBITAL OPERATORS
IN THE L BASIS

The starting point to express the orbital operators
appearing in the spin-orbital superexchange model (17)
is the relation between quenched jaii, jbii, and jcii orbitals
at site i and the eigenvectors j1ii, j0ii, and j − 1ii of the
angular momentum operator Lz

i . These relations are known
to be

jaii ¼
1ffiffiffi
2

p ðj1ii þ j − 1iiÞ;

jbii ¼
−iffiffiffi
2

p ðj1ii − j − 1iiÞ;

jcii ¼ j0ii: ðB1Þ

From these equations, we can immediately get the occu-
pation-number operators for the doublon

DðaÞ
i ¼ a†i ai ¼ jaiihaji ¼ 1 − ðLx

i Þ2;
DðbÞ

i ¼ b†i bi ¼ jbiihbji ¼ 1 − ðLy
i Þ2;

DðcÞ
i ¼ c†i ci ¼ jciihcji ¼ 1 − ðLz

i Þ2 ðB2Þ

and the related fnðγÞi g operators

nðaÞi ¼ b†i bi þ c†i ci ¼ ðLx
i Þ2;

nðbÞi ¼ c†i ci þ a†i ai ¼ ðLy
i Þ2;

nðcÞi ¼ a†i ai þ b†i bi ¼ ðLz
i Þ2: ðB3Þ

The doublon hopping operators have a slightly different
structure that reflects their noncommutativity, i.e.,

a†i bi ¼ jaiihbji ¼ iLy
i L

x
i ;

b†i ci ¼ jbiihcji ¼ iLz
iL

y
i ;

c†i ai ¼ jciihaji ¼ iLx
i L

z
i : ðB4Þ

These relations are sufficient to write the superexchange
Hamiltonian for the host-host and impurity-host bonds in
the fLx

i ; L
y
i ; L

z
ig operator basis for the orbital part.

However, in practice, it is more convenient to work with
real operators fLþ

i ; L
−
i ; L

z
ig rather than with the original

ones fLx
i ; L

y
i ; L

z
ig. Thus, we write the final relations, which

we use for the numerical calculations in terms of these
operators

DðaÞ
i ¼ − 1

4
½ðLþ

i Þ2 þ ðL−
i Þ2� þ

1

2
ðLz

i Þ2;

DðbÞ
i ¼ 1

4
½ðLþ

i Þ2 þ ðL−
i Þ2� þ

1

2
ðLz

i Þ2;

DðcÞ
i ¼ 1 − ðLz

i Þ2; ðB5Þ

for the doublon occupation numbers and going directly to
the orbital ~τi operators, we find that

τþðaÞ
i ¼ 1

2
ðL−

i − Lþ
i ÞLz

i ;

τþðbÞ
i ¼ −i

2
Lz
i ðLþ

i þ L−
i Þ;

τþðcÞ
i ¼ i

4
½ðLþ

i Þ2 − ðL−
i Þ2� − i

2
Lz
i ðB6Þ

for the off-diagonal part and

τzðaÞi ¼ 1

8
½ðLþ

i Þ2 þ ðL−
i Þ2� þ

3

4
ðLz

i Þ2 − 1

2
;

τzðbÞi ¼ 1

8
½ðLþ

i Þ2 þ ðL−
i Þ2� − 3

4
ðLz

i Þ2 þ
1

2
;

τzðcÞi ¼ −
1

4
½ðLþ

i Þ2 þ ðL−
i Þ2� ðB7Þ
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for the diagonal one. Note that the complex phase in τþðbÞ
i

and τþðcÞ
i is irrelevant and can be omitted here, as τþðγÞ

i is

always accompanied by τ−ðγÞj on a neighboring site, being a
consequence of the cubic symmetry in the orbital part of the
superexchange Hamiltonian, and it can be altered by the
presence of a distortion, e.g., octahedral rotation. For
completeness, we also give the backward relation between
angular momentum components fLα

i g with α ¼ x; y; z and

the orbital operators fταðγÞi g; which are the following:

Lx
i ¼ 2τxðaÞi ;

Ly
i ¼ 2τxðbÞi ;

Lz
i ¼ 2τyðcÞi : ðB8Þ
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