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We derive an effective field theory for the isotropic-nematic quantum phase transition of fractional
quantum Hall states. We demonstrate that for a system with an isotropic background the low-energy
effective theory of the nematic order parameter has z ¼ 2 dynamical scaling exponent, due to a Berry phase
term of the order parameter, which is related to the nondissipative Hall viscosity. Employing the composite
fermion theory with a quadrupolar interaction between electrons, we show that a sufficiently attractive
quadrupolar interaction triggers a phase transition from the isotropic fractional quantum Hall fluid into a
nematic fractional quantum Hall phase. By investigating the spectrum of collective excitations, we
demonstrate that the mass gap of the Girvin-MacDonald-Platzman mode collapses at the isotropic-nematic
quantum phase transition. On the other hand, Laughlin quasiparticles and the Kohn collective mode remain
gapped at this quantum phase transition, and Kohn’s theorem is satisfied. The leading couplings between
the nematic order parameter and the gauge fields include a term of the same form as the Wen-Zee term.
A disclination of the nematic order parameter carries an unquantized electric charge. We also discuss
the relation between nematic degrees of freedom and the geometrical response of the fractional quantum
Hall fluid.
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I. MOTIVATION AND INTRODUCTION

Strongly correlated electronic systems have a strong
tendency to have liquid-crystal-like ground states (e.g.,
crystals, smectics or stripes, and nematics) that break
spontaneously translation and rotational invariance to
varying degrees [1]. Typically, these states arise as the
result of the competition between repulsive Coulomb
interactions and effective attractive interactions that arise
from the disruption of strongly correlated states in
systems with microscopic repulsive interactions. In two-
dimensional electron gases (2DEGs) in large magnetic
fields, these effects are even stronger since the kinetic
energy of the electron is completely quenched in a uniform
perpendicular magnetic field, and hence, interaction effects
are dominant. For these reasons, in addition to incom-
pressible quantum Hall states (FQH), integer or fractional,
electronic liquid crystal phases are generally expected to
occur in these systems [2].
Theoretically, several Hartree-Fock studies [3–6] (and

effective field theories [7]) have predicted stripe phases, as
well as “bubble” and other crystalline states [8], in addition

to the expected Wigner crystals [9–13]. These phases are
expected to become exact ground states for very weak
magnetic fields [14], and in effective field theories [7]
Similarly, (compressible) nematic phases have been found
in variational wave-function calculations [15–17] and also
in phenomenological hydrodynamic theories [18]. Exact
diagonalization studies of small systems have found evi-
dence of short-range stripe order in a Landau level [19]. For
a recent review on electronic nematic phases, see Ref. [20].
Experiments in the second Landau level, N ¼ 2 (and in

the first Landau level, N ¼ 1, in tilted fields), have
established the existence of compressible states of the
2DEG with an extremely large transport spatial anisotropy
with a marked temperature dependence [21–23], a nematic
Fermi fluid [2,24]. In these experiments, the anisotropy was
probed by a small in-plane component of the magnetic field
that breaks rotational invariance explicitly. However, the
strong temperature dependence of the anisotropy implies
that that the in-plane field reveals a strong tendency to
break rotational invariance spontaneously. Thus, the mea-
sured anisotropy of the transport can be regarded as the
response to the in-plane field exactly in the same way as the
magnetization is the response to a Zeeman field in a
magnet. In this sense, the anisotropy versus in-plane field
curves can be regarded as the equation of state of the 2DEG
(or, rather, the nematic susceptibility). On the other hand,
given the absence of pinning effects observed in this
regime, the linearity of their I-V curves at low voltages,
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and the scaling behavior exhibited by the data, one can
readily conclude that these states are regarded as (com-
pressible) electron nematic states [24] rather than stripes
(or unidirectional charge-density waves), or “bubble”
phases (i.e., multidirectional charge-density wave states),
expected from Hartree-Fock calculations [3–6]. To date, the
compressible nematic state in the N ¼ 2 Landau level near
filling fraction ν ¼ 9=2 is the best documented case of a
nematic phase in any electronic system [20].
More recent magnetotransport experiments in the first,

N ¼ 1, Landau level have shown that incompressible the
fractional quantum Hall state with filling fraction ν ¼ 7=3
have a pronounced temperature-dependent anisotropy in
their longitudinal transport. As in all experiments of this
type (see, e.g., the review of Ref. [20]), the anisotropy is
seen in the presence of a weak symmetry-breaking field
(here, the in-plane component of the magnetic field), which
reveals a pronounced (but smooth) rise of the transport
anisotropy as the temperature is lowered below some
characteristic value. Since the symmetry is broken expli-
citly, these experiments provide evidence for a large
temperature-dependent nematic susceptibility in these fluid
states [25]. These experiments strongly suggest that, at least
in theN ¼ 1Landau level, theFQHphases the 2DEGmaybe
proximate to a phase transition to an incompressible nematic
state inside the topological fluid phase, i.e., a nematic FQH
state. The notion of a nematic FQH state was actually
suggested early on by Balents [26]. However, this concept
did not attract significant attention until the recent experi-
ments of Xia and co-workers, which suggested the existence
of strong nematic correlations, became available [25].
The experiments of Xia and co-workers motivated

Mulligan and co-workers [27,28] to formulate a theory
of a quantum phase transition inside the ν ¼ 7=3 FQH
phase, from an isotropic fluid to a nematic FQH state
interpreted as a quantum Lifshitz transition. The theory of
Mulligan et al. uses as a starting point the effective field
theory of a Laughlin isotropic FQH fluid with filling
fraction ν ¼ 1=m (with m an odd integer) whose effective
Lagrangian is that of a (hydrodynamic) gauge field aμ, with
a Maxwell and a Chern-Simons term [29,30]. In this
picture, the FQH quantum Lifshitz transition occurs when
the coefficient of the electric field term of the Maxwell-like
term of the effective action of the hydrodynamic gauge field
vanishes, and can be regarded as a Chern-Simons version of
the quantum Lifshitz model [31].
While this theory successfully predicts many aspects of

the experiment (in particular, the anisotropy), it has several
difficulties, the most serious of which is that in a Galilean
invariant system the coefficient of the term for the hydro-
dynamic electric field is fixed by Kohn’s theorem [32].
Although this restriction can be violated by a relatively
small amount by Landau level mixing effects [28], it is
unlikely to become large enough to trigger a Lifshitz
transition to a nematic state. Another puzzling aspect is

that the Chern-Simons Lifshitz theory of Mulligan et al.
also applies to the integer Hall states. However, barring
large enough Landau level mixing effects, it is hard to see
how a system in the integer quantum Hall regime may
break spontaneously rotational invariance. The experiment
of Xia et al. has also prompted several studies of integer
and fractional quantum Hall states in systems in which
the anisotropy is built in explicitly in the geometry of the
two-dimensional surface in which the electrons reside
[33], including wave functions for states with fixed
anisotropy [34].
Maciejko and co-workers [35] recently proposed an

effective field theory of the spontaneous breaking of
rotational invariance in a nematic state in the FQH regime
with the form of a nonlinear sigma model on the non-
compact target space SOð2; 1Þþ manifold of the rotational
degrees of freedom and the amplitude of the local nematic
order parameter. They proposed that the nematic transition
is triggered by a softening of the intra-Landau level Girvin-
MacDonald-Platzman (GMP) collective mode of the FQH
fluid [36]. A key result from this work is the observation
that, due to the breaking of time-reversal invariance in the
FQH fluid, the dynamics of the nematic fluctuations is
governed by a Berry phase term, whose coefficient they
conjectured to be essentially the same as the (nondissipa-
tive) Hall viscosity of the FQH fluid [37–39]. Maciejko and
co-workers also further an interpretation of nematic fluc-
tuations as a fluctuating geometry (making contact with
ideas put forward by Haldane on the existence of geometric
degrees of freedom in the FQH liquid [33,40,41]). Similar
ideas were discussed by two of us in the context of a
nematic transition in a spontaneous anomalous quantum
Hall state [42], and earlier on by one of us in a theory of
thermal melting of the pair-density-wave superconducting
state [43]. The conjectured connection between the nematic
fluctuations in the FQH fluid and the Hall viscosity
strongly suggests a relation with theories of the geometric
response of these topological fluids [44–48], which we
further elaborate below.
In this paper, we address several open aspects of this

problem that have remained unexplained. One of the issues
is the origin of the nematic quantum phase transition which
Maciejko et al. argued could be due to a softening of the
GMP collective mode. Here, we will show that the GMP
mode can become gapless at wave vector q ¼ 0 if the
effective interactions among the electrons are sufficiently
attractive in the quadrupolar channel. It is known that in a
Fermi liquid, a sufficiently attractive effective interaction in
the quadrupolar channel (i.e., a sufficiently negative
charge-channel Landau parameter F2) can trigger a nematic
instability through a Pomeranchuk instability, which results
in a spontaneous quadrupolar distortion of the Fermi
surface [49]. Here, we postulate that at long wavelengths,
in addition to the long-range Coulomb interaction, there is
an attractive short-range quadrupolar interaction. Such an
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effective interaction can arise due to the softening of the
short-distance Coulomb interaction in Landau levels
N ≥ 1. In fact, an early numerical study by Scarola and
co-workers [50] of the effective interactions of composite
fermions [51] showed that in Landau levels with N ≥ 1
there is a strong tendency for the FQH liquid to become
unstable (and was interpreted as an exciton instability.)
From the point of view of symmetry breaking, a q ¼ 0
(“exciton”) quadrupolar condensate is equivalent to an
instability to nematic state since they break the same
spatial symmetries. The other focus of this work is to
clarify the relation between the nematic fluctuations (and
possible order) in the FQH fluid to the response of this fluid
to changes on the actual background geometry of the
surface on which the 2DEG resides. This is an important
question since quantities such as the Hall viscosity measure
the response to shear deformations of the geometry, and this
is not quite the same as the nematic response, although, as
we show below, they are related.
In order to study the quantum nematic phase transition in a

FQH fluid, we first generalize the fermion Chern-Simons
theory of the FQH states [52] to include the effects of the
attractive quadrupolar interaction and show that indeed there
can be a quantum phase transition inside all Jain states of the
FQH provided the quadrupolar interaction is sufficiently
attractive. In our treatment we also include the coupling to the
background geometry of the 2D surface on which the 2DEG
resides. We then use our recent results presented in Ref. [47]
to show that the quadrupolar interaction couples to both the
so-called statistical gauge field (of the fermionChern-Simons
theory) and the spin connection of the geometry. Our first
main result is the derivation of the effective action for the
nematic degrees of freedom, which, as expected, has the form
proposed by Maciejko et al. The fluctuations of the nematic
order parameter are strongly coupled to the GMP mode
of the FQH fluid (which has quadrupolar character), and
the nematic quantum phase transition is triggered when
the q ¼ 0 component of this mode becomes gapless.
Furthermore, the dynamics of the nematic degrees of freedom
is controlled by a Berry phase term and, hence, has a
dynamical critical exponent z ¼ 2. However, its coefficient
is not the Hall viscosity of the FQH fluid (as conjectured in
Ref. [35]) but is given, instead, by the Hall viscosity of the
effective integer Hall effect of the composite fermions.
Nevertheless, the Hall viscosity of the system (both in the
isotropic and in the nematic phase), defined as the response to
the shear deformation of the underlying geometry, is the same
as the Hall viscosity of the FQH fluid obtained in Ref. [38]
(and recently rederived by us [47]). These results are
reminiscent of the previous study by two of us [42], where
we studied the effective theory of the phase transition
between an isotropic Chern insulator and a nematic Chern
insulator. We also demonstrate that in this theory the nematic
transition is reachedwhile theKohnmode remains unaffected
in both phases and at the phase transition. In addition, we

show that the components of the nematic order parameter can
be used to define an effective spin connection (which is
effectively the same as the “nematic gauge field” phenom-
enologically introduced in Ref. [35]) and that it couples to an
external electromagnetic probe field through a term with the
form of the Wen-Zee term [53], a result also anticipated by
Maciejko et al.We also derive the effective action for the spin
connection of the background geometry and show that it has
the same form (with the same universal coefficients) in both
phases. Finally,we use our effective field theory to investigate
the properties of a disclination of the nematic order parameter
in the nematic phase, and show that it carries a fractional (but
nonuniversal) electric charge and that the Hall viscosity is
modified by the disclination, which agrees with the a
symmetry-based argument of Ref. [35].
This paper is organized as follows. The theory of sponta-

neous rotational symmetry breaking is developed in Sec. II.
After summarizing the fermion Chern-Simons gauge theory
in Sec. II A, in Sec. II B we introduce the quadrupolar
interaction and its coupling with the statistical gauge field
and with the spin connection of the background metric. In
Sec. III, we derive the effective Landau-Ginzburg theory
from the fermion Chern-Simons theory, and in Sec. IV, we
show that there is a quantum phase transition to a nematic
phase for sufficiently strong attractive quadrupolar coupling.
In Sec. V, we discuss the behavior of the Goldstone mode of
the broken orientational symmetry in the nematic phase and
the nature of the disclinations. The coupling to the back-
ground geometry is developed in Sec. VI. Our conclusions
are presented in Sec. VII. In the appendixes, we present
details of the calculation of the effective field theory. In
Appendix A, we present the calculation of the nematic
correlators, and in Appendix B we present the calculation
of mixed correlators of nematic and gauge fields. A proof of
gauge invariance is given in Appendix C, and the nematic
collective excitations are derived in Appendix D.

II. SPONTANEOUS BREAKING OF ROTATIONAL
SYMMETRY IN FQH STATES

A. Composite Fermion theory of FQH states

Here, we begin with a short review of the composite
fermion theory of a FQH state [51,52], specializing in the
simpler case of the Laughlin state at filling ν ¼ 1=3, which
can be easily generalized to the other states in Jain sequence
ν ¼ p=ð2spþ 1Þ, where s; p ∈ Z. Let us consider a theory
of electron field Ψ in two space dimensions in a uniform
magnetic field. The action for this system is

S ¼
Z

d2xdt

�
Ψ†ðxÞD0ΨðxÞ − 1

2me
ðDΨðxÞÞ† · ðDΨðxÞÞ

�

− 1

2

Z
d2x0d2xdtVðjx − x0jÞΨ†ðxÞΨðxÞΨ†ðx0ÞΨðx0Þ;

ð2:1Þ
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in which Dμ ¼ ∂μ þ iAμ is the covariant derivative of the
electron,me is the mass of the electron, and we have set the
Planck constant ℏ, the speed of light c, and the electric
charge e to unity. The four-fermion term encodes the two-
body interaction between the electrons. The electromag-
netic gauge field Aμ can be written as Aμ ¼ Āμ þ δAμ,
where Āμ is for the uniform magnetic field B̄ ¼ ϵij∂iĀj

perpendicular to the plane and δAμ is the probe field to
measure the response of the FQH state.
The average electron density ρ̄ and the uniform external

magnetic field B̄ are related to each other through the filling
fraction ν,

ρ̄ ¼ ν

2π
B̄ ¼ 1

6π
B̄; ð2:2Þ

where we have set ν ¼ 1=3 for the leading Laughlin state.
For a general Jain state, the filling fraction is
ν ¼ p=ð2spþ 1Þ, where s and p are two integers. The
Laughlin FQH state with ν ¼ 1=3 can be pictorially
understood as the liquid state of the electrons in which,
on average, each electron is bound with the two flux
quanta. For a general Jain state, each electron is bound to 2s
flux quanta and becomes a composite fermion [51].
This is a problem of strongly coupled electrons and

cannot be tackled directly using weak coupling methods.
To make progress, we follow Ref. [52] and consider the
equivalent system obtained by coupling the system of
interacting electrons to the (dynamical) Chern-Simons term
of the statistical gauge field aμ, using minimal coupling.
(For a detailed discussion, see Ref. [30].) The action of the
equivalent problem is

S ¼
Z

d2xdt

�
Ψ†ðxÞD0ΨðxÞ − 1

2me
ðDΨðxÞÞ† · ðDΨðxÞÞ

�

− 1

2

Z
d2x0d2xdt½Vðjx − x0jÞΨ†ðxÞΨðxÞΨ†ðx0ÞΨðx0Þ�

þ 1

8π

Z
d2xdtϵμνλaμ∂νaλ; ð2:3Þ

where Dμ ¼ ∂μ þ iAμ þ iaμ is a new covariant derivative
that includes the minimal coupling to both the electromag-
netic field Aμ and the statistical field aμ. This is the exact
mapping of the original problem defined by the action of
Eq. (2.1). The Chern-Simons term binds the two flux
quanta to the electron and turns the electron into the
composite fermion [51,54].
We now consider uniform states that can be described

using the average field approximation in which we smear
out the two flux quanta bound to the electron over the two-
dimensional plane. This translates as choosing the average
part of āμ to partially cancel the external magnetic field Āμ.
For the ν ¼ 1=3 Laughlin state, the effective field is

Āμ þ āμ ¼
1

3
Āμ: ð2:4Þ

Thus, the composite fermionΨ is subject to themagnetic field
Āμ þ āμwhich is1=3 of themagnetic field experienced by the
electron. The composite fermion is in the integer quantum
Hall effect at the fillingν ¼ 1, and in effect isweakly coupled.
We can write out the Lagrangian of the composite fermion:

S ¼
Z

d2xdt

�
Ψ†ðxÞD0ΨðxÞ − 1

2me
ðDΨðxÞÞ† · ðDΨðxÞÞ

�

− 1

2

Z
d2x0d2x½Vðjx − x0jÞΨ†ðxÞΨðxÞΨ†ðx0ÞΨðx0Þ�

þ 1

8π

Z
d2xdtϵμνλδaμ∂νδaλ: ð2:5Þ

Here and below, we denote by Dμ,

Dμ ¼ ∂μ þ i
1

3
Āμ þ iδaμ þ iδAμ; ð2:6Þ

the covariant derivative of the composite fermion (again, for
the ν ¼ 1=3 Laughlin state). The fields δaμ and δAμ are the
fluctuation of the gauge fields about their average values.
Furthermore, the density fluctuation of the electron δρ ¼
Ψ†Ψ − ρ̄ is bound with the flux of δaμ:

δρðxÞ ¼ 1

4π
δbðxÞ ¼ 1

4π
εij∂iδaj: ð2:7Þ

This makes the density-density interaction between the
electrons to be quadratic in the gauge field δaμ. As the action
is quadratic in the composite fermion fieldΨ, we can integrate
out the fermion and the fluctuating part δaμ of the statistical
gauge field to obtain the effective theory for the gauge field
δAμ. From the effective theory of δAμ, one can calculate the
electromagnetic Hall response and find the collective exci-
tations of the FQH state [55], which,with some caveats, agree
at long wavelengths with the experiments and numerical
calculations.

B. Quadrupolar interaction

The composite fermion theory summarized above is
rotationally invariant and cannot describe a nematic FQH
state. Thus, we look for a new ingredient for the composite
fermion theory to describe the nematic state and the
transition toward the nematic state from the isotropic state.
Since the density-density interaction of electrons and the
Chern-Simons term (at the level of the bare action of the
composite fermion theory) cannot induce the spontaneous
breaking of the rotational symmetry, we look for an
interaction that can favor the anisotropic state rather than
the isotropic state. To this end, we follow the approach of
the nematic Fermi fluid of Ref. [49] and add a quadrupolar
interaction term Sq to the action of the form

Sq ¼−1

2

Z
dt
Z

d2xd2x0F2ðjx−x0jÞTr½QðxÞQðx0Þ�; ð2:8Þ
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where F2ðjx − x0jÞ is the Landau interaction in the quad-
rupolar channel whose spatial Fourier transform is

F2ðqÞ ¼
F2

1þ κq2
ð2:9Þ

and κ > 0 parametrizes the interaction range. The coupling
constant F2 (i.e., the Landau parameter) has units of
energy × ðlengthÞ6. Here, we introduce the 2 × 2 traceless
symmetric tensor QðxÞ:

QðxÞ ¼ Ψ†ðxÞ
�

D2
x −D2

y DxDy þDyDx

DxDy þDyDx D2
y −D2

x

�
ΨðxÞ:

ð2:10Þ

Here, Dx and Dy are the spatial covariant derivatives
defined in Eq. (2.6).
The full action (including the quadrupolar interaction Sq)

is manifestly rotationally invariant. In the case of a Fermi
liquid, for large enough attractive quadrupolar interactions,
F2 < 0, there is a Pomeranchuk instability that results in the
spontaneous breaking of rotational invariance and the
development of a nematic phase [49]. Here, too, if F2 < 0
and large enough in magnitude, the quadrupolar coupling
can induce a transition to an anisotropic phase by developing
the finite expectation value ofQðxÞ. When hQi ≠ 0, the con-
tinuous rotational symmetry Oð2Þ of the two-dimensional
space is broken down to C2 generated by the discrete π
rotation of the plane. However, in the case of a Fermi fluid at
zero external magnetic field, the nematic phase leads to the
spontaneous distortion of the Fermi surface and the develop-
ment of an anisotropic effective mass for the quasiparticles
in the anisotropic state. Furthermore, in the absence of a
coupling to the underlying lattice, the resulting nematic
phase is a non-Fermi liquid. In the case at hand, although
there is no Fermi surface to begin with, at the level of
mean field theory, nematicity is also manifest as an effec-
tive anisotropy of the effective mass of the composite
fermions.
Now, we include the quadrupolar interaction in the the

(fermionic) Chern-Simons theory of the FQH states [52] of
Eq. (2.3):

S ¼
Z

d2xdt

�
Ψ†ðxÞD0ΨðxÞ − 1

2me
ðDΨðxÞÞ† · ðDΨðxÞÞ

�

− 1

32π2

Z
d2x0d2xdtVðjx − x0jÞδbðxÞδbðx0Þ

þ 1

8π

Z
d2xdtϵμνλδaμ∂νδaλ

− 1

2

Z
dt

Z
d2xd2x0F2ðjx − x0jÞTr½QðxÞQðx0Þ�:

ð2:11Þ

Here, we use the Chern-Simons constraint (i.e., the “Gauss
law”) to represent the fluctuating density δρ of the
composite fermion in terms of the fluctuating statistical
field δb, which results in density-density interaction quad-
ratic in the statistical gauge field.
However, the quadrupolar interaction cannot be written

as a quadratic form in the statistical gauge field δaμ.
Instead, we perform a Hubbard-Stratonovich decoupling
transformation to rewrite the quadrupolar interaction term
Sq in terms of two fields M1 and M2 (which can be
regarded as the two real components of a 2 × 2 real
symmetric matrix field). After decoupling, the action Sq
of Eq. (2.8) takes the form

Sq ¼
Z

d2xdt

�
1

4F2m2
e
M2 − κ

4F2m2
e

X
i¼1;2

j∇Mij2

þM1

me
Ψ†ðD2

x −D2
yÞΨþM2

me
Ψ†ðDxDy þDyDxÞΨ

�
:

ð2:12Þ
Here, we introduce suitable factors of the electron mass me
to make the Hubbard-Stratonovich fields M1 and M2

dimensionless. F2 is the coupling constant of the quad-
rupolar interaction of Eq. (2.10).
It is apparent that in Eq. (2.12) M1 and M2 play the role

of the order parameters for the nematic phase. These fields
couple to the stress tensor of the composite fermions and
thus play a role analogous to a background metric. In this
sense, we can regard the nematic fluctuation as providing a
“dynamical metric” that modifies the local geometry of the
composite fermions [42,43].
Thus, we end up with the following action for the

composite fermions coupled to the Chern-Simons gauge
field, with a density-density interaction and a quadrupolar
interaction,

S ¼
Z

d2xdt

�
Ψ†ðxÞD0ΨðxÞ − 1

2me
ðDΨðxÞÞ† · ðDΨðxÞÞ

�

− 1

32π2

Z
d2x0d2xdtVðjx − x0jÞδbðxÞδbðx0Þ

þ 1

8π

Z
d2xdtϵμνλδaμ∂νδaλ

þ
Z

d2xdt

�
1

4F2m2
e
M2 þ κ

4F2m2
e

X
i¼1;2

j∇Mij2

þM1

me
Ψ†ðD2

x −D2
yÞΨþM2

me
Ψ†ðDxDy þDyDxÞΨ

�
;

ð2:13Þ

where, again, the covariant derivatives are given in
Eq. (2.6). Thus far, we have not made any approximations.
In the next section, we discuss the uniform states that result
by treating this theory in the average field approximation
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and by considering the effects of fluctuations at the one
loop (RPA) level.
It turns out that, from the theory we define, the resulting

quantum phase transition is strongly first order and to a
state with maximal nematicity (and without Landau quan-
tization). To avoid this pathological limit, and to make the
nematic phase stable (and accessible by a continuous
quantum phase transition), we introduce an extra term in
the kinetic energy part of the action of the form

S6 ¼ −α
Z

d2xdtΨ†
�−D2

2me
− ρ̄π

me

�
3

Ψ; ð2:14Þ

where, once again, D stands for the space components of
the (full) covariant derivative and D2 is the covariant
Laplacian. A term of a similar type was introduced by
Oganesyan et al. [49] in their theory of the nematic Fermi
fluid formed by a Pomeranchuk instability. Here, too, this
(technically irrelevant) term insures that the nematic state is
stable, provided the coupling constant α is large enough (as
we see below). For other ranges of α, the quantum phase
transition becomes first order, as happens in theories of the
electronic nematic transition in lattice systems [56].
Although the addition of this term complicates the calcu-
lation somewhat, it does not change the physics in any
essential way. We note that this term commutes with the
gauge-invariant kinetic energy and, consequently, it has the
same eigenstates. Thus, this term changes only the eigen-
values, but it does not induce Landau level mixing.

C. Symmetries

The action of Eq. (2.13) has two important symmetries.
One is local gauge invariance, under which the Fermi field
ΨðxÞ and the gauge field aμðxÞ transform as

Ψ0ðxÞ ¼ e−iΛðxÞΨðxÞ; a0μðxÞ ¼ aμðxÞ þ ∂μΛðxÞ;
ð2:15Þ

where ΛðxÞ is a (smooth) gauge transformation.
The second symmetry is invariance under the coordinate

transformation of global rotations in real space,

x0i ¼ RijðφÞxj; ð2:16Þ

where RijðφÞ is the 2 × 2 rotation matrix by an angle of φ.
The Fermi field is invariant (a scalar) under rotations,
ΨðRx0Þ ¼ Ψ0ðxÞ. However, the invariance of the action of
Eq. (2.13) under global rotations requires that the Hubbard-
Stratonovich fields M, which are conjugate to the nematic
order parameter field Qij of Eq. (2.10), transform not as a
vector under rotations but as a director, i.e., a vector in
without a direction. This means that it transforms under a
rotation by twice the rotation angle in real space,

M0
i ¼ Rijð2φÞMj: ð2:17Þ

Under this transformation, the Hubbard-Stratonovich field
is invariant under a rotation by π. Similarly, the nematic
order parameter, i.e., the traceless symmetric 2 × 2 matrix
field of Eq. (2.10), transforms as a tensor under rotations by
an angle of 2φ.

III. EFFECTIVE FIELD THEORY OF NEMATIC
ORDER PARAMETER

The full action of Eq. (2.13) is a quadratic form in the
composite fermions. These fermionic fields can be inte-
grated out, allowing us to obtain an effective field theory for
the nematic order parameter M1 and M2 coupled to the
gauge fields. This procedure is safe provided one is
expending about a saddle point state with a finite energy
gap. The resulting effective Lagrangian can be decomposed
as the three parts

L ¼ La þ LM þ La;M; ð3:1Þ

where La and LM include only the fluctuating gauge fields
δaþ δA and only the nematic order parameterMi; i ¼ 1; 2,
and La;M represents the coupling between the gauge fields
and the nematic order parameter.
For clarity, we discuss the three parts, La, LM, and La;M,

of the full effective theory separately. Here, we briefly show
what we can learn from the three parts before describing the
details of each term. La is the effective Lagrangian for the
statistical gauge fields of the isotropic FQH states [52].LM is
the effective Lagrangian for the nematic order parameters. It
has the conventional Landau-Ginzburg form supplemented
by a topological Berry phase term.We demonstrate that there
is a continuous phase transition if the quadrupolar interaction
F2 is bigger than a critical value. Furthermore, we show that
there is a Berry phase term for the nematic order parameter,
which is similar to the Hall viscosity term, and the Berry
phase term makes the quantum critical point have the
dynamical exponent z ¼ 2. From La;M, we see that there
is a topological term, similar to the Wen-Zee term [53],
which describes the response to the curvature induced by
disclination (not the deformation from the background
geometry). In addition, La;M also contains an anisotropic
Maxwell term that represents the coupling of the Kohn
collective mode to the nematic order parameter fields [42].

A. Gauge field Lagrangian: La

Here, we consider the term of the effective Lagrangian of
Eq. (3.1) that includes only the gauge fields aμ and δAμ.
This part of the effective action does not know the nematic
order parameter, and so it should be the same effective
action of the gauge fields as in the isotropic FQH states [52]:

La ¼ − 1

2
ðδaμ þ δAμÞΠ0

μνðδaν þ δAνÞ þ
εμνλ

8π
δaμ∂νδaλ.

ð3:2Þ

YIZHI YOU, GIL YOUNG CHO, AND EDUARDO FRADKIN PHYS. REV. X 4, 041050 (2014)

041050-6



Here, Π0
μνðx − yÞ, given by

Π0
μνðx − yÞ ¼ −i 1

ZF

δ2ZF

δaμðxÞaνðyÞ
¼ hjμðxÞjνðyÞi; ð3:3Þ

is the bare polarization tensor of the integer quantum Hall
state of the composite fermion, and it is given in Ref. [52],
whose results we use. The current-current time-ordered
correlators shown in Eq. (3.3) are computed in the free-
composite fermion theory and ZF is the partition function of
composite fermions with an integer number of filled
effective Landau levels. In the low-energy and long-
wavelength limit, Π0

μνðq;ωÞ is given by

Π0
00ðq;ωÞ ¼ −

1

π
q2

me

b̄ð1þ αω̄2
cÞ
;

Π0
0jðq;ωÞ ¼ −

1

π
qjω

me

b̄ð1þ αω̄2
cÞ

þ i
π
ϵjkqk;

Π0
j0ðq;ωÞ ¼ −

1

π
qjω

me

b̄ð1þ αω̄2
cÞ

− i
π
ϵjkqk;

Π0
ijðq;ωÞ ¼ −

1

π
δijω

2
me

b̄ð1þ αω̄2
cÞ

− i
π
ϵijω

−
ðq2δij − qiqjÞ
með1þ αω̄2

cÞ
; ð3:4Þ

where b̄ ¼ B=3 for the ν ¼ 1=3 Laughlin state. Here, we
include in the results of Ref. [52] the corrections due to the
extra term in the kinetic energy of Eq. (2.14).

B. Order parameter Lagrangian: LM

We now obtain the Lagrangian for the nematic fields LM
of Eq. (3.1) to the quartic order in the nematic order
parameter by calculating one-loop Feynman diagrams. We
see that LM exhibits the isotropic-anisotropic phase tran-
sition and the quantum phase transition. To calculate LM,
we need to compute the two-point and four-point correla-
tors of Ni ¼ −iðδZ=δMiÞ, and the calculation is done in
Appendix A. Here, for simplicity, we discuss only the case
of the FQH state at the filling 1=3. However, as discussed in
Appendix A, it is straightforward to generalize the calcu-
lations to the other states in Jain sequence ν ¼ p=2spþ 1,
p, s ∈ Z.
Integrating out the composite fermion and expanding

about the low-energy limit, i.e., taking the lowest terms in
frequency ω and momentum q, we obtain the effective
theory of the nematic fluctuations,

LM ¼ ϵijρ̄

2ð1þ 4αω̄2
cÞ2

Mi∂0Mj − rM2

− κ̄

2
ð∇MiÞ2 − u

4
ðM2Þ2; ð3:5Þ

where M2 ¼ M2
1 þM2

2.

In the effective Lagrangian of Eq. (3.5), we ignore two
physically significant corrections terms. The Lagrangian of
Eq. (3.5) is invariant under the Oð2Þ symmetry of arbitrary
global rotations in the order parameter space, i.e.,

Mi → RijðϕÞMj; ð3:6Þ

where RijðϕÞ is the 2 × 2 rotation matrix by an arbitrary
angle ϕ. However, as we saw in Sec. II C, the only
symmetry (aside from gauge invariance) is a combination
of a rotation in space by an angle φ and a rotation in the
order parameter space by 2φ, which leave M ≡−M
invariant. This means that the larger symmetry of the
Lagrangian of Eq. (3.5) is only approximate and that the
Lagrangian must contain terms that reduce the symmetry
accordingly. In fact, the effective Lagrangian allows for an
extra (formally irrelevant) operator of the form

LSO ¼ −λððM ·∇ÞMÞ2; ð3:7Þ

which is invariant under joint rotations in real space and in
the order parameter space (and is formally a “spin-orbit-
type” coupling). Such terms are well known to arise in the
free energy of classical liquid crystals [57,58].
The resulting effective Lagrangian of Eq. (3.5) has the

same form as the effective theory of the nematic order
parameter in a Chern insulator [42], and of the effective
field theory of the nematic FQH state of Maciejko and
collaborators [35]. Moreover, upon defining the complex
field Φ ¼ M1 þ iM2, it is easy to see that the Lagrangian of
Eq. (3.5) is equivalent to the Lagrangian of a 2D dilute
Bose gas (with r playing the role of the chemical potential
and u the contact interaction). As in Refs. [35,42], the
effective theory of the nematic order parameter field
contains a Berry phase term associated with the non-
dissipative response of the quantum Hall effect, which
relates to the Hall viscosity. This term makes time and
space scale differently, and the associated quantum critical
point has the dynamical exponent z ¼ 2.
In our discussion, we have neglected the role of the

symmetries of the underlying lattice. While lattice effects
are irrelevant (and unimportant) for the topological proper-
ties of the FQH fluids, they do matter for the nematic
fluctuations and ordering. In the case of GaAs-AlAs
heterostructures, the 2DEG resides on surfaces that have
a tetragonal C4 symmetry. The extra terms of the
Lagrangian that break the symmetry from the full continu-
ous rotations down to C4 are proportional to M2

1 −M2
2 and

2M1M2. In Sec. VA we show that these terms gap out the
Goldstone modes of the nematic phase.
The parameters entering into the effective Lagrangian of

Eq. (3.5) are obtained by a direct calculation of the
correlators, and are found to be
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r ¼ −
1

4F2m2
e
− ω̄c

2πl̄b2ð1þ 4αω̄2
cÞ
;

κ̄ ¼ −
κ

2F2m2
e

−
1

π

�
1

ð1þ αω̄2
cÞ

þ 1

2ð1þ 4αω̄2
cÞ

þ 2

ð1þ 9αω̄2
cÞ
�
;

u ¼ b̄ω̄c

4π

1

ð1þ 4αω̄2
cÞ2

�
1

4ð1þ 4αω̄2
cÞ

− 3

4ð1þ 16αω̄2
cÞ
�
:

ð3:8Þ

Here, ω̄c ¼ b̄=me and l̄b ¼
ffiffiffi
3

p
l0 (for the Laughlin state at

ν ¼ 1=3) are the effective cyclotron frequency and the
effective magnetic length of the composite fermion, where
l0 ¼ B−1=2 is the magnetic length.
From these results, we can also see that the nematic order

parameter will condense only when the quadrupolar inter-
action is attractive and larger in magnitude than the critical
value:

jFc
2j ¼

πl̄b2

2ω̄cm2
e
ð1þ 4αω̄2

cÞ: ð3:9Þ

Furthermore, since u > 0, the quantum phase transition is
continuous and the nematic state is stable.
From Eq. (2.10), it is clear that the nematic order

parameters formally couple to the quadrupole density in
the same way as the background metric couples to the
energy-momentum tensor [although the extra term in the
kinetic energy of Eq. (2.14) does not couple to the nematic
fields]. We can regard the nematic order parameters as a
“dynamical spatial metric” that modifies spatial compo-
nents of the metric tensor. From this observation, one may
naively expect that the prefactor Berry phase term in
Eq. (3.5) may be the Hall viscosity of the FQHE ηH ¼
ρ̄=2ν when α ¼ 0.
However, for α ¼ 0, the prefactor of the Berry phase

term of Eq. (3.5) is the Hall viscosity term of the integer
quantum Hall state at ν ¼ 1, and not of the actual Hall
viscosity of the fractional quantum Hall state. See the
discussion in Sec. VI. This difference originates in the fact
that the “dynamical metric” associated with the nematicity
and the background metric are not equivalent. For FQH
states, the nematic order parameters couple only with the
stress energy tensor, while the background metric not only
couples with the stress energy tensor, but also appears in the
form of a spin connection, as discussed in detail in
Ref. [47]. In the composite fermion or composite boson
theories, when we attach flux to the electron to form a
composite particle, each flux quantum attached to the
particle induces the additional angular momentum 1=2.
This makes the composite particle couple to the spin
connection though the particle is a scalar and not a spinor.
The orbital spin then couples to the local geometry to the

spin connection much in the same way as relativistic
fermions do. Thus, after we perform flux attachment to
describe the FQH fluids, the composite fermion resulting
from the flux attachment will minimally couple with the
spin connection ωμ, as shown explicitly in Ref. [47]. The
coupling through the spin connection with the background
geometry is the origin of the difference between the
nematic order parameter and the (deformed) background
metric. The derivation of the correct Hall viscosity from the
background metric deformation through the composite
fermion theory is reported elsewhere [47].
The results of this section can be easily generalized to all

the states in the Jain sequence ν ¼ p=2pþ 1, with the
effective Lagrangian density. However, when p goes to
infinity, the theory approaches the half-filled Landau level
and the gap vanishes. In this regime, the system becomes a
non-Fermi liquid and the effective Lagrangian for the gauge
field given by Eq. (3.2) now has a Landau damping term
[59,60]. In this limit, at least formally, this theory is a
generalization of the theory of the nematic quantum phase
transition in Fermi fluids [49] to describe the compressible
nematic quantum fluid at half-filled Landau levels (see
Ref. [20] and references therein.)

C. Order parameter and gauge field Lagrangian: La;M

Here, we derive the third term of the effective Lagrangian
of Eq. (3.1), La;M, that describes the coupling between
the gauge fields and the nematic order parameters. This part
of the effective Lagrangian will be important later for
investigating the quantum numbers and statistics of the
disclinations of the nematic phase.
In the presence of nematic order, the natural coupling

between the nematic order parameter and the gauge field is
as a local anisotropy of the Maxwell term. Since the order
parameter acts as the spatial components of a metric tensor
[42], the indices of the field strength tensor fij of the gauge
fields contract with the (inverse of) metric spatial tensor gij.
The resulting terms in the effective Lagrangian are

La;m ¼ me2M1

4πb̄ð1þ 4αω̄2
cÞ
ð∂xδ ~A0 −∂0δ ~AxÞ2

− me2M1

4πb̄ð1þ 4αω̄2
cÞ
ð∂yδ ~A0 −∂0δ ~AyÞ2

þ meM2

πb̄ð1þ 4αω̄2
cÞ
ð∂xδ ~A0 −∂0δ ~AxÞð∂yδ ~A0 −∂0δ ~AyÞ;

ð3:10Þ

where δ ~A ¼ δAþ δa. These terms are second order in
derivatives and are time-reversal and parity invariant.
However, there are contributions to La;M that are first

order in derivatives and hence break time reversal and
parity. These contributions have the form of a Wen-Zee
term [53,61]. The Wen-Zee term can be understood as the
response of the FQH states to a change of the geometric
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curvature: the curvature will trap the gauge charge. While
this term can be ignored if the nematic order is uniform in
space, it has interesting consequences for the charge and the
statistics of the disclination in the nematic phase.
To obtain the Wen-Zee term for the nematic order

parameter, we perform calculation of one-loop diagrams
with one current and one and two nematic fields,

Lwz ¼ −
1

2
TiμMiðδaμ þ δAμ þ 2ZμÞ

þ 1

3
RijμMiMjðδaμ þ δAμÞ; ð3:11Þ

where Tiμ and Rijμ denote the following three-point (time-
ordered) correlators of the composite fermions,

Tiμðr; tÞ ¼ i2
1

ZF

δZF

δMiδaμ
¼ −ihNiðr; tÞjμð0; 0Þi;

Rijμ½ri; ti� ¼ −3i
1

ZF

δZF

δMiδMjδaμ

¼ −hNiðr1; t1ÞNjðr; t2Þjμðr3; t3Þi; ð3:12Þ

where the correlators are time-ordered functions of the free-
composite fermion theory, and

Z0 ¼ 0;

Zx ¼ ðδax þ δAxÞM1 þ ðδay þ δAyÞM2

Zy ¼ ðδax þ δAxÞM2 − ðδay þ δAyÞM1: ð3:13Þ

The correlators of Eq. (3.12) are computed explicitly in
Appendix B.
After calculating the above correlators, we obtain the

coupling between the geometric curvature induced by the
nematic fields and the statistical gauge field, which
explicitly has the form of a Wen-Zee term,

Lwz ¼
1

4π
ϵμνρωQ

μ ∂νðδaρ þ δAρÞ; ð3:14Þ

where ωQ
μ (with μ ¼ 0; x; y) is the effective spin connection

induced by the local nematic order parameters, i.e.,

ωQ
0 ¼ ϵij

ð1þ 4αω̄2
cÞ2

Mi∂0Mj;

ωQ
x ¼ ϵij

ð1þ 4αω̄2
cÞ2

Mi∂xMj − tð∂xM2 − ∂yM1Þ;

ωQ
y ¼ ϵij

ð1þ 4αω̄2
cÞ2

Mi∂yMj þ tð∂xM1 þ ∂yM2Þ; ð3:15Þ

where

t ¼ 2

1þ αω̄2
c
− 2

2þ 8αω̄2
c
: ð3:16Þ

The spin connection ωQ of the nematic order parameter is
different from the spin connection of the background
geometry. The meaning of the spin connection can be
clarified by looking at its curl,

∂xω
Q
y − ∂yω

Q
x ∝

1

2

ffiffiffi
g

p
R; ð3:17Þ

where R is the geometric curvature of the dynamical metric
induced by the nematic order parameters Mi. Here, g, the
determinant of the metric, is given by g ¼ 1 − 4M2.
Here, the coupling term between the “spin connection"

and gauge fields in Eq. (3.14) has a similar form to the
Wen-Zee term of Ref. [53]. However, the coefficient in
Eq. (3.14) is not the orbital spin of the FQH state. Instead,
this coefficient is equal to the orbital spin of the integer
quantum Hall state at ν ¼ 1 (when α ¼ 0). This can be
easily understood from the composite fermion theory
because the composite fermions effectively are the integer
quantum Hall state and any response at the mean-field
approximation of the composite fermion will be the same as
that of the integer quantum Hall phase. This fact still
remains true even after integrating out the statistical gauge
field. The difference again comes from the nonequivalence
between the nematic order parameter and the background
metric. When we attach Chern-Simons flux to the fermion
in a background metric, the orbital spin induced by the flux
attachment also gives rise to an additional geometry-gauge
coupling term, which has the form of a Wen-Zee term [47].
For the nematic order parameter, the coupling between the
gauge field and the nematic order parameters comes only
from the composite fermion that forms an integer quantum
Hall effect (IQHE). The derivation of the correct Wen-Zee
terms through the composite fermion theory is reported
in Ref. [47].

D. Full effective action

We are now ready to present the full effective Lagrangian
of Eq. (3.1) in terms of the gauge fields and nematic order
parameters. It is given by

L ¼ ρ̄ϵij

2ð1þ 4αω̄2
cÞ2

Mi∂0Mj − rM2

− κ̄

2
ð∇MiÞ2 − u

4
ðM2Þ2

þ 1

4π
ϵμνρωQ

μ ∂νðδaρ þ δAρÞ

− 1

2
Π0

μνðδaμ þ δAμÞðδaν þ δAνÞ

þ 1

8π
εμνλδaμ∂νδaλ þ

1

24π
εμνλωQ

μ ∂νω
Q
ρ : ð3:18Þ
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In the last line, we have added the gravitational Chern-
Simons term of the induced spin connection of the nematic
fields, where we use the results of Ref. [45].

IV. CONDENSATIONOF THEGMPMODEAT THE
NEMATIC PHASE TRANSITION

The FQH fluids have several types of collective excita-
tions [36,55]. The Kohn mode is a cyclotron collective
mode related to inter-Landau-level particle-hole excita-
tions. If the system has Galilean invariance, the energy
of the Kohn mode at zero momentum depends only on the
bare mass of the electron and is insensitive to any other
microscopic detail [32]. In a FQH fluid, the Kohn mode is
not the lowest energy collective excitation and at finite
wave vector q can (and does) decay to lower-energy modes.
On the other hand, the lowest energy collective mode, the
GMP mode, is stable. This mode is a quadrupolar intra-
Landau-level fluctuation, and at long wavelengths, it can be
regard as a fluctuating quadrupole with structure factor
∼ q4 (instead of q2 as in the case of the Kohn mode) (see
Refs. [55,62]). Therefore, for a FQH state with the
quadrupolar interaction, we can expect that the interaction
can substantially change the behavior of the GMP mode by
mixing with the nematic fluctuations (which are also
quadrupolar). In this section, we consider the behavior
of the GMP collective excitation of the FQH state at and
near the quantum phase transition between the isotropic
state and the nematic state.
To get the spectrum of the collective excitations, we need

the full polarization tensor of the electromagnetic response
[52]. To this end, we first calculate the polarization tensor
of the composite fermions,

Π0
μν ¼ −i 1

ZF

δ2ZF

δaμδaν
; ð4:1Þ

where ZF is the partition function of the composite
fermions. Because the composite fermion system is in
an integer quantum Hall ground state, the poles of Πμν

correspond to the Landau levels spaced by ω̄c, the effective
cyclotron frequency of the composite fermions [modified
by the contributions of the extra terms of Eq. (2.14)].
Next, we compute the change in Πμν due to the effects of

both the quadrupolar interaction and the density-density
interaction and determine the full polarization tensor for the
external electromagnetic field Kμν. The current and the
nematic fields are defined in terms of the composite
fermion Ψ by

ji ¼
δS
δaμ

; Ni ¼
δS
δMi

¼ Ψ†TiΨ; ð4:2Þ

where S is the full action of Eq. (2.13) supplemented by the
additional term of Eq. (2.14).

We now compute the current-current correlators includ-
ing the mixing with the nematic fields to lowest orders in the
quadrupolar coupling F2. To this end, we first calculate the
polarization tensor Πμν to include the effects of the nematic
fluctuations to lowest order in the quadrupolar interaction
F2. This calculation involves summing over all one-particle-
reducible diagrams, i.e., an infinite series of bubble diagrams
with two external gauge fields and arbitrary number of
quadrupolar insertions connecting the bubbles pairwise. The
result of this RPA-type computation is

Πijðq;ωÞ ¼ Π0
ij þ 2F2m2

e

X
a;b

hjiNaihNbjji

þ ð2F2m2
eÞ2

X
a;b

hjiNaihNaNbihNbjji þ � � �

¼ Π0
ij þ

2F2m2
e
P

a;bhjiNaihNbjji
1 − ð2F2m2

eÞ
P

a;bhNaNbi
ð4:3Þ

(where we have set κ ¼ 0). Here, Π0
ij is the polarization

tensor for the statistical gauge field of the composite
fermions with ν ¼ 1, hNaNbi is the correlator matrix of
the nematic order parameters, and hjμNai is the mixed
correlator of a current and a nematic field, both of which
were calculated in the previous section. To simplify the
notation, in Eq. (4.3) we drop the explicit momentum and
frequency dependence of the correlators.
Since we are interested in the low-energy and long-

wavelength limit, we expand hNaNbi in the leading order
for both the momentum q and the frequency ω and obtain

hN1N1i ¼ hN2N2i ¼ 2i
1

ZF

δZF

δM1δM1

¼ 4ω̄c
3

l̄b2πðω2 − 4ω̄c
2Þð1þ 4αω̄2

cÞ2
;

hN1N2i ¼ −hN2N1i ¼ 2i
1

ZF

δZF

δM1δM2

¼ 2ωω̄c
2

iπl̄b2ðω2 − 4ω̄c
2Þð1þ 4αω̄2

cÞ2
. ð4:4Þ

Using the results for the polarization tensor Πij of
Eq. (4.3), we find the following effective Lagrangian for
the gauge fields:

La ¼ −
1

2
Πμνðδaμ þ δAμÞðδaν þ δAνÞ

þ 1

8π
ϵμνρδaμ∂νδaρ −

Z
d2x0

Vðx − x0Þ
32π2

δbðxÞδbðx0Þ:

ð4:5Þ

Integrating out the statistical gauge field δaμ, we finally
obtain the full response function Kμν for the external
electromagnetic fields,
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K00 ¼ q2K0;

K0i ¼ ωqiK0 þ iϵikqkK1;

Ki0 ¼ ωqiK0 − iϵikqkK1;

Kij ¼ ω2δijK0 − iϵijωK1 þ ðq2δij − qiqjÞK2;

LA ¼ KμνδAμδAν; ð4:6Þ

where Kμ is given by

K0 ¼ −
Π0

16π2D
;

K1 ¼
1

4π
þ Π1 þ 1

4π

16π2D
þ VðqÞΠ0q2

64π3D
;

K2 ¼
Π2

16π2D
þ VðqÞðω2Π2

0 − Π2
1Þ

D
þ VðqÞΠ0Π2q2

D
; ð4:7Þ

and D is

D ¼ Π2
0ω

2 −
�
Π1 þ

1

4π

�
2

þ Π0

�
Π2 − VðqÞ

16π2

�
q2: ð4:8Þ

In the above expressions,Πi are frequency and momentum-
dependent functions whose explicit form can be found
in Ref. [52].
The poles in Kμν give the spectrum of the collective

excitations of the FQHE of Ref. [52], generalized to include
both the quadrupolar and the density-density interactions.
At long wavelengths, this correlator has a pole at 3ω̄c
(with residue ∼q2), the cyclotron frequency of the electron
(recall that ω̄c is the effective cyclotron frequency of the
composite fermion). This pole is identified as the (cyclotron
resonance) Kohn mode [32], slightly shifted here by the
extra term we add to the kinetic energy [Eq. (2.14)].
On the other hand, we find that the attractive quadrupolar

interaction pushes down to lower energies the lowest
collective excitation, the Girvin-MacDonald-Platzman
mode [36] (which has residue ∼q4). This mode has the
dispersion

ω2 ¼ ω2
1 þ

�
α1;2ω̄c

3 − F2m2
eω̄c

3κ

l̄b4

�
ðql̄bÞ2; ð4:9Þ

where we set

ω1 ¼
4 ~F2

π
þ 2ω̄cð1þ 4αω̄2

cÞ;

α1 ¼
ω2
1 − ω̄02

c

ω̄02
c − ω̄0

cω1 þ 2ðω2
1 − ω̄02

cÞ
1

ðc1ω1 − c2Þt2
;

α2 ¼ −
ω2
1 − ω̄02

c

ω̄02
c þ ω̄0

cω1 þ 2ðω2
1 − ω̄02

cÞ
1

ðc1ω1 þ c2Þt2
ð4:10Þ

and where we use the notation

c1 ¼
− ~F2ω̄d

2ð4ω̄2
d − ω2

1Þ
�
1 − 8 ~F2ω̄d

πðω2
1 − ω̄2

dÞ
�
;

c2 ¼
~F2

2ω̄dω
2
1

ð4ω̄2
d − ω2

1Þ2
;

~F2 ¼
F2m2

eω̄
2
c

l̄2b
;

ω̄0
c ¼ ω̄cð1þ αω̄2

cÞ;
ω̄d ¼ ω̄cð1þ 4αω̄2

cÞ;

t ¼ 2

1þ αω̄2
c
− 2

2þ 8αω̄2
c
: ð4:11Þ

It is easy to check that at the nematic transition of
Eq. (3.5), where the “nematic mass” r → 0 at the critical
value of the quadrupolar interaction Fc

2 [given in Eq. (3.9)],
the gap of the GMP mode vanishes, ω1 → 0. It is also easy
to see that near the phase transition, α1 < 0, α2 < 0, and
F2κ < 0. Now, provided α1;2 − ðF2m2

eκ=l̄4bÞ > 0 near and
at the transition, the GMP mode will condense at zero
momentum. This results in a nematic phase and the FQH
fluid will spontaneously break the rotational symmetry.
This condition can be achieved provided the range of the
quadrupolar interaction, controlled by κ, is large enough.
On the other hand, if α1;2 − ðF2m2

eκ=l̄4bÞ < 0, the GMP
mode will condense at a finite momentum. This would
result a crystalline phase in which electrons break sponta-
neously the translational and rotational symmetries of the
two-dimensional plane. In both cases, the Kohn mode
remains gapped at and near the transition, and thus, the
liquid crystalline phases are incompressible electronic
liquid states and have the quantized Hall response.
Early numerical results by Scarola, Park, and Jain [50]

predicted that for certain types of interactions the FQH fluid
would become unstable to a uniform exciton condensate
associated with the GMP mode. Our results show that their
exciton condensate is equivalent to a quantum phase
transition to a nematic state.

V. GOLDSTONE MODE AND DISCLINATIONS
IN NEMATIC PHASE

We now discuss the properties of the nematic phase.
There are several particlelike excitations in the phase. First
of all, the Kohn mode and the Laughlin quasiparticles
remain massive. The only change is that their propagation
is anisotropic. In addition to these excitations, there are two
more excitations that are absent in the isotropic phase.

A. Goldstone modes

The nematic order parameter breaks the (continuous)
rotational symmetry of the two-dimensional plane and, thus,
there is an associatedGoldstonemodeand an amplitudemode
(which is stronglymixedwith theGMPmode). The spectrum
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of the nematic Goldstone mode can be obtained straightfor-
wardly from LM. In the low-energy regime and deep enough
in the nematic phase, r ¼ −jrj < 0, we can consider the
effective Lagrangian of the phase fluctuations (the Goldstone
mode). Similarly to the effective Lagrangian in the
Bogoliubov theory of superfluidity (or in the composite
boson theory of the FQHE), in the nematic phase the
amplitude fluctuations yield an effective Lagrangian for the
Goldstone boson (the phase field θ) of the form

LM ¼ 1

2

ρn
vn

ð∂0θÞ2 − 1

2
ρnvnj∇θj2 þ � � � ; ð5:1Þ

where the nematic stiffness ρn and the velocity of the
Goldstone modes vn are given by

ρn ¼
ffiffiffiffiffiffiffijrjκ̄p

2uð1þ 4αω̄2
cÞ
; vn ¼ 4

ffiffiffiffiffiffiffi
jrjκ̄

p
ð1þ 4αω̄2

cÞ; ð5:2Þ

where the parameters r, κ̄, and u are given in Eq. (3.8). In the
nematic phase, the Goldstone bosons aremassless and have a
linear dispersion

ωðqÞ ¼ vnjqj: ð5:3Þ
On the other hand, the nematic Goldstone mode will be

gapped if there is an explicit weak symmetry-breaking
term. For instance, if the underlying lattice has tetragonal
symmetry, the point group symmetry of the 2DEG is C4.
For the nematic order parameter, which is invariant under
rotations by π, this term reduces the symmetry to a Z2

(Ising) symmetry. The appropriate symmetry-breaking term
in the nematic Lagrangian has the form

LSB ¼ − γ1ðM2
1 −M2

2Þ − γ22M1M2

¼ − γ1M2 cos 4θ − γ2M2 sin 4θ; ð5:4Þ
where γ1 and γ2 are two coupling constants. In this case, the
mass gap of the Goldstone mode is linearly proportional to
the strength of these weak symmetry-breaking terms.

B. Disclinations

In D ¼ 2 space dimensions, nematic order parameters
have topological singularities (or defects ) called disclina-
tions [58]. Because of the presence of the Goldstone mode,
the disclinations experience logarithmic interaction
between them. In 2D, disclinations are half-vortices of
the order parameter director field M. When two disclina-
tions are separated by a distance R, the energy cost for the
configuration is

E ¼
Z
R>jxj>l0

d2xκM2
1

x2
¼ κM2 lnðR=l0Þ; ð5:5Þ

where l0 is an ultraviolet cutoff for the integral, which can
be taken to be the correlation length of the nematic order
parameter in the nematic phase. Hence, at zero temperature,

disclinations and antidisclinations are bound in (neutral)
pairs, but above a critical temperature Tc, they proliferate
We now show that in the nematic FQH state, the

disclination carries electric charge due to the Wen-Zee
coupling between the spin connection defined by the
nematic fields ωQ

μ and the gauge fields in the effective
action L [Eq. (3.18)]. To investigate the charge accumu-
lated at the disclination, we first integrate out the statistical
gauge field δaμ in the effective action to find a Wen-Zee
term in the effective action,

LωQ;δA ¼ 1

12π
ϵμνρωQ

μ ∂νδAρ; ð5:6Þ

where Aμ is just an external weak electromagnetic probe.
This term allows us to compute the electric charge of the
disclination. Maciejko et al. [35] use the term “nematic
gauge field” to refer to what we call the nematic spin
connection ωQ

μ .
Let us consider the case in which there exists a

disclination (i.e., a π nematic vortex) centered at x ¼ 0.
(Recall that since the nematic fields are directors, their
orientation is defined mod π.) We can calculate the electric
charge accumulated at the disclination. We find

δρðxÞ ¼ 1

12π

�
− M2δðxÞ
ð1þ 4αω̄2

cÞ2
− t

jMj cos 2θ
x2

�
: ð5:7Þ

The first term indicates that the spin connection of the
nematic disclination acts as the gauge field of a single flux at
the disclination core. Thus, a disclination of the nematic field
serves as a particle source that changes the local charge
density. The second term indicates that the charge density
gets redistributed as a result of the nonzero quadrupole
moment. In classical electrodynamics, the nonuniform
charge density could give rise to an electron quadrupole
moment Qij ¼

R
d2xρðrÞð2xixj − δijjxj2Þ and vice versa.

Since our nematic field couples to the stress tensor, a nematic
order with a disclination configuration leads to a new charge
density distribution, shown in the second term in Eq. (5.7).
The charge of the disclination depends on the strength of the
order parameter jMj and is not quantized. This implies that
the disclinations will generally have irrational mutual
statistics with quasiparticles and irrational statistics with
other disclinations. Most of these results were anticipated on
phenomenological and symmetry grounds in the work of
Maciejko et al. [35].

VI. RESPONSE OF THE NEMATIC FQH FLUID
TO CHANGES IN THE GEOMETRY

In this section, we explore the response of nematic FQH
fluid to a long-wavelength change in the geometry of the
underlying surface (i.e., the crystal) on which the 2DEG is
defined, such as a shear distortion. Changes in the geometry
can be described in terms of a background spatial metric gij
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gij ¼
�
1 − 2e1 −2e2
−2e2 1þ 2e1

�
; ð6:1Þ

which modifies the form of the action of Eq. (2.13) to the following expression:

S ¼
Z

d2xdt

�
Ψ†ðxÞD0ΨðxÞ − 1

2me
ðDΨðxÞÞ† · ðDΨðxÞÞ

�
−
Z

d2xdtV
δbðxÞ2
32π2

þ
Z

d2xdt
εμνλ

8π
δaμ∂νδaλ

þ
Z

d2xdt

�
1

4F2m2
e
M2 þ κ

4F2m2
e

X
i¼1;2

∇Mi ·∇Mi þ
κ

4F2m2
e
½2e1ð∂2

x − ∂2
yÞ þ 2e22∂x∂y�M2

þM1 þ e1
me

Ψ†ðD2
x −D2

yÞΨþM2 þ e2
me

Ψ†ðDxDy þDyDxÞΨ − αΨ†
�
− D2

2me
− ρ̄π

me

�
3

Ψþ 2e ·M
me

Ψ†D2Ψ

�
; ð6:2Þ

where the covariant derivative is now

Dμ ¼ ∂μ þ iðAμ þ aμ þ ωb
μÞ; ð6:3Þ

where ωb is the spin connection of the background metric.
Here, we use the result from our recent work [47] that upon
attaching two Chern-Simons flux to the fermion, the
composite particle effectively carries spin 1 and couples
to the spin connection of the background geometry. Notice
also that the quadrupolar interaction is modified by a
change of the geometry. To simplify matters, we consider
only a contact density-density coupling (parametrized by
the interaction strength V).
We now make use of the results of the preceding sections

(and of the results of Ref. [47]) to derive the effective

Lagrangian for the nematic fields M at low energies and
long distances. It is given by

LM ¼ ϵij
ρ̄

2

�
Mi

1þ 4αω̄2
c
þ ei

�
∂0

�
Mj

1þ 4αω̄2
c
þ ej

�

þ ω̄c

2π̄l̄2b
jej2 þ ϵijρ̄ei∂0ej

þ 1

12π
ϵμνλ

�
Aμ þ ωb

μ þ
1

2
ωm
μ

�
∂ν

�
Aλ þ ωb

λ þ
1

2
ωm
λ

�

− rjMj2 − 1

48π
ϵμνλωm

μ ∂νω
m
λ − u

4
ðM2Þ2: ð6:4Þ

Here, ρ̄ is the average electron density, and we denote by
ωm the spin connection for the sum of the background and
nematic spin connections,

ωm
0 ¼ ϵij

�
Mi

1þ 4αω̄2
c
þ ei

�
∂0

�
Mj

1þ 4αω̄2
c
þ ej

�
;

ωm
x ¼ ϵij

�
Mi

1þ 4αω̄2
c
þ ei

�
∂x

�
Mj

1þ 4αω̄2
c
þ ej

�
− ½∂xðtM2 þ e2Þ − ∂yðtM1 þ e1Þ�;

ωm
y ¼ ϵij

�
Mi

1þ 4αω̄2
c
þ ei

�
∂y

�
Mj

1þ 4αω̄2
c
þ ej

�
þ ½∂xðtM1 þ e1Þ þ ∂yðtM2 þ e2Þ�: ð6:5Þ

To better illustrate the effect of nematic fluctuations, we rewrite the action in terms of a separate dependence on the
background metric and on the metric defined by the nematic order parameter, and obtain

LM ¼ ϵij
ρ̄

2

�
Mi

1þ 4αω̄2
c
þ ei

�
∂0

�
Mj

1þ 4αω̄2
c
þ ej

�
− rjMj2 þ ω̄c

2πl̄2b
jej2 þ ϵijρ̄ei∂0ej − u

4
ðM2Þ2

þ 1

12π
ϵμνλ

�
Aμ þ

3

2
ωb
μ

�
∂ν

�
Aλ þ

3

2
ωb
λ

�
− 1

12π
ϵμνλωQ

μ ∂νAλ − 1

48π
ϵμνλωb

μ∂νω
b
λ

þ 1

12πð1þ 4αω̄2
cÞ
ϵμνρðM1∂μe2 −M2∂μe1 þ e1∂μM2 − e2∂μM1Þ∂νAρ

þ 1

12πð1þ 4αω̄2
cÞ
ϵμνρ½M1∂μe2 −M2∂μe1 þ e1∂μM2 − e2∂μM1 þ ð1þ 4αω̄2

cÞωQ
μ �∂νω

b
ρ: ð6:6Þ
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In the isotropic phase, the nematic field is massive, so it can
be integrated out. This generates operators that are higher
order in derivatives and irrelevant in the low-energy and
long-distance regime of our theory. Finally, we obtain the
following simple expression for the effective theory of
background metric in the symmetric phase:

LM ¼ ϵij
3ρ̄

2
ei∂0ej

þ 1

12π
ϵμνλ

�
Aμ þ

3

2
ωb
μ

�
∂ν

�
Aλ þ

3

2
ωb
λ

�

− 1

48π
ϵμνλωb

μ∂νω
b
λ ; ð6:7Þ

which is consistent with our recent results [47].
In the nematic phase, the nematic order couples to the

electrons (and the composite fermions) as an effect mass
mab tensor. In the isotropic phase, the Hall viscosity
[37,39,44,47,61,63,64], defined by ηH ¼ ηxxxy ¼ −ηyyxy, is
isotropic, and for the ν ¼ 1=3 Laughlin FQH state it is
found to be given by ηH ¼ ð3=2Þρ̄, in agreement with
earlier results. In the nematic phase, provided the nematic
order is uniform in space, the Hall viscosity ηH ¼ ðηxxxy −
ηyyxyÞ=2 ¼ 3ρ̄=2 remains the same as in the isotropic FQH
fluid phase. However, since the system is spatially aniso-
tropic, we can define the combination of the components of
the viscosity ηD ¼ ðηxxxy þ ηyyxyÞ=2 ∝ M̄ηH, which indicates
that there is a viscosity response for a mixed shear and a
dilation deformation, which, however, is not universal. In
particular, when the nematic order is uniform in space,
geometric quantities such as the Hall viscosity, orbital spin,
central charge remains unchanged at the universal value.
On the other hand, in the presence of a disclination in the

nematic phase, from Eq. (6.6) we see that the Hall viscosity
is modified. IfMðxÞ is a configuration of the nematic order
parameter with a disclination at x ¼ xv with winding
number nv, the Hall viscosity of the fluid is now

ηðxÞ ¼ ηH0 þ 1

12π

jMj2
ð1þ 4αω̄2

cÞ2
nvδðx − xvÞ

þ 2t½ð∂2
x − ∂2

yÞM1 þ 4∂x∂yM2�: ð6:8Þ

The first term is equal to the Hall viscosity of the isotropic
phase. The second term shows the change of the Hall
viscosity due to the nematic disclination. Here, nv is the
winding number of the disclination and xv is the coordinate
of the disclination core. The third term indicates the charge
density redistribution results from the nematic order as a
quadrupole moment, which affects the value of the Hall
viscosity. However, the orbital spin and the gravitational
Chern-Simons term remain the same in both phases.
In the recent work of Maciejko et al. [35], the authors

considered an effective description of the nematic FQH
state and the transition between an isotropic state and the

anisotropic state. They used a composite boson theory and
wrote down the symmetry-allowed terms in the effective
Lagrangian. Interestingly, they identified the coupling
between the nematic order parameter and the statistical
gauge field by making an analogy to the case of the
magnetization of the quantum Hall ferromagnet.
Furthermore, they found that the critical theory has the
dynamical scaling exponent z ¼ 2 due to the Berry phase
term for the nematic order parameter, which we also find
here. However, in their description, the coefficient of the
Berry phase term is the full Hall viscosity of the FQH fluid.
Instead, here we show that the Berry phase term is not
exactly equal to the Hall viscosity of the FQH fluid, but it is
equal to the Hall viscosity of the integer quantum Hall
mean-field state of the composite fermions.

VII. CONCLUSIONS

In this work, we study the nematic quantum phase
transition inside a FQH state in a 2DEG with an attractive
quadrupolar interaction between electrons. We use the
Chern-Simons theory of composite fermions. Since the
FQH state is gapped, a critical attractive quadrupolar
coupling is needed for the system to develop a finite
quadrupole density and to break rotational symmetry
spontaneously. The quantum phase transition has dynami-
cal exponent z ¼ 2 and it is in the universality class of the
quantum phase transition in the dilute Bose gas. The z ¼ 2
quantum criticality is a consequence of a Berry phase term
present in the effective action for the nematic fields related
to (but not the same as) the Hall viscosity. We show that the
coefficient of the Berry phase term is the Hall viscosity of
the mean-field theory of the composite fermions in a
background nematic field. The actual Hall viscosity of
the FQH fluid (both in the isotropic and in the nematic
phase) is obtained as a response to a shear distortion of the
geometry in which the electrons move. Furthermore, we
uncover the existence of a geometric Chern-Simons term
between the nematic order parameters and the gauge fields.
The term is of the same form as the Wen-Zee term, and the
“spin connection” is interpreted in terms of the order
parameter instead of the background metric. Then the flux
of the “spin connection" is proportional to the disclination
density in the nematic phase and, as a consequence, the
disclination carries nonquantized gauge charge and
statistics.
After the identification of the criticality and the phases,

we investigate the excitations near the quantum phase
transition. As the the nematic quantum phase transition
is approached, the mass gap of the GMP mode of the FQH
fluid is shown to vanish continuously. On the other hand,
the Laughlin quasiparticles and the Kohn mode remain
gapped at the transition and, thus, the Kohn theorem is not
violated at or near the transition. Depending on the
microscopic details of the interactions, we show that the
GMP mode can close its gap either at finite or at zero
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momentum, giving rise to either a nematic or a crystal (or
stripe) phase. Both liquid crystalline phases obtained
through the softening of the GMP mode are incompressible
electronic liquid crystals and, thus, are expected to have a
fractionally quantized Hall response. It is notable that the
mechanism of the isotropic-nematic transition described
here is special for FQH states. For the integer quantum Hall
states, the lowest excitation is the Kohn mode, inter-
Landau-level excitation, and it cannot close its gap at zero
momentum without a large amount of Landau-level mixing
and a strong violation of Galilean invariance.
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APPENDIX A: CALCULATION OF THE
NEMATIC CORRELATORS

In this Appendix, we summarize the calculation of the
correlators of the nematic order parameters that we use
extensively in the main text.
First, we focus on the symmetric part of the correlators,

which is the mass term for the order parameters. Here, for
simplicity, we set the magnetic length l̄b and electron bare
massme to be 1. At the end, we restore the magnetic length
and mass in the expression by dimensional analysis. For the
filling fraction ν ¼ p=2pþ 1, the correlator shown in
Fig. 1 is

hN1ðr1; t1ÞN1ðr2; t2Þi ¼ 2i
δZ

δM1δM1

¼ −ihT Ψ†ðr1; t1ÞðD2
x −D2

yÞΨðr1; t1ÞΨ†ðr2; t2ÞðD2
x −D2

yÞΨðr2; t2Þi

¼ −iX∞
m>p

Xp−1
l¼0

X
k1;k2

½eiðωm−ωlÞðt2−t1ÞΘðt1 − t2Þϕ†
l;k1

ðr1ÞðD2
x −D2

yÞϕm:k2ðr1Þϕ†
m;k2

ðr2ÞðD2
x −D2

yÞϕl;k1ðr2Þ

þ e−iðωm−ωlÞðt2−t1ÞΘðt2 − t1Þϕ†
m;k2

ðr1ÞðD2
x −D2

yÞϕl:k1ðr1Þϕ†
l;k1

ðr2ÞðD2
x −D2

yÞϕm;k2ðr2Þ�; ðA1Þ

in which ωm ¼ ω̄cmþ αðmω̄cÞ2; m ∈ Z is the cyclotron energy of the composite fermion at the mth Landau level. For
ν ¼ 1=3 filling, p ¼ 1. Thus, the sum over m simply becomes the sum over m > 0 and we can set l ¼ 0 at the end of the
calculation. To proceed, we perform the Fourier transformation of the correlator. Here, we denote by

ϕl;kx
1
ðr1Þ ¼ eik

x
1
x1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1ffiffiffi
π

p
2ll!

s
e−ðy1þkx

1
Þ2=2Hlðy1 þ kx1Þ ðA2Þ

the Landau wave functions in the Ay ¼ 0 gauge. Here HlðxÞ is the lth Hermite polynomial. In Fourier space, we find

hN1N1ðq;ωÞi ¼ Clm

X
m

Z
dkid2xidyi

�
eiðx2−x1Þðkx1−kx2þqxÞþiqyðy2−y1Þ

ω − ðωm − ωlÞ þ iϵ
eð−1=2Þ½ðyiþkx

1
Þ2þðyiþkx

2
Þ2�

×Hlðy1 þ kx1ÞðD2
x −D2

yÞHmðy1 þ kx2ÞHmðy2 þ kx2ÞðD2
x −D2

yÞHlðy2 þ kx1Þ

−
eiðx2−x1Þð−kx1þkx

2
þqxÞþiqyðy2−y1Þ

ωþ ðωm − ωlÞ − iϵ
eð−1=2Þ½ðyiþkx

1
Þ2þðyiþkx

2
Þ2�

×Hmðy1 þ kx2ÞðD2
x −D2

yÞHlðy1 þ kx1ÞHlðy2 þ kx1ÞðD2
x −D2

yÞHmðy2 þ kx2Þ
�
; ðA3Þ

where

FIG. 1. Correlator of the nematic order parameters.
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Clm ¼ 1

2lþml!m!2π2
: ðA4Þ

We now change the variables to

~ui ¼ yi þ
kx1 þ kx2

2
; ~v ¼ kx1 − kx2

2
; u1 ¼ y1 þ

kx1 þ kx2
2

þ iqy=2;

u2 ¼ y2 þ
kx1 þ kx2

2
− iqy=2; v ¼ ~v − iqy=2; v� ¼ ~vþ iqy=2; ðA5Þ

and we integrate out the xi’s to obtain

hN1N1ðq;ωÞi ¼ Clm

X
m

Z
duidv

×
�

δð ~vþ qx=2Þ
ω − ðωm − ωlÞ þ iϵ

e−u2i−2vv�Hlðu1 þ vÞðD2
x −D2

yÞHmðu1 − v�ÞHmðu2 − vÞðD2
x −D2

yÞHlðu2 þ v�Þ

−
δð~v − qx=2Þ

ωþ ðωm − ωlÞ − iϵ
e−u2i−2vv�Hmðu1 − v�ÞðD2

x −D2
yÞHlðu1 þ vÞHlðu2 þ v�ÞðD2

x −D2
yÞHmðu2 − vÞ

�
:

ðA6Þ

Since −iDxHmðu1 − v�Þ ¼ ðu1 − v�ÞHmðu1 − v�Þ (we choose the Landau gauge Dx ¼ ∂x þ ib̄y;Dy ¼ ∂y), we have the
following:

−iDxHn ¼ 1=2Hnþ1 þ nHN−1;
−iDyHmðu1 − v�Þ ¼ i½−1=2Hmþ1ðu1 − v�Þ þmHm−1ðu1 − v�Þ�: ðA7Þ

In this way, the correlator can be simplified to the following expression:

hN1N1ðq;ωÞi ¼Clm

X
m

Z
duidv

�
δð ~vþqx=2Þ

ω− ðωm−ωlÞþ iϵ
e−u2i−2vv�m2Hlþ1ðu1þvÞHm−1ðu1−v�ÞHm−1ðu2− vÞHl−1ðu2þ v�Þ

−
δð~v−qx=2Þ

ωþðωm−ωlÞ− iϵ
e−u2i−2vv�m2Hlþ1ðu1þvÞHm−1ðu1− v�ÞHm−1ðu2− vÞHl−1ðu2þv�Þ

�
: ðA8Þ

We can use the expression for the inner product of the two Hermite polynomials, which is written in terms of the Laguerre
polynomials,

Z
du1e−u

2
i Hlðu1 þ vÞHmðu1 − v�Þ

¼ 2m
ffiffiffi
π

p
l!ðv�Þm−lLm−l

l ð−2vv�Þ; ðA9Þ

if l is not larger thanm. Here, v is related to qx; qy after we
integrate over ~v. Lm−l

l ð−2vv�Þ is the polynomial of q2

whose leading order is always a constant piece. We can
always express the result by expanding it in terms of ω
and q by order. The leading order in q and ω of
hN1N1ðq;ωÞi (coming from l ¼ 0; m ¼ 2) includes a
constant piece:

hN1N1ðq;ωÞi ¼
1

πðω − 2ω̄cÞð1þ 4αω̄2
cÞ

− 1

πðωþ 2ω̄cÞð1þ 4αω̄2
cÞ

þOðq2Þ

¼ 4ω̄c

πðω2 − 4ω̄2
cÞð1þ 4αω̄2

cÞ
þOðq2Þ:

ðA10Þ
By dimensional analysis, we need to multiply ω̄2

c=l̄2b to the
correlator to restore the coefficients by setting the
magnetic length to be unity in the calculation:
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hN1N1ðq;ωÞi ¼
4ω̄3

c

l̄2bπðω2 − 4ω̄2
cÞð1þ 4αω̄2

cÞ
þOðq2Þ

¼ −
ω̄c

l̄2bπð1þ 4αω̄2
cÞ

þOðq2Þ þOðω2Þ: ðA11Þ

The first term contributes to the mass term of the nematic order parameters.
The antisymmetric part, proportional toM1∂0M2, of the correlator can be calculated in the same way. The full result for

the correlator is

hN1N2ðq;ωÞi ¼Clm

X
m

Z
duidv

×

�
δð ~vþqx=2Þ

ω− ðωm−ωlÞþ iϵ
e−u2i−2vv�Hlðu1þvÞðD2

x−D2
yÞHmðu1−v�ÞHmðu2−vÞðD2

x−D2
yÞHlðu2þv�Þ

−
δð~v−qx=2Þ

ωþðωm−ωlÞ− iϵ
e−u2i−2vv�Hmðu1−v�ÞðD2

x−D2
yÞHlðu1þvÞHlðu2þv�ÞðD2

x−D2
yÞHmðu2−vÞ

�

¼Clm

X
m

Z
duidv

�
δð ~vþqx=2Þ

ω− ðωm−ωlÞþ iϵ
e−u2i−2vv� m

2

i
Hlþ1ðu1þvÞHm−1ðu1−v�ÞHm−1ðu2−vÞHl−1ðu2þv�Þ

þ δð ~v−qx=2Þ
ωþðωm−ωlÞ− iϵ

e−u2i−2vv� m
2

i
Hlþ1ðu1þvÞHm−1ðu1−v�ÞHm−1ðu2−vÞHl−1ðu2þv�Þ

�
: ðA12Þ

The leading-order behavior in q and ω comes from the term with l ¼ 0 and m ¼ 2. Within this approximation, the leading
low-frequency and low-momenta behavior of the correlator is

hN1N2ðq;ωÞi ¼
2ω

iπðω2 − 4ω̄2
cÞð1þ 4αω̄2

cÞ2
þOðq2Þ:

ðA13Þ
Again, we now multiply the factor ω̄2

c=l̄2b to restore the units
properly to find the result:

hN1N2ðq;ωÞi ¼ i
ω

2l̄2bπð1þ 4αω̄2
cÞ2

þOðq2Þ þOðω2Þ:

ðA14Þ

The coefficient of the leading term is the Hall viscosity of
the integer quantum Hall state.

APPENDIX B: CALCULATION OF THE
MIXED CORRELATORS OF NEMATIC

AND GAUGE FIELDS

The nematic-gauge coupling term could be obtained in a
similar way:

hN1ðr1; t1Þj0ðr2; t2Þi¼−ihT Ψ†ðr1; t1ÞðD2
x−D2

yÞΨðr1; t1ÞΨ†ðr2; t2ÞΨðr2; t2Þi

¼Clm

X
m

Z
duidv

×

�
δð~vþqx=2Þ

ω− ðωm−ωlÞþ iϵ
e−u2i−2vv�Hlðu1þvÞðD2

x−D2
yÞHmðu1−v�ÞHmðu2−vÞHlðu2þv�Þ

−
δð ~v−qx=2Þ

ωþðωm−ωlÞ− iϵ
e−u2i−2vv�Hmðu1−v�ÞðD2

x−D2
yÞHlðu1þvÞHlðu2þv�ÞHmðu2−vÞ

�

¼Clm

X
m

Z
duidv

�
δð~vþqx=2Þ

ω− ðωm−ωlÞþ iϵ
e−u2i−2vv�mHlþ1ðu1þvÞHm−1ðu1−v�ÞHmðu2−vÞHlðu2þv�Þ

−
δð ~v−qx=2Þ

ωþðωm−ωlÞ− iϵ
e−u2i−2vv�mHlþ1ðu1þvÞHm−1ðu1−v�ÞHmðu2−vÞHlðu2þv�Þ

�
: ðB1Þ
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The leading order term is ∝ p2, which comes from the
contribution of ðl ¼ 0; m ¼ 2Þ; ðl ¼ 0; m ¼ 1Þ, and yields
the expression

hN1ðpÞj0ð−pÞi ¼ 1

2π

�
2

1þ αω̄2
c
− 2

2þ 8αω̄2
c

�
ðp2

x − p2
yÞ:

ðB2Þ
Following the above calculation, we can obtain other linear
coupling terms between the nematic field and the gauge
field:

hN2ðpÞj0ð−pÞi ¼ 1

2π

�
2

1þ αω̄2
c
− 2

2þ 8αω̄2
c

�
2pxpy;

hN1ðpÞjxð−pÞi ¼ 1

2π

�
2

1þ αω̄2
c
− 2

2þ 8αω̄2
c

�
ωpx;

hN1ðpÞjyð−pÞi ¼ 1

2π

�
2

1þ αω̄2
c
− 2

2þ 8αω̄2
c

�
ð−ωpyÞ;

hN2ðpÞjxð−pÞi ¼ 1

2π

�
2

1þ αω̄2
c
− 2

2þ 8αω̄2
c

�
ωpy;

hN2ðpÞjyð−pÞi ¼ 1

2π

�
2

1þ αω̄2
c
− 2

2þ 8αω̄2
c

�
ωpx:

ðB3Þ
These terms contribute partly to the Wen-Zee coupling.

For a complete expression of the Wen-Zee term, we also
need to evaluate the correlator between two nematic fields
and one gauge field (see the Feynman diagrams of Fig. 2):

hN1ðr1; t1ÞN2ðr2; t2Þj0ðr3; t3Þi ¼ −hT Ψ†ðr1; t1ÞðD2
x −D2

yÞΨðr1; t1ÞΨ†ðr2; t2ÞðDxDy þDyDxÞΨðr2; t2ÞΨ†ðr3; t3ÞΨðr3; t3Þi;
ðB4Þ

hN1N2j0iðq; pÞ ¼ hN1ðr1; t1ÞN2ðr2; t2Þj0ðr3; t3Þi exp½−iωðt2 − t1Þ − iω0ðt3 − t2Þ� exp½iqðr2 − r1Þ þ ipðr3 − r2Þ�: ðB5Þ

By redefining the variables,

u1 ¼ y1 þ
kx1 þ kx2

2
þ iqy=2; v ¼ kx1 − kx2

2
− iqy=2; ~v ¼ kx1 − kx2

2
;

u2 ¼ y2 þ
kx2 þ kx3

2
− iðqy − pyÞ=2; v0 ¼

kx2 − kx3
2

þ iðqy − pyÞ=2; ~v0 ¼
kx2 − kx3

2
;

u3 ¼ y3 þ
kx1 þ kx3

2
− ipy=2; vþ v0 ¼

kx1 − kx3
2

þ ipy=2; ~vþ ~v0 ¼
kx1 − kx3

2
; ðB6Þ

we can write the time-ordered correlator (for t1 > t2 > t3) as

FIG. 2. Diagrams contributing to the Wen-Zee term. Here, the
wiggly line represents the gauge field aμ and the dotted line
represents the nematic field Mi. The thick line represents the
composite fermion propagator.

YIZHI YOU, GIL YOUNG CHO, AND EDUARDO FRADKIN PHYS. REV. X 4, 041050 (2014)

041050-18



hN1N2j0iðq; pÞ ¼ exp½−u2i − vv� − v0v�0 − ðv0 þ vÞðv� þ v�0Þ� expð−iq=2∧p=2Þ
Clmn

X
m;n

Z
duidvdv0

δð~vþ qx=2Þδð~v0 þ px=2Þ
½ω − ðωm − ωlÞ þ iϵ�½ω0 − ðωn − ωlÞ þ iϵ�

Hlðu1 þ vÞðD2
x −D2

yÞHmðu1 − v�ÞHmðu2 þ v0ÞðDxDy þDyDxÞHnðu2 − v�0ÞHnðu3 − v� − v�0ÞHlðu3 þ vþ v0Þ
¼ exp½−u2i − vv� − v0v�0 − ðv0 þ vÞðv� þ v�0Þ expð−iq=2∧p=2Þ

Clmn

X
m;n

Z
duidvdv0

δð~vþ qx=2Þδð~v0 þ px=2Þ
½ω − ðωm − ωlÞ þ iϵ�½ω0 − ðωn − ωlÞ þ iϵ�

½Hlþ1ðu1 þ vÞmHm−1ðu1 − v�ÞHmþ1ðu2 þ v0ÞðinÞHn−1ðu2 − v�0ÞHnðu3 − v� − v�0ÞHlðu3 þ vþ v0Þ
þHlþ1ðu1 þ vÞmHm−1ðu1 − v�ÞHm−1ðu2 þ v0Þð−imÞHnþ1ðu2 − v�0ÞHnðu3 − v� − v�0ÞHlðu3 þ vþ v0Þ�: ðB7Þ

For this three-point correlator, there always exists an antisymmetric phase factor expð−iq=2∧p=2Þ (known as the Moyal
phase, see, e.g., Ref. [65]), which is responsible for the Wen-Zee response.
The leading-order contribution for the three-point time-ordered correlator (at t1 > t2 > t3) comes from the choice of

½l ¼ 0; n ¼ 0; m ¼ 2�; thus,

hN1N2j0iðq; pÞjt1>t2>t3 ¼
−qxpy þ qypx

4π½ω − ðω2 − ω0Þ�ðω0Þ
þ � � � : ðB8Þ

In a similar way, we also have

hN2N1j0iðq; pÞjt1>t2>t3 ¼ exp½−u2i − vv� − v0v�0 − ðv0 þ vÞðv� þ v�0Þ� expð−iq=2∧p=2Þ
Clmn

X
m;n

Z
duidvdv0

δð~vþ qx=2Þδð~v0 þ px=2Þ
½ω − ðωm − ωlÞ þ iϵ�½ω0 − ðωn − ωlÞ þ iϵ�

Hlðu1 þ vÞðDxDy þDyDxÞHmðu1 − v�ÞHmðu2 þ v0ÞðD2
x −D2

yÞHnðu2 − v�0ÞHnðu3 − v� − v�0ÞHlðu3 þ vþ v0Þ
¼ exp½−u2i − vv� − v0v�0 − ðv0 þ vÞðv� þ v�0Þ� expð−iq=2∧p=2Þ

Clmn

X
m;n

Z
duidvdv0

δð~vþ qx=2Þδð~v0 þ px=2Þ
½ω − ðωm − ωlÞ þ iϵ�½ω0 − ðωn − ωlÞ þ iϵ�

½Hlþ1ðu1 þ vÞðimÞHm−1ðu1 − v�ÞHmþ1ðu2 þ v0ÞðnÞHn−1ðu2 − v�0ÞHnðu3 − v� − v�0ÞHlðu3 þ vþ v0Þ
þHlþ1ðu1 þ vÞðimÞHm−1ðu1 − v�ÞHm−1ðu2 þ v0ÞðmÞHnþ1ðu2 − v�0ÞHnðu3 − v� − v�0ÞHlðu3 þ vþ v0Þ�: ðB9Þ

In leading order,

hN2N1j0iðq; q0Þjt1>t2>t3 ¼
qxpy − qypx

4π½ω − ðω2 − ω0Þ�ðω0Þ
þ � � � :

ðB10Þ
The other time-ordered correlator can be obtained in a
similar way, which finally givesWen-Zee coupling. Finally,
we have

hNiNjjμiðq; pÞ ¼
ϵijϵλνμpλqν

ð1þ 4αω̄2
cÞ24π

: ðB11Þ

APPENDIX C: PRROF OF GAUGE INVARIANCE
AT THE RPA LEVEL

To calculate the collective excitation of the nematic FQH
state, we first treat the quadrupolar interaction perturba-
tively in the RPA level and then integrate out the gauge
fluctuation. During the RPA procedure, we keep only the
reducible diagrams for the infinite geometric series. Here,
we proof that the polarization tensor of such RPA level
correction is gauge invariant. The polarization at RPA level
has the form
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ΠRPA
ij ¼ Π0

ij þ ð2F2m2
eÞ
X
a;b

hjiNaihNbjji

þ ð2F2m2
eÞ2

X
a;b

hjiNaihNaNbihNbjji þ � � �

¼ Π0
ij þ

ð2F2m2
eÞhjiNaihNbjji

1 − ð2F2m2
eÞhNaNbi

: ðC1Þ

To prove its gauge invariance, we need to prove only

pμΠRPA
μν ðω; pÞ ¼ 0: ðC2Þ

Or if we write it in real space,

∂μΠRPA
μν ðx; yÞ ¼ 0: ðC3Þ

It is obvious that pμΠ0
μν ¼ 0. Thus, to prove gauge

invariance we only need to prove that pμhjμNai ¼ 0:

2∂r1i
hjiðr1ÞN1ðr2Þi ¼ i∂r1i

hD†
iΨ

†ðr1ÞΨðr1ÞΨ†ðr2ÞðD2
x −D2

yÞΨðr2Þi − i∂r1i
hΨ†ðr1ÞDiΨðr1ÞΨ†ðr2ÞðD2

x −D2
yÞΨðr2Þi

¼ ih∂r1i
D†

iΨ
†ðr1ÞΨðr1ÞΨ†ðr2ÞðD2

x −D2
yÞΨðr2Þi þ ihD†

iΨ
†ðr1Þ∂r1i

Ψðr1ÞΨ†ðr2ÞðD2
x −D2

yÞΨðr2Þi
− ih∂r1i

Ψ†ðr1ÞDiΨðr1ÞΨ†ðr2ÞðD2
x −D2

yÞΨðr2Þi − ihΨ†ðr1Þ∂r1i
DiΨðr1ÞΨ†ðr2ÞðD2

x −D2
yÞΨðr2Þi

¼ ihD†
i D

†
iΨ

†ðr1ÞΨðr1ÞΨ†ðr2ÞðD2
x −D2

yÞΨðr2Þi þ ihD†
iΨ

†ðr1ÞDiΨðr1ÞΨ†ðr2ÞðD2
x −D2

yÞΨðr2Þi
− ihD†

iΨ
†ðr1ÞDiΨðr1ÞΨ†ðr2ÞðD2

x −D2
yÞΨðr2Þi − ihΨ†ðr1ÞDiDiΨðr1ÞΨ†ðr2ÞðD2

x −D2
yÞΨðr2Þi

¼ ihD†
i D

†
iΨ

†ðr1ÞΨðr1ÞΨ†ðr2ÞðD2
x −D2

yÞΨðr2Þi − ihΨ†ðr1ÞDiDiΨðr1ÞΨ†ðr2ÞðD2
x −D2

yÞΨðr2Þi
∂r1

0
hj0ðr1ÞN1ðr2Þi ¼ −h∂r1

0
Ψ†ðr1ÞΨðr1ÞΨ†ðr2ÞðD2

x −D2
yÞΨðr2Þi − hΨ†ðr1Þ∂r1

0
Ψðr1ÞΨ†ðr2ÞðD2

x −D2
yÞΨðr2Þi: ðC4Þ

In all, we have

− i∂r1μhjμðr1ÞN1ðr2Þi ¼
�
Ψðr1ÞΨ†ðr2ÞðD2

x −D2
yÞr2Ψðr2ÞΨ†ðr1Þ

�
−i∂0 þ

D†2

2
þ μ

�
r1

�

−
��

i∂0 þ
D2

2
þ μ

�
r1

Ψðr1ÞΨ†ðr2ÞðD2
x −D2

yÞr2Ψðr2ÞΨ†ðr1Þ
�

¼
�
Gðr1; r2ÞðD2

x −D2
yÞr2Gðr2; r1Þ

�
−i∂0 þ

D†2

2
þ μ

�
r1

�
−
��

i∂0 þ
D2

2
þ μ

�
r1

Gðr1; r2ÞðD2
x −D2

yÞr2Gðr2; r1Þ
�
: ðC5Þ

Recall that the Green function has the property

	
i∂0þ

D2

2
þμ



r1
Gðr1;r2Þ¼

	
i∂0þ

D2

2
þμ



r1
hΨðr1ÞΨ†ðr2Þi

¼δðr1−r2Þ; ðC6Þ
and similarly for the adjoint. Thus, we have

−i∂r1μhjμðr1ÞN1ðr2Þi ¼ 0: ðC7Þ

Thus, we have shown that the polarization tensor at the
RPA level is gauge invariant.

APPENDIX D: NEMATIC COLLECTIVE
EXCITATIONS

To obtain the collective excitations of the nematic FQH
state, we calculate the polarization tensor Kij for the
external electromagnetic gauge field. The poles in Kij give
the spectrum of the excitations:

K00 ¼ q2K0;

K0i ¼ ωqiK0 þ iϵikqkK1;

Ki0 ¼ ωqiK0 − iϵikqkK1;

Kij ¼ ω2δijK0 − iϵijωK1 þ ðq2δij − qiqjÞK2;

K0 ¼ − Π0

16π2D
;

K1 ¼
1

4π
þ Π1 þ 1

4π

16π2D
þ VðqÞΠ0q2

64π3D
;

K2 ¼
Π2

16π2D
þ VðqÞðω2Π2

0 − Π2
1Þ

D
þ VðqÞΠ0Π2q2

D
;

D ¼ Π2
0ω

2 − ðΠ1 þ θÞ2 þ Π0

�
Π2 − VðqÞ

16π2

�
q2;

θ ¼ 1

4π
: ðD1Þ

We solve Dðq;ωÞ ¼ 0 to find the poles of Kμν:
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Π2
0ω

2 − ðΠ1 þ θÞ2 þ Π0

�
Π2 − VðqÞ

16π2

�
q2 ¼ 0: ðD2Þ

As the left-hand part of Eq. (D2) involves a sum of infinite
numbers of polynomials, it is impossible to solve it exactly.
What we can try to do instead is to assume dispersion ω ¼
ω1 þ αnq2n and find the solution asymptotically near zero
momentum. We keep only the lowest terms in q and ω. As
we can see, the first two terms have leading order Oð1Þ,
while the last term has leading order Oðq2Þ. To solve this
equation, we have to subtract the constant piece from the
first two terms and set them as zero:���� ω̄c

0ω1

ω2
1 − ω̄c

02 þ
c1t2ω1

α

����¼
���� ω̄c

02

ω2
1 − ω̄c

02 þ
t2c2
α

þ 2πθ

����: ðD3Þ

This gives us the solution for the lowest excitation in the
nematic FQH state, which is the GMP mode.
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