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Magnetic fluctuations and electrons couple in intriguing ways in the vicinity of zero-temperature phase
transitions—quantum critical points—in conducting materials. Quantum criticality is implicated in non-
Fermi liquid behavior of diverse materials and in the formation of unconventional superconductors. Here,
we uncover an entirely new type of quantum critical point describing the onset of antiferromagnetism in a
nodal semimetal engendered by the combination of strong spin-orbit coupling and electron correlations,
and which is predicted to occur in the iridium oxide pyrochlores. We formulate and solve a field theory for
this quantum critical point by renormalization group techniques and show that electrons and antiferro-
magnetic fluctuations are strongly coupled and that both these excitations are modified in an essential way.
This quantum critical point has many novel features, including strong emergent spatial anisotropy, a vital
role for Coulomb interactions, and highly unconventional critical exponents. Our theory motivates and
informs experiments on pyrochlore iridates and constitutes a singular realistic example of a nontrivial
quantum critical point with gapless fermions in three dimensions.
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I. INTRODUCTION

Antiferromagnetic quantum critical points (QCPs) are
controlled by the interactions between electrons and mag-
netic fluctuations [1,2]. In three-dimensional metals with a
Fermi surface, it is believed, inmost cases, to be sufficient to
consider a theory containing the magnetic-order parameter
only, with the Fermi surface included solely by its induced
Landau damping. This leads, following Hertz [3,4], to
mean-field behavior. In two dimensions, the electronic
Fermi surface and order parameter are strongly coupled,
a fact which may be related to high-temperature super-
conductivity and associated phenomena. This problem is
highly nontrivial and still an active research topic [5–8].
In this paper, we uncover a new antiferromagnetic QCP

that is strongly coupled in three dimensions, engendered by
spin-orbit coupled electronic structure. We consider a
quadratic band touching at the Fermi energy, as in the
inverted band-gap material HgTe, but having in mind the
strongly correlated family of iridium oxide pyrochlores
[9–12]. The latter have chemical formula A2Ir2O7, and an
antiferromagnetic phase transition indeed occurs both as a
function of temperature and at zero temperature with
varying chemical pressure (ionic radius of A) [13,14].

We show that the replacement of the Fermi surface by a
point Fermi node alters the physics in an essential way,
suppressing screening of the Coulomb interaction and
allowing the order-parameter fluctuations to affect all
the low-energy electrons. These two facts lead to a
strongly-coupled quantum critical point.
The nodal nature of the Fermi point, happily, also

enables a rather complete analysis of the problem, which
we present here, using the powerful renormalization group
(RG) technique. This is because both the collective order-
parameter fluctuations and the low-energy quasiparticles
have their excitation minima at a single point in momentum
space (here at k ¼ 0), unlike the case of criticality in a
metal, where the electronic quasiparticles have their min-
ima at an extended Fermi surface. The complete theory we
present is in sharp contrast to the strongly coupled Fermi
surface problem in two dimensions, which remains only
partially understood and controversial. We fully and
explicitly describe a stable nontrivial quantum critical
RG fixed point, including logarithmic corrections, which
are also calculated systematically. The ability to system-
atically calculate logarithmic corrections may be important
for future comparisons to experiment.
The results are summarized by the phase diagram, Fig. 1.

The QCP we describe separates two phases. On the
nonmagnetic side of the transition, the quadratically dis-
persing electrons near the Fermi node remain but are
strongly renormalized by the long-range Coulomb inter-
actions. This non-Fermi liquid semimetal is the Luttinger-
Abrikosov-Beneslavskii (LAB) phase of Ref. [10]. On the
magnetic side of the transition, the quadratic band touching
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is split into a set of eight linearly dispersing “Weyl” points
by the magnetic-order parameter, forming a Weyl semi-
metal state. The electronic dispersions in both phases are
shown in Figs. 2(c) and 2(a). The results of this paper apply
under the condition of charge neutrality (i.e., for undoped
materials). Doping introduces a second tuning parameter,
and the expected behavior in this enlarged phase space,
based on physical and scaling arguments, is shown in the
horizontal plane of Fig. 1.
As usual, scaling laws apply in the critical fan of the QCP

(experimental implications are discussed further in Sec. V
C). Furthermore, the pyrochlore quantum critical point has a
remarkable symmetry structure.We find that, unlike at most
classical and quantum phase transitions, rotational invari-
ance is strongly broken in the critical theory: The fixed point
“remembers” the cubic anisotropy of space (and indeed
takes it to an extreme limit, as explained further below).
Compensating for the absence of spatial rotational invari-
ance is, however, an emergent SOð3Þ invariance of the
critical field theory, which is a purely internal symmetry and
unrelated to spatial rotations. The anisotropy in real space
can, for example, be studied by using light carrier doping as
a probe. Then, we predict the formation of “spiky” Fermi
surfaces, if the system is close to the undoped QCP and the
doping is sufficiently small, as seen in Fig. 1.

II. MODEL AND PHASES

A. All-in-all-out order

To proceed with the analysis, we couple the electrons to
an Ising magnetic order parameter ϕ. This corresponds, for
the pyrochlore iridates, to the translationally invariant
all-in-all-out antiferromagnetic state (see inset in Fig. 1),
for which there is considerable evidence [15–17]. Some

understanding of this order follows from a local view of the
magnetism. In the pyrochlore iridates, a single hole resides
on each Ir4þ ion. In the localized (large Hubbard U limit),
this forms a Kramers doublet, whose orbital degeneracy is
generically split by some combination of spin-orbit cou-
pling and noncubic crystal fields. In a simple view based on
spin-orbit coupling alone, this doublet is the famous Jeff ¼
1=2 state, but for our considerations, the precise compo-
sition of the doublet does not matter. The form of allowed
nearest-neighbor interactions between dipolar Kramers
doublets on the pyrochlore lattice follows from symmetry
alone and has been discussed in many references (see, for
example, Ref. [18]). The simplest amongst four allowed
couplings, dominant in many materials, is the Ising term

HIsing ¼ Jzz
X
hiji

Sz
iS

z
j; ð1Þ

where Sz
i is the component of a spin-1=2 operator on site i

along its local h111i Ising axis, which orients from the
center of a I (“up”) sublattice tetrahedron to the neighboring
II (“down”) sublattice tetrahedron, along a line containing
the site i. This Hamiltonian, for Jzz < 0, describes nearest-
neighbor interactions between rare earth spins in the so-
called spin-ice materials, Ho2Ti2O7 and Dy2Ti2O7. It also
describes the dominant interaction in quantum spin-
ice compounds, such as Yb2Ti2O7 [18]. In the iridates,
“antiferromagnetic” coupling is expected from the usual
d-electron superexchange, which corresponds, because of
the choice of local quantization axis, to Jzz < 0 above.
With this sign, in the local basis, the ground states are
obviously simple Ising ferromagnets, with Sz

i ¼ þ1=2 or
Sz
i ¼ −1=2, independently of i. The actual magnetic

moments in the two cases orient all-in or all-out of each

FIG. 1. Quantum critical point (QCP) and quantum criticality driven by the onset of “all-in-all-out” (AIAO) magnetism. For r ≥ rc (in
this figure the star indicates rc), the nodal non-Fermi liquid (or “Luttinger-Abrikosov-Beneslavskii” [10]) phase occurs at T ¼ 0, with a
quadratic Fermi node, while antiferromagnetic (AFM) all-in-all-out ordering occurs for r < rc, with the quadratic node replaced by
linear Weyl points—a Weyl semimetal. The quantum critical regime occurs at T > 0 around r ¼ rc. Note that the quantum critical-AFM
boundary (thick white line) is a true (continuous Ising) phase transition. The ϵF axis represents the Fermi energy and parametrizes
electron or hole doping. The three-dimensional (orange) surfaces represent the shapes of the corresponding Fermi surfaces at small
doping—the increased anisotropy is apparent as one moves towards the QCP. The phase transition denoted by the thick gray line is
expected to exhibit critical properties appropriate to a q ¼ 0 order parameter coupled to a Fermi surface, as in the Hertz formulation [3],
though subject to the usual uncertainties regarding the theory of that problem [5–7].
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tetrahedra, with zero total moment (see Fig. 1). We refer to
this as AIAO antiferromagnetic order.
The above picture is obviously deficient insofar as the

pyrochlore iridates are conducting, so the Ir electrons are not
localized. The fact that a simple localized picture never-
theless describes the observed order is an indication that
these materials are in an intermediate correlation regime. A
local moment description of magnetic order and excitations
is not uncommon in this situation and has been successful,
for example, inmany iron pnictides [19] and in other iridates
[20,21]. We emphasize, however, that it is not important for
our treatment, which relies only on symmetries.

B. Electronic structure and phases

We must couple the AIAO magnetic order and its
fluctuations to the extended electronic states. Because of
the time-reversal and inversion symmetries of the para-
magnetic state, electron bands are twofold degenerate, so
that band touching necessitates a minimal four-band model.
Therefore, the Hamiltonian is expressed in terms of four-
component fermion operators ψ , ψ†, in addition to the order
parameter ϕ and the electrostatic field φ, which mediates
the Coulomb interactions. The action is

S ¼
Z

d3xdτ ψ†ðα∂τ þH0ð−i∇Þ þ ieφþ gMϕÞψ

þ
Z

d3xdτ
1

2
½ð∇φÞ2 þ ð∇ϕÞ2 þ ð∂τϕÞ2 þ rϕ2�; ð2Þ

where the momentum cutoff (Λ) is assumed and where the
Hamiltonian density isH0ðkÞ ¼ c0k2 þP

5
a¼1 ĉadaðkÞΓa.

Higher-order terms omitted in Eq. (2) prove irrelevant at the
QCP. The da’s (given in Appendix A 1) make a complete
basis of the allowed terms quadratic in kj, chosen such that
d1;2;3 belong to a three-dimensional representation (often
called T2g) and d4;5 make a two-dimensional one (com-
monly referred to as Eg), the Γa’s are anticommuting
unit matrices, fΓa;Γbg ¼ 2δab, Γab ¼ ð−i=2Þ½Γa;Γb�,
ĉ1 ¼ ĉ2 ¼ ĉ3 ¼ c1, and ĉ4 ¼ ĉ5 ¼ c2 (as they should since
they belong to the same representation), and symmetry
dictates (see Appendices A 2 and A 3) that the order

parameter couples via the matrix M ¼ Γ45 (∈ A2g). e is
the magnitude of the electron charge, and g ∈ R para-
metrizes the coupling strength of the fermions to the order
parameter. As discussed in Appendix A 2, c0;1;2 may
always be chosen to be positive, without loss of generality.
c0 parametrizes “particle-hole asymmetry,” with c0 ¼ 0
denoting a symmetric band structure. Also, when
c0 ≤ c1=

ffiffiffi
6

p
, in the vicinity of the Gamma point, the bands

touch at and only at the Gamma point. We assume that the
system parameters fall within this range and find that this is
consistent, even when taking into account their nontrivial
scale-dependent renormalization by interactions.
The model in Eq. (2) has two phases (see Fig. 1). For

r > rc ∼ g2 (where rc is thereby defined), ϕ fluctuates
around zero and can be integrated out. This is amagnetically
disordered state, and the bare dispersion is quadratic [see
Fig. 2(c)]. The resulting model with Coulomb interactions
alone describes a non-Fermi liquid phase, as first discussed
by Abrikosov and Beneslavskii [22,23] and thoroughly
revisited recently [10]. Notably, in this regime, nontrivial
scaling exponents arise and the low-energy electronic
dispersion renormalizes to become isotropic, i.e., effec-
tively c1 → c2 and c0 ≪ c1. This state is a non-Fermi liquid
with neither electronic nor magnetic quasiparticles well
defined. For r < rc, the expectation value hϕi ≠ 0, and
replacing ϕ → hϕi causes the twofold degenerate bands to
split [see Fig. 2(a)], removing the quadratic touching at k ¼
0 in favor of eight linearly dispersing “Weyl points” along
the h111i directions: a Weyl semimetal. Weyl semimetals
have many unusual properties that have been explored
theoretically (see, e.g., Ref. [24]).

III. RENORMALIZATION GROUP

A. 1=N expansion

We now turn to the critical regime. To proceed, we
introduce as a formal device N copies of the four fermion
fields, replacing g → g=

ffiffiffiffi
N

p
(resp. ie → ie=

ffiffiffiffi
N

p
) and Γa →

Γa ⊗ 1N (1N is the N × N identity matrix). We organize
perturbation theory in powers of 1=N and formally work to
leading nontrivial order in 1=N for all physical quantities.

(a) (b) (c)

FIG. 2. Two-dimensional cut of the electronic band structure around the Gamma point (a) in the Weyl semimetal, (b) at the quantum
critical point, and (c) in the quadratic band touching (Luttinger-Abrikosov-Beneslavskii) phase. In (b), we have included the effect of the
irrelevant c1 term which produces some weak dispersion along the h111i directions. For more details, see the text at the end of Sec. III D.
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The structure of the renormalization, however, suggests that
the results may be independent of N at low energy—see
Sec. V B. We require the two boson self-energies in Fig. 3
and, using the dressed boson propagators including this
correction, the fermion self-energy and vertex functions in
Fig. 4. These diagrams allow a full calculation of the
Oð1=NÞ terms of all critical exponents.

B. Extreme anisotropy limit

The evaluation of the diagrams is complicated by the
three mass parameters of the free fermion propagators.
Fortunately, a simplification is possible thanks to the
structure of the RG. While the (inverse) mass terms c0,
c1, and c2 all have identical engineering dimensions, they,
in general, renormalize differently from loop corrections;
thus, their ratios flow in the full RG treatment. We find
below that, in the critical regime, c0=c2; c1=c2 → 0 under
renormalization (arguments as to why this is the only
reasonable choice are given in Appendix C 3). This allows
technical simplifications in the loop integrals and also has
physical consequences that we explore later.
Physically, this limit corresponds to extreme cubic

anisotropy. In particular, as c1=c2 → 0, the interband
splitting vanishes along the h111i directions, leading to
an extended singularity of the electron Green’s function.
Obviously, the extended singularity is avoided by never
actually taking c1 all the way to zero. However, as c1
becomes small under renormalization, the loop integrals
become increasingly dominated by the region around the
incipient singularity, which we take advantage of.

C. Boson self-energy and N ¼ ∞ limit

At N ¼ ∞, we need the leading term in the boson self-
energies only. In the loop integrals determining them, the
extended singularity of the extreme anistropy limit produ-
ces a divergent contribution at nonzero k. Technically, with
the assumptions c0=c2; c1=c2 ≪ 1 and c0=c1 < 1=

ffiffiffi
6

p
(shown to be self-consistent below), the low-energy behav-
ior (small ωn;k) may be extracted as (see Appendix B)

Σbðωn;kÞ ¼ −rcb þ g2b
α
ðj ln c1=c2jjkjfbðk̂Þ þ

ffiffiffiffiffiffiffiffi
jωnj

p
CbÞ;
ð3Þ

with rcϕ ¼ rc ∼ g2Λ, where Λ is an upper momentum
cutoff, gϕ ¼ g, gφ ¼ ie, and rcφ ¼ Cφ ¼ 0 follows from
charge conservation. Cϕ ≈ 1.33, and the functions fbðk̂Þ
are given as integrals in Appendix B 1.
Note that, at low energy, the dispersive terms in Eq. (3)

are much larger than the bare k2;ω2
n terms that they correct;

hence, they dominate the renormalized Green’s functions.
Thus, in the fermion self-energy and vertex correction, the
renormalized boson propagator, G−1

b ¼ G−1
b;0 þ Σb ≈ Σb þ

rb (note rφ ¼ 0), must be used. This renormalized boson
propagator corresponds to the N ¼ ∞ result and already
reveals some dramatic features. First, the bosons immedi-
ately receive a large anomalous scaling dimension, equal to
1, and their dynamics becomes damping dominated, with
dynamical critical exponents close to 2. Second, since the
damping terms which dominate G−1

b are proportional to g2b,
it implies that the fermion self-energies, which involve two
interaction vertices (see Fig. 4), become gb independent;
this is a sign of universality at the QCP.

D. Fermion self-energy and vertex corrections:
RG flows at 1=N

To confirm the assumed scaling of c1=c2 and c0=c2, and
fully determine the critical behavior, we turn to the
renormalization group approach. There, as usual, we apply
the following rescaling (applicable in real space),

x → elx; τ → e
R

l

0
dl0zðl0Þτ; ψ → e−

R
l

0
dl0Δψ ðl0Þψ ;

ϕ → e−
R

l

0
dl0Δϕðl0Þϕ; φ → e−

R
l

0
dl0Δφðl0Þφ; ð4Þ

where l ≥ 0 parametrizes the RG flow. The exponents are
left allowed to be scale dependent, as is necessary [25], as
we shall see below.
We evaluate the contributions to the fermion propagator

and coupling constants due to a small change in the cutoff
(which corresponds physically to integrating out modes to

FIG. 3. Boson self-energies for the order parameter (Σϕ) and
electrostatic (Σφ) fields.

FIG. 4. 1=N diagrams for the fermion self-energy Σf and vertex
corrections Ξϕ and Ξφ (only two-loop diagrams that need to be
calculated, i.e., that do not vanish or cancel one another, are
shown). Double lines indicate the renormalized boson propaga-
tors including the self-energies from Fig. 3. Expressions for these
diagrams are given in Appendix C 1.
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keep the rescaled cutoff unchanged). Hence, the RG flow
equations are obtained by (i) logarithmically differentiating
the fermion self-energy and vertex functions with respect to
the cutoff Λ [which is made soft through a rapidly decaying
function jqj=Λ↦F ðjqj=ΛÞ] [25,26] and (ii) identifying the
appropriate coefficients of the Taylor expansion (in ki and
ωn) of the result [27].
We leave most details to Appendix C and only give one

example here. To extract the correction to the mass
coefficient c1, we first expand the fermion self-energy as

Σfðωn;kÞ ¼ Σ0
fI þ

X5
a¼1

Σa
fΓa ð5Þ

(I is the identity matrix) and examine the Σ1
f component.

The RG equation is then

∂lc1
c1

¼ zþ 1 − 2Δψ þ
ffiffiffi
2

p

c1

�
∂2
kx;ky

�
Λ

d
dΛ

Σ1
f

������
ωn¼0;k¼0

ð6Þ

[we define d1ðkÞ ¼ kxky=
ffiffiffi
2

p
; see Appendix A 1]. Similar

expressions are obtained for renormalizations of the other
parameters of the theory: c0, c2, α, g, and ie. Therefore, for
the six equations thereby obtained, there are four unknowns
(z, Δψ , Δϕ, and Δφ) that can be chosen to keep four
parameters fixed, leaving two left to flow. Here, we find it is
possible to keep α, g, ðieÞ, and c2 fixed, and thus c1=c2 and
c0=c2 will flow. It is this flow that leads to the extreme
anisotropy limit noted above. Note that, in doing so, we
obtain a critical theory with nonzero coupling of fermions
both to order-parameter and Coulomb-potential fluctua-
tions: Both effects are crucial and important in stabilizing
the QCP.
To obtain explicit equations, we once again take advan-

tage of the flow to extreme anisotropy. We find that the
renormalizations of the couplings depend on c1 and c2
through 1=ðNj ln c1=c2jÞ or 1=ðNj ln c1=c2j2Þ (expressions
are expanded in small 1=j ln c1=c2j; see Appendix A 2).
Finally, we find

zðlÞ ¼ 2 − δzðlÞ; ΔψðlÞ ¼
3þ ηψðlÞ

2
;

ΔbðlÞ ¼
3þ ηbðlÞ

2
; ð7Þ

where δz ¼ 0.0634
j ln c1=c2jN, ηψ ¼ 0.287

j ln c1=c2j2N, ηϕ ¼ 1þ 0.510
j ln c1=c2jN,

and ηφ ¼ 1 − 0.127
j ln c1=c2jN.

The flow equations may be solved thanks to the equation
for c1=c2, which is an analytically soluble differential
equation involving only c1=c2 (see Appendix A 5).
Ultimately, we find

ðc1=c2ÞðlÞ ¼ e−ðυ0=
ffiffiffi
N

p Þ
ffiffiffiffiffiffiffiffi
lþl0

p

and ðc0=c1ÞðlÞ ¼ ϒ0e
−ðυ0

0
=
ffiffiffi
N

p Þ
ffiffiffiffiffiffiffiffi
lþl0

p
; ð8Þ

with υ0 ¼ 0.202 and υ00 ¼ 0.424 and where l0 and ϒ0 are
constants that depend on the system’s parameters, namely,
on c0;1;2ðl ¼ 0Þ. Formally, therefore, both the c0 and c1
mass terms are irrelevant in the RG sense, but they can be
“dangerously irrelevant” insofar as they control certain
physical properties (see below). Note also that not only is
c0 irrelevant, but it also flows to zero faster than c1 so that
c0=c1 becomes small at the QCP; i.e., at long scales, we
have the hierarchy c0 ≪ c1 ≪ c2.
In Fig. 2(b), we have schematically drawn the fermion

dispersion corresponding to the behavior in Eq. (8). To do
so, the fermion propagator, the peak of which defines the
dispersion, is estimated for momentum k by integrating the
RG flow until the rescaled momentum is of order the cutoff,
kel ¼ k0. Then, using the free fermion propagator at that k,
with the c1 in Eq. (8) at that value of l, we obtain

c1=c2 ∼ e−υ0
ffiffiffiffiffiffiffiffiffiffi
ln k0=k

p
. This gives a dispersion that is char-

acteristically flattened along the h111i directions, as shown
in Fig. 2(b). We note that in both Figs. 2(b) and 2(c),
quasiparticles are in fact not sharp, but nevertheless one can
still associate a dispersion with the peak of the spectral
function.
Intuition for the irrelevance of c1 comes from consid-

ering the fermion self-energy Σf, which yields the correc-
tions to c0;1;2 and to α and is given schematically by
Σf ¼ GϕMG0M þ GφG0 (the contributions from each
boson field just add up). In the first term, which represents
the dressing of electrons by magnetic fluctuations, the
appearance of M, which commutes with Γ1;2;3 but anti-
commutes with Γ4;5, portends “opposite” consequences for
c1 and c2. The second term, because of Coulomb effects,
tends instead to affect c1 and c2 identically. Our calculation
shows that the former tendency prevails, and c1=c2 → 0
under RG, as claimed above. Conversely, the fact that
c0=c1→l→∞ 0 should be attributed to the effect of
Coulomb forces, which suppress particle-hole asymmetry.
Indeed, we have checked that if, in the calculations, we
artificially turn off the long-range Coulomb potential, i.e.,
take e ¼ 0, the QCP is unstable and there is no direct,
continuous quantum phase transition from the LAB state
[10] to the AIAO one (see Appendix C 5).

IV. PHYSICAL IMPLICATIONS

A. Scaling properties

Equations (7) and (8) determine the properties at the
QCP. The flows are stable, signifying a continuous QCP.
We now turn to a discussion of the physical consequences.
First, we consider some scaling properties. For the corre-
lation length ξ, we need the flow equation for δr ¼ r − rc,
the deviation from the critical point: ∂lðδrÞ ¼ ν−1ðδrÞ,

NEW TYPE OF QUANTUM CRITICALITY IN THE … PHYS. REV. X 4, 041027 (2014)

041027-5



with ν ¼ 1=½2 − ηϕðlÞ − δzðlÞ�. This implies, in the usual
way, that the correlation length behaves as ξ ∼ ðδrÞ−ν, up to
logarithmic corrections. Also interesting is the order-
parameter growth in the AIAO phase. By scaling,
hϕi ∼ ξ−Δϕ ∼ jδrjβ, with β ¼ Δϕν. Up to logarithmic cor-
rections, this is easily verified by direct calculation in the
ordered phase. We also expect the critical temperature of
the magnetic state to obey Tc ∼ ξ−z ∼ jδrjzν. In asymptopia,
i.e., l → ∞, all the N-dependent corrections vanish, and
the exponents correspond to those of a saddle-point treat-
ment of φ;ϕ. These are still distinct from the usual order-
parameter mean-field theory, as witnessed by the large
(η∞ϕ ¼ η∞φ ¼ 1) anomalous dimensions in this limit, and the
unconventional values ν∞ ¼ 1 and β∞ ¼ ðzνÞ∞ ¼ 2. The
latter is noteworthy insofar as it implies an unusually wide
critical fan at T > 0 which is controlled by the QCP
(see Fig. 1).

B. Logarithmic corrections and extreme anisotropy

The RG treatment goes beyond the saddle point in
giving the corrections due to finite c1=c2, which are small
only logarithmically and thus may be significant for
physically realistic situations. For example, we find hϕi ∼
ðδrÞ2 exp ½ð13.9= ffiffiffiffi

N
p Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lnðδr=r0Þ
p � (see Appendix D 1),

where r0 is a constant.
The irrelevance of c0 and c1 has other, more direct,

physical consequences. Because of the irrelevance of the
former, the low-energy electronic spectrum becomes
approximately particle-hole symmetric. The irrelevance
of c1 has more implications. Obviously, the electronic
spectrum develops pronounced cubic anisotropy, with
anomalously low-energy excitations along the cubic
h111i directions in momentum space. This is in stark
contrast to most critical points (for example, of Ginzburg-
Landau type or involving Dirac fermions), which typically
have emergent spatial isotropy and even conformal
symmetry and Lorentz invariance at the fixed point.
These low-energy excitations manifest, for example, in
the specific heat cv. Since at the Gaussian level the
coefficient of T3=2 diverges as c−3=21 , we estimate, by using
l ∼ 1

z lnT0=T as a cutoff (T0 is a microscopic energy scale),

cv ∼ exp ½3υ0=ð2
ffiffiffiffi
N

p ffiffiffi
z

p Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnðT0=TÞ

p �T3=2, with z ≈ 2 (see
Appendix D 2). We may also obtain many other physical
quantities such as the electronic contribution to the mag-
netic susceptibility. However, we refrain from presenting
more of such results here, as they are obtained by
straightforward application of the formalism already pre-
sented (see, especially, Appendix D). Exceptions to this
rule are the electrical resistivity and other transport quan-
tities, which are much more subtle and involve many
potential crossovers resulting from the interplay of scatter-
ing by order-parameter fluctuations, Coulomb forces,
disorder, and umklapp effects, and by the dependence of
all of these on directionality in momentum space. This is a

formidable problem on which we feel it is inappropriate to
provide speculative and possibly incorrect results. We plan
to address this problem instead in some detail in a
future study.
As mentioned in the Introduction, the emergent

anisotropy may also manifest in increasingly “spiky”
Fermi surfaces in lightly doped samples near the QCP
(see Fig. 1). We estimate the anisotropy of the Fermi
surface by standard scaling arguments. For a small but
nonzero Fermi energy (chemical potential) ϵF, which
introduces light doping and a small Fermi surface, the
scale-dependent renormalizations of the quantum critical
regime apply until the Fermi momentum is comparable to
the reduced cutoff. Setting the single-particle energy equal
to ϵF implies that the large Fermi momentum (along the
h111i directions) is proportional to klargeF ∼

ffiffiffiffiffiffiffiffiffiffiffiffi
ϵF=c1

p
,

while the small Fermi momentum (along h100i) is
ksmall
F ∼

ffiffiffiffiffiffiffiffiffiffiffiffi
ϵF=c2

p
. Using the scale-dependent ratio of

c1=c2 from Eq. (8) and requiring that klargeF ðlcÞelc ∼ Λ,
which is the matching condition determining the lc at
which the metallic state is reached, we obtain appendilc,
and hence, finally, with some algebra,

klargeF

ksmall
F

∼ e
υ0

2
ffiffi
N

p ln1=2
ffiffiffiffiffiffiffiffiffi
ϵ0F=ϵF

p
; ð9Þ

where ϵ0F ∼ c2Λ2 is a microscopic energy of order the
bandwidth.
Although rotational symmetry is strongly broken, the

asymptotic vanishing of c1 leads to an emergent internal
SOð3Þ symmetry, corresponding to rotating the Γa matrices
with a ¼ 1, 2, 3 amongst themselves like a vector. The
generator of this symmetry is the SUð2Þ pseudospin I, with

Ia ¼ − 1

4
ϵabcψ

†Γbcψ ¼ ψ†
�
− 7

6
Ja þ

2

3
J3a

�
ψ ; ð10Þ

where a ¼ x; y; z ¼ 1, 2, 3. Its integral has SUð2Þ com-
mutation relations and commutes with the fixed-point
Hamiltonian.

V. DISCUSSION

A. Comparison to Hertz-Millis and mean-field theories

In standard Hertz-Millis theory [3,4], the inequality
dþ z > 4 implies that the theory is above its critical
dimension and thus has mean-field behavior. Although
this inequality holds here, taking z ¼ 2, the conclusion is
false. The Hertz-Millis approach assumes the fermions may
be innocuously integrated out, and it obtains the inequality
above by power counting the ϕ4 term in the Landau action,
which is irrelevant. Instead, here we have strong coupling
of fermions with the order parameter, and the coupling term
∼ϕψ†ψ is marginal, using z ¼ 2, Δϕ ¼ 2, Δψ ¼ 3=2. If
one does integrate out the fermions, one obtains a
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nonanalytic jϕj5=2 term (see Appendix E), which over-
whelms the naïve ϕ4 one and is again marginal by power
counting. This jϕj5=2 dependence was obtained previously
in Ref. [28], in the context of a mean-field treatment of
related transitions. Mean-field-like treatment of transitions
in the iridates was also carried out in Refs. [14,29] via
Hubbard models. Note, however, that such mean-field
analyses integrating out fermions (explicitly or in essence)
are not justified and miss important physics.

B. Beyond large N

Our critical theory has some formal similarity to the
theory of a two-dimensional nodal nematic QCP in a d-
wave superconductor [25], insofar as both theories display
“infinite anisotropy”: In our case, this is due to c1=c2 → 0
under RG. In Ref. [25], it was argued that, at low energies,
the critical behavior for the nodal nematic transition
becomes universal and independent of N. In that problem,
one observes this independence already at one-loop order by
the fact that, in the perturbative RG expansion, each factor
of 1=N is accompanied by a scale-dependent factor that
vanishes as l → ∞. In our own calculations, we find the
same phenomena: To leading order, each factor of 1=N is
accompanied by one or two inverse logarithms of c1=c2, so
that in fact, the perturbative expansion parameter scales to
small values for fixed N. Reference [25] takes this obser-
vation one step further and verifies that this simplification
recurs at higher order, but because of its considerably more
complex analytical structure, we have not been able to prove
this for the current problem. Nevertheless, the results we
have obtained suggest that the critical behavior may in fact
be independent of N and hence may apply directly at low
energy to the physical case N ¼ 1. This conclusion is
appealing, though we have not shown it rigorously.

C. Experiments

With the above results in hand, we comment on the
connection to experiments. The theory developed here
relies only on cubic symmetry and strong SOC and may
therefore apply to a number of materials, provided their
bands at the Fermi energy belong to the appropriate
irreducible representation. Among those, as emphasized
earlier, the family of pyrochlore iridates provides ideal
examples: Their 5d Ir4þ electrons are delocalized enough to
be conducting, they are strongly coupled, and the sym-
metries are indeed appropriate. Moreover, the existence of a
whole family of compounds provides a natural variable, the
rare earth ionic radius, to tune the electronic structure and
Hamiltonian parameters. Most importantly, recent ab initio
calculations and ARPES experiments have provided very
strong evidence for the applicability of the quadratic band
touching model of the present paper to Pr2Ir2O7. With the
other compounds in the A2Ir2O7 series exhibiting a
magnetic-ordering transition at finite temperatures, and
Pr2Ir2O7 remaining paramagnetic throughout its phase

diagram, the QCP described in this paper might be tuned
by alloying the A-site atoms, e.g., Pr2−xY2xIr2O7, or by
pressurizing stoichiometric compounds nearby.
Quantum criticality manifests itself in power-law or

singular behavior of nearly all physical quantities. For
example, all thermodynamic quantities should have power-
law temperature, pressure, and magnetic-field dependence
in the quantum critical regime. This includes heat capacity,
susceptibility, Grüneisen parameter, etc. This describes
only the electronic contributions to the thermodynamics.
Contributions from lattice and localized f-moments will
also appear in most cases, complicating the comparison
with thermodynamics. It is perhaps more promising to
consider electrical transport coefficients since only
extended electronic states carry current. This includes
DC and optical conductivity, Hall effect, etc. However,
the conductivity is a rather singular quantity: For the
generic model with c0 ≠ 0, the lack of particle-hole
symmetry combined with translational invariance implies
that the DC conductivity is infinite for T > 0. The physical
conductivity is rendered finite by a delicate combination of
subsidiary processes that lead to momentum relaxation,
mixing of current and momentum, and other effects. Hence,
the conductivity does not readily follow from the theory of
the quantum critical point itself without further assump-
tions. We postpone a discussion of transport phenomena to
future work.
Perhaps the most direct observation of strongly coupled

quantum criticality is the “incoherent” nature of both the
order-parameter and quasiparticle excitations. The quantum
critical theory predicts power-law scaling of both the
dynamical spin susceptibility (measured by inelastic neutron
or x-ray scattering), which describes the fluctuating order
parameter modes, and the single particle spectral function
(measured in angle-resolved photoemission), which
describes the strongly scattered quasiparticles. An explicit
calculation of the fermion spectral function measured in
angle-resolved photoemission has been made neither here
nor for the non-Fermi liquid paramagnetic state [10], and it is
an important problem for future theory. However, in general,
the weak logarithmic flow of the Hamiltonian parameters
signifies large self-energy corrections, and behavior some-
what similar to marginal Fermi-liquid theory may be
expected. Both magnetic and electronic spectral functions
are promising avenues for future research.
We also mention some possible complications in the

iridates. Impurity scattering is a relevant perturbation and
hence important at low energy close to the band touching.
Therefore, our results will apply best in the cleanest
samples. Finally, in many of the pyrochlore iridates, the
A-site ion hosts rare-earth moments, which were not
included here. They only weakly couple to the Ir electrons
and to themselves, so they are only important at low
energies. On the antiferromagnetic side of the QCP, the
Ir spins act as strong local effective magnetic fields, locking
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the A-site spins. However, when the Ir sites are not ordered,
as in Pr2Ir2O7, the A-site ions will be important below a
few Kelvins. Several authors have proposed scenarios
based on RKKY interactions [30–32], but the quantum
critical theory expounded here should be an apt starting
point for a systematic analysis.
Finally, we address models presented in the literature.

Some phenomenological tight-binding models in the liter-
ature (e.g., Ref. [29]) suggest that the valence or conduction
bands may bend and accidentally cross the Fermi energy
away from the zone center, thereby shifting the Fermi level
away from the nodal point (and creating other pockets
elsewhere in the zone). If such an accidental crossing of the
Fermi energy were to occur, our results would hold for
energies and/or temperatures above this shift energy, but a
crossover would occur below it. We emphasize that this is
nongeneric: The quadratic band touching is both the
minimal situation and a generic one, and it is completely
stable to local perturbations. Moreover, the large spatial
extent of the 5d Ir orbitals and complexities of crystal fields
makes the reliability of ad hoc tight-binding models
questionable. As mentioned earlier, recent ab initio calcu-
lations [11] and angle-resolved photoemission experiments
[12] on Pr2Ir2O7 both show no such accidental band

crossing, which strongly supports the applicability to this
material of the quadratic band touching model studied here.
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APPENDIX A: NOTATIONS AND SYMMETRIES

In this section, we provide more information about the
notations used in the main text and a more detailed
discussion of the symmetries at play.
In reciprocal space, the action, Eq. (2) in the main

text, is

S¼
Z

∞

−∞
dωn

2π

Z
Λ

d3k
ð2πÞ3

�
ϕ−ωn;−k

�
ω2
n

2
þk2

2
þ r
2

�
ϕωn;kþφ−ωn;−k

�
k2

2

�
φωn;kþψ†

ωn;k

�
−αiωnþc0k2þ

X5
a¼1

ĉadaðkÞΓa

�
ψωn;k

þg
Z

∞

−∞
dωn

0

2π

Z
Λ

d3k0

ð2πÞ3ϕωn
0−ωn;k0−kψ†

ωn
0;k0Mψωn;kþ ie

Z
∞

−∞
dωn

0

2π

Z
Λ

d3k0

ð2πÞ3φωn
0−ωn;k0−kψ†

ωn
0;k0ψωn;k

�
; ðA1Þ

where all the notations are defined in Appendix A.
Throughout the appendices, for ease of presentation, we
shift the QCP so that rc ¼ 0.

1. Fermion Hamiltonian

The fermionic Hamiltonian density in the disordered
(quadratic band-touching) phase reads

H0ðkÞ ¼ α1k2 þ α2ðk · JÞ2 þ α3ðk2xJ2x þ k2yJ2y þ k2zJ2zÞ

¼ c0k2 þ
X5
a¼1

ĉadaðkÞΓa; ðA2Þ

where ĉ1 ¼ ĉ2 ¼ ĉ3 ¼ c1 and ĉ4 ¼ ĉ5 ¼ c2. The first line
uses the conventional Luttinger parameters (α1;2;3) in the
j ¼ 3=2 matrix representation [35], and the second line is
the form used in the main text. The Gamma matrices (Γa)
form a Clifford algebra, fΓa;Γbg ¼ 2δab, and have been
introduced as described in the literature [36]. Note that c0
quantifies the particle-hole asymmetry, while jc1 − c2j
naturally characterizes the cubic anisotropy. The energy

eigenvalues are E�ðkÞ ¼ c0k2 � EðkÞ, where EðkÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
5
a¼1 ĉ

2
ad2aðkÞ

q
and

d1ðkÞ ¼
kxkyffiffiffi

2
p ; d2ðkÞ ¼

kxkzffiffiffi
2

p ; d3ðkÞ ¼
kykzffiffiffi

2
p

d4ðkÞ ¼
k2x − k2y
2

ffiffiffi
2

p ; d5ðkÞ ¼
2k2z − k2x − k2y

2
ffiffiffi
6

p :

It is very important to note that, in the limit c0;1 → 0, EðkÞ
and the energy spectrum E�ðkÞ become gapless along the
h111i directions. When needed, a “regularization” is then
possible, for example, by introducing higher-momentum
dependence in c1;2, e.g., c1;2 → c1;2 þ λk2.
It is straightforward to relate the coefficients used in the

main text to the Luttinger αi parameters. This can be done
by expressing the spin operators in terms of the Gamma
matrices by using, for example, the equalities
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Jx ¼
ffiffiffi
3

p

2
Γ15 − 1

2
ðΓ23 − Γ14Þ;

Jy ¼ −
ffiffiffi
3

p

2
Γ25 þ

1

2
ðΓ13 þ Γ24Þ;

Jz ¼ −Γ34 − 1

2
Γ12; ðA3Þ

where Γab ¼ 1
2i ½Γa;Γb�.

The fermion bare Green’s function is

G0
ωn;k

¼ 1

−iαωn þH0ðkÞ
¼ 1

−iαωn þ EϵðkÞ
PϵðkÞ;

where the sum over ϵ ¼ �1 is implicit and PϵðkÞ ¼
1
2
ð1þ ϵ½ðH0ðkÞ − c0k2Þ=EðkÞ�Þ is a projection operator,

P2ϵðkÞ ¼ 1.

2. Symmetries

It is useful to recap the symmetries of the system in the
absence of all-in-all-out order and to detail the remaining
symmetries in its presence.
As defined above and in Refs. [10,36], the Γa matrices

are even under time-reversal and inversion symmetry,
while the Γab are even under inversion but odd under
time-reversal symmetry.
As is well known for some semiconductors, like HgTe,

the touching of four bands at the Gamma point is protected
by cubic symmetries (the bands at the Gamma point belong
to a four-dimensional representation of the cubic group
Oh), and the absence of a linear term follows from time-
reversal and cubic (inversion) symmetries. Moreover,
thanks to inversion and time-reversal symmetries, all bands
are doubly degenerate away from the Gamma point.
The magnetic-order-parameter field ϕ transforms as

follows under the symmetries of the “disordered” system.
It is odd under time-reversal symmetry (since the spins ~S →
−~S under time-reversal symmetry), and so only the (time-
reversal-odd) Γab can couple to it. It is even under inversion
(since ~S → ~S under inversion), unchanged under threefold
rotations, and odd under the allowed reflections of the
pyrochlore lattice. A single Gamma matrix, namely, Γ45 ∝
JxJyJz þ JzJyJx [10,36] (see below), transforms identically.
The Hamiltonian at fixed k, i.e., H0ðkÞ, together with

the coupling to the order parameter with ϕ ≠ 0, which we
call H1ðkÞ, has the following transformation properties.
For k∥h111i, H1 is invariant under threefold rotations
about k and reflections with respect to planes that contain
k. For k ¼ 0, there is, in addition, inversion symmetry. The
symmetry group at k ¼ 0 then decomposes the four bands
of interest into two two-dimensional representations. For
k ≠ 0, symmetries do not impose bands to cross, hence
making any crossings “accidental.” However, it is note-
worthy that the purely quadratic Hamiltonian H0 that we
study, with c0 ≤ c1=

ffiffiffi
6

p
and c1 ≤ c2=

ffiffiffi
6

p
, in the presence of

the linear coupling to the order parameter ϕψ†Γ45ψ leads
inevitably to band crossings along the h111i directions.
Note that the system in the presence of an external

applied magnetic field, discussed in Ref. [10], is less
symmetric. The system’s Hamiltonian at fixed k, which
we call H2ðkÞ, is only invariant under threefold rotations
about k if both the magnetic field and k point along the
same h111i direction. For k ¼ 0, the system has, in
addition, inversion symmetry, but all the representations
of the symmetry group are one dimensional anyway, and
there is a priori no degeneracy at k ¼ 0. Away from k ¼ 0,
any band crossing is, again, accidental.
It is important to note that, although no crossings are

required by symmetry, once the crossings occur, their
properties are “stable” in the sense that (i) no symmetry-
preserving perturbation will remove them, (ii) the
dispersion along the crossings will remain linear, and
(iii) they will not move away from the h111i axes.
By appropriately transforming the Gamma matrices with

transformations not belonging to the cubic group, one can
show that the signs of c0;1;2 may always be taken to be
positive. Therefore, throughout the paper, we assume
c0;1;2 ≥ 0. We also assume c0 ≤ c1=

ffiffiffi
6

p
; i.e., we assume

the two sets of bands have opposite curvatures in all
directions at the Gamma point or, in other words, that
the Fermi energy goes through the band-touching point.

3. Couplings

The long-range Coulomb interaction is described by
introducing the Hubbard-Stratonovich field φ, which
couples to the density of fermions.
The all-in-all-out operator is represented by the time-

reversal symmetry-breaking Ising field (ϕ) corresponding
to JxJyJz þ JzJyJx in Luttinger’s notation [35]. In terms
of the Gamma matrices, the order parameter is Γ45∼
JxJyJz þ JzJyJx. Thus, finally, the interaction part of the
action is the “vertex term” given, in real space and
imaginary time, by

Svertex ¼
Z

d3xdτ ψ†½ieφþ gϕΓ45�ψ ; ðA4Þ

where ψ is the four-component spinor field. Upon extend-
ing the field space to N flavors of fermions, this term
becomes

Svertex →
1ffiffiffiffi
N

p
Z

d3xdτ ψ†½ieφþ gϕΓ45�ψ : ðA5Þ

4. Green’s function and self-energy conventions

We use the following conventions for the boson Green’s
functions, Gb;ωn;k with b ¼ ϕ;φ, fermion Green’s function,
Gωn;k, boson self-energies, Σbðωn;kÞ and fermion self-
energy, Σfðωn;kÞ:
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Gφ;ωn;k ¼ hφ−kφki ¼
1

k2 þ ΣφðkÞ
;

Gϕ;ωn;k ¼ hϕ−ωn;−kϕωn;ki ¼
1

k2 þ ω2
n þ rþ Σϕðωn;kÞ

;

Gμν
ωn;k

¼ hψμ
ωn;k

ψν
ωn;k

†i
¼ ½−iαωn þH0ðkÞ þ Σfðωn;kÞ�−1;

where μ; ν ¼ 1;…; 4 (or 1;…; 4N) but they are omitted
throughout. The “bare propagators” are denoted with the
subscript or superscript “0.”

APPENDIX B: ASYMPTOTIC LIMITS OF THE
BOSONIC SELF-ENERGIES

We first evaluate the boson self-energies in the large-N
limit. They are given by

Σbðωn;kÞ

¼ g2b
N

Z
Λ

d3q
ð2πÞ3

Z þ∞

−∞
dΩn

2π
Tr½G0

Ωn;q
MbG0

Ωnþωn;qþkMb�;

ðB1Þ

where gφ ¼ ie, gϕ ¼ g, Mφ ¼ I, and Mϕ ¼ Γ45 (I is the
identity matrix). Here, the subscript Λ in the q integral
indicates that an ultraviolet cutoff is required to keep
Σbð0; 0Þ finite. This determines the (nonuniversal) location
of the QCP. However, we seek the corrections to this term
for nonzero frequency and momenta, which are cutoff
independent and will therefore be obtained below without
further discussion of Λ. We will return later to the role of
the cutoff when considering fermionic self-energy terms
and treat it in more detail. The explicit expression for
Σbðωn;kÞ at c0 ≤ c1=

ffiffiffi
6

p
is

Σbðωn;kÞ ¼
−g2b
α

X
ϵ¼�

Z
Λ

d3q
ð2πÞ3

�
Eþ
q;k þ E−

q;k þ ϵ2c0q · k

α2ω2
n þ ðEþ

q;k þ E−
q;k þ ϵ2c0q · kÞ2

��
1 − Fb;q;k

Eþ
q;kE

−
q;k

�
;

where E�
q;k ¼ Eðq� k=2Þ and Fb;q;k ¼P

5
a¼1ðεaÞbĉ2adaðq − k=2Þdaðqþ k=2Þ, with ε ¼

ð111 − 1 − 1Þ and b ¼ 0 (resp. b ¼ 1) for b ¼ φ (resp.
b ¼ ϕ). Note that Σb is Oð1Þ [and not Oð1=NÞ]; math-
ematically, this is because of the trace, which yields a factor
of N.
As mentioned above, the boson self-energy Σϕð0; 0Þ is

finite but depends upon the cutoff [Σϕð0; 0Þ is propor-
tional to Λ]. Again, this determines the location of the
QCP at N ¼ ∞, and when we focus on the critical
theory, this zero-frequency zero-momentum contribution
is exactly canceled by the bare value of r. Hence, we are
left with the corrections at nonzero frequency and
momenta, which we isolate by considering the self-
energy difference Σbðωn;kÞ − Σbð0; 0Þ (for b ¼ φ, the
second term is zero by charge conservation). This differ-
ence is finite and cutoff independent. In the c0;1 → 0
limit, which will be the case in the critical theory, the
self-energy differences show logarithmic divergences, i.e.,
contain j ln c1=c2j. Conveniently, as mentioned in the
main text, the latter will act as a control parameter [25],
in addition to N, in the critical theory.
In the following, we thereby obtain the one-loop bosonic

self-energy,

Σbðωn;kÞ − Σbð0; 0Þ

¼ g2b
α
ðjkjfbðk̂Þj ln c1=c2j þ

ffiffiffiffiffiffiffiffi
jωnj

p
CbÞ: ðB2Þ

For future convenience, we henceforth take c2 ¼ 1 and
denote c ¼ c1. It is straightforward to obtain the

coefficients of the frequency dependence, Cb. Because
Σb is larger than the bare term at r ¼ 0, which goes as
k2 þ ω2

n, throughout this work, we take Gb → Σ−1
b , where

Gb is a full boson Green’s function. Finally, note that we
used an expansion in small 1=j ln c1=c2j of Σ−1

b , i.e., of the
inverse of Eq. (B2), in some of the calculations.
By evaluating Σbðωn; 0Þ − Σbð0; 0Þ, we find Cφ ¼ 0 and

Cϕ ¼ 1.33 by taking α ¼ 1, c1 ¼ 0, and c2 ¼ 1. Note that
in the c1=c2 → 0 limit, the frequency dependence is
subdominant and the bosonic propagator becomes static.
We now extract the nontrivial logarithmic momentum

dependence fbðk̂Þ.

1. Coefficient of the logarithm

As mentioned above, when c0;1 ¼ 0, to which the theory
flows at the QCP, the energy EðkÞ and spectrum E�ðkÞ
vanish for any k∥h111i, which renders the self-energy
difference, Σbðωn;kÞ − Σbð0; 0Þ, divergent. The appear-
ance of a divergence is subtle: For general k, the denom-
inator in Eq. (B2) appears relatively well behaved since the
singularity occurs only when both qþ k=2 and q − k=2
lie along a h111i axis. The singularity actually arises from
the regions of integration at large jqj along these directions,
where jkj ≪ jqj, so that both energies are small. We
analyze it below. In the limit 0 ≤ c0 ≪ c1 ≪ c2 ¼ 1
(i.e., with c1 nonzero and small), which is the actual
behavior in the RG flows, the divergence is removed, and
the result is large in j ln c1=c2j. In this subsection, we
extract the leading result in this limit. Notably, in this limit,
the result is independent of c0 and can be approximated by
simply taking c0 ¼ 0.
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To extract the coefficient of the logarithm, fbðk̂Þ, we
rotate to bases whose x axes point along one of the h111i
directions and make a change of variables such that
8><
>:

ê1 ¼ ðs1; s2; s3Þ=
ffiffiffi
3

p

ê2 ¼ ð0; s2;−s3Þ=
ffiffiffi
2

p

ê3 ¼ ð−2s1; s2; s3Þ=
ffiffiffi
6

p
and q ¼ Q

c1
ê1 þ uê2 þ vê3;

ðB3Þ
where si ¼ �1 (allows to span the eight h111i directions).
This rewriting is chosen so that for Q; u; v of Oð1Þ, the
region near the ðs1s2s3Þ ray is singled out. The Jacobian of
this coordinate transformation is J 0 ¼ js1s2s3=c1j. Now,
we rewrite the functions involved in the integrand of the
self-energies, Eq. (B2), in these new coordinates, and we
obtain the leading asymptotic behavior of each such
function at small c1.
For example, we find

E�
q;k≈

1

c1
ϵ�Q;u;v;k1;k2;k3

and Fb;q;k≈
1

c21
γbQ;u;v;k1;k2;k3

; ðB4Þ

where the ϵ� and γb (b ¼ φ;ϕ) are functions of
fQ; u; v; k1; k2; k3g (and, of course, of the si’s) only. We
are then in a position to take the logarithmic derivatives
of the boson self-energies. A major simplification thereby
occurs: The frequency dependence drops out of
Σbðωn;kÞ − Σbðωn; 0Þ. We find

α

g2b
c1∂c1 ½Σbðωn;kÞ − Σbðωn; 0Þ� ðB5Þ

¼
X

s1;s2;s3¼�1

Z þ∞

0

dQ
2π

Z þ∞

−∞
du
2π

Z þ∞

−∞
dv
2π

Kb
s1s2s3

¼ fbðkÞ ¼ jkjfbðk̂Þ; ðB6Þ

where

Kb
s1;s2;s3 ¼ 9

ffiffiffi
2

p
Q

�
3ða0 − hb0Þ

a5=20

þ 2ðhbðaþ þ ffiffiffiffiffiffi
aþ

p ffiffiffiffiffiffi
a−

p þ a−Þ − 3aþa−Þ
a2−a3=2þ þ a2þa3=2−

�
:

ðB7Þ
In the above formula, we introduced several expressions:

κ ¼ s1s2kxky þ s1s3kxkz þ s2s3kykz; ðB8Þ

hϕ0 ¼ 3½Q2 − 2ðu2 þ v2Þ� ðB9Þ

a0 ¼ hφ0 ¼ 3½Q2 þ 2ðu2 þ v2Þ�; ðB10Þ

hϕ ¼ hϕ0 þ ðk2 − κÞ; ðB11Þ

hφ ¼ hφ0 − ðk2 − κÞ; ðB12Þ

a� ¼ a0 þ (k2 − κ � 3
ffiffiffi
2

p
uðs2ky − s3kzÞ

�
ffiffiffi
6

p
vðs2ky þ s3kz − 2s1kxÞ); ðB13Þ

where all the functions defined above, namely, hb0 , a0, h
b,

a�, and Kb (b ¼ ϕ;φ), are taken at fQ; u; v; kx; ky; kzg
(and are also functions of the si’s, although we have written
the latter explicitly for Kb only). Note that the integrations
over u and v are taken all the way from −∞ to þ∞,
although the sum over the eight directions,

P
s1;s2;s3 , is also

taken. This is because, for nonzero c1, the u; v integrations
have a priori upper bounds of orderQ=c1, which is taken to
infinity. In the present order of limits, all contributions arise
from regions of angular width of order c1 from the
h111i rays.
The integrals, Eq. (B6), are evaluated thanks to the Cuba

library, using the “Cuhre” routine [33].

2. Approximation

Since fb is very smooth (see Fig. 5), we approximate it by
a low-order polynomial of k in order to be able to take
accurate derivatives of fb as required to compute the flow of
c1 (and c2)—see Appendix C. Imposing cubic symmetry,
the most general polynomial to order 6 can take the form

1

fbðk̂Þ
≈mb

1 þmb
2ðk̂4x þ k̂4y þ k̂4zÞ þmb

3 k̂
2
xk̂

2
yk̂

2
z ; ðB14Þ

and fits with mϕ
1 ¼ 2.356, mϕ

2 ¼ −0.130, and mϕ
3 ¼ 4.136,

and with mφ
1 ¼ −4.704, mφ

2 ¼ 0.264, and mφ
3 ¼ −8.253

provide excellent approximations: The square roots of the
means of the squares are Rϕ ¼ 0.0049 and Rφ ¼ 0.0049,

where Rb ¼ 1
Npts

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNpts

i¼1

ðð1=fbi Þ−fitbi Þ2
ð1=fbi Þ2

r
.

FIG. 5. Plot of fϕðk̂Þ=fϕð001Þ. The line represents a h111i
direction. The whole surface can be obtained from the plotted
points by applying cubic symmetries (note that the set of plotted
points is larger than the minimal set of points). The yellow surface
is a sphere of radius fϕð001Þ.
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APPENDIX C: RG EQUATIONS

As discussed in the main text, 24 Feynman diagrams are
necessary to determine the RG equations: Two boson self-
energies Σb, given in Appendix B, two fermion self-
energies Σf;b, and 20 vertex corrections [the one-loop
Ξb;ð1Þ;b0 (four) and the two-loop Ξb;ð2Þ;b0;b00;η (16—12 of
which either vanish identically or cancel each other out),
with b; b0; b00 ¼ φ;ϕ and η ¼ �1. The notation is expected
to be transparent, and the expressions can be read off in
Eqs. (C1)–(C3). We proceed like in Refs. [25,26]; i.e., we
find the corrections to the parameters of the theory by
evaluating the former when a small change in the cutoff is
applied. This physically corresponds to integrating out
modes to keep the rescaled cutoff unchanged. In practice,
we (i) use soft momentum cutoffs for the integrals,
implemented by the use of a rapidly decaying function

jqj=Λ↦F ðjqj=ΛÞ, with, e.g., F belonging to the function
space L2ðRÞ; (ii) compute the logarithmic derivatives with
respect to the cutoff Λ of the fermion self-energy and
vertices; (iii) identify the appropriate coefficients of the
Taylor expansion (in ki and ωn) of the result. The choice of
a soft cutoff is fairly arbitrary, but it helps to avoid spurious
singularities induced by “ringing” at the spectral edge.
The derivative with respect to Λ serves to extract the
incremental change in the band parameters due to a small
change of cutoff, as in the Wilsonian view of RG. The
momentum and frequency expansion allows identification
of the renormalization of each term of the Hamiltonian
independently.

1. Diagram expressions

The fermion self-energy is

Σfðωn;kÞ ¼
X
b¼φ;ϕ

−g2b
N

Z
d3q
ð2πÞ3

Z þ∞

−∞
dΩn

ð2πÞ
MbG0

Ωn;q
MbF ðjqjΛ ÞF ðjk−qjΛ Þ

Σbðωn −Ωn;k − qÞ − Σbð0; 0Þ
; ðC1Þ

where two cutoff functions F are present because both fermion lines in the self-energy should be cut off; i.e., the momenta
of all the electrons in the theory are taken within the cutoff. Similarly, the vertex corrections at zero external momenta and
frequencies are Ξ0

b ¼ Ξ0
b;ð1Þ þ Ξ0

b;ð2Þ, with

Ξ0
b;ð1Þ ¼

X
b0¼φ;ϕ

gbg2b0
N3=2

Z
d3q
ð2πÞ3

Z þ∞

−∞
dΩn

2π

Mb0G0
Ωn;q

MbG0
Ωn;q

Mb0F 2ðjqjΛ Þ
Σb0 ðΩn;qÞ − Σb0 ð0; 0Þ

ðC2Þ

and

Ξ0
b;ð2Þ ¼ − X

b0;b00¼φ;ϕ;η¼�

gbg2b0g
2
b00

N5=2

Z
d3q1
ð2πÞ3

Z
d3q2
ð2πÞ3

Z þ∞

−∞
dΩn;1

2π

Z þ∞

−∞
dΩn;2

2π

×
Mb0G0

Ωn;2;q2
Mb00TrfG0

Ωn;1;q1
Mb0G0

Ωn;1þηΩn;2;q1þηq2
Mb00G0

Ωn;1;q1
Mbg

½Σb0 ðΩn;2;q2Þ − Σb0 ð0; 0Þ�½Σb00 ðΩn;2;q2Þ − Σb00 ð0; 0Þ�
F
�jq1j

Λ

�
F
�jq2j

Λ

�
F
�jq1 þ ηq2j

Λ

�
: ðC3Þ

All other diagrams are smaller in a 1=N expansion. By
using, for example, ∂−iαωn

G0
ωn;k

¼ −ðG0
ωn;k

Þ2, one can
show that the two-loop diagrams Ξ0

b;ð2Þ;b0;b00;η, with identical
internal boson propagators (b0 ¼ b00), cancel each other out
after performing the sum over η ¼ �1 (and even vanish
identically in the case b ¼ ϕ). The remaining two-loop
diagrams correcting the Coulomb vertex (b ¼ φ and
b0 ≠ b00) can also be shown to vanish, for example, by
noticing that only the b0 ¼ b00 diagrams can renormalize g.
Therefore, only four two-loop diagrams (those with b ¼ ϕ
and b0 ≠ b00), shown in Fig. 4 in the main text, need to be
calculated. Careful observation shows that all contributions
are equal, and an explicit calculation yields a finite integral,
which converges to a nonzero value multiplied by
g=ðN3=2j ln c1=c2j2Þ. This is actually subdominant (for
c1=c2 ≪ 1) to the contribution from the one-loop vertex
correction, although it is of the same order in 1=N.

2. Flow equations

We find the following RG flow equations (“beta func-
tions”). The flow of α, the coefficient of the frequency in
the fermion self-energy, is

∂lα

α
¼ 3 − 2Δψ þ 1

α
ð∂−iωn

½DΛΣ0
f�Þjωn¼0;k¼0

; ðC4Þ

where DΛ ¼ Λðd=dΛÞ. As usual, the last term on the
right-hand side corresponds, in the RG procedure, to the
“rescaling” (or integration of momenta), while the other
terms correspond to the “renormalization” [37]. The
“anisotropic” coupling of the fermions to the bosons leads
to “anisotropic” corrections to the coefficients of the
fermion Hamiltonian:
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∂lcj
cj

¼ zþ 1 − 2Δψ þ
ðδΣfÞ0j
cj

; j ¼ 0; 1; 2; ðC5Þ

where

ðδΣfÞ0j ¼

8>><
>>:

1
2
ð∂2

kx;kx
½DΛΣ0

f�Þjωn¼0;k¼0
for j¼0ffiffiffi

2
p ð∂2

kx;ky
½DΛΣ1

f�Þjωn¼0;k¼0
for j¼1ffiffiffi

2
p ð∂2

kx;kx
½DΛΣ4

f�Þjωn¼0;k¼0
for j¼2:

ðC6Þ

The RG equations for the coupling constants are simply

∂lgb
gb

¼ zþ 3 − Δϕ − 2Δψ þM−1
b

½DΛΞ0
b�

gb=
ffiffiffiffi
N

p ; ðC7Þ

for gϕ ¼ g; gφ ¼ ie and Mϕ ¼ Γ45, Mφ ¼ I. The right-
hand sides of the equations eventually involve angular
integrals that can be performed numerically and which are
obtained using the identities

8>>>>>>><
>>>>>>>:

R∞
0 dq 1

qΛ
d
dΛ ½F 2ðq=ΛÞ�¼1

R
∞
0 dqΛ d

dΛ

�
F ðq=ΛÞF 0ðq=ΛÞ

Λ

�
¼0

R
∞
0 dqqΛ d

dΛ

�
F ðq=ΛÞF 00ðq=ΛÞ

Λ2

�
¼0R

∞
0 dq1

Λ
q1

d
dΛ ½F ðq1=ΛÞF ðq1 ~q2=ΛÞF ðq1ð1þ ~q2Þ=ΛÞ�¼1

ðC8Þ

(for any ~q2), since F ð0Þ ¼ 1 and F ðþ∞Þ ¼ 0 (F 0
and F ″ denote the first and second derivative of F ,
respectively.).
In practice, to calculate the flows of α and c0, from

Eqs. (C4) and (C5) with j ¼ 0, we shift the internal
momentum in the integrands of Σf [see Eq. (C1)], i.e.,
q → qþ k. As a result, the derivatives with respect to the
frequency ωn or momenta ki involve the fermionic part of
the integrands. Proceeding otherwise to obtain the equation
for c0 leads to a divergent integral. For the flow of c2, where
the derivatives with respect to either part of the integral
converge, we have checked that both “methods” give the
same result. The integrals from the vertex corrections
converge; in particular, we find that the double integrals
in ½DΛΞ0

b;ð2Þ� are subdominant (equal to a finite number
times 1=j ln c1=c2j2, the latter factor coming solely from the
two inverse boson propagators), even upon taking c0;1 ¼ 0
directly in G0.

3. Details of the flows of c1 and c2
Because the results are crucial to the physics, we

give the details of the calculation of the beta functions
for c1 and c2. Applying the derivatives in Eq. (C6) with
j ¼ 1, 2 to the “boson parts” of the integrand in the
self-energies using the approximations discussed
in Appendix B, and expanding Σ−1

b in small
1=j ln c1=c2j, we find

ðδΣfÞ01
c1

¼ −
ffiffiffi
2

p

8πj ln c1=c2jN
Z

dq̂
ð2πÞ2

d1ðq̂Þ
Eq̂

fðmφ
1 þmϕ

1 ÞN 1;1 þ ðmφ
2 þmϕ

2 ÞN 1;2 þ ðmφ
3 þmϕ

3 ÞN 1;3g; ðC9Þ

ðδΣfÞ02
c2

¼ −
ffiffiffi
2

p

8πj ln c1=c2jN
Z

dq̂
ð2πÞ2

d4ðq̂Þ
Eq̂

fðmφ
1 −mϕ

1 ÞN 2;1 þ ðmφ
2 −mϕ

2 ÞN 2;2 þ ðmφ
3 −mϕ

3 ÞN 2;3g; ðC10Þ

where

N 1;1 ¼ 3q̂xq̂y; ðC11Þ

N 1;2 ¼ 5q̂xq̂yð−8q̂2xq̂2y − 4q̂2xq̂2z − 4q̂2yq̂2z

þ 3q̂4x þ 3q̂4y þ 7q̂4zÞ; ðC12Þ

N 1;3 ¼ −q̂xq̂yq̂2zð6q̂2xq̂2z − 43q̂2xq̂2y þ 6q̂2yq̂2z

þ 10q̂4x þ 10q̂4y − 4q̂4zÞ; ðC13Þ

N 2;1 ¼ 2q̂2x − q̂2y − q̂2z ; ðC14Þ

N 2;2 ¼ 24q̂2xq̂2yq̂2z − 21q̂4xðq̂2y þ q̂2zÞ þ q̂4yð42q̂2x − 5q̂2zÞ
þ q̂4zð42q̂2x − 5q̂2yÞ þ 2q̂6x − 5q̂6y − 5q̂6z ; ðC15Þ

N 2;3 ¼ q̂2yq̂2zð−31q̂2xq̂2y − 31q̂2xq̂2z þ 4q̂2yq̂2z

þ 30q̂4x þ 2q̂4y þ 2q̂4zÞ: ðC16Þ

The relative signs of the terms coming from Σϕ originate
from the “opposite” commutation relations of Γ1;2;3 and
Γ4;5 with Γ45, i.e., ½Γa;Γ45� ¼ 0 for a ¼ 1, 2, 3 and
fΓa;Γ45g ¼ 0 for a ¼ 4, 5. Note that this is true before
implementing any approximation or assumption on the
magnitude of c1=c2. If e ¼ 0, it is then obvious that
the flows of c1 and c2 will take different directions, i.e.,
that the ratio c1=c2 will be either relevant or irrelevant or, in
other words, that this ratio will flow either to infinity or
zero. Hence, a calculation taking c1=c2 large or small from
the beginning is definitely valid. We find that c1=c2 → 0
occurs for e ¼ 0 (see below). When e ≠ 0, the situation is
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not as clear-cut, but taking c1=c2 small, as when e ¼ 0,
proves to be self-consistent, as shown below. We can also
justify it a posteriori as follows. c1=c2 → þ∞would lead to
a situationwhere the coupling termϕψ†Γ45ψ commuteswith
the bare Hamiltonian at the critical point, hence removing all
fluctuations due to the coupling to the order parameter,which
is supposed to drive the transition through the fluctuations it
induces. Such a choice seems therefore unreasonable. The
situation where c1=c2 → c�, a fixed constant, although
perhaps seemingly more reasonable, would imply the exist-
ence of a universal ratio, when none seems to be natural.
Hence, the limit c1=c2 → 0 seems to be the only reasonable
limit to be taken. c0=c1 → 0 is also consistent.

4. Exponents

Keeping α; c2; g, and e constant, i.e., setting the corre-
sponding flow equations to zero, the dynamical critical
exponent and the field dimensions are

z ¼ 2 − az
Nj ln c1=c2j

; Δψ ¼ 3

2
þ aψ
Nj ln c1=c2j2

;

Δϕ ¼ 3

2
þ
�
1

2
þ aϕ
Nj ln c1=c2j

�
;

Δφ ¼ 3

2
þ
�
1

2
− aφ
Nj ln c1=c2j

�
; ðC17Þ

where az ¼ 0.063, aψ ¼ 0.143, aϕ ¼ 0.255, and
aφ ¼ 0.063. The anomalous dimensions are then simply
δz ¼ az=ðNj ln c1=c2jÞ, ηψ ¼ 2aψ=ðNj ln c1=c2j2Þ, ηϕ ¼
1þ 2aϕ=ðNj ln c1=c2jÞ, and ηφ ¼ 1 − 2aφ=ðNj ln c1=c2jÞ,
as given in the main text.

5. Solutions to the flow equations

Finally, we obtain

∂l

�
c1
c2

�
¼ − c1

c2

Y
Nj ln c1=c2j

; ðC18Þ

∂l

�
c0
c1

�
¼ − c0

c1

W
Nj ln c1=c2j

; ðC19Þ

with Y ¼ 0.020 and W ¼ 0.043. These equations are
solved analytically by

ðc1=c2ÞðlÞ ¼ e−
υ0ffiffi
N

p
ffiffiffiffiffiffiffiffi
lþl0

p
;

ðc0=c1ÞðlÞ ¼ ϒ0e
−υ0

0ffiffi
N

p
ffiffiffiffiffiffiffiffi
lþl0

p
; ðC20Þ

where υ0 ¼
ffiffiffiffiffiffi
2Y

p
and υ0

0 ¼ ffiffiffi
2

p
W=

ffiffiffiffi
Y

p
, and where l0 and

ϒ0 are constants that depend on c0;1;2ðl ¼ 0Þ.
Note that, as mentioned in the main text, in the absence

of Coulomb interactions, we find ðc1=c2ÞðlÞ ¼
e−ð0.359=

ffiffiffi
N

p Þ
ffiffiffiffiffiffiffiffi
lþl1

p
and ðc0=c1ÞðlÞ ∝ eð0.240=

ffiffiffi
N

p Þ
ffiffiffiffiffiffiffiffi
lþl1

p

(l1 is a constant); i.e., c0=c1 is found to be a relevant
parameter in that case. The latter means that, eventually, c0
reaches c1=

ffiffiffi
6

p
, a point at which Fermi surfaces start to

develop, rendering our theory invalid and the heretofore
studied critical point unstable. This would correspond to a
Lifshitz transition.

APPENDIX D: PHYSICAL QUANTITIES

We are now in a position to calculate the behavior of some
physical quantities. We first extract the critical exponent of
the correlation length. The associated RG flow is

∂lr
r

¼ zþ 3 − 2Δϕ; i:e:; ∂lr ¼ ν−1ðlÞr; ðD1Þ

with

ν−1ðlÞ ¼ 1 − 2aϕ þ az
Nj ln c1=c2j

: ðD2Þ

So

∂lr ¼
�
1 − Affiffiffiffi

N
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lþ l0

p
�
r; with A ¼ 2aϕ þ az

υ0
;

ðD3Þ
i.e., A ¼ 2.836, which is solved as

rðlÞ ¼ r0e
l−ð2A= ffiffiffi

N
p Þ

ffiffiffiffiffiffiffiffi
lþl0

p
; ðD4Þ

where r0 is a constant that depends on rðl ¼ 0Þ. We can
easily invert r ¼ rðlÞ to l ¼ lðrÞ by taking the log of
Eq. (D4), squaring both sides, and solving the quadratic
equation. We get

l ≈ ln
r
r0

þ 2Affiffiffiffi
N

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln

r
r0

þ l0

r
; ðD5Þ

where we have kept only terms to order 1=
ffiffiffiffi
N

p
.

1. Order-parameter exponent

We first extract the exponent β and its logarithmic
correction, i.e., how hϕi behaves with r. We write

ϕðlþ dlÞ − ϕðlÞ
ϕðlþ dlÞ ≈ dlΔϕðlÞ ðD6Þ

and integrate both sides from 0 to l. Using Eq. (D5),
we obtain

ϕ

ϕ0

∼
�
r
r0

�
2

exp

�
2
5aϕ þ 2az
υ0

ffiffiffiffi
N

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln

r
r0

þ l0

r �

× exp

�−2aϕ ffiffiffiffiffi
l0

p

υ0
ffiffiffiffi
N

p
�
; ðD7Þ
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with 2ð5aϕ þ 2azÞ=υ0 ¼ 13.867 and 2aϕ=υ0 ¼ 2.523 (in
the main text, we absorbed l0 in the definition of r0).
Contrary to more conventional problems, like the usual
Ising model, where βIsing ¼ 1=2 in three spatial dimen-
sions, the bosonic order parameter here grows very slowly
as one moves away from the critical point on the ordered
side of the transition. This comes from the massive
fluctuations of the boson field due to the strong coupling
to the fermions.

2. Specific heat

At the critical point (or in the quantum critical region),
temperature is the only relevant parameter, so thermal
properties receive intriguing corrections in our critical
theory. Since the fermion is well defined (ηψ → 0), the
thermal average of the energy is

hEi ¼
X
i¼�;k

hni;kiEiðkÞ ¼
X
i;k

2

eβEiðkÞ þ 1
EiðkÞ; ðD8Þ

with, for hϕi ¼ 0, c0 ¼ 0 and c2 ¼ 1, E�ðkÞ ¼
�ðk2=

ffiffiffi
6

p Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3ðc21 − 1Þw2

k̂

q
, where wk̂ ¼ k̂2xk̂

2
y þ k̂2xk̂

2
zþ

k̂2yk̂
2
z . To lowest order, we find

cV ¼ ∂ThEi ≈
15ð4 − ffiffiffi

2
p Þ63=4 ffiffiffi

π
p

16
ζð5=2ÞT

3=2

c3=21

≈ 22.1 exp

�
3υ0

2
ffiffiffiffi
N

p ffiffiffi
z

p
ffiffiffiffiffiffiffiffiffiffi
ln
T0

T

r �
T3=2; ðD9Þ

where 3υ0=ð2
ffiffiffi
z

p Þ ≈ 0.215 (we use z ≈ 2) [ζ is the Riemann
zeta function.]. To obtain the last line, we used the
approximation el ¼ ðTðlÞ=T0Þ1=z and thereby solved the
RG equation of c1 in terms of temperature. The logarithmic

correction to the T3=2 law is a signature of the fact that c1
becomes scale (temperature) dependent in the quantum
critical region.

APPENDIX E: MEAN-FIELD THEORY

In this appendix, we consider the behavior in the ordered
phase according to naïve mean-field theory, i.e., a saddle-
point evaluation of the φ and ϕ integrals. The former saddle
point is simply φ ¼ 0; i.e., there are no effects of the long-
range Coulomb interactions at the mean-field level. The
saddle-point value of ϕ is nonzero in the antiferromagnetic
phase. It is governed by the effective action that consists of
the bare one [second line of Eq. (2) of the main text] plus
the contribution obtained by integrating out the fermions.
The fermionic contribution to the effective action, for

constant ϕ, is simply the space-time integral of the total
ground-state energy density of the electrons. This is
obtained by summing up the energy of occupied single-
particle states.
In the saddle-point approximation, the Hamiltonian

density of the fermions is

Hψ
MF½ϕ� ¼ c0k2 þ

X5
a¼1

ĉadaðkÞΓa þ ϕΓ45; ðE1Þ

and we therefore have the ground-state energy density

Eψ
MF½ϕ� ¼

X2
α¼1

Z
Λ

d3k
ð2πÞ3 E

α
k½ϕ� ðE2Þ

[E1;2
k are the single-particle lowest-energy bands, with

E1;2
k ½ϕ ¼ 0� ¼ E−ðkÞ]. Here, by diagonalizing Hψ

MF½ϕ�,
we obtain

E1;2;3;4
k ½ϕ� ¼ c0k2 � 1ffiffiffi

6
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c22k

4 þ 2ðc21 − c22Þw2
k̂
k4 � 6

ffiffiffi
2

p
c1k2wk̂ϕþ 6ϕ2

q
; ðE3Þ

where we define k4 ¼ ðk2Þ2 and where 1,2,3,4 correspond
to the signs f−−;−þ;þ−;þþg, respectively.
From scaling, E1;2

k ∼ k2, and hence, from Eq. (E2), one
expects that the singular scaling contributions to the
effective action behave as Eψ

MF ∼ jkj5 ∼ jϕj5=2, where we
used ϕ ∼ k2, which follows dimensionally fromHψ

MF. This
describes only the singular contributions. Since Eψ

MF is an
even function of ϕ, we expect it to contain constant and
quadratic terms as well (which are cutoff dependent).
Indeed, one can verify by direct expansion in ϕ that the
integrals which arise from Eq. (E2) as coefficients of unity
and ϕ2 are finite, but if one proceeds to the following order,
the coefficient of ϕ4 is divergent. This is because of the
presence of the tjϕj5=2 term.

To extract the coefficient t, we take three derivatives of
Eψ
MF½ϕ� with respect to ϕ. We find an integral whose

integrand goes as 1=jkj6 at large jkj so that the result is
integrable in that region. One then simply rescales k →
k=

ffiffiffiffiffiffijϕjp
and takes the limit of small ϕ (i.e., Λ=

ffiffiffiffi
ϕ

p
→ þ∞).

This makes the singular behavior explicit, and in this
limit, we find ∂3

ϕ;ϕ;ϕE
ψ
MF½ϕ� ¼ 1.079=

ffiffiffiffi
ϕ

p
, i.e., t ¼

1.079 × ð8=15Þ ¼ 0.575, where the coefficient was deter-
mined by a numerical integration, taking the fixed-point
values c0 ¼ c1 ¼ 0. Therefore, tjϕj5=2 is indeed the lowest-
order nonanalytic term. Hence, putting everything together,
and looking at the boson action with the fermions integrated
out, we have
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SMF½ϕ� ¼ V
Z

dτ½rϕ2 þ Eψ
MF½ϕ�� ðE4Þ

∼ V
Z

dτ½r0ϕ2 þ tjϕj5=2�; ðE5Þ

all other terms being irrelevant. Above, r0 includes the ϕ2

terms in Eψ
MF½ϕ�. Most importantly, we obtained positive

t > 0 so that when r0 < 0, a stable minimum action
configuration exists, describing a continuous—but
unconventional—transition at the mean-field level.
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