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The phenomenon of ultrastrong light-matter interaction of a two-dimensional electron gas within a
lumped element electronic circuit resonator is explored. The gas is coupled through the oscillating electric
field of the capacitor, and in the limit of very small capacitor volumes, the total number of electrons of the
system can be reduced to only a few. One of the peculiar features of our quantum mechanical system is that
its Hamiltonian evolves from the fermionic Rabi model to the bosonic Hopfield model for light-matter
coupling as the number of electrons is increased. We show that the Dicke states, introduced to describe the
atomic super-radiance, are the natural base to describe the crossover between the two models. Furthermore,
we illustrate how the ultrastrong coupling regime in the system and the associated antiresonant terms of the
quantum Hamiltonian have a fundamentally different impact in the fermionic and bosonic cases. In the
intermediate regime, our system behaves like a multilevel quantum bit with nonharmonic energy spacing,
owing to the particle-particle interactions. Such a system can be inserted into a technological semi-
conductor platform, thus opening interesting perspectives for electronic devices where the readout of
quantum electrodynamical properties is obtained via the measure of a DC current.
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I. INTRODUCTION

The strong light-matter coupling regime is a well-known
concept in quantum electrodynamics [1]. This occurs when
amaterial excitation reversibly exchanges its energy with an
optical mode of a microcavity, and it has so far been realized
in numerous physical systems, such as atoms in microwave
cavities [2,3], excitons in semiconductor quantum wells
(QW) [4] or quantum boxes [5,6], superconducting circuits
[7–9], and optomecanical resonators [10]. Recently, there
have been several theoretical studies of the ultrastrong
light-matter interaction regime [11–13] where the coupling
constant, also called Rabi frequency, ΩR, becomes compa-
rable with the energy of the material excitation. This regime
has been realized experimentally with intersubband tran-
sitions coupled with plasmon waveguides in the midin-
frared (MIR) [14] and metallic microcavities in the terahertz
(THz) frequency range [15–17], magnetoplasmons of two-
dimensional electron gas [18], superconducting qubits [19],
and molecular transitions [20].
However, all these experimental and theoretical studies

refer to two completely different models depicting the
strong light-matter coupling regime. The first corresponds

to the Rabi model [21,22], which describes the interaction
of a two-level system with a quantum harmonic oscillator.
In the context of quantum optics, the harmonic oscillator
corresponds to a single mode of the electromagnetic field,
and this model, often combined with a rotating-wave
approximation, is also well known as the Jaynes-
Cummings model [23]. The second model is the polariton
Hopfield model [24], where the electromagnetic field
interacts with a collective material polarization. In the
latter, both material excitation and the electromagnetic field
are described as boson fields with harmonic excitation
spectra. The Rabi model is pertinent to describe experi-
ments in atomic physics [2,3], superconducting qubits
[7–9], or dielectric microcavities coupled with quantum
boxes [5,6]. The Hopfield model describes well the
propagation of light in solids [25], as well as recent
experiments with microcavities interacting with confined
plasmons in the infrared part of the spectrum [15–17]. In
the present work, we describe a quantum-mechanical
system that can be continuously tuned between the Rabi
model and the Hopfield polariton model, by changing the
number of electronic transitions resonantly coupled with
the electromagnetic field. We show that the Dicke states,
introduced to describe the atomic super-radiance [26], play
a crucial role to account for the fermionic-bosonic cross-
over. Furthermore, by exploring the properties of the
ultrastrong coupling regime in our system, we illustrate
clearly the fundamental difference between the fermionic
Rabi model and the bosonic Hopfield description.
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Our system is set to operate in the THz part of the
spectrum, where, quite remarkably, another fundamental
crossover takes place: the transition between optics and
electronics. Indeed, in the THz range, metals can be
commonly used to confine light [27], and the realization
of electromagnetic resonators can be inspired either by
photonic or electronic concepts. The use of metals permits
us to confine the light in photonic resonators with a very
small effective volume V, much smaller than what can be
achieved using dielectrics. However, even in this case, at
least one of the resonator dimensions must be commen-
surable with the resonant wavelength λ, which, in princi-
ple, sets the ultimate limit for the light confinement based
on a photonic resonator. No such limitation exists for an
electronic circuit resonator built of lump elements with
physical sizes that are much smaller than the resonant
wavelength [28]. As the light-matter coupling constant ΩR
scales like 1=

ffiffiffiffi
V

p
[1,29], it is very interesting to explore

and understand the limit towards an arbitrarily small
volume. This limit is the bases of our quantum-mechanical
system consisting of a collection of electronic intersub-
band dipoles coupled to the oscillating electric field in an
“LC” (inductance-capacitor) resonant circuit. We will
show that, indeed, the interaction strength ΩR becomes
very large when the capacitor volume is reduced, leading
to the regime of ultrastrong light-matter coupling with just
a few electrons. In principle, the only limitation to the
coupling strength in this case is the size of the quantum
structure that confines the electrons. We show that in
such a system, the nature of the coupling is profoundly
modified by the number of dipoles interacting with light.
If the system is composed of a very large number of
dipoles, the electronic ensemble behaves like a confined
plasmon with bosonic character. In the opposite limit of a
few dipoles, the system can no longer be described by
bosons but rather as a collection of two-level systems
eventually coupled through interparticle interactions. The
quantum description of the system that we present there-
fore allows one to bridge condensed-matter many-body
collective excitations with quantum optics and atomic
physics.
Our paper is organized as follows. In Sec. II, we discuss

a representation of the fundamental electromagnetic
Hamiltonian that captures the transition between optics
and electronics. In Sec. III, we apply our Hamiltonian to
describe the interaction between an LC circuit and a
two-dimensional electron gas, coupled through the
circuit capacitor, and we explore the system while varying
the number of electrons in the gas. We demonstrate the
crossover between the fermionic and bosonic nature
of the light-coupled excitations of the gas, and we
provide the corresponding features while the system
operates in the ultrastrong circuit-matter coupling regime.
Much of the technical information is gathered in the
Appendixes.

II. TRANSITION BETWEEN OPTICS AND
ELECTRONICS: HAMILTONIAN DESCRIPTION

We will start our analysis by recalling the classical
description of an electromagnetic resonator, which is based
on the periodic energy exchange between the magnetic and
electric fields. What distinguishes the photonic from the
circuit resonator is how this exchange takes place. The
physics of the phenomenon is contained in the fourth
Maxwell equation [28,30]:

∇ ×H ¼ J þ ∂D
∂t : ð1Þ

The crossover between electronics and photonics
appears in the relative weight of the two source terms:
the real current J and the displacement current ∂D=∂t. In a
purely dielectric resonator [31], the current source J is
absent since there are no free charges in the material.
Then, according to Eq. (1), the spatial variations of the
magnetic field are coupled to the temporal variations of the
electric field. This entanglement between time and space,
which is also present in the first Maxwell equation,
∇ ×E ¼ −∂H=∂t, is the essence of propagation, and
the resonator exists because it can fit a propagating wave
in at least one direction. In this direction, the size of the
resonator is therefore ultimately limited by λ=2n, where n is
the refractive index of the material filling the resonator.
On the contrary, in an oscillating circuit, the propagation
effects are too small, and the displacement current can be
neglected in Eq. (1). In this quasistatic limit, the oscillations
arise from the physical current J that tends to compensate
the electric charges on the capacitor plate. This current
would induce a magnetic field in the inductance, which in
turn will tend to decay, yielding a current.
From the point of view of Lagrangian quantum electro-

dynamics, the fundamental difference between photonic
and electronic resonators corresponds to two different
choices for pairs of conjugated dynamical variables.
These two limits can be recovered in the dipolar Power-
Zineau-Wooley (PZW) representation, where the electro-
magnetic Hamiltonian is expressed in terms of fields rather
than vector and scalar potentials [32,33]. Furthermore,
when a long-wavelength approximation is assumed, the
dipole gauge permits us to obtain the relevant terms of
electromagnetic interactions, as dipole-dipole and dipole-
field interactions [34,35]. Let us consider an LC circuit
as described in Fig. 1(a). In the PZW framework, the
Hamiltonian of the electromagnetic field of the resonator
in all space can be written as

Hfield ¼
Z

D2⊥
2ε0

d3rþ
Z

μ0H2

2
d3rþ

Z
P2
C

2ε0ε
d3r: ð2Þ

The first two terms on the right-hand side describe the
energy stored in the electric and magnetic fields; however,
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while H describes the total magnetic field, D⊥ now
describes only the transverse displacement field [33]. In
Eq. (2), ε0 and μ0 are, respectively, the electric and
magnetic constants. In the low-frequency limit, D⊥ corre-
sponds to the field that is radiated away from the circuit
[Fig. 1(a)]. The third term is the energy stored in the
capacitor, owing to the presence of charges on the plates.
In the dipole gauge, this energy is expressed through a
polarization field PC that can be obtained from the Gauss
theorem (ε is the dielectric constant of the capacitor core).
This is actually another way to express the longitudinal
quasistatic electric field with force lines that start and
terminate at the electric charges.
Two limiting cases can be extracted fromHfield. When at

least one of the dimensions of the system is commensurable
with the wavelength in the material λ=n, propagation effects
are dominant. The capacitor behaves as a resonant cavity,
and the electromagnetic fields D⊥ and H are essentially
localized within it [Fig. 1(b)] [28]. Furthermore, PC can be
neglected as it is confined within the skin depth of the metal
plates. Note that PC is completely absent for purely

dielectric microcavities or in ideal cases such as cavities
made of perfect conductors. In all these cases, the con-
jugated dynamical variables of the system are D⊥ and H.
One then retains only the first two terms in Eq. (2), and the
electromagnetic field is quantized by defining creation and
annihilation operators a and a† describing propagating
photons as the elementary excitations of the field [36].
Electric and magnetic fields are thus confined in the volume
V, which is necessarily identical for both fields.
The situation changes drastically if we consider the low-

frequency limit of the LC system, where the circuit size
lcircuit becomes much smaller than the resonant wavelength.
In this case, the system can be considered as an electrically
small antenna for which the radiation losses decrease
strongly with the ratio lcircuit=λ [Fig. 1(b)] [37]. In this
limit of a “lumped” circuit, D⊥, which describes the field
radiated away from the oscillating charges and the current
loop can be neglected in Eq. (2). The second and third terms
can be expressed through the magnetic flux ϕ in the
inductance and the charge q on the capacitor plates, which
are now the conjugated dynamical variables of the system.
Equation (2) becomes [Fig. 1(c)]

Hfield ≈
Z

μ0H2

2
d3rþ

Z
P2
C

2ε0ε
d3r ¼ ϕ2

2L
þ q2

2C
: ð3Þ

The system is now quantized as a quantum harmonic
oscillator with a frequency ωc ¼ 1=

ffiffiffiffiffiffiffi
LC

p
[36,38], and we

can define raising and lowering operators a† and a that
create or destroy an electrical oscillation with an energy
ℏωc [38]. The variables q and ϕ become quantum operators
expressed as q¼ i

ffiffiffiffiffiffiffiffiffiffiffi
ℏ=2Z

p ða†−aÞ andϕ¼ ffiffiffiffiffiffiffiffiffiffiffi
ℏZ=2

p ða†þaÞ,
with Z ¼ ffiffiffiffiffiffiffiffiffi

L=C
p

the circuit impedance. The Hamiltonian
becomes Hfield ¼ ℏωcða†aþ 1=2Þ, which is formally iden-
tical to that of propagating photons. However, in this
case, the quanta of the field do not represent propagating
photons with spatially entangled electric and magnetic
fields, but rather “circuit photons.” These “photons”
correspond to an electric and a magnetic field that evolve
in two distinct regions of the space but are still correlated
in time. The polarization field operator PC that describes
the quasistatic electric field between the capacitor plates
is expressed through the operators a† and a:

PC ¼ nεε0
q
Cd

¼ ni

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εε0ℏωc

2V

r
ða† − aÞ: ð4Þ

Here, d is the distance between the capacitor plates
[Fig. 1(a)], and n is the normal to the plates. We have used
the formula C ¼ εε0S=d, where S is the surface of the
capacitor plates (S ¼ πρ2 for the system in Fig. 1). It is
assumed that the polarization is homogeneous inside the
capacitor volume V ¼ S × d. Since the volume of the
capacitor that contains the electric field is totally

FIG. 1. (a) General illustration of an LC circuit, indicating the
quasistatic electric field inside the capacitor and the radiated field
far away from the system. We have considered a circular plate
capacitor of radius ρ. (b,c) Relevant terms of the electrodynamic
Hamiltonian that describes the system, either as a high-frequency
photonic resonator (b) or a low-frequency circuit resonator (c).
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independent from the volume of the inductance, where the
magnetic field develops, these two volumes can now be
varied freely while maintaining the total energy of the
system that is equal to a quantum ℏωc, a situation that is in
sharp contrast with the case of propagating photons.

III. COUPLING WITH MATTER
AND DICKE STATES

Our aim is now to explore the ultrastrong coupling of the
circuit resonator with a material excitation. Our analysis
will be performed on a model system similar to those
previously used to demonstrate strong light-matter cou-
pling in the THz and MIR ranges, where a microcavity
mode is coupled with the electronic excitation of a highly
doped quantum well [15–17]. We therefore focus on the
case described in Fig. 2(a), where the QW is inserted inside
the capacitor. There are at least two confined subbands in

the well, and the fundamental subband hosts a two-
dimensional electron gas (2DEG) with a total number of
Ne electrons. The kinetic energy of the electron gas is
provided by the Hamiltonian He¼

P
kðℏω1kc

†
1kc1kþ

ℏω2kc
†
2kc2kÞ, where c†ik=cik are the fermionic creation/

annihilation operators in the subband state i ¼ 1, 2 with
an in-plane momentum k. The energy of each state is
ℏωik ¼ ℏωi þ ℏ2k2=2m�, with m� the effective electron
mass. The two subbands can be coupled by the oscillating
electric field of the circuit provided by Eq. (4). In order to
obtain this coupling, we make use of the dynamic intersub-
band polarization associated with the quantum transition
between the subbands [35]:

Pisb ¼
eℏ

2m�S

X
k

ðc†2kc1k þ c†1kc2kÞ
ξ21ðzÞ
ω21

n: ð5Þ

Here, ξ21ðzÞ ¼ φ2ðzÞ∂zφ1ðzÞ − φ1ðzÞ∂zφ2ðzÞ is the
matrix element of the microscopic current between the
quantized states with wave functions φ1;2ðzÞ, and ω21 ¼
ω2k − ω1k is the intersubband transition frequency. The
homogeneous electric field of the capacitor induces strictly
vertical transitions between the subbands, as shown
in Eq. (5).
In the systems considered so far [15–17], strong light-

matter interaction arises from the coupling between the
electronic polarization Pisb [Eq. (5)] and the field D⊥ of a
microcavity or a waveguide. As in the circuit, the propa-
gating field can be neglected; light-matter coupling is now
driven by a different mechanism that can still be derived
from the Hamiltonian (3). Indeed, for the case depicted in
Fig. 2(a), the polarization of the electron gas Pisb contrib-
utes to the total polarization field inside the capacitor.
Therefore, in Eq. (3), we must replace PC with the total
polarization PC þ Pisb. The coupling between the electron
gas and the oscillating field of the capacitor is now derived
from the cross polarization term PC · Pisb that appears while
expanding the term ðPC þ PisbÞ2. By adding the kinetic
energy of the electrons He to Eq. (3), we obtain the
complete Hamiltonian describing our system:

H ¼ He þ
Z

μ0H2

2
d3rþ

Z ðPC þ PisbÞ2
2ε0ε

d3r

¼ He þ ℏωcða†aþ 1=2Þ þHint þHP2: ð6Þ

Here, we introduced the interaction Hamiltonian Hint
and the “depolarization” Hamiltonian HP2:

Hint ¼
Z

PCPisb

εε0
d3r

¼ iℏΩR

ffiffiffiffiffiffiffi
ωc

ω21

r X
k

ðc†2kc1k þ c†1kc2kÞða† − aÞ; ð7Þ

FIG. 2. (a) Illustration of a quantum well inserted into the
capacitive part of an LC resonator and interacting with the
quasistatic electric field of the capacitor. The QW is intentionally
doped such that there is a two-dimensional electron gas on the
first subband of the well. The energy difference between the first
and the second subband, ℏω21, is matched with the resonance of
the LC circuit, ℏωc. (b) Mapping of the Dicke states jJ;Mi into
the possible excited states of the QW in the case of Ne ¼ 3
electrons in the well.

YANKO TODOROV AND CARLO SIRTORI PHYS. REV. X 4, 041031 (2014)

041031-4



HP2 ¼
Z

P2
isb

2εε0
d3r

¼ ω2
P1

4ω21

X
k;k0

ðc†2kc1k þ c†1kc2kÞðc†2k0c1k0 þ c†
1k0c2k0 Þ:

ð8Þ

All the sums over the wave vectors k are performed on
the fundamental state of the gas, which is a Fermi circle
with a radius kF. For simplicity, we neglect here the
exchange-correlation interactions, and we suppose that
the ground state is jFi ¼ Q

jkj≤kFc
†
1kj0i. In these expres-

sions, we have introduced two important quantities, ΩR
and ωP1, that quantify the interaction. The first one is the
circuit-matter coupling constant ΩR:

ΩR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2f21

4m�εε0Sd

s
; ð9Þ

with f21 ¼ ðℏ=2m�ω21Þð
R
ξ21ðzÞdzÞ2 the oscillator

strength of the intersubband transition. The second one
is the coefficient ωP1 introduced in Eq. (8), and it is
defined as

ω2
P1 ¼

e2

εε0m�SL21

; ð10Þ

with L−1
21 ¼ ðℏ=2m�ω21Þ

R
ξ221ðzÞdz the effective length of

the QW renormalized by Coulomb effects [35]. Note that
both of these coefficients refer to a single electron. We call
ωP1 “one electron plasma frequency,” for reasons that will
be apparent in a moment.
In previous works dealing with the interaction between

microcavity modes and electron gases [15–17], the cou-
pling constants were enhanced by using very high elec-
tronic densities. In this limit, the problem contained in
Eqs. (6)–(10) is not only a problem of quantum optics,
referring to the term Hint, but also an intrinsic many-body
problem due to the interaction among the electrons,
described by the term HP2. In our case, the many-body
problem can be solved exactly, as the electric field of the
capacitor is considered to be homogeneous; therefore, no
momentum is exchanged between the many-body states
and the circuit photons. Furthermore, in the parabolic-band
approximation, the transition frequency ω21 ¼ ω2k − ω1k
is independent from the electronic wave vector k, and all
the electrons interact with the electric field at the same
energy. The system that we are investigating is therefore
very similar to the atomic ensemble first studied by Dicke
[26,39] to explain the superradiant emission. In the case
of the atomic super-radiance, different atoms are labeled
according to their positions in space, and the atomic cloud
is localized in a region much smaller than the wavelength.
In our case [Fig. 2(a)], all electrons have the same envelope

wave functions φ1;2ðzÞ along the growth direction z.
However, in the plane, they are delocalized waves
expðikrÞ= ffiffiffi

S
p

with different momenta k due to the Pauli
exclusion principle. The electronic states are thus labeled
according to their momentum states k instead of their
positions, with parabolic dispersion as shown in Fig. 2(a).
In analogy with atomic clouds, we can then define raising
and lowering superradiant operators that act in the momen-
tum space rather than the position space:

Dþ ¼
X
k

c†2kc1k; D− ¼
X
k

c†1kc2k: ð11Þ

The HamiltoniansHint andHP2 can now be conveniently
expressed as Hint ¼ iℏΩR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωc=ω21

p ðDþ þD−Þða† − aÞ
and HP2 ¼ ℏω2

P1=4ω21ðDþ þD−Þ2. If we ignore the
HP2 part, Eq. (6) corresponds exactly to the Dicke
Hamiltonian. In this case, the collective states interacting
with light can be mapped into the angular momentum states
jJ;Mi of Ne spins s ¼ 1=2 with total angular momentum
J ¼ Ne=2 and spin projections M ¼ −J…J. The funda-
mental state of the electron gas, where all electrons occupy
the first subband, is then jFi ¼ jJ;−Ji. The excited states
of the system are described by jJ;Mi with M > −J, and
they correspond to coherent superpositions of all states with
J þM electrons excited on the second subband [Fig. 2(b)].
These states are obtained by applying J þM times the
operator Dþ on the ground state jFi (see Appendix A).
By using the commutation relations ½He;D�� ¼ �ℏω21D�,
it is easily shown that jJ;Mi is an eigenvector of
the electronic Hamiltonian He with an eigenvalue
EG þ ðJ þMÞℏω21, where EG is the ground-state energy.
In Fig. 2(b), we illustrate the mapping between the excited
states of the electron gas and the angular momentum states
jJ;Mi for the case of an Ne ¼ 3 electron system.
Let us then consider a situation where the system is

probed by a weak excitation, and only the transition
between the fundamental and the first excited state
jJ;−J þ 1i is relevant. Then, it is well known from the
theory of super-radiance [39] that the Ne electrons interact
collectively with light with an effective coupling constant
ΩReff ¼ ΩR

ffiffiffiffiffiffi
Ne

p
. This coupling constant ΩReff is identical

to that of a photonic resonator operating in the fundamental
transverse-magnetic TM0 mode of a double-metal wave-
guide of a thickness d and volume V ¼ Sd [15]. The major
difference is that now the surface of the capacitor S is no
longer tied to propagation effects and could be made
arbitrary small. One can therefore envision the case where
S is strongly reduced while keeping the areal density Ne=S
very high and constant. In this limit, a very high coupling
energy ℏΩReff can be obtained while the number of
electrons in the system is highly reduced.
The reduction of the surface S also implies a reduction

of the capacitance C, which in turn changes the resonant
frequency ωc ¼ 1=

ffiffiffiffiffiffiffi
LC

p
of the LC circuit. In order to keep
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the resonator frequency ωc always matched with the
frequency of the quantum transition ω21, one has to
increase the inductance L. This is illustrated in Fig. 3,
where we plot the total number of electrons Ne in the
system and the inductance L as a function of the capaci-
tance area S, with the resonant frequency of the circuit kept
equal to 1 THz. The areal electronic density is taken to be
Ne=S ¼ 5 · 1010 cm−2. As a starting point, we use a
geometry described in Ref. [40], where the capacitor plates
are shorted by a thin wire. In that geometry, S ≈ 102 μm,
Ne ≈ 105, and L is the wire self-inductance, on the order of
pH. Let us consider a capacitor gap d ¼ 80 nm, with an
LQW ¼ 52-nm-thick GaAs=AlGaAs quantum well in the
capacitor, as in Fig. 2(a). In this case, the intersubband
transition is ω21=2π ¼ 1 THz, with an oscillator strength
f21 ≈ 1 and an effective Coulomb length L21 ¼ 38 nm.
These parameters provide a Rabi splitting 2ΩReff=2π ¼
0.77 THz that is a significant fraction of the circuit and
intersubband frequencies. By using electrical lithography
techniques, the lateral size of the capacitor can be shrunk
to 100 nm, which corresponds to Ne < 10 electrons in the
structure. In this case, the architecture of the inductive
element must be changed. For instance, we can envision
planar spiral inductances [41,42], which can provide values
as high as L ≈ 1 nH. Other possible geometries are the
planar metamaterial resonators, which have recently been
exploited to obtain strong coupling between quantum wells
in the THz and MIR parts of the spectrum [43,44]. The
increase in the size of the inductive element is a challenging
task since it will generally result in increased ohmic
and radiation losses. Considering the structure as a series
RLC circuit, its ohmic quality factor can be written as
Qohm ¼ 1=R

ffiffiðp
L=CÞ ¼ ωcL=R. Since L increases with

the surface of the inductive element, while the resistance R

increases as its length, the ohmic quality factor can actually
be improved by increasing the size of the inductance.
However, notice that radiation losses usually dominate in
split-ring resonators operating in the THz range, and a
careful design of the inductance shape is required [45].
Eventually, as the lateral size of the capacitance is

reduced to submicron sizes, the electrons will start feeling
the lateral confinement of the structure [46], and care must
be taken to avoid depletion [47]. Note that if the surface S is
reduced below L2

QW, we can no longer consider the
electronic system as a two-dimensional gas but rather as
a quantum box [48]. In this limit, the electrons are no longer
free in the plane but are quantized in all three dimensions of
space. We believe that the high-frequency LC resonator can
be useful for achieving the ultrastrong coupling regime
even in that case, as it allows for a good spatial overlap
between the oscillating electric field of the capacitor and
the electronic polarization.
Clearly, the strong reduction of the capacitor volume in

the quantum LC resonator allows for the realization of the
ultrastrong coupling regime with a few electrons only. We
are now going to show that this regime has no classical
counterpart, and it opens a new field of investigation for the
light-matter interaction, disclosing relevant connections
between atomic physics and condensed matter. In particu-
lar, it shows the logical continuity between the Rabi
Hamiltonian of atomic physics and the Hopfield
Hamiltonian for condensed-matter polaritons. Moreover,
the presence of the dipole-dipole interactions HP2, which
has been neglected so far in our discussion, brings
quantitative modification of the energy spectrum of the
electronic system.
Since the dipole-dipole term is also expressed from

the superradiant operators in Eq. (11), HP2 ¼
ℏω2

P1=4ω21ðDþ þD−Þ2, it acts on the very same states
jJ;Mi that interact with the circuit photons. In order to
derive the corresponding many-body electronic states, we
shall first analyze the purely electronic part He þHP2 of
the total Hamiltonian (6) in the basis of superradiant
states jJ;Mi. The action of He þHP2 in this basis is
expressed as a tridiagonal matrix that can be readily
diagonalized numerically (more information is provided
in Appendix A). A set of results is provided in Fig. 4(a),
where we plot the frequencies of the first four electronic
transitions, ωj − ωG, j ¼ 1;…; 4, with ωG ¼ EG=ℏ the
frequency of the ground state, as a function of the total
number of electrons Ne, while the electronic density Ne=S
is constant and equal to 5 · 1010 cm−2. Using the same
quantum well as for Fig. 3, we obtain from Eq. (10) the
value ωP1 ¼ 2π × 1.12 THz. In order to be able to compare
systems with a constant number of electrons per unit
surface, while the number of electron increases, we also
must rescale the plasma frequency for each numberNe > 1.
Since, according to Eq. (10), the one-electron plasma
frequency ωP1 scales as ∼1=

ffiffiffi
S

p
, in order to perform the

FIG. 3. Inductance L and total number of electrons in the
system Ne as a function of the capacitor surface S in the case
where the resonant frequency is fixed at 1 THz and the areal
density of electrons is fixed at Ne=S ¼ 5 × 1010 cm−2. The
capacitor gap is d ¼ 80 nm and ε ¼ 12. We have sketched
possible geometries of the LC resonator in the cases where
Ne ¼ 10 and Ne ≫ 1.
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simulation with Ne=S ¼ const, we scale down the plasma
frequency according to the formula ωP1 ¼ 1.12ω21=

ffiffiffiffiffiffi
Ne

p
.

This scaling allows us to compare the impact of the
interaction term HP2 for systems with different number
of particles but with the same areal density. For simplicity,
we have ignored the spin of electrons in these computa-
tions; otherwise, the states plotted in Fig. 4(a) must be
considered twofold degenerate.

The results from Fig. 4(a) illustrate a radical change of
the behavior of the many-body excitations of the electron
gas as the number of electrons is varied. In the case of a
single electron, Ne ¼ 1, the depolarization term HP2 does
not change the subband separation ω1 − ωG ¼ ω21 (see
Appendix C 1). As the number of electrons is progressively
increased, the dipole-dipole interaction transfers the
anharmonicity towards the high-energy states. One can
see (Fig. 4) that low-energy states become equally spaced,
while the energy separation between the excited levels with
a high index j is reduced, thus creating a strong anharmo-
nicity in the final part of the ladder of superradiant
multielectron states jJ;Mi. This is visible in Fig. 4 up
to a hundred electrons. Finally, as the number of electrons
becomes very high (Ne > 1000), we observe that the
constant energy separation of the lower excited levels
becomes ωj − ωj−1 ¼ ~ω21 ¼ 2π × 1.55 THz, which is
larger than the original transition frequency ω21 ¼
2π × 1 THz. The value of ~ω21 is well recovered by the
formula ~ω2

21 ¼ ω2
21 þ ω2

P1Ne describing the depolarization
shift in an intersubband system [49]. Indeed, we observe
that the subspace of the first few excited states of the
electronic system coincides with the spectrum of a quantum
harmonic oscillator with frequency ~ω21. In this limit, where
Ne ≫ J þM, the electronic ensemble behaves as a
composite boson, also known as the intersubband plasmon
mode [35,49], described by a creation operator p† ∼
Dþ=

ffiffiffiffiffiffi
Ne

p
[11,15,35] (see also Appendix B), and we can

replace the electronic Hamiltonian He þHP2 with an
effective bosonic Hamiltonian ℏ ~ω21p†p.
A similar analysis can also be performed for the excited

states that lie higher above the ground state. Let us assume
that there are, on average, N1 electrons on the first subband
and N2 electrons on the second subband, with N1 > N2.
Then the plasmonic picture provides an energy-level
spacing of ~ω2

21 ¼ ω2
21 þ ω2

P1ðN1 − N2Þ [35]. This formula
is numerically tested by our model in Fig. 4(b). For the
excited level of index j ¼ J þM, we have N2 ¼ j elec-
trons excited on the second subband andN1−N2¼Ne−2j.
The plasmon picture then provides the analytical law
ωj − ωj−1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
21 þ ω2

P1ðNe − 2jÞ
p

. In Fig. 4(b), we have
plotted the level spacings ωj − ωj−1 as a function of j for
different systems with different numbers of electrons Ne
(dotted lines). We observe that, when Ne becomes suffi-
ciently large, then ωj − ωj−1 is well described by the

formula
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
21 þ ω2

P1ðNe − 2jÞ
p

for up to 10% of the
excited levels. The range of energies where the bosoniza-
tion can be applied also expands with Ne [the “bosonic
regime,” shaded region in Fig. 4(b)]. This behavior has
been confirmed in experiments with intersubband systems,
where N1 − N2 is varied through temperature, applied bias,
or interband pump [50–52].
Our model is then able to quantitatively track how the

bosonization of the excited states occurs as the number of

FIG. 4. (a) Frequencies of the first four many-body states of the
2DEG, above the ground state, as a function of the total number
of electrons in the system Ne. The areal density is fixed at
Ne=S ¼ 5 × 1010 cm−2. As the number of electrons is increased,
the first levels become equally spaced with a separation
~ω21 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
21 þ ω2

P1Ne

p
. (b) Value of the frequency spacingΔωj ¼

ωj − ωj−1 as a function of the number of electrons j excited on the
second subband, for different values of Ne. The dashed lines are
the prediction of the formula ~ω21ðjÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
21 þ ω2

P1ðN1 − N2Þ
p

¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
21 þ ω2

P1ðNe − 2jÞ
p

.
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electrons in the system increases. For a low number of
electrons, Ne ≲ 10, we recover a pseudo-Dicke ladder with
unequal level spacings that are renormalized by the dipole-
dipole interactions HP2. In the limit, Ne ≫ 1, these
interactions create a collective plasmon mode with a
harmonic spectrum and a renormalized energy ℏ ~ω21. In
these two limits, the circuit-matter interactions have a
different nature, and the ultrastrong coupling regime where
2ΩR=ω21 ∼ 1 will have a different manifestation.
We now consider the full Hamiltonian from Eq. (6) and

explore the behavior of the circuit-mater coupled states
as the number of electrons is changed. We first compare
the bosonic limit, Ne ≫ 1, with the single-electron limit,
Ne ¼ 1. In the case Ne ≫ 1, the lowest-energy excitations
of the gas are described by a composite boson, which
couples to the circuit photon through an effective inter-
action term Hint ¼ iℏΩR

ffiffiffiffiffiffi
Ne

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωc= ~ω21

p ðp† þ pÞða† − aÞ
(see Appendixes B and C 2). The circuit-matter interaction
is then described as the coupling between two harmonic
oscillators, and we recover the polariton Hopfield model
that is well known in solid-state physics [24]. Instead, in the
single-electron case, we recover the Rabi model describing
a two-level system coupled to a harmonic oscillator
(the circuit resonator) [21,22]. In the limit where
ΩR;eff=ω21 ≪ 1, the antiresonant terms of the quantum
Hamiltonian can be neglected, and we recover the Jaynes-
Cummings model widely used in quantum optics [23]. The
system depicted in Fig. 2(a) then becomes very similar to a
single superconducting qubit coupled to an LC circuit or
transmission line in the GHz range [7,8].
These two limits are illustrated in Fig. 5, when the

system is pushed in the ultrastrong coupling regime with
a circuit-matter coupling constant 2ΩR;eff ¼ ΩR

ffiffiffiffiffiffi
Ne

p ¼
0.77ω21 that is identical in both cases. In this figure, we
compare the dispersion of the coupled states when Ne ≫ 1
(a) and Ne ¼ 1 (b). These plots are obtained by computing
the linear response of the circuit under a weak harmonic
bias VðtÞ ¼ V0 cosðωtÞ [36] (Appendix C). The circuit
frequency ωc is swept around the frequency of the
intersubband transition ω21 ¼ 2π × 1 THz. We can envi-
sion, for instance, that the THz oscillating voltage is
applied to the system through a nano-antenna [53,54].
When Ne ≫ 1 [Fig. 5(a)], we have considered two coupled
quantum harmonic oscillators with frequencies ωc and ~ω21

[35] (see Appendix C 2). In this case, we observe in the
spectra only two normal modes, the polaritons, split by an
energy 2ℏΩR;eff when the resonance condition ωc ¼ ~ω21 is
met. The ultrastrong coupling makes the opening of a gap
in the dispersion curve of the polaritons [15,25] evident.
The same plot, performed for the case Ne ¼ 1, presents

completely different features. In this case, our Hamiltonian
(6) is reduced to a Rabi-like model of the two-level system
depicted in Fig. 5(b) (see Appendix C 1). Now the resonant
condition is ωc ¼ ω21, and there is no gap opening in the
dispersion of the coupled states. However, since the

coupling constant ΩR is a significant value of the transition
frequency, the Jaynes-Cummings approximation does not
hold and the Hamiltonian must be solved together with the
nonresonant terms in Hint [Eq. (7)]. These terms induce
couplings of the ground state with the higher-order dressed
states of the system [33] (Appendix C 1). They manifest by
the appearance of additional peaks in the transmission
spectra, as indicated in Fig. 5(b). In particular, the anti-
resonant terms also render the splitting visible between the
dressed states with, respectively, two and three photons.
Note that this splitting, 2ΩR

ffiffiffi
2

p ¼ 2π × 1, 1 THz, is, in the
present case, higher than the frequency of the two-level
system, ω21. Recently, similar ultrastrong coupling effects
have been extensively studied in the framework of the Rabi
model [55].

FIG. 5. (a)Absorption spectrumof anLC circuit coupledwith the
2DEG of the quantumwell. The vertical (y) axis is the frequency of
the probing voltage, the horizontal (x) axis is the frequency of the
resonator ωc, and the color code (z axis) is the strength of the
absorption signal, on a logarithmic scale. Details of the compu-
tation are provided in Appendix C 2. In this case, the circuit is
coupled with the intersubband plasmon mode, and the typical
anticrossing curves are seen. For this plot, the circuit-matter
coupling constant is 2ΩR;eff ¼ 0.77ω21. (b) The same plot obtained
for the case of a single electron in the capacitor, as obtained from the
Rabi model (Appendix C 1).

YANKO TODOROV AND CARLO SIRTORI PHYS. REV. X 4, 041031 (2014)

041031-8



Our model also allows us to explore the crossover
between the fermionic and bosonic ultrastrong light-matter
coupling regimes as the capacitor surface is increased. In
Fig. 6, we provide plots of the absorption of the system
obtained by applying the small voltage probe, as the
number of electrons participating in the interaction with
light is progressively augmented. We observe that the high-
order dressed levels are visible up to Ne ¼ 4 electrons in
the capacitor core. However, beyond that number, the
quantum nonlinearities due to the fermionic nature of
the material excitations are rapidly washed away until
we observe only two polariton branches that are identical
to the ones obtained from the coupled-oscillator model.
The forbidden gap between the polariton states is almost
identical to the one already observed in the Ne ¼ 2 case in
Fig. 6. Yet, for that case, the gap is not strict since we still
observe a weak mixing between the one- and three-photon
dressed states as in the Ne ¼ 1 case and in Fig. 5(b).

IV. CONCLUSION

In this paper, we have described how the ultrastrong
light-matter coupling, which has been demonstrated in
many-electron systems, evolves in a regime where the high
concentration is preserved but only a few electrons remain.
To envision such a system, it is necessary to enormously
reduce the volume in which light-matter interaction takes
place and go far below the limit of diffraction. This is
possible within the capacitor of a circuit that is described by

lumped elements, like an LC circuit. We have shown that
the problem is formally similar to the case of microcavities,
even though in the case of an LC resonator, the coupling
does not occur through cavity photons but rather with
circuit photons that interact with a resonant polarization.
In this context, we have studied the ultrastrong light-

matter interaction down to the limit of one electron only.
In particular, we have investigated the effect due to the
quadratic polarization term of the electromagnetic
Hamiltonian which is at the origin of the collective
phenomena when a multitude of electrons are present.
This term radically changes the spectrum and has a more
significant impact on the system with a few delocalized
electrons than for an ensemble of spatially localized atoms.
The main reason for this strong effect is because the
electronic wave functions in condensed matter highly
overlap and can give rise to a much stronger dipole-dipole
interaction than for atoms in distinct positions of the space.
In particular, in the limit of a few electrons, the absorption
frequency of our system is strongly dependent on the
number of excitations [Fig. 4(a)]. We therefore believe that
the proposed device architecture could be suitable for the
implementation of fascinating quantum-optical phenom-
ena, such as nonlinear optics on a single-photon level
[56,57]. Note that these results were obtained at the lowest
dipole-dipole order of the Coulomb interaction, while
higher-order effects could be responsible for phenomena
such as stimulated scattering of lasing [58]. Furthermore,
we show that by using the base of superradiant Dicke states,
we can connect the fermionic few-electron Rabi model to
the bosonic Hopfield Hamiltonian and observe the rapid
emergence of the collective plasma excitations with the
increasing number of electrons coupled to the light.
The system described could also be interesting for

quantum-information processing [59]. In the limit of a
few electrons, our LC circuit shows similar features to those
well known in atomic physics described by quantum
electrodynamics. Furthermore, this approach could be an
alternative to superconducting circuits in order to insert
quantum functions in condensed-matter devices. Owing to
the strong dipole-dipole interactions, our system could also
be interesting for implementing quantum-information-
processing protocols, similar to the ones proposed for cold
Rydberg atoms [59]. This aspect could be particularly
relevant in the case of few-electron systems that operate
like quantum “qudits” [60,61], where the dimension of the
quantum bit is fixed by the number of electrons Ne. In the
context of semiconductor heterostructures, the particle-
particle interaction can be tailored by wave-function
engineering and carrier depletion by an external gate
[51,62]. In such quantum devices operating in the few-
electron limit, the superradiant states, ultrastrongly coupled
to the circuit photon, can be injected by direct tunneling,
thus opening the possibility to read out quantum electro-
dynamical properties via the measure of a DC current.

FIG. 6. Absorption spectra of the coupled circuit-matter system
with a variable number of electrons Ne. The parameters for these
plots are identical to those in Fig. 5.
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APPENDIX A: ELECTRONIC HAMILTONIAN
MATRIX ELEMENTS

The matter part of the Hamiltonian of our system is
expressed by the superradiant operators as

He þHP2 ¼
X
k

ðℏω1kc
†
1kc1k þ ℏω2kc

†
2kc2kÞ

þ ℏω2
P1

4ω21

ðDþ þD−Þ2: ðA1Þ

Here, Dþ and D− are provided by Eq. (11). We seek to
diagonalize this Hamiltonian in the basis of superradiant
states spanned by the successive application of the operator
Dþ on the fundamental state jFi ¼ Q

jkj≤kFc
†
1kj0i:

jJ;Mi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðJ −MÞ!

Ne!ðJ þMÞ!

s
ðDþÞJþMjFi: ðA2Þ

We remind the reader that the state jJMi is a symmetric
linear superposition of all states with J þM excited
electrons on the second subband. In this representation,
the ground state is expressed as jFi ¼ jJ;−Ji. Using the
commutation relation ½He; D�� ¼ �ℏω21D� and Eq. (A2),
it is easy to show that jJ;Mi is an eigenstate of the kinetic
Hamiltonian He:

HejJ;Mi ¼ ½EG þ ℏω21ðJ þMÞ�jJ;Mi: ðA3Þ

The action of the depolarization (dipole-dipole) part is
also readily computed with the relations [39]

DþjJ;Mi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JðJ þ 1Þ −MðM þ 1Þ

p
jJ;M þ 1i; ðA4Þ

D−jJ;Mi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JðJ þ 1Þ −MðM − 1Þ

p
jJ;M − 1i: ðA5Þ

The Hamiltonian (A1) is then written in this basis jJ;Mi
as a symmetric tridiagonal matrix:

hjjHe þHP2jji ¼ EG þ jℏω21 þ
ℏω2

P1

4ω21

½ð2jþ 1ÞN2 − 2j2�;

ðA6Þ

hjjHe þHP2jjþ 2i
¼ hjþ 2jHe þHP2jji

¼ ℏω2
P1

4ω21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjþ 1ÞðNe − jÞðjþ 2ÞðNe − 1 − jÞ

p
; ðA7Þ

which is diagonalized numerically. Here, j ¼ J þM is the
number of electrons excited on the second subband,
and jji ¼ jJ;Mi.

APPENDIX B: BOSONIZATION

In this section, we provide a justification for the
numerical results in Figs. 4(a) and 4(b), which show that
for a very large number of electrons in the system, the
quasiparticle excitations behave as bosons. For this, we start
with the commutators of the operators Dþ and D− with the
number operators N̂1 ¼

P
kc

†
1kc1k and N̂2 ¼

P
kc

†
2kc2k:

½Dþ; D−� ¼ N̂1 − N̂2; ðB1Þ

½D�; N̂1 − N̂2� ¼ 0: ðB2Þ

These commutation rules mean that the operator
N̂1 − N̂2 behaves as the identity operator in the subspace
where the difference ΔN ¼ N1 − N2 is fixed. This remains
approximately true if the system contains a large number of
electrons and evolves in a subspace where the variations of
ΔN are small. Furthermore, if we suppose that the system
is below the transparency region ΔN > 0, we can define
(almost) bosonic operators b† and b:

b† ¼ 1ffiffiffiffiffiffiffiffi
ΔN

p Dþ; b ¼ 1ffiffiffiffiffiffiffiffi
ΔN

p D−; ðB3Þ

½b; b†� ¼ 1: ðB4Þ

This result can also be obtained in a more formal way by
using a Holstein-Primakoff transformation in the thermo-
dynamic limit N1 → ∞ [63]. Note, however, that this
transformation cannot be provided in a closed form in
the general case of a finite number of electrons because of
the presence of Dþ2 and D−2 terms in the interaction
Hamiltonian from Eq. (A1). We can therefore reexpress the
Hamiltonian (A1) in the limit with a very large number of
electrons [35]:

He þHP2 ¼ ℏω21b†bþ ℏω2
P1ΔN
4ω21

ðb† þ bÞ2: ðB5Þ

In the above equation, the kinetic part of the electronic
Hamiltonian He is replaced by an effective bosonic term
ℏω21b†b, which yields the same evolution of the excited
states. This Hamiltonian can be diagonalized with a
Hopfield-Bogoliubov transformation to yield [15,35]

HeþHP2¼ℏ ~ω21p†p; ~ω21¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
21þω2

P1ΔN
q

: ðB6Þ

Here, p† and p are new bosonic operators that describe
the intersubband plasmon mode with a frequency ~ω21,
which is equivalent to a quantum harmonic oscillator. This

YANKO TODOROV AND CARLO SIRTORI PHYS. REV. X 4, 041031 (2014)

041031-10



is exactly the result presented, for instance, in Fig. 4(a),
where ΔN ≈ N1 ≈ Ne.

APPENDIX C: RESPONSE TO APPLIED
VOLTAGE IN THE LINEAR REGIME

In order to obtain the absorption spectra of the system, as
presented in Figs. 5 and 6, we add to the total Hamiltonian a
weak harmonic perturbation [36]:

Hpert ¼
ℏV0 cosðωtÞffiffiffiffiffiffiffiffiffi

2ℏZ
p ðaþ a†Þ: ðC1Þ

The energy absorbed by the system, averaged over a unit
cycle, is then expressed as

dŪ
dt

ðωÞ ¼ ωπ

4

V2
0

Z

Z
∞

−∞
CAAðtÞeiωtdt: ðC2Þ

Here, CAAðtÞ ¼ hAIðtÞAIð0Þi is the autocorrelation func-
tion of the perturbation A ¼ a† þ a, and the subscript
“I” means that the corresponding operator is expressed in
the interaction picture. The average is computed on the
eigenstates of the unperturbed Hamiltonian [64]. If the
system is at T ¼ 0 K and initially in its ground state jGi,
then we have

CAAðtÞ ¼
X
E

jhEjða† þ aÞjGij2eiωEGt: ðC3Þ

Here, jEi is an excited state of the system, and ωEG ¼
ωE − ωG is its frequency with respect to the ground state.
Including phenomenological damping factors Γ that
describe dissipation and performing the integral in
Eq. (C2), we obtain the energy-loss spectra of the system:

dŪ
dt

ðωÞ ¼ πV2
0

Z

X
E

QEΓ2=4
ðω − ωEGÞ2 þ Γ2=4

jhEjða† þ aÞjGij2:

ðC4Þ

Here, we introduced the quality factor QE ¼ ωEG=Γ of
the excited state. Take, as an example, a harmonic oscillator
with a Hamiltonian H ¼ ℏω0ða†aþ 1=2Þ; then, Eq. (C4)
provides a single absorption peak at the frequency ω0, as
expected.

1. The case of one electron: The Rabi model

Let us first consider the case where there is just one
electron in the system, Ne ¼ 1. We consider that the
electron occupies the k ¼ 0 state, and we drop the
wave-vector indices. The electronic Hamiltonian (A1)
becomes

He þHP2 ¼ ℏω1N̂1 þ ℏω2N̂2 þ
ℏω2

P1

4ω21

ðc†2c1 þ c†1c2Þ2:
ðC5Þ

Here, N̂j ¼ c†jcj, and the single electron evolves

between the two states c†1j0i and c†2j0i. Using Eqs. (A6)
and (A7) for the states j ¼ 0 and j ¼ 1 with Ne ¼ 1, one
can show that the quadratic term induces only a shift of
the bare subband energies, and therefore, one can replace
Eq. (C5) with an effective Hamiltonian:

He þHP2 ¼ ℏω̄1N̂1 þ ℏω̄2N̂2; ðC6Þ

ω̄1;2 ¼ ω1;2 þ
ω2
P1

4ω21

: ðC7Þ

The full Hamiltonian of the system, including light-
matter coupling, then becomes

H ¼ ℏω̄1N̂1 þ ℏω̄2N̂2

þ iℏΩR

ffiffiffiffiffiffiffi
ωc

ω21

r
ðc†2c1 þ c†1c2Þða† − aÞ: ðC8Þ

This Hamiltonian corresponds to a Rabi model [21]
with a light-matter coupling constant Ξ ¼ ΩR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωc=ω21

p
.

Usually, this model is simplified to the Jaynes-Cummings
Hamiltonian by excluding the antiresonant terms in
Eq. (C8); however, since we are interested in the ultrastrong
coupling effects, we will not use this approximation.
The Hamiltonian (C8) is numerically diagonalized on
the basis of dressed states c†1;2j0; ni, where j0i stands
for the electronic vacuum and jni is a Fock state of n
photons. The Hamiltonian (C8) acts separately on two
subspaces, which can be dubbed “resonant” R and “anti-
resonant” A subspaces:

R ¼ fc†2j0; 2ki; c†1j0; 2kþ 1ig; ðC9Þ

A ¼ fc†1j0; 2ki; c†2j0; 2kþ 1ig: ðC10Þ

We have

H
ℏ

����
R
¼

c†2j0; 0i c†1j0; 1i c†2j0; 2i c†1j0; 3i � � �8>>>>>>>><
>>>>>>>>:

ω̄2 −iΞ 0 0 � � �
iΞ ω̄1 þ ωc −iΞ

ffiffiffi
2

p
0 � � �

0 iΞ
ffiffiffi
2

p
ω̄2 þ 2ωc −iΞ

ffiffiffi
3

p � � �
0 0 iΞ

ffiffiffi
3

p
ω̄1 þ 3ωc � � �

..

. ..
. ..

. ..
. . .

.

9>>>>>>>>=
>>>>>>>>;

;

ðC11Þ
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H
ℏ

����
A
¼

c†1j0; 0i c†2j0; 1i c†1j0; 2i c†2j0; 3i � � �8>>>>>>>>><
>>>>>>>>>:

ω̄1 −iΞ 0 0 � � �
iΞ ω̄2 þ ωc −iΞ

ffiffiffi
2

p
0 � � �

0 iΞ
ffiffiffi
2

p
ω̄1 þ 2ωc −iΞ

ffiffiffi
3

p � � �
0 0 iΞ

ffiffiffi
3

p
ω̄2 þ 3ωc � � �

..

. ..
. ..

. ..
. . .

.

9>>>>>>>>=
>>>>>>>>;

:

ðC12Þ

Note that these subspaces differ only by the permutation
of the subband indices 1 and 2. This is not astonishing since
Eq. (C8) preserves its formal expression upon this permu-
tation. The two subspaces R and A yield two distinct sets
of eigenvalues and eigenstates:

ωρ; jρi ¼
X
k≥0

ðxρkc†2j0; 2ki þ yρkc
†
1j0; 2kþ 1iÞ; ðC13Þ

ωα; jαi ¼
X
k≥0

ðzαkc†1j0; 2ki þ tαkc
†
2j0; 2kþ 1iÞ: ðC14Þ

Here, ωρ and ωα are the eigenvalues of the matrices
(C11) and (C12), respectively. The fundamental lowest-
energy state of the system is provided by the lowest-energy
eigenvector in the antiresonant subspace A, jα0i, with an
eigenfrequency ωα0. In the absence of photons, this state
has a frequency ωα0 ¼ ω̄1, and jα0i ¼ c†1j0; 0i. The cou-
pling with light renormalizes this value, as the state c†1j0; 0i
is now coupled to all the dressed states inA, as can be seen
from Eq. (C12).
Let us now apply the linear response theory. We suppose

that the system is initially in its ground state jα0i.
Furthermore, it is easy to show that the perturbation A ¼
a† þ a does not couple states within the same subspace R
or A. Therefore, this perturbation induces only transitions
between the new ground state jα0i and all the states in R.
The measured spectrum of the system is then

dŪ
dt

ðωÞ ¼ πV2
0Q
Z

X
ρ

Γ2=4
ðω − ωρα0Þ2 þ Γ2=4

jCρα0 j2: ðC15Þ

Here, we have defined

Cρα0 ¼
X
k≥0

ðxρk�tα0k þ yρk
�zα0k Þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

2kþ 1
p

; ðC16Þ

and we have supposed for simplicity that all the transitions
share the same quality factor Q.
To grasp the meaning of these equations, let us consider

the case where the LC circuit is tuned in resonance with
the intersubband transition, ω21 ¼ ω̄2 − ω̄1 ¼ ωc, and the
light-matter coupling constant Ξ is sufficiently small so that

the Jaynes-Cumming approximation can be applied.
Since the antiresonant terms are neglected, we have
jα0i¼c†1j0;0i and zα0k ¼ δ0k and tα0k ¼ 0 from Eq. (C12).
Furthermore, Eq. (C11) breaks into a block-diagonal
matrix, each block corresponding to a pair of quasiresonant
states c†2j0; 2ki and c†1j0; 2kþ 1i. The only contributions in
the sum (C15) will therefore arise from the eigenstates
jρ�i ¼ x�c

†
2j0; 0i þ y�c

†
1j0; 1i that are solutions of the

secular equation:

�
ω̄2 −iΞ
iΞ ω̄1 þ ωc

��
x�
y�

�
¼ ω�

�
x�
y�

�
: ðC17Þ

Then, the spectrum described by Eq. (C15) appears as
two peaks that correspond to these two photon-electron
coupled states.
If, on the contrary, the light-matter constant ΩR is a

significant fraction of the transition energy ω21 so that the
system is in the “ultrastrong” coupling regime, then the
fundamental state of the system contains contributions from
the high-energy states in the antiresonant subspace A, and
respectively, the spectrum (C15) will contain peaks that
arise from the high-energy states of the resonant sub-
space R.

2. The case of many electrons: Intersubband
plasmon polaritons in the Hopfield model

Let us consider the case where the system evolves not
very far from the ground state, where almost all electrons
fill the first subband N1 ≈ Ne ≫ N2 and ΔN ≈ Ne. The
bosonized Hamiltonian of the system can then be written
as [15,35]

H ¼ ℏωcða†aþ 1=2Þ þ ℏ ~ω21p†p

þ iℏΩReff

ffiffiffiffiffiffiffi
ωc

~ω21

r
ða† − aÞðp† þ pÞ: ðC18Þ

We recall that the effective coupling constant is
ΩReff ¼ ΩR

ffiffiffiffiffiffi
Ne

p
, with ΩR provided by Eq. (9). This

Hamiltonian describes two coupled quantum oscillators
and can be diagonalized to

H ¼ ℏWþΠ
†
þΠþ þ ℏW−Π†

−Π−: ðC19Þ

Here,W� are the frequencies of the two polariton modes
that are solutions of the secular equation:

ðW2
� − ~ω2

21ÞðW2
� − ω2

cÞ ¼ 4Ω2
Reff ~ω21ωc; ðC20Þ

which can be solved exactly. Furthermore, the operatorsΠ†
�

are expressed as a function of the old ones:

Π†
� ¼ x�a† þ y�aþ z�p† þ t�p: ðC21Þ
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Here, the Hopfield coefficients x, y, z, and t can be
expressed analytically if necessary. In order to obtain the
spectrum of the system, we need to compute the matrix
elements of the perturbation A ¼ a† þ a between the
excited states jEi and the ground state jGi of the
Hamiltonian (C18). The excited state can have any number
of polariton excitations n created by the operators Π†

�:

jEi ¼ 1ffiffiffiffiffi
n!

p ðΠ†
�ÞnjGi; ðC22Þ

and any linear combination of states like in Eq. (C22) is an
excited state. The ground state jGi itself can be expressed
with an infinite linear combination of operators a, a†, p,
and p† acting on the uncoupled ground state jFijn ¼ 0i,
and it cannot be provided in an analytical closed form
exactly. Nevertheless, the spectrum of the system from
Eq. (C2) can be provided in a closed form. We first show
that the perturbation a† þ a can only couple single plasmon
states Π†

�jGi with the ground state jGi. For this, we
note that

hGjaðΠ†
�ÞnjGi ¼ hGj½a;Π†

��ðΠ†
�Þn−1jGi

þ hGjΠ†
�aðΠ†

�Þn−1jGi: ðC23Þ
The second term in the above equation is zero since

hGjΠ†
� ¼ ðΠ�jGiÞ† ¼ 0. Using Eq. (C21), the first term is

reduced to

hGj½a;Π†
��ðΠ†

�Þn−1jGi ¼ x�hGjðΠ†
�Þn−1jGi ¼ x�δ1;n;

ðC24Þ
which completes our proof. A similar result is valid for a†.
As a result, contrary to the previous section, the spectrum of
the system is composed of only two absorption peaks,
centred around the polariton frequencies W�:

dŪ
dt

ðωÞ ¼ πV2
0Q
Z

×

� jxþ − yþj2Γ2=4
ðω −WþÞ2 þ Γ2=4

þ jx− − y−j2Γ2=4
ðω −W−Þ2 þ Γ2=4

�
:

ðC25Þ
This equation corresponds to the plot of Fig. 5(a).
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