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Compressing a porous, fluid-filled material drives the interstitial fluid out of the pore space, as when
squeezing water out of a kitchen sponge. Inversely, injecting fluid into a porous material can deform the
solid structure, as when fracturing a shale for natural gas recovery. These poromechanical interactions play
an important role in geological and biological systems across a wide range of scales, from the propagation
of magma through Earth’s mantle to the transport of fluid through living cells and tissues. The theory of
poroelasticity has been largely successful in modeling poromechanical behavior in relatively simple
systems, but this continuum theory is fundamentally limited by our understanding of the pore-scale
interactions between the fluid and the solid, and these problems are notoriously difficult to study in a
laboratory setting. Here, we present a high-resolution measurement of injection-driven poromechanical
deformation in a system with granular microsctructure: We inject fluid into a dense, confined monolayer of
soft particles and use particle tracking to reveal the dynamics of the multiscale deformation field. We find
that a continuum model based on poroelasticity theory captures certain macroscopic features of the
deformation, but the particle-scale deformation field exhibits dramatic departures from smooth, continuum
behavior. We observe particle-scale rearrangement and hysteresis, as well as petal-like mesoscale structures
that are connected to material failure through spiral shear banding.
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I. INTRODUCTION

Poromechanics couples the mechanical deformation
of a porous solid with fluid flow through its internal
structure [1–5]. In biophysics, poromechanics plays an
important role in the growth and deformation of cells
and tissues [6–10], and it is the dominant mechanism
underlying plant motion [11]. In both pure and applied
geophysics, poromechanics has been studied intensely
in the context of subsurface pressurization during fluid
injection, such as in geothermal energy extraction or
carbon dioxide sequestration [12–15] and, particularly, in
the context of hydraulic fracture for enhanced oil or gas
recovery [16–18].
Poromechanical deformations are poroelastic when they

are controlled by the reversible storage and release of
elastic energy. The classical theory of poroelasticity cou-
ples linear elasticity with Darcy’s law for fluid flow through
a porous medium, and the hallmark of these systems is
diffusive propagation and dissipation of fluid pressure with
characteristic time scale Tpe ¼ μL2=ðKkÞ, where μ is the

viscosity of the fluid, L is a characteristic length scale, and
K and k are the elastic modulus and permeability of the
solid skeleton. This approach is valid for small deforma-
tions, but many real systems feature large deformations,
small-scale microstructure, or physical mechanisms, such
as damage, growth, or swelling, that lead to a strongly
nonlinear coupling between the pore structure and the fluid
flow [5,19].
Many poroelastic deformations of practical interest are

driven by fluid injection. Injection-driven deformations
involve radial dilation (outward expansion), which is
particularly interesting and challenging because it leads
to a nontrivial state of stress and strain [20–23]. Indeed,
fluid injection into granular materials can lead to spec-
tacular damage patterns when the injection pressure
exceeds the interparticle friction or the external confining
stress [24–27]. However, the deformation in these examples
is almost completely irreversible because the solid skeleton
is stiff and the fluid pressure is low, so the majority of the
input energy is dissipated through frictional sliding and
rearrangement, and almost none is stored elastically [28].
Fluid injection can drive significant storage of elastic
energy only when the fluid pressure becomes comparable
to the stiffness of the solid skeleton.
True poroelastic deformation requires either much larger

pressures or much softer materials. As a result, it has proven
difficult to study in a laboratory setting. Experiments with
rocks and sands have been limited to postmortem inspection
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after high-pressure injection [29,30], providing useful insight
into the failure of realistic geomaterials, but at a very coarse
level in time and space. This limitation has been avoided
in a one-dimensional geometry with soft, open-cell polymer
foams (kitchen sponges; see, e.g., Refs. [31–33]). However,
these materials have proven to be experimentally challenging
for a variety of reasons, with unsatisfying comparison
between experiment and theory.
Here, we study the poromechanical deformation of a

system with granular microstructure by injecting fluid into
a confined monolayer of spherical particles. By using
particles that are extremely soft, we construct a system
that exhibits striking poroelastic phenomena at relatively
low working pressures. High-resolution imaging and par-
ticle tracking provide experimental access to the full,
multiscale deformation field. We show that the smooth,
quasireversible macroscopic deformation can be captured
in part by a minimal continuummodel, despite the presence
of complex shear banding and structural rearrangement.

II. FLUID INJECTION INTO A MONOLAYER
OF SOFT PARTICLES

We pack a single layer of about 25 000 spherical,
polyacrylamide hydrogel particles between two glass disks
and saturate the packing with the working fluid, a mixture

of water and glycerol [Fig. 1(a)] (see Appendix A). The
disks are separated by a permeable spacer that confines
the particles but allows fluid to leave freely around the
edge. The particles are soft (having a Young modulus of
∼20 kPa), nearly incompressible (having a Poisson ratio of
∼1=2), Hertzian (exhibiting Hertz-like contact mechanics),
elastic (allowing order-one elastic strains), noncohesive,
and very slippery (having low friction at particle-particle
and particle-wall contacts) [34,35]. The particles have
mean diameter d ≈ 1.2 mm with about 10% polydispersity
(Fig. 5). The packing has an apparent area void fraction of
∼0.14when viewed from above, and an actual volume void
fraction of ∼0.51. The former is denser than random close
packing in 2D (∼0.18) due in part to the softness of the
particles, as often occurs in fluid emulsions, and also in part
to their polydispersity.
To perform an experiment, we inject more of the same

working fluid into the cell at a constant volume rateQ. This
fluid enters the cell via an injection port in the center of the
lower disk, flows radially outward through the packing,
and exits through the spacer at the outer edge. The resulting
fluid pressure gradient within the porous layer (large
pressure at the center dropping to atmospheric at the edge)
deforms the packing, driving the particles radially outward
and opening a cavity in the center [Figs. 1(b) and 1(c);
see also video S1 [36]]. This coupling of fluid pressure and

(c)

(a) (b)

FIG. 1. We inject fluid into a monolayer of soft particles and measure the resulting poromechanical deformation. (a) The particles are
confined between two rigid glass disks of radius b ≈ 105 mm, and we inject fluid into the center of the packing at a steady volume rate
Q. The fluid flows radially outward through the packing and exits along the rim through a permeable spacer. The pressure gradient due
to fluid flow through the packing drives the particles radially outward, opening a cavity in the center that relaxes and closes after
injection stops. (b) We image the experiment from abovewith a digital still camera, measuring the deformation field at high resolution by
identifying and tracking the individual particles (see Appendix A). This snapshot is during injection at Q ¼ 24 mL=min. (c) Sequence
of snapshots from the same experiment showing cavity opening and relaxation. The black circle in the center is the injection port in the
bottom disk, which has a diameter of about 2.5 mm.
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solid deformation is the core idea behind poromechanics.
The deformation eventually reaches a steady state (here,
after ∼100 s) in which the gradient of elastic stress in the
solid skeleton balances the gradient of pressure in the fluid.
We then stop injecting, at which point the elastic stress
relaxes as the pressure gradient dissipates and the cavity
closes. The relaxation of the packing highlights the
macroscopically elastic nature of the system, demonstrat-
ing that the packing stores elastic energy during the
injection phase and releases it during the relaxation phase.
We repeat this injection-relaxation cycle several times in
the same packing. We image the deformation and sub-
sequent relaxation of the packing with a digital still camera,
detecting the particle positions in each image to within
about 0.01d and then tracking the particles from image to
image [Fig. 1(b)] (see Appendix A).

III. MULTISCALE DEFORMATION FIELD

One striking aspect of the deformation is the cavity that
opens and then closes in the center of the packing. Despite
the irregular shape of the cavity [Fig. 2(b)], we find that
the macroscopic dynamics of its expansion and collapse
are smooth and relatively reproducible across repeated
injected-relaxation cycles [Figs. 2(a) and 7]. In contrast,
the shape of the cavity varies from cycle to cycle [Fig. 2(b),
see also video S2 [36]]. The size of the cavity increases with
the injection rate roughly in accordance with the prediction

of a minimal continuum model (described in more detail
below), but repeating an experiment at a given injection rate
after “resetting” the packing by completely rearranging the
particles leads to large variability [Fig. 2(c)]. This implies
that the macroscopic properties of the packing are a strong
function of particle arrangement.
We measure the internal deformation of the packing via

particle tracking, which provides a direct measure of the
displacement field. For this purpose, we define a rectan-
gular coordinate system centered at the injection port,
where ðxi; yiÞ is the position of particle i at time t and
ðXi; YiÞ is its initial position. The displacement of particle i
is then ui ¼ ðxi − Xi; yi − YiÞ, with magnitude uiðtÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi − XiÞ2 þ ðyi − YiÞ2

p
and radial component ur;iðtÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2i þ y2i
p − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X2
i þ Y2

i

p
. The deformation is primarily

radial because of the axisymmetric boundary conditions,
so we focus on ur. The difference u − jurj is a measure of
the nonradial component of the displacement, which we
find to be a few percent or less of the radial component
(see Appendix A).
We find that the radial displacement is large near the

cavity and fades to zero at the rigid edge, with a petal-like
mesoscale structure [Fig. 3(a); see also video S3 [36]].
Similar petal-like features have been observed in simu-
lations of fluid injection into an initially dry packing of
frictional particles [37], indicating that these structures
are not an artifact of our low-friction system. Additionally,
similar but much more regular features have been
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FIG. 2. Fluid injection into the center of the packing drives outward compaction, opening a cavity. When injection stops, the packing
relaxes and the cavity closes. (a),(b) Here, we inject at a steady rate of Q ¼ 16 mL=min for about 135 s and then stop, allowing the
packing to relax. We repeat this injection-relaxation cycle two more times (black, then blue, then red). (a) Comparing the area-versus-
time curves from the three cycles (offset by 12 s for comparison; cf. Fig. 7) shows that the process is macroscopically smooth, with
similar dynamics and maximum area in each cycle. The first cycle (black) is somewhat different from subsequent cycles due to
heterogeneities in the initial particle distribution. We also show the prediction of a continuum model using best-fit material properties
(dashed gray curve); we discuss the model in Sec. V. (b) The steady-state cavity shape is neither smooth nor repeatable, indicating the
presence of irreversible micromechanics. The cavity does not open symmetrically about the injection port (gray circle with diameter
∼2.5 mm). The scalloped edges of the cavity profiles are particle-scale roughness (∼1 mm). (c) We repeat this experiment at different
injection rates, showing here the maximum (i.e., steady-state) cavity area against injection rateQ. Each group (color) of circles indicates
a series of at least two cycles after “resetting” the packing by removing the particles, cleaning the apparatus, and replacing the same
particles (the cross is a single cycle). The variability between cycles is relatively small except in one case (red), indicating that cycle-to-
cycle irreversibilities have a weak impact on the macroscopic mechanics. The variability between series at the same injection rate is
much larger, indicating that the particle arrangement has a strong impact on the macroscopic mechanics. All packings have initial
porosity between 0.506 and 0.515, and we do not observe any clear correlation between initial porosity and cavity size in this range.
The black curve is the prediction of the continuum model using the same mechanical properties for all points.
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observed in quasistatic “grain injection” experiments [38],
where they were identified with preferential directions in
the far-field crystal structure. However, our packings are
isotropic due to the polydispersity of the particles.
Each petal represents a group of particles that move

radially outward farther than their neighbors, implying that
the edges of each petal are bands of localized shear failure.
We confirm this by calculating the local strain field [39]
(see Appendix A), revealing a network of spiral shear bands

that span the entire system [Fig. 3(b)]. Shear bands
following logarithmic spirals are a well-known feature of
failure in radial dilation and hydraulic fracture [21,29]. We
see spirals with a pitch of roughly of π=4, which implies
that the packing has a very low shear strength (i.e., a very
low friction angle). Correlations between shear strain and
positive volumetric strain are evidence of shear dilation, a
well-known feature of deformation in granular materials
[Figs. 3(b) and 3(c)].

FIG. 3. The displacement field is characterized by a petal-like mesoscale structure that corresponds to spiral bands in the shear strain
field. Here we show (a) the radial displacement, which reveals detailed mesoscale structure reminiscent of flower petals. We show (b) the
magnitude of the shear strain with several logarithmic spirals for comparison (dashed black curves). The spirals have a pitch of π=4,
which is consistent with the shear failure of a material with negligible shear strength. We also show (c) the volumetric strain, which
shows expansion in the inner region and compression in the outer region, and is relatively axisymmetric. Lastly, we include (d) the
typical nonaffine displacement D̄min (see Appendix A). The nonaffine displacement is much smaller than the radial displacement
except near the cavity, where the kinematics become strongly nonaffine. The strain field is not necessarily a good measure of the
deformation in areas with large amounts of nonaffinity (near the cavity). We plot these quantities from an Eulerian perspective (against
current radial position r). We decompose the deformation field into (e)–(h) reversible and (i)–(l) irreversible components.
For comparison, we project all fields onto the deformed configuration at steady state. The reversible component is larger in magnitude
than the irreversible component and contains most of the mesoscale structure. The irreversible component contains much of the
nonaffine displacement.
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IV. ELASTICITY, PLASTICITY,
(IR)REVERSIBILITY,
AND DISSIPATION

Macroscopically, elastic deformations involve the revers-
ible storage and release of strain energy, whereas plastic
deformations are dissipative and irreversible. In crystalline
solids, there is a clear distinction between elasticity and
plasticity at the particle scale: Elastic deformations involve
stretching or compressing bonds between atoms or mole-
cules, whereas plastic deformations involve breaking and/
or rearranging bonds. This distinction is less clear in
amorphous or granular materials, where deformations often
involve a combination of reversible and irreversible rear-
rangement events [40–42].
Here, the fact that the cavity closes completely upon

relaxation implies that the deformation is macroscopically
reversible. However, the hysteresis in cavity shape is
evidence of particle-scale irreversibility, and the shear
bands are evidence of plastic failure. To investigate the
apparent contradiction of strongly irreversible microme-
chanics coexisting with smooth, quasireversible macro-
scopic mechanics, we decompose the deformation field into
reversible and irreversible components. We calculate these
by considering the transformation between three configu-
rations: the initial (before the deformation), the deformed
(at steady state), and the final (relaxed, after the deforma-
tion). The total strain E is that which transforms the initial
configuration into the deformed configuration. The irre-
versible strain Eirr is that which remains after the defor-
mation relaxes (i.e., the residual strain); this transforms
the initial configuration to the final relaxed configuration.
The reversible strain Erev is that which dissipates as the
deformation relaxes; this would transform the final relaxed
configuration back to the deformed configuration. For
infinitesimal deformations, these three strains are related
by superposition, E ¼ Erev þ Eirr; we calculate them inde-
pendently since the deformation is large. Since we calculate
strain as the locally affine best fit to the actual deformation
field, we also calculate the root-mean-square difference
between the affine field and the actual deformation field,
D̄min [39] (see Appendix A). This is a measure of the typical
nonaffine displacement, which is indicative of the amount
of particle-level rearrangement.
Comparing the reversible and irreversible components of

the strain field [Figs. 3(f) and 3(g) versus 3(j) and 3(k)], we
find that the inner region is dominated by a combination of
reversible and irreversible volumetric expansion (positive
volumetric strain) and shear. Volumetric expansion indi-
cates that particles have traveled away from their neighbors,
which is expected near the cavity since the particles move
radially outward by several diameters. Since the packing
cannot support tension, this leads to local collapse or
“unjamming” of the packing structure, which leads to
large amounts of both reversible and irreversible rearrange-
ment [Figs. 3(d), 3(h), and 3(l)]. In contrast, the outer

region is dominated by relatively smooth, axisymmetric,
reversible volumetric compression (negative volumetric
strain). The displacement and shear strain are much smaller,
and there is much less rearrangement. The spiral shear
bands span the entire system and, surprisingly, are pri-
marily reversible [Figs. 3(b), 3(f), and 3(g)].
All rearrangements play a strong role in the dynamics

since reconfiguration of the packing takes time and dis-
sipates energy. Macroscopically, dissipative deformations
that are reversible are known as “viscoelastic,” whereas
those that are irreversible are known as “viscoplastic.”
Unlike elasticity, which is quasistatic, these viscous proc-
esses are rate dependent.

V. POROVISCOELASTIC CONTINUUM MODEL

The steady-state deformation is set by the balance
between the gradient in fluid pressure within the packing
and the roughly axisymmetric elastic compression of the
outer region of the packing. Motivated by this, we next
derive a minimal axisymmetric model for this system based
on the theory of poroelasticity [5]. Our model is intended to
capture four main features of this system: (1) conservation
of volume, (2) poromechanical coupling between pressure
gradients in the fluid and stress gradients in the solid
skeleton, (3) elastic energy storage in the solid skeleton,
and (4) viscous dissipation due to reversible and irrevers-
ible rearrangements. We do not attempt to capture the
evolution of effective material properties due to irreversible
rearrangements [cf. Fig. 2(c)]. We emphasize that we are
not attempting to develop a general model for deforming
granular materials, but rather a minimal one that captures
the leading-order behavior of our poroelastic system. We
outline the core assumptions of the model here and present
a detailed derivation in Appendix B.
We assume that the packing is homogeneous, and that

the flow and deformation fields are axisymmetric. We
also assume that the fluid and the solid are individually
incompressible which, for the solid, implies that the
beads can rearrange and deform without changing volume.
This is justified here because the working pressure is low
relative to the bulk moduli of the fluid and the particles
(∼5 kPa versus ∼2 GPa). This allows for a simple but
exact kinematic relationship between the volumetric strain
and the local porosity (fluid or void fraction) ϕfðr; tÞ
[Eq. (B10)]. We assume that the porosity is initially
uniform and equal to ϕfðr; 0Þ ¼ ϕf;0.
We assume that the elastic stress in the solid skeleton is

isotropic, meaning that the skeleton stores elastic energy
due to volumetric compression but not due to shear. This is
justified by the fact that similar packings are known to have
an anomalously low ratio of shear-to-bulk modulus due to
the extreme softness and slipperiness of the contacts [43].
This allows us to link the stress directly to the volumetric
strain and, therefore, to ϕf. This is useful because although
the displacements are large, the changes in porosity are

FLUID-DRIVEN DEFORMATION OF A SOFT GRANULAR … PHYS. REV. X 5, 011020 (2015)

011020-5



small. We take the elastic component of the stress to be a
power law in the change in porosity with exponent 3=2, as
appropriate for a granular material consisting of Hertzian
particles [44], with an effective (drained) bulk modulus K.
The shear strain field indicates that the skeleton expe-

riences shear failure near the cavity and along the spiral
shear bands. The shear failure of granular materials is
typically modeled with a frictional (Mohr-Coulomb) failure
criterion, which states that the material will yield (fail
plastically) when the shear stress anywhere exceeds some
fixed fraction of the local normal stress. After yielding, the
structure of the material rearranges according to a suitable
(visco)plastic flow law. This transition to plastic flow
(unjamming) has been studied extensively from a variety
of perspectives (see, e.g., Refs. [39,44–46]). Although the
dynamics of unjamming can be extremely important in
many systems, we do not treat this behavior here because
our system is compaction controlled. That is, the rate of
shear strain near the cavity is fundamentally limited by
the rate of volumetric strain in the outer region since
the cavity can expand only as fast the outer region
compresses. This is consistent with the fact that we expect
the effective viscosity of rearrangement in the compacting
outer region to be much larger than that in the unjamming
inner region [46]. In an expansion-controlled system
where the outer region is not yet jammed, we expect the
cavity shape to exhibit regular, sharp, triangular cracks
[47]. In contrast, we see irregular and relatively smooth
cavity shapes.
We model viscous dissipation due to rearrangement in

the outer region in a very simplistic way by assuming that
this contributes a transient component to the volumetric
stress that is linear in the rate of change of porosity with
an effective viscosity η. This linear, Kelvin-Voigt-like
representation is often used in viscoelasticity, but here it
is intended to capture both reversible and irreversible
rearrangements. The linear viscous term embodies the rate
dependence of these processes, introducing a characteristic
time scale for viscous rearrangement, Tvr ¼ η=K. Although
the viscosity should itself be a function of the local
volumetric stress [46], we ignore this for simplicity.
Finally, we assume that fluid flows relative to the solid

skeleton according to Darcy’s law with a constant per-
meability k. The assumption of constant permeability is
justified by the fact that the changes in porosity are
relatively small, at most a few percent.
These assumptions lead to a nonlinear conservation law

for the local porosity as a function of time,

∂ ~ϕf

∂~t þ 1

~r
∂
∂ ~r

�
α ~ϕf − ~rð1 − ~ϕfÞ

∂ ~σ0
∂ ~r

�
¼ 0; ð1Þ

where ~ϕf ¼ ðϕf − ϕf;0Þ=ð1 − ϕf;0Þ is the normalized
change in porosity, which is a measure of the Eulerian
volumetric strain, ~t and ~r are time and radial position scaled

by the poroelastic time scale Tpe ¼ μb2=ðKkÞ and the outer
radius b, respectively, and

~σ0 ¼ ~ϕfj ~ϕfj1=2 þ β
∂ ~ϕf

∂~t ð2Þ

is the stress in the solid skeleton (the effective stress) scaled
by the bulk modulus K. The model has two dimensionless
parameters, α ¼ μQ=ð2πhKkÞ and β ¼ ηk=ðμb2Þ. The
former compares the pressure gradient in the fluid
with the stiffness of the solid skeleton, while the latter
compares the viscous time scale to the poroelastic one.
Because the mechanical properties of the packing are
difficult to measure and strongly dependent on the particle
arrangement, we use α and β as fitting parameters. The
former influences the rate of deformation and sets the
steady state, whereas the latter influences only the rate.
We solve Eq. (1) subject to two boundary conditions,

which are that the cavity wall is a free surface where the
stress in the solid skeleton vanishes and that the outer edge
is a rigid boundary where the solid is stationary. We also
solve simultaneously an evolution equation for the position
of the cavity wall. This model is a radial version of those
that have been developed for the rectilinear deformation of
kitchen sponges [33]. A similar radial model was devel-
oped in the context of blood-vessel pressurization [48], but
our model is kinematically exact for finite axisymmetric
deformations (see Appendix B), and we incorporate a
nonlinear elastic stiffness as well as viscous dissipation.
In steady state, the model can be simplified to an integral

coupled with a nonlinear algebraic equation for the cavity
radius; this is straightforward to evaluate numerically.
Despite the simplicity of the model and the large grain-
scale variability in the experiments, we find that, after
choosing α to match the cavity area, the steady-state
displacement field predicted by the model agrees surpris-
ingly well with the azimuthal average from the experiments
[Fig. 4(a)]. We also calculate an azimuthally averaged
porosity field from the displacement field via Eq. (B10).
The model does not agree very well with this [Fig. 4(b)],
although it does capture certain aspects: The initial porosity
in the experiment is ϕf;0 ≈ 0.51, and both the model and the
experiment show a concave-up trend from a value near 0.51
near the cavity down to a value near 0.50 at the wall.
The measured porosity field is nonmonotonic with a
minimum value at r=b ≈ 0.5, whereas the model is mon-
otonic with its minimum at r=b ¼ 1, but the minimum
values are similar.
The model is able to capture the displacement field

relatively well because the displacement field is an integral
measure of the deformation, dominated by the mean
features and relatively insensitive to the local details. In
contrast, the porosity field is a direct measure of the local
strain, strongly reflecting the local details of the deforma-
tion. In addition, the use of Eq. (B10) assumes smoothness,
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axisymmetry, and an initially uniform porosity field, but the
experiment does not necessarily observe any of these
except in an averaged sense.
A more elaborate model might take advantage of plastic

failure theory from soil mechanics [20], the theory of shear-
transformation zones in amorphous solids [39,49], or
constitutive laws from the rheology of suspensions [46],
although any of these approaches would lead to a sub-
stantial increase in complexity and several additional con-
stitutive parameters.
Solving the time-dependent model numerically, we find

that it captures the dynamics of cavity expansion after
choosing β accordingly [Fig. 2(a)]. The fit (β ≈ 5) yields a
poroelastic time scale of ∼1.5 s and a viscous time scale of
∼5 s, implying that viscous rearrangement controls the
overall rate of cavity expansion. Given the complex nature
of this process, it is surprising that our linear Kelvin-Voigt
model captures the dynamics of cavity expansion as well as it
does. The model does not capture relaxation very well,
relaxing much more slowly than the experiment. This is
not surprising, since the amount of viscous dissipation due to
rearrangement is likely different during relaxation than during
cavity expansion. Hysteresis in effective material prop-
erties is common in plasticity, soil mechanics, and granular
materials, but our minimal model does not include this.

VI. CONCLUSIONS

Fluid injection into a soft granular material drives
deformation that is macroscopically poroelastic, despite
rich micromechanical complexity. We find that the

deformation in the inner region (near the injection port)
is dominated by irreversible structural plasticity that leads
to strong variations in the cavity shape, whereas the outer
region deforms smoothly and reversibly. The latter ulti-
mately supports the radially outward loading and controls
the macroscopic mechanics of the steady state, such that the
leading-order features of the deformation can be captured
relatively well with an axisymmetric continuum model. We
expect this coexistence of microscopic irreversibility with
macroscopic reversibility to be a strong feature of elastic
dilational deformation in any system with a low ratio of
shear strength to bulk stiffness. Many intriguing problems
remain, such as connecting changes in grain-scale structure
with the evolution of macroscopic properties, examining
more sophisticated material models based on plasticity
theory, and exploring the dynamics of fluid-driven shear
failure.
More broadly, this system is a promising platform for

high-resolution measurement of the dynamics of porome-
chanical deformation, and it has several additional features
that we do not take advantage of here. For example,
polyacrylamide hydrogel is closely index matched with
water, making it extremely well suited to visualization in
three-dimensional systems [34,35,50,51]. Polyacrylamide
hydrogel is also sensitive to both temperature and dissolved
salt concentration. This allows for precise system-wide
tuning of the size and stiffness of the particles, and also
enables studies of the dynamics of swelling or shrinking in
response to local or global stimuli, which has particular
relevance to biophysical systems [7,9,11].
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0
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FIG. 4. Despite the large and structured variability in the particle displacements, the continuum model agrees well with the azimuthally
averaged displacement profile after choosing α to match the cavity radius. Here we show (a) the steady-state radial displacement of the
particles (gray dots), the radius of the cavity (red circle), and two different measures of the azimuthally averaged radial displacement (red
curve, direct azimuthal average; blue curve, integrated volumetric strain). We also show the azimuthally averaged nonaffine
displacement (solid gray curve) and the displacement field predicted by the continuum model (solid black curve). The displacement
becomes strongly nonaffine near the cavity, so we choose a threshold to the left of which affine quantities are poor measures of the
deformation: The dashed portions of the red and blue curves are where the nonaffine displacement accounts for more than 10% of the
total. We calculate (b) two corresponding measures of the azimuthally averaged porosity by differentiating the averaged displacement
according to Eq. (B10) and smoothing the result (red and blue curves). This is a poor measure of porosity near the cavity because it
assumes a smooth, axisymmetric displacement field. The model (solid black curve) does not capture the porosity field very well. We plot
these quantities from an Eulerian perspective.
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In much the sameway that granular monolayers and rafts
of bubbles have served as indispensable model systems for
developing fundamental concepts in the mechanics of both
crystalline and amorphous materials [52–55], so too can
packings of soft particles provide unique insight into the
deformation and failure of materials under nontrivial
poromechanical loading, from the propagation of poroe-
lastic waves to the coupling of deformation with flow and
transport. In addition to serving as a tool for benchmarking
numerical simulations [37,56,57], this system offers an
avenue into the experimental exploration of other funda-
mental problems of poroelasticity that have previously
existed only as theoretical predictions or inferences from
field observations.
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APPENDIX A: MATERIALS AND METHODS

Apparatus.—We pack a single layer of about 25 000
spherical particles (polyacrylamide hydrogel, JRM
Chemical) between two borosilicate glass disks. The
particles have mean diameter d ¼ 1.19 mm with standard
deviation (s.d.) 0.12 mm (10% polydispersity; Fig. 5).
The disks are 19 mm thick and 212.7 mm in diameter, and
they are separated by a plastic spacer that defines a working
area of diameter b¼ 210.5mm and thickness h¼ 1.44mm.
This is two s.d. greater than d, confining the particles
to a two-dimensional monolayer without restricting their
in-plane motion. The spacer is permeable, allowing fluid to
exit while confining the particles. We inject fluid at a fixed
volume flow rate using a syringe pump (New Era NE-
4000). The fluid is a mixture of water and glycerol (61%
glycerol by mass) with a viscosity of μ ¼ 0.012 Pa s at
20 °C. We acquire images with a digital camera (Canon
EOS Rebel T2i).
Particle detection and tracking.—We process the exper-

imental images in MATLAB, detecting particle positions in
each image via centroid finding after applying an intensity
threshold. We track the particles from image to image using
a standard particle-tracking algorithm [58]. The images
have a resolution of about 7.9 pixels per 1 mm (about 9.4
pixels per particle diameter). Frame-to-frame detection
noise for particle centers is about 0.1 pixels (13 μm or
about 1% of one diameter; Fig. 6).

Deformation field.—We use the particle positions to
calculate a best-fit local strain field following Ref. [39].
However, the quantity described in Ref. [39] as a local
strain tensor ϵ is more correctly identified as a local
displacement gradient tensor ∂u=∂X, where X is the
undeformed configuration and u is the displacement field.
The distinction is important here, where the displacements
are large. We calculate the displacement gradient tensor and
then use it to calculate the Green-Lagrange strain tensor
E ¼ 1

2
ðF⊺F − IÞ, where F ¼ I þ ∂u=∂X is the deforma-

tion gradient tensor and I is the identity tensor. The strains
we report above are Green-Lagrange strains. We also
calculate the root-mean-square nonaffine displacement
D̄min from their quantity D2

min by dividing each local value
by the number of neighbors to form a mean (their quantity
is a sum) and then taking the square root. The result has
dimensions of length.

APPENDIX B: CONTINUUM MODEL

1. Derivation

We derive a continuum model for this process based on
the theory of poroelasticity [5]. We assume that the fluid
and the solid are incompressible, which, for the solid,
implies that the beads can rearrange and deform without
changing volume. This is a common assumption, justified
here by the low working pressure (∼5 kPa). Macroscopic
deformation occurs through rearrangement of the solid
skeleton, which leads to variations in the porosity (void or
fluid fraction) ϕf. Assuming axisymmetry and working
strictly in terms of Eulerian quantities, conservation of
mass dictates that

0.8 1.0 1.2 1.4 1.6
0

70

140

diameter [mm]

N  

FIG. 5. The particles have mean diameter 1.19 mm with s.d.
0.12 mm (10% polydispersity). Here, we show the particle-size
distributionwith themean (vertical blue line) and themean�1 s.d.
(vertical cyan lines). The gap between the glass disks is 1.44 mm
(vertical red line), or 2 s.d. above the mean, confining the particles
to a monolayer without restricting their in-plane motion. This
histogram is measured optically from a sample of about 3230
particles.
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∂ϕf

∂t þ 1

r
∂
∂r ðrϕfvfÞ ¼ 0; ðB1aÞ

ϕfvf þ ð1 − ϕfÞvs ¼
Q

2πrh
; ðB1bÞ

where vfðr; tÞ and vsðr; tÞ are the velocity of the fluid and
of the solid, Q is the volume rate of fluid injection, and h is
the thickness of the gap. We assume that fluid flows relative
to the solid skeleton according to Darcy’s law,

ϕfðvf − vsÞ ¼ − k
μ

∂p
∂r ; ðB2Þ

where k and μ are the permeability of the solid skeleton and
the viscosity of the fluid, respectively, and pðr; tÞ is the
fluid pressure. Poroelastic theory dictates that the internal
gradient in fluid pressure acts as a body force on the solid
skeleton, and mechanical equilibrium requires that this
must be supported by the divergence of the stress in the
solid skeleton. We expect that the packing has an extremely
low ratio of shear modulus to bulk modulus, so for
simplicity we assume that the solid cannot support shear
or tensile stresses. This implies that the stress tensor is
isotropic, and we write mechanical equilibrium as

∇ · σ0 ¼ ∇p →
∂σ0
∂r ¼ ∂p

∂r ; ðB3Þ

where σ0 is the effective stress (i.e., the stress in the solid
skeleton). Combining all of the above, we obtain a
conservation law for the evolution of the porosity,

∂ ~ϕf

∂t þ 1

r
∂
∂r

�
Q
2πh

~ϕf − rð1 − ~ϕfÞ
k
μ

∂σ0
∂r

�
¼ 0; ðB4Þ

where ~ϕf ¼ ðϕf − ϕf;0Þ=ð1 − ϕf;0Þ is the Eulerian volu-
metric strain, or the normalized change in porosity, and ϕf;0

is the initial (relaxed) porosity.
We must now specify a constitutive relationship between

effective stress and strain, but note that Eq. (B4) is valid for
any stress-strain relationship that yields an isotropic stress
tensor. Here, we take the stress to be Hertzian elastic
and linearly viscous in the volumetric strain. This can be
written as

σ0ðϕfÞ ¼ K ~ϕfj ~ϕfj1=2 þ η
∂ ~ϕf

∂t ; ðB5Þ

where K and η are the effective bulk modulus and
viscosity of the solid skeleton, respectively. Note that
the elastic component of the stress vanishes at ϕf ¼
ϕf;0 → ~ϕf ¼ 0. The linear viscous term introduces a

(a)

(b)

(c)

FIG. 6. We detect particle positions to within ∼0.01d.
We estimate this detection noise by calculating (a) total
particle displacement between two frames taken before
injection has started, when the particles are at rest. The
noise has mean 0.006d and s.d. 0.005d, indicating a detection
threshold of ∼0.01d (vertical blue line). At steady-state
deformation, (b) the average radial displacement is ∼1.4d
with s.d. 1.6d and (c) the average nonradial displacement is
0.03d with s.d. 0.06d, indicating that particle motion is
almost entirely radial.

FLUID-DRIVEN DEFORMATION OF A SOFT GRANULAR … PHYS. REV. X 5, 011020 (2015)

011020-9



simple “rearrangement” time scale, without which the
mechanics would be quasistatic.
We assume that fluid is injected into a cavity in the solid

of radius aðtÞ and initial radius að0Þ ¼ a0. The behavior is
independent of a0 for a0 ≪ b. The fluid and the solid are
initially at rest, vfðr; 0Þ ¼ vsðr; 0Þ ¼ 0, and the initial

porosity field is ϕfðr; 0Þ ¼ ϕf;0 → ~ϕfðr; 0Þ ¼ 0. Injection
begins at t ¼ 0.
At the inner boundary, r ¼ a, the normal component of

the effective stress must vanish since the cavity is a free
surface of the solid skeleton. For an isotropic stress field,
this implies that σ0ða; tÞ ¼ 0 and, therefore, that

~ϕfða; tÞ ¼ 0 ðB6Þ

for ~ϕfðr; 0Þ ¼ 0. At the rigid outer boundary, r ¼ b, we
have that urðb; tÞ ¼ vsðb; tÞ ¼ 0. This can be written as

k
μ

∂σ0
∂r

����
r¼b

¼ − Q
2πbh

: ðB7Þ

We also require an evolution equation for the position of the
moving inner boundary,

da
dt

¼ vsða; tÞ ¼
Q

2πah
þ k
μ

∂σ0
∂r

����
r¼a

: ðB8Þ

Equations (B4)–(B8) constitute a one-dimensional, time-
dependent, moving-boundary problem. The solid displace-
ment field does not appear explicitly, but we can calculate it
at any time through a kinematic relationship,

J ¼ detF ¼ 1 − ϕf;0

1 − ϕf
; ðB9Þ

where F is the deformation gradient tensor (see
Appendix A) and J is the Jacobian determinant. For an
axisymmetric, plane-strain deformation, Eq. (B9) becomes

ϕf − ϕf;0

1 − ϕf;0
¼ ~ϕf ¼

1

r
∂
∂r

�
rur − 1

2
u2r

�
; ðB10Þ

where urðr; tÞ is the r component of the (Eulerian) solid
displacement field. In contrast to linear poroelasticity, this
problem is nonlinear for four reasons: We account rigor-
ously for (1) the moving boundary, (2) the solid velocity,
and (3) the exact relationship between porosity and
displacement, and we use (4) a nonlinear elastic law.
A similar axisymmetric model was developed in

Ref. [48] for small elastic deformations. Our model
incorporates a nonlinear elastic law and linear viscous
effects and is kinematically exact—it is valid for arbitrarily
large deformations as long as the constitutive laws remain
valid.

2. Dimensionless form

We present Eqs. (B4) and (B5) in dimensionless
form in the main text [Eqs. (1) and (2), respectively],
where ~r ¼ r=b is the radial coordinate scaled by the outer
radius, ~t ¼ t=Tpe is time scaled by the poroelastic time
scale, ~σ0 ¼ σ0=K is the effective stress scaled by the bulk
modulus, and the two dimensionless parameters are
α ¼ μQ=ð2πhKkÞ and β ¼ ηk=ðμb2Þ. The dimensionless
boundary conditions are

~ϕfð ~a; ~tÞ ¼ 0; ðB11Þ

∂ ~σ0
∂ ~r

����
~r¼1

¼ −α; ðB12Þ

and

d ~a
d~t

¼ α

~a
þ ∂ ~σ0

∂ ~r
����
~r¼ ~a

; ðB13Þ

where ~a ¼ a=b. We solve the model numerically using a
finite-volume method with explicit time integration,
accommodating the moving boundary with an adaptive
grid. At steady state, the model has the implicit solution

~ϕf;ss ¼ −½α lnð~r= ~assÞ�2=3 ðB14Þ

and

~ur;ssð~rÞ ¼ ~r −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~r2 − 2I

p
; ðB15Þ

where the integral Ið~rÞ is

Ið~rÞ ¼ −
Z

1

~r
r ~ϕf;ssðrÞdr ¼

Z
1

~r
r½α lnðr= ~assÞ�2=3dr;

ðB16Þ
and the subscript “ss” refers to the value of a quantity at
steady state. The steady-state cavity radius is determined
implicitly by the definition ~ur;ssð ~assÞ ¼ ~ass − ~a0, which
leads to

~ass ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~a20 þ 2Ið ~assÞ

q
: ðB17Þ

We solve Eq. (B17) numerically using a standard root-
finding technique, evaluating the integral Ið ~assÞ from
Eq. (B16) using the trapezoidal rule.
The mechanical properties of the packing are difficult to

measure and are strongly dependent on the particle arrange-
ment [Fig. 2(c)], so we use the mechanical properties as
fitting parameters. To compare the model with the experi-
ment at steady state, as in Fig. 4, we choose a value of the
product Kk to match the steady-state cavity radius. We use
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a single value of Kk for all of the experiments in Fig. 2(c).
To compare the dynamics, as in Figs. 2(a) and 7, we further
choose ηk to match the rate of deformation and relaxation
(ηk plays no role in the steady state).
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