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We perform systematic investigations of transport through graphene on hexagonal boron nitride (hBN)
substrates, together with confocal Raman measurements and a targeted theoretical analysis, to identify the
dominant source of disorder in this system. Low-temperature transport measurements on many devices
reveal a clear correlation between the carrier mobility μ and the width n� of the resistance peak around
charge neutrality, demonstrating that charge scattering and density inhomogeneities originate from the
same microscopic mechanism. The study of weak localization unambiguously shows that this mechanism
is associated with a long-ranged disorder potential and provides clear indications that random
pseudomagnetic fields due to strain are the dominant scattering source. Spatially resolved Raman
spectroscopy measurements confirm the role of local strain fluctuations, since the linewidth of the Raman
2D peak—containing information of local strain fluctuations present in graphene—correlates with the
value of maximum observed mobility. The importance of strain is corroborated by a theoretical analysis of
the relation between μ and n� that shows how local strain fluctuations reproduce the experimental data at a
quantitative level, with n� being determined by the scalar deformation potential and μ by the random
pseudomagnetic field (consistently with the conclusion drawn from the analysis of weak localization).
Throughout our study, we compare the behavior of devices on hBN substrates to that of devices on SiO2

and SrTiO3, and find that all conclusions drawn for the case of hBN are compatible with the observations
made on these other materials. These observations suggest that random strain fluctuations are the dominant
source of disorder for high-quality graphene on many different substrates, and not only on hexagonal boron
nitride.
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I. INTRODUCTION

Hexagonal boron nitride (hBN) substrates enable the
fabrication of graphene devices [1–4], exhibiting extremely
high carrier mobility values, and leading to the observation
of new, interesting physical phenomena [5–9]. The precise
microscopic reason for the quality of these devices, how-
ever, has not yet been established, nor is there an under-
standing of what the dominant microscopic physical
mechanism responsible for the remnant disorder is. Here,
we perform a systematic study of a large number of such

devices and provide considerable evidence—both experi-
mentally and theoretically—that random local strain
fluctuations in the graphene lattice are the dominant micro-
scopic source of disorder.
Many different techniques are currently used for the

production of graphene devices, and the dominant source of
disorder depends on the specific type of device considered.
We confine our attention to high-quality devices, based on
graphene monolayers exfoliated from natural graphite and
transferred to be in direct contact with a substrate material,
not exposed to damaging agents (such as electron or ion
beams, ultraviolet radiation, or aggressive chemical envi-
ronments). Even so, many different physical mechanisms—
such as charged impurities at the substrate surface, adsor-
bates acting as resonant scatterers, structural defects such
as vacancies, strain fluctuations, and more—have been
considered as possible sources of disorder [10]. Conducting
targeted experiments to identify the dominant source in any
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given individual device is virtually impossible, and infor-
mation can only be extracted by analyzing the statistical
behavior of many devices realized under controlled con-
ditions. Experiments have been performed to intentionally
introduce one specific type of disorder in graphene (e.g.,
charged impurities, by depositing an increasingly large
number of potassium atoms on a graphene layer [11], or
vacancies, by bombarding graphene with an increasingly
large dose of heavy ions [12]) while monitoring the
resulting variations in the electronic properties. This work
is useful to test specific predictions of theories describing
disorder of different natures, but does not enable the
determination of the physical mechanism causing the
disorder initially present in the devices. Considerable
research has been devoted to analyze the dependence of
the conductivity of graphene (σ) on carrier density (n),
without, however, solving the existing controversies,
mainly because the measured σðnÞ curves are consistent
with the functional dependence predicted by models
describing different sources of disorder. Despite the work
of many different research groups, there is not even an
established consensus for the most common devices on
SiO2, as to whether the dominant disorder potential is short
or long ranged (i.e., whether it has a range comparable to
the lattice spacing or much longer) [13–20].
Ourwork exploits a combination of different experimental

techniques, together with the statistical analysis of a large
number of devices on hBN substrates, looking at both the
carrier mobility μ and thewidth of the resistance peak around
charge neutrality n�. While the best graphene-on-hBN
devices exhibit impressively high mobility values, more
modest values are also commonly found, so that the resulting
broad range of electrical characteristics allows the identi-
fication of correlations between different quantities. We find
an unambiguous correlation between the carrier mobility μ
and thewidth of the resistance peak around charge neutrality
n�—with μ ∝ ðn�Þ−1—extending over nearly 2 orders of
magnitude, which demonstrates that the physical mechan-
ism limiting the mobility is the same one causing charge
inhomogeneity. To identify this mechanism, we perform
weak-localizationmeasurements to extract several character-
istic scattering times, such as the intervalley scattering time
τiv and the time τ� associated with the breaking of the
effective, single-valley time-reversal symmetry. For all
charge carrier densities, τiv is much longer than τ, the elastic
scattering time extracted from the carrier mobility. This
finding directly establishes that the mobility is limited by
intravalley scattering caused by long-ranged potentials,
confining the possible microscopic mechanisms to charged
impurities and random strain fluctuations in the graphene
lattice.
Two independent observations indicate that local strain

fluctuations dominate. First, weak-localization measure-
ments show that τ� and τ nearly coincide, a finding that is
readily explained if pseudomagnetic fields due to local

strain are the dominant source of elastic scattering, but that
cannot be explained by the charged impurity mechanism.
Second, we directly probe local strain fluctuations with
confocal Raman experiments [21] and show experimentally
that larger strain fluctuations limit the maximum mobility
that can be observed in transport measurements. Based on
this evidence, we analyze theoretically the linear relation
between 1=μ and n�—which was previously observed in
devices exposed to potassium atoms and taken to be an
indication of charge impurity scattering—and show that
such a relation can be explained quantitatively invoking
random strain fluctuations only. According to this same
analysis, it is the random pseudomagnetic field originating
from strain fluctuations, and not the deformation potential,
that gives the dominant contribution to the scattering of
charge carriers, in agreement with the conclusion drawn
from the analysis of weak localization. Whereas most of
our work has focused on graphene-on-hBN devices, we
have also looked at devices on SiO2 and SrTiO3 substrates
and found that the observations made on these devices are
fully compatible with the conclusions drawn for hBN,
which points to the relevance of random strain fluctuations
under rather broad experimental conditions for high-quality
graphene devices on different substrates.

II. EXTRACTING μ AND n� FOR GRAPHENE
DEVICES ON hBN

The fabrication of graphene-on-hBN devices relies on a
technique described in the literature [1]. We exfoliate hBN
crystals onto a heavily doped, oxidized Si wafer. Graphene
flakes extracted from natural graphite are transferred onto a
hBN crystal, following the procedure of Ref. [1]. Metallic
contacts (Ti=Au, 10=75 nm) are defined by electron-beam
lithography, evaporation, and lift-off [see Fig. 1(a)]. We
find that “bubbles” and “folds” form when transfer-
ring graphene on hBN (as in Refs. [2,3,22]) : achieving
high μ requires etching Hall bar devices in parts of
the flakes where no such defects are present (regions
with bubbles exhibit lower μ, comparable to SiO2 devices).
After an electrical characterization at 4 K, we perform
different low-temperature thermal annealing steps (at up
to 150 °C–250 °C, in an environment of H2=Ar at
100=200 sccm) and check the low-temperature transport
characteristics each time. We find that the initial annealing
step always results in a mobility increase (a factor of 2 in
the very best cases), whereas subsequent annealing leads to
a decrease in μ, eventually to values similar to those
obtained on SiO2 [23].
We analyze approximately 15 distinct Hall-bar devices.

Mobility values (at 4.2 K) between 30.000 and
80.000 cm2=V s at a carrier density of a few 1011 cm−2
are regularly found. Integer quantum Hall plateaus with
σHall ¼ 4ð1=2þ NÞe2=h (N integer) are fully developed
starting from B ¼ 1 T, and broken symmetry quantum Hall
states with Hall conductivity σHall ¼ �1e2=h appear from
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B ¼ 8 T [see Fig. 1(b)]. Full degeneracy lifting of theN ¼ 0
and N ¼ �1 Landau levels is observed below 15 T
[Fig. 1(c)]. In devices where the lattices of graphene and
hBN are intentionally aligned, we observe the effect of a
superlattice potential, with the appearance of satellite Dirac
peaks in the measured RðVgÞ curve [Fig. 1(d)] [7–9]. These
results indicate that our devices have quality comparable to
those fabricated using a similar procedure, reported in the
literature.
To evaluate the quality of our graphene-on-hBN devices,

we focus on the low-T mobility μ and on the width n� of the
minimum in the conductivity. The mobility μ measures the
elastic scattering time τ responsible for momentum relax-
ation, whereas n� quantifies the potential fluctuations
experienced by electrons in graphene [10,24]. Since these
potential fluctuations are not a priori the dominant source
of elastic scattering, there is no reason to assume that μ and
n� are related. Experimentally, the carrier mobility is
obtained from μ ¼ σ=ne [see Fig. 2(a)], with the density
of charge carriers n obtained through the Hall resistance. To
extract n�, we plot logðσÞ as a function of logðnÞ and
determine at which n the constant value of logðσÞmeasured
at low density crosses the value of logðσÞ extrapolated
(linearly) from high density [as shown in Fig. 2(b)]. The
mobility is estimated for n > n�.
Figure 2(c) shows μ as a function of n� for all devices,

measured either immediately after fabrication or after a
subsequent annealing step. The presence of a correlation
between μ and n� is unambiguous: devices with smaller

density fluctuations have larger mobility. For hBN devices
fabricated in our laboratory, this correlation extends from μ
values of 5.000 cm2=Vs (for devices after multiple
annealing steps, see below) to 80.000 cm2=V s. Results
reported in the literature [1,2,5] quantitatively fit the same
trend, extending the range to μ ¼ 100.000 cm2=V s.
Plotting 1=μ versus n� [Fig. 3(a)] shows that the relation
between these two quantities is essentially linear. To reduce
the statistical fluctuations, we subdivide then� axis into eight
different intervals and plot the inverse averaged mobility
as a function of the average charge density fluctuations
[Fig. 3(b)], which makes the linear scaling of 1=μ with n�
apparent.
We emphasize that neither the occurrence of the relation

between 1=μ and n� nor its approximate linearity is obvious
a priori. Indeed, it has been shown that when intentionally
creating carbon vacancies, no such relation is observed,
because in that case vacancies are the dominant mechanism
responsible for the suppression of the carrier mobility, but
they are not the dominant mechanism causing charge
inhomogeneity [12]. Our observations, therefore, unam-
biguously establish that scattering of charge carriers and
charge inhomogeneity in devices on hBN are caused by the
same microscopic mechanism. Additionally, the linearity of
the 1=μ-n� relation is not trivial: we measure several
graphene bilayer devices on hBN and SiO2 and find that
a relation between 1=μ and n� also occurs in that case, but
the relation is quadratic and not linear (see Appendix B).
These considerations make clear that a quantitative analysis

FIG. 2. Conductivity σ of a graphene monolayer on hBN as a
function of carrier density n in linear (a) and double-logarithmic
(b) scale, measured after fabrication (blue line), after a first
annealing at 150 °C (green line), and after a second annealing at
250 °C (red line). Panel (b) also illustrates the procedure to extract
the value of n�. (c) The blue full circles represent the low-
temperature mobility μ (plotted versus n�) for all the 15 graphene-
on-hBN devices realized in our laboratory, measured after
fabrication or after annealing. The triangles represent data for
graphene on hBN extracted from Refs. [1,5] (orange triangles)
and from Ref. [2] (green triangle). The green diamonds and red
squares are from devices realized in our laboratory on SiO2 and
SrTiO3 substrates, respectively.

FIG. 1. (a) Optical microscope image of a monolayer graphene
flake on top of a 30-nm-thick hBN crystal before (left) and after
(right) depositing metal contacts (the scale bars are 5 μm).
(b) Longitudinal resistance Rxx as a function of Vg and B
showing quantum Hall states originating from the lifting of
the single-particle degeneracy already at B≃ 8 T. (c) Hall (blue
line) and longitudinal (green line) conductivity as a function of
Vg measured at B ¼ 15 T, showing full degeneracy lifting of
Landau level N ¼ 0, 1. (d) Resistance of a graphene device
whose edge was aligned to that of the hBN substrate, showing the
emergence of satellite Dirac peaks (well developed for negative
Vg and less pronounced for positive Vg). All measurements have
been taken at T ¼ 250 mK.
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of the 1=μ-n� relation can provide important information.
Note that a correlation similar to the one shown in Figs. 3(a)
and 3(b) has been reported for graphene covered by ionized
potassium atoms, which do generate disorder consistent
with the charged impurities mechanism [11]. On this basis,
one may be tempted to conclude that charged impurities are
also the dominant source of disorder for graphene on hBN.
As we show below, however, the 1=μ-n� correlation is also
qualitatively and quantitatively compatible with the effect
of random strain fluctuations in graphene, and discrimi-
nating between charged impurities and strain is the main
goal of the remainder of this paper. Before coming to that,
we notice that, rather surprisingly, the 1=μ-n� correlation is
also fulfilled by devices on different substrate materials,
whose data points—the red and green dots in Fig. 2(c)
represent data obtained from graphene on SiO2 and SrTiO3

[19]—fall on the curve defined by the results obtained for
graphene devices on hBN [25].

III. CHARACTERISTIC SCATTERING TIMES
REVEAL THE ORIGIN OF DISORDER

Having established that scattering of charge carriers and
carrier density inhomogeneities are caused by the same
microscopic mechanism, we can gain additional insight by
analyzing weak localization to extract all the relevant
scattering times for graphene on hBN [26–28]. Our first
goal is to compare the intervalley scattering time τiv to the

elastic scattering time τ determined from the carrier mobility.
Either τiv ≃ τ, implying that the mobility is determined by
intervalley scattering processes (i.e., the dominant source of
disorder is short-range potentials), or τiv ≫ τ, indicating that
μ is limited by intravalley scattering (i.e., long-range disorder
potentials dominate). Surprisingly, this straightforward argu-
ment has not been used systematically in previous work to
identify the dominant disorder, nor has it been suggested in
theoretical work (for an exception, see Ref. [29] dealingwith
rather low mobility devices, μ≃ 1.000 cm2=V s).
Figure 4(a) shows the low-field magnetoresistance of a

Hall bar device with μ≃ 60.000 cm2=V s, for different
values of Vg around Vg ¼ 8 V, at T ¼ 250 mK. A narrow
dip in conductivity (width ≃1 mT or less) is seen around
B ¼ 0 T, originating from weak localization. Aperiodic
conductance fluctuations due to random interference are
also visible, which we suppress by averaging measure-
ments taken for slightly different Vg values [30].
“Ensemble-averaged” curves obtained in this way around
three different Vg values are shown in Fig. 4(b). We
perform similar measurements at several different temper-
atures and analyze the ensemble-averaged low-field mag-
netotransport up to T ¼ 10 K.
To analyze the data, we follow the same procedure used

in previous studies of the quantum correction to the
conductivity done on graphene on SiO2 substrates
[28,29] and on epitaxial graphene on SiC [31].
Specifically, the data are fit to existing theory [26], from
which we extract the intervalley scattering time τiv, the
phase coherence time τϕ, and the time τ� needed to break

FIG. 3. (a) Same data as those of Fig. 2(c) plotted as 1=μ-n�,
showing an overall linear relation. (b) Average inverse mobility as
function of n� (obtained as indicated in the main text), showing
clearly the linearity of the relation. In (a) and (b) the dashed lines
are a linear fit to the data, ð1=μÞ ¼ ðh=eÞn� × 0.118. (c) minimum
conductivity σ� ¼ n�eμ, calculated from the estimated carrier
density fluctuations n� and mobility μ, and plotted as a function of
measured minimum conductivity. The excellent overall agree-
ment (the dashed line has slope 1) confirms the correctness of the
procedures used to extract n� and μ from the measurements.

FIG. 4. (a) B and Vg dependence of the resistivity measured at
T ¼ 250 mK. (b) The circles represent magnetoconductivity
curves ΔσðBÞ that have been ensemble averaged, by averaging
traces in a range of gate voltages around Vg ¼ −7 (blue circles),
7 (green circles), and 30 V (red circles), to suppress sample-
specific fluctuations. The continuous lines are fit to the theory
of weak localization in graphene. (c) Characteristic times
extracted at 250 mK for different values of carrier density, either
from the fit of weak-localization curves (τϕ, τiv, and τ�) or from
the conductivity (τ). The elastic scattering time τ is always at least
1 order of magnitude smaller than the intervalley scattering
time τiv.
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effective single-valley time-reversal symmetry [27], using
the equation

ΔσðBÞ ¼ e2

πh

�
F

�
τ−1B
τ−1ϕ

�

− F

�
τ−1B

τ−1ϕ þ 2τ−1iv

�
−2F

�
τ−1B

τ−1ϕ þ τ−1iv þ τ−1�

��
:

ð1Þ
Here, FðzÞ ¼ ln zþ ψð0.5þ z−1Þ, ψðxÞ is the digamma
function, τ−1B ¼ 4eDB=ℏ, and D ¼ v2Fτ=2. In fitting the
magnetotransport curves at different temperatures, we
allow τϕ to vary—since the phase coherence time does
increase with lowering T—and we constrain the other
scattering times to be constant in the range investigated
(250 mK and 10 K). We obtain satisfactory agreement in all
cases with a single set of values for τiv and τ� (the elastic
scattering time τ—also constant as a function of T—is
obtained from the measurements of the conductivity, and is
not a fitting parameter).
Figure 4(c) shows the hierarchy of the relevant times at

T ¼ 250 mK, the lowest temperature reached in the experi-
ments, for three different values of n. At this temperature,
τϕ is much larger than τiv, which is why weak localization
is observed (τϕ eventually becomes shorter than τiv as T
reaches 10 K, so that weak antilocalization becomes
visible, in conformity with theoretical expectations, and
as found previously for graphene on SiO2 [28,29]). More
importantly, throughout the density range investigated,
τiv ≫ τ by at least 1 order of magnitude (and by nearly
2 orders of magnitude at low n). This last observation
implies that intravalley scattering is the process limiting μ, a
result that—in conjunction with previous measurements on
graphene on SiO2 [28,29]—holds at least in the mobility
range between 1.000 and 80.000 cm2=V s. We conclude
that weak-localization measurements unambiguously show
that the dominant source of disorder for exfoliated mono-
layer graphene on hBN (and SiO2) substrates is associated
with long-ranged potentials (motivated by this conclusion,
we have also recently studied weak localization on high-
quality graphene bilayer devices on hBN substrates, and
in that case as well we have unambiguously come to the
same conclusion, namely, that it is intravalley scattering
processes that are limiting the carrier mobility [32]).
The results of the weak-localization measurements also

provide a clear indication as to which of the two sources of
long-range disorder (charged impurities at the substrate
surface [13,33,34] and random strain fluctuations in the
graphene lattice [35]) plays the most relevant role.
Specifically, the analysis of weak localization shows that
τ≃ τ� within a factor of 2–3, for all carrier density ranges
investigated [Fig. 4(c)], a finding that is naturally explained
by strain. Indeed, strain generates random pseudomagnetic
fields [36] that not only scatter charge carriers, but also
break the effective time-reversal symmetry in a single

valley [26,27] on approximately the same time scale. If
these random pseudomagnetic fields are the dominant
source of scattering limiting the mobility, we can immedi-
ately understand why τ and τ� are comparable. On the
contrary, for a potential V generated by charged impurities
on and in the substrate, τ is determined by the Fourier
components VðkÞ with k ≈ kF, whereas τ� is determined by
random fluctuations in the potential difference between the
A and B atoms in the individual unit cells of graphene, i.e.,
by the Fourier component of V with k≃ 1=a (see
Appendix C). Since V is a long-range potential, VðkFÞ ≫
Vð1=aÞ, implying (through Fermi’s golden rule) that for
charged impurities τ� ≫ τ, in disagreement with the exper-
imental observations. We are not aware of any mechanism
other than strain-induced pseudomagnetic fields that can
explain the coincidence between τ and τ�, which is why the
indication of this finding for the relevance of local strain
fluctuations is rather compelling.
Albeit less directly, the experimentally observed evolu-

tion of μ upon annealing also points to the effect of strain.
As discussed above, repeated annealing at low temperature
(≃200 °C) in an inert atmosphere systematically reduces μ
by 1 order of magnitude. These annealing processes have
no significant chemical effect and, therefore, are not
expected to change the density of charge at the surface
of hBN by 1 order of magnitude (as would be needed to
explain the changes in μ [13]). On the contrary, they do lead
to visible mechanical deformations, compatible with strain
causing a decrease in mobility. Finally, having μ limited by
strain-induced pseudomagnetic fields also explains why the
use of high-ϵ substrates—such as SrTiO3 [19]—does not
lead to a very large increase in mobility: a high-ϵ substrate
can screen scalar potentials, but not the effect of a
pseudomagnetic field.

IV. RAMAN MAPPING FOR CORRELATING
STRAIN FLUCTUATIONS AND CARRIER

MOBILITY

Additional indications that carrier mobility in graphene
is limited by local strain fluctuations can be obtained by
combining transport measurements with spatially resolved
Raman spectroscopy [37,38]. The quantity of interest in
this case is the linewidth of the Raman 2D peak Γ2D. In
contrast to the width of the G peak, Γ2D only very weakly
depends on doping, charge inhomogeneities [39–41], or
magnetic field [21]. Γ2D is also only weakly affected
by global strain and by the different screening properties
of the substrates [42,43], while it is highly sensitive to
strain inhomogeneities on length scales smaller the laser-
spot size (< 500 nm), as recently shown by Neumann and
co-workers [21]. These are precisely the random strain
fluctuations that can contribute to scattering of charge
carriers.
Figure 5(a) shows the inverse mobility μ−1 versus the

linewidth of the 2D peak for a number of contacted
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graphene flakes resting on different substrates. Each of the
data points corresponds to a different sample, on which we
perform low-temperature (T ¼ 1.8 K) transport measure-
ments to extract the mobility μ, as well as spatially resolved
Raman maps, such as those of Fig. 5(b) (the color code
represents the linewidth Γ2D of the local 2D peak). From
these maps we extract for each flake the distribution of Γ2D,
see Fig. 5(c), from which we calculate the average width
Γ̄2D [this is the quantity plotted on the horizontal axis of
Fig. 5(a)]. Values of Γ̄2D larger than the intrinsic linewidth
of the 2D peak are indicative of strain fluctuations in the
graphene layer [21], and a larger Γ̄2D corresponds to a
larger magnitude of these random strain fluctuations.
Finding that the data points from all the investigated

devices in Fig. 5(a) lie above the dotted lines means that the
maximum observed value of μ is smaller in devices for
which Γ̄2D is larger, i.e., in devices with larger random
strain fluctuations. This directly indicates that strain is
limiting the carrier mobility. The data show a rather large
spread in mobility values, which originates from the fact
that the mobility can be limited by structural defects—like
folds formed in graphene during the transfer and fabrication
process—which can have only a small effect on the
averaged linewidth Γ̄2D. Indeed, the devices used for these
combined Raman and transport measurements were not
etched to confine transport through regions in which these
types of structural defects are absent, since etching would
have drastically reduced the area of graphene, making
Raman measurements considerably more complex. As a
result, a quasi-one-dimensional fold or ripple cutting across
the graphene flake [see, e.g., white regions in Fig. 5(b), left
panel] can have a very strong effect on the mobility value
extracted in the device, while—as it affects only a small
part of the total device area—it has only a small effect on

the averaged linewidth Γ̄2D. Despite these experimental
limitations, the absence of data points in the nonshaded
area indicates that a necessary condition to observe high
carrier mobility values is to have small random strain
fluctuations, and the correlation between maximum mobil-
ity and averaged linewidth Γ̄2D is clearly apparent in
the data.

V. QUANTITATIVE EXPLANATION OF THE
1=μ-n� CORRELATION IN TERMS OF STRAIN

Having found a direct correlation between the strength
of the random local strain in graphene and the carrier
mobility—and therefore having confirmed the role of strain
fluctuations as an important source of disorder—we check,
for consistency, whether the relation between 1=μ and n�
that we discussed earlier [see Figs. 3(a) and 3(b)] can be
explained theoretically in terms of strain fluctuations only.
As we mentioned previously, such a relation has been
reported experimentally earlier on, in the study of transport
through graphene exposed to an increasingly large density
of potassium atoms, where it was naturally explained in
terms of the effect of charged impurities (the ionized
potassium atoms) [11]. Below, we show that the relation
between 1=μ and n� is very naturally reproduced also if
random local strain is the dominant source of disorder.
Indeed, at the quantitative level, the experimental data agree
with theoretical calculations for realistic values (i.e., in the
range known from literature) of the elastic parameters of
graphene, which describe the coupling between strain and
electronic properties.
Strain can originate from both in-plane and out-of-plane

deformations (the latter being the so-called ripples), with
the former being probably the most relevant ones, espe-
cially on hBN substrates. The effect of random strain
fluctuations on the motion of electrons in graphene can be
described by introducing a scalar and a vector potential Vs
and A in the long-wavelength Dirac Hamiltonian. What is
needed to calculate the effect of strain fluctuations on μ and
n� are the correlation functions of these potentials, which
can all be obtained directly from the correlation function of
the random strain field (as described in Appendix A). The
scalar and the gauge potential scatter electrons (with rates
1=τs and 1=τg, respectively) and limit the mobility μ. The
magnitude of the charge fluctuations n�, on the contrary, is
determined by the scalar potential only. We calculate 1=τs
and 1=τg using Fermi’s golden rule and obtain the total
scattering time as 1=τ ¼ 1=τs þ 1=τg:

1

τs
¼2π

ℏ2

NðEFÞ
4π2

×
Z

π

0

dθ
1−cos2ðθÞ

2

hVsðqÞVsð−qÞi
ϵ2ðqÞ

����
jqj¼2kF sinðθ=2Þ

ð2Þ
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2

4-
1-

)
mc/

s
V

01(

0
20 30 40 50

2D (cm )
-1

1

2

3

4

5

6
(a) (b)

co
un

ts
 (

ar
b.

 u
ni

ts
)

(c)

20 30 40

2D (cm )
-1

10

SiO2

hBN

20 30 4010

FIG. 5. (a) Correlation of the inverse mobility and the average
full width at half maximum of the Raman 2D peak Γ2D for a
number of graphene flakes on different substrates. (b) Raman
maps of two graphene flakes resting on two different substrates
(left, hBN; right, SiO2) highlighting the different values of the
spatially resolved Γ2D (same color scale). The white scale bars are
2 μm. (c) Histograms of Γ2D for the two examples shown in (b).
These histograms are used to extract the data points illustrated
in (a).
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1

τg
¼ 2π

ℏ2

NðEFÞ
4π2

×
Z

π

0

dθ½1 − cosðθÞ�hA⊥ðqÞA⊥ð−qÞijjqj¼2kF sinðθ=2Þ;

ð3Þ

where A⊥ðqÞ is the component of A perpendicular to q,
NðEFÞ ¼ ðkF=ð2πℏvFÞ) is the one-valley density of states
at the Fermi energy, ϵðqÞ ¼ ðϵ0 þ 1Þ=2þ 4e2kF=vFjqj is
the dielectric function including the substrate contribution,
and kF, vF, and EF are the Fermi momentum, velocity, and
energy. We extract the mobility from μ ¼ σ=ne ¼
2ðe2=hÞðEFτ=ℏneÞ (the factor of 2 accounts for the two
valleys). To calculate the magnitude of charge fluctuations,
we use the relation nðrÞ ¼ ð1=πÞðVsðrÞ=ℏvFÞ2 between
local charge density and potential, from which

n� ¼ 1

π

hVsðrÞ2i
ðℏvFÞ2

¼ 1

4π3ℏ2v2F

Z
d2q

hVsðqÞVsð−qÞi
ϵ2ðqÞ : ð4Þ

Since the correlation functions of all the potentials are
determined by the same correlation function describing the
random strain field, μ and n� are related. We find in all
cases a linear relation between 1=μ and n� (within loga-
rithmic corrections) with a slope determined by the elastic
coefficients of graphene, whose specific expression differs
for out-of-plane and for in-plane strain. For out-of-plane
strain, we have

1

μ
¼ n�

h
4e

�
ℏ2v2F
8e4

þ g22ðλL þ μLÞ2
g21μ

2
L

�
1

log½1=ðkFðn�ÞaÞ�
; ð5Þ

whereas for in-plane strain we obtain

1

μ
¼ n�

h
4e

�
ℏ2v2F
16e4

þ g22
g21

�
1þ ðλL þ 2μLÞ2

μ2L

��

×
1

log½1=ðkFðn�ÞaÞ�
: ð6Þ

In both expressions, the first term in the square brackets
originates from the contribution to scattering of the scalar
potential and the second originates from the contribution of
the pseudomagnetic field. In these expressions, g1 and g2
quantify the strength of electron-phonon coupling in
graphene, μL ¼ 9.4 eV=Å2 and λL ¼ 3.3 eV=Å2 are
Lamé coefficients [44], and ðe2=ℏvFÞ ¼ 2.2 (a is the lattice
constant of graphene and the logarithm appears when
cutting off the integrals at large q values, at q ¼ 1=a).
Equations (5) and (6) show that the relation between 1=μ
and n� is linear (the deviations caused by the logarithm are
within the fluctuations in the data, and in fact improve the
overall agreement), as found experimentally. Notably, these
relations depend on only fundamental constants and on the
elastic properties of graphene. In this regard, the only role

of the substrate is to determine the magnitude of the strain
present in the graphene lattice.
The dashed lines in Figs. 3(a) and 3(b) are best fits to the

data (ð1=μÞ ¼ ðh=eÞn� × 0.118). Both expressions above
for random out-of-plane or in-plane strain reproduce this
value of the slope with realistic values of the g1 and g2
parameters (the slope depends on only their ratio). The
parameter g2 is determined by the modulation of the
hopping between pz orbitals, and it can be extracted from
measurements of effective magnetic fields created in highly
strained graphene [45]. A reasonable value is g2 ≈ 2.5 eV
[46]. The parameter g1 gives the strength of the scalar
potential, and estimates of its magnitude vary in the range
g1 ≈ 4–10 eV [46–49]. Using n� ¼ 1011 cm−2 and fixing
g2 ¼ 2.5 eV, the expression for random strain due to
ripples [Eq. (5)] reproduces the slope of the 1=μ-n� relation
for g1 ¼ 3.65 eV, and if Eq. (6) for in-plane strain is taken,
the experimental value is obtained for g1 ¼ 6.9 eV, in all
cases fully compatible with the expected range of values.
We conclude that random strain quantitatively accounts for
the 1=μ-n� relation observed in the experiments. While
both in-plane and out-of-plane random strain contribute, it
is likely that on hBN substrates in-plane strain dominates.
Having fixed the values of g2=g1 by comparing the

theoretical expression for 1=μ with the experimental data,
we can determine whether it is the scalar or the gauge
potential originating from strain that gives the dominant
contribution to the scattering time. Interestingly, we find
that for both out-of-plane and in-plane random strain, the
scattering time associated with the random gauge potential
τg is approximately 1 order of magnitude smaller than the
scattering time associated with the scalar potential τs; i.e., it
is the gauge potential that poses the most stringent limit to
the mobility. This is exactly what wewould expect from our
analysis of weak localization, and specifically from the
experimental observation that τ� ≃ τ. This finding also
explains why the use of high dielectric constant substrates
(such as SrTiO3) cannot lead to a major increase in mobility
[19]: a high-ϵ substrate could screen the deformation
potential—which is electrostatic in nature—but not the
effect of a random pseudomagnetic field. We conclude that
our theoretical analysis of the 1=μ-n� relation does not only
reproduce the experimental data with realistic values of the
model parameters, but it is also internally consistent with
other independent experimental observations. It is this level
of quantitative agreement and internal consistency of
results obtained by means of different techniques that
strongly supports the validity of our interpretation.

VI. CONCLUSIONS

The experimental and theoretical results discussed above
lead to a consistent physical scenario that can be under-
stood only if random strain fluctuations are the dominant
source of disorder in graphene on hBN (and other sub-
strates). We summarize the key points. The analysis of

RANDOM STRAIN FLUCTUATIONS AS DOMINANT … PHYS. REV. X 4, 041019 (2014)

041019-7



weak-localization measurements shows that τiv ≫ τ,
implying that scattering of charge carriers occurs mainly
within the same valley, and that it is, therefore, due to a
long-range potential. It also shows that the characteristic
time to break the effective single-valley time-reversal
symmetry τ� is comparable to τ, the elastic scattering time
extracted from the mobility, a finding that can be explained
naturally if random pseudomagnetic fields due to strain are
the dominant scattering mechanism. Since this finding
(τ� ≃ τ) does not appear to be compatible with any other
disorder mechanism, the indication that it provides as to the
relevance of random strain fluctuations is particularly
compelling. The role of local strain fluctuations is further
confirmed by the correlation between the maximum
observed mobility and the line width of the Raman 2D
peak measured on the very same devices (which has been
identified as a measure of the intensity of local mechanical
deformations, i.e., local strain). Finally, a conceptually
straightforward theoretical analysis shows that strain pro-
vides a qualitative and quantitative understanding of the
linear relation between 1=μ and n�. This same analysis
confirms that strain-induced disorder mainly generates
scattering through random pseudomagnetic fields, and
not through the scalar deformation potential, which is
precisely what we had concluded independently through
the study of weak localization.
Although most considerations above have been made for

graphene on hBN, our results point to the relevance of
strain fluctuation also for graphene on SiO2 and SrTiO3

substrates. Indeed, data obtained from devices on SiO2 and
SrTiO3 satisfy quantitatively the same 1=μ-n� relation that
we have found analyzing many devices on hBN. For
graphene on SiO2, weak-localization measurements done
in the past [28,29] allow us to draw conclusions similar to
those that we have discussed here for devices on hBN.
Additionally, random strain fluctuations explain why
devices made on substrates with extremely different
surface chemistry show similar mobility (≈5.000–
10.000 cm2=V s), a fact that would be difficult to under-
stand if charge impurities at the substrate surface were the
dominating source of disorder (simply because the density
of charged impurities should depend very strongly on the
specific chemical groups present at the substrate surface).
Finally, the finding that strain fluctuations dominantly
couple to the electrons through the generation of a random
pseudomagnetic field—and not through the deformation
potential—explains why the mobility in devices on SrTiO3

substrates [19], which have a very high dielectric constant,
is not much higher than on SiO2, since the effect of
magnetic field cannot be screened electrostatically.
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APPENDIX A: ANALYSIS OF STRAIN
DISTRIBUTIONS

We discuss the technical details of the analysis of the
effects of random strain and derive the expressions for the
relations between 1=μ and n� reported in the main text.
Strain can be induced either by out-of-plane corrugations or
by in-plane displacements of the atoms in the graphene
lattice. We analyze the two cases separately. We emphasize
that this same analysis is consistent with the observed
density dependence of the mobility: irrespective of whether
strain is in-plane or out-of-plane, the calculated mobility is
independent of carrier density, within logarithmic correc-
tions that cause a slow mobility suppression at large n.

1. Out-of-plane corrugations

We assume a given height profile hð~rÞ. The height
corrugations lead to strain, which induce a scalar and a
gauge potential acting on the electrons [36]:

Vsð~qÞ ¼ −g1
μL

λL þ 2μL

q2x þ q2y
j~qj4 F ð~qÞ;

Axð~qÞ ¼ g2
λL þ μL
λL þ 2μL

q2x − q2y
j~qj4 F ð~qÞ;

Ayð~qÞ ¼ −2g2
λL þ μL
λL þ 2μL

qxqy
j~qj4 F ð~qÞ; ðA1Þ

where g1 and g2 are parameters with dimensions of energy,
λL and μL are the elastic Lamé coefficients. F ð~qÞ ¼P

i;jqiqjfi;jð~qÞ − j~qj2Pifi;ið~qÞ, with fi;jð~qÞ the Fourier
transform of fi;jð~rÞ ¼ ∂ihð~rÞ∂jhð~rÞ, g2 ¼ 3cβγ0=4, with
γ0 ≈ 2.7 eV, β ¼ ∂ logðγ0Þ=∂ logðaÞ ≈ 2, and c ¼ μL=
½ ffiffiffi

2
p ðλL þ μLÞ� ≈ 0.59 [44].
We assume that the height correlations are such that

hhð~qÞhð−~qÞi ¼ A
j~qj4 ; ðA2Þ

where A is a constant. This dependence corresponds to the
profile of a membrane with temperature kBT ∝ Aκ, where κ
is the bending rigidity of graphene [35]. This assumption
leads to hF ð~qÞF ð−~qÞi ¼ Āj~qj2, where Ā is a dimension-
less constant. It is given, approximately, by
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Ā ∼
h4r
l4
r
; ðA3Þ

where hr and lr are typical values for the height and size of
the ripples. Using Eqs. (2) and (3), we find

τ−1s ≈

8<
:

vFg21μ
2
LĀ

32πðλLþ2μLÞ2e4kF þ � � � ϵ0ℏvF
e2 ≲ 1

g2
1
μ2LĀ

8πðλLþ2μLÞ2ðϵ0þ1Þ2ℏ2vFkF
þ � � � ϵ0ℏvF

e2 ≳ 1;

τ−1g ≈
g22ðλL þ μLÞ2Ā

4πℏ2vFkFðλL þ 2μLÞ2
: ðA4Þ

The mobility is given by μ ¼ σ=ðneÞ ¼ 2 e2
h
vFkFτ
ne ¼ 2eπ

h
vFτ
kF
.

For ϵ0 ≲ e2=ðℏvFÞ, the mobility is

1

μ
¼ ℏĀ

e

�
g21μ

2
L

32πe4ðλL þ 2μLÞ2
þ g22ðλL þ μLÞ2
4πðℏvFÞ2ðλL þ 2μLÞ2

�
:

ðA5Þ

The scalar potential in Eq. (A1) gives rise to charge
fluctuations, whose amplitude is given by

n� ¼ hV2
sð~rÞi

πℏ2v2F

¼ 1

4π3ℏ2v2F

Z
d2~q

hVsð~qÞVsð−~qÞi
ϵ2ð~qÞ

≈
g21μ

2
LĀ

2π2ðλL þ 2μLÞ2ðℏvFÞ2
log

�
1

kFðn�Þ
�
: ðA6Þ

The ratio of the two expressions above leads to the 1=μ-n�
relation, Eq. (5) in the main text.

2. In-plane strain

A supporting substrate induces forces on the carbon
atoms of a graphene layer, leading to strain and deforma-
tions. Therefore, in addition to deformations that can occur
on a corrugated substrate, or because of imperfect adhesion
during the graphene transfer process, in-plane forces on the
carbon atoms can also be expected. These forces induce
strain, which modify the electronic properties. In particular,
periodic interactions, associatedwith the incommensuration
between the lattices of graphene and the substrate, lead to
the formation of superstructures andmoiré patterns [50–52].
In addition, a random distribution of forces should be
expected, due to impurities in the substrates and other
imperfections in the graphene-substrate system (e.g., rem-
nants of adsorbates in between the substrate and graphene).
We neglect the short-range, periodic component of the

interaction potential between graphene and the substrate,
and consider a random potential Vð~rÞ, which varies slowly
over a distance ξ ≫ a, where a is the lattice constant:

hVð~rÞVð~r0Þi ≈ V̄2ξ2δð~r − ~r0Þ: ðA7Þ

This potential leads to forces at the positions of the carbon
atoms:

~Fð~rÞ ¼ ∇Vð~rÞ: ðA8Þ
The elastic energy of the graphene lattice is

Helastic ¼
λ

2

Z
d2~r

�X
i¼x;y

uii

�
2

þ μ

Z
d2~r

X
i;j¼x;y

u2ij

þ
Z

d2~r
A

~Fð~rÞ~uð~rÞ; ðA9Þ

where A ¼ ffiffiffi
3

p
d2G=2 is the area of the unit cell, dG is

the lattice constant, uð~rÞ is the displacement of the atom
at position ~r from its equilibrium position, uij ¼
ð∂iuj þ ∂juiÞ=2, and we assume that the displacements
are small, so that the assumption of a linear coupling to
local forces is valid.
We Fourier transform Eq. (A9):

Helastic ¼
λ

2

X
~k

ð~k~u~kÞ2 þ μ
X
~k

ðkiuj þ kjuiÞ2
4

þ
X
~k

~F~k
~u~k

A
: ðA10Þ

For long wavelength force distributions, j~kj ≪ j ~Gj, where
~G is a reciprocal vector of the graphene lattice, the
displacements are

~u~k ¼ −
~F∥
~k

Aðλþ 2μÞj~kj2
−

~F⊥
~k

Aμj~kj2
; ðA11Þ

where the ∥ and ⊥ superscripts stand for the parallel and

transverse components of ~F~k with respect to ~k

(~F~k ¼ i~kV~k, the vector ~F~k has only a longitudinal com-
ponent, but this is not the generic case; see below). If

j~k − ~Gj ¼ jδ~kj ≪ j ~Gj, long wavelength displacements are
also generated,

~u
δ~k ¼ −

~F∥
~k

Aðλþ 2μÞjδ~kj2
−

~F⊥
~k

Aμjδ~kj2
; ðA12Þ

where now the superscripts ∥ and ⊥ refer to the orientation

of ~F~k with respect to δ~k. From ~u~k, we can obtain the strain
tensor

ui;jð~kÞ ¼
ki ~u~kjj þ kj ~u~kji

2
: ðA13Þ

For j~kj ≪ j ~Gj, we have ~F~k ¼ ~kV~k, while for

jδ~kj ¼ j~k − ~Gj ≪ j ~Gj, we obtain ~F
δ~k ≈ ~GV ~G. Thus, we
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obtain two different contributions to the correlations of
long-range strain:

hui;jð~kÞui;jð−~kÞi ∝ hVð~kÞVð−~kÞi;

hui;jðδ~kÞui;jð−δ~kÞi ∝
j ~Gj2
jδ~kj2

hVð ~GÞVð− ~GÞi; ðA14Þ

where hVð~kÞVð−~kÞi ¼ V̄2ξ2. In the following, we con-
centrate on the effects of the random components of the

potential of order j ~Gj ¼ ð4πÞ=ð ffiffiffi
3

p
dGÞ. The contribution to

the transport properties is larger that from small momenta

by terms of order j ~Gj2=k2F.
The scalar and gauge potentials are

Vsðδ~kÞ ¼ g1
X
~G

ðGxδkx þ GyδkyÞV~k

ðλL þ 2μLÞjδ~kj2
;

Axðδ~kÞ ¼
g2
ℏvF

X
~G

V~k

jδ~kj4

×

�
½ðδkxÞ2 − ðδkyÞ2�

Gxδkx þ Gyδky
λL þ 2μL

þð2δkxδkyÞ
−Gxδky þGyδkx

μL

	
;

Ayðδ~kÞ ¼
g2
ℏvF

X
~G

V~k

jδ~kj4

×

�
−ð2δkxδkyÞ

Gxδkx þGyδky
λL þ 2μL

þ ½ðδkxÞ2 − ðδkyÞ2�
−Gxδky þGyδkx

μL

	
: ðA15Þ

The gauge potential can be divided into a component ~A∥,

parallel to δ~k, and a component ~A⊥, perpendicular to δ~k.

The effect of ~A∥ can be gauged away, and only ~A⊥ gives a
physical effect. In terms of the potential correlations, we
find

hVsðδ~kÞVsð−δ~kÞi

¼
X
~G

g21j ~Gj2V̄2ξ2cos2ðθÞ
ðλL þ 2μLÞ2jδ~kj2A2

;

h ~A⊥ðδ~kÞ ~A⊥ð−δ~kÞi

¼
X
~G

g22j ~Gj2V̄2ξ2

ðℏvFÞ2jδ~kj2A2

×

�
sin2ð3θÞcos2ðθÞ
ðλL þ 2μLÞ2

þ cos2ð3θÞsin2ðθÞ
μ2L

�
; ðA16Þ

where θ is the angle between ~G and δ~k, A ¼ d2G
ffiffiffi
3

p
=2 is the

area of the unit cell of the graphene lattice, and we neglect

terms proportional to quantities like sinðθÞ cosðθÞ, which
average to zero when summing over ~G. The factor cosð3θÞ
arises from extracting the component of ~A normal to δ~k.
Using Eqs. (2) and (3), we obtain

ℏ
τs
≈

πg21V̄
2ξ2

6ðλL þ 2μLÞ2d6Gα2ℏvFkF
;

ℏ
τg

≈
8πg22V̄

2ξ2

3d6GℏvFkF

�
1

ðλL þ 2μLÞ2
þ 1

μ2L

�
: ðA17Þ

The mobility is

1

μ
¼ en

σ
¼ h

e
kF

2πvF

�
1

τs
þ 1

τg

�
: ðA18Þ

The carrier fluctuations at the neutrality point are given by

n� ≈
16g21V̄

2ξ2

3ðℏvFÞ2ðλL þ 2μLÞ2d6G
log

�
1

kFðn�Þa
�
: ðA19Þ

From the ratio of the last two expressions, we obtain Eq. (6)
in the main text.

APPENDIX B: 1=μ-n� RELATION FOR
BILAYER GRAPHENE

Here, we illustrate that the linearity of the relation
between μ−1 and n� for monolayer graphene is not trivial,
by comparing the result shown in Fig. 3 to those of a similar
analysis done for bilayer graphene devices (the bilayer
devices have been fabricated on hBN and SiO2 substrates,
following protocols identical to those used for the
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FIG. 6. Correlation of the inverse mobility and ðn�Þ2 for
a number of different bilayer graphene flakes on different
substrates.

NUNO J. G. COUTO et al. PHYS. REV. X 4, 041019 (2014)

041019-10



monolayers). The result is illustrated in Fig. 6, in which we
plot μ−1 as a function of ðn�Þ2: it is apparent that the
experimental data obey a linear relation, i.e., for bilayers
μ−1 ∝ ðn�Þ2, in contrast to the relation μ−1 ∝ ðn�Þ found in
monolayers. This finding further supports our theoretical
analysis of disorder in monolayers in terms of strain, which
correctly captures the observed, nontrivial linear depend-
ence of the relation between 1=μ and n�.

APPENDIX C: WEAK LOCALIZATION
AND SINGLE-VALLEY EFFECTIVE

TIME-REVERSAL SYMMETRY

Weak-localization measurements in graphene provide a
wealth of information about the scattering processes that
take place in the material. As we discuss in the main text,
we can conclude directly from the results of the fits of the
magnetoresistance curves that the intervalley scattering
time τiv is much longer than the elastic scattering time
τ, which indicates that intravalley scattering processes—
and therefore long-range potentials—dominate the effect of
disorder. We also find that the elastic scattering time τ
nearly coincides with the time τ� needed to break the
effective single-valley time-reversal symmetry, and argue
that this observation strongly indicates that random strain—
and not charged impurities—is the dominant scattering
source. As the reader may not be fully familiar with the
concept of effective single-valley time-reversal symmetry,
we discuss this here in some more detail for completeness
(for more information, see Ref. [27]).
Effective single-valley time-reversal symmetry is a

concept relevant for graphene, in the regime in which a
continuum Dirac Hamiltonian provides a good description
(i.e., when the Fermi level is not too far away from the
charge neutrality point). In the ideal case, the Dirac
Hamiltonian (where k is the momentum relative to the
K point)

H ¼ ℏvF

�
0 kx þ iky

kx − iky 0

�
ðC1Þ

is invariant upon the antiunitary transformation iσ̂y K̂, with
K̂ denoting complex conjugation. This antiunitary trans-
formation mimics the implementation of time-reversal
symmetry, as—for each electronic state—it sends k into
−k and reverses the spin. However, this is not the true time-
reversal symmetry operation. Indeed, true time-reversal
symmetry changes the sign of the total momentum (and not
just of the momentum relative to the K point) and sends
states in one of the valleys into the other valley (time-
reversal symmetry therefore cannot be implemented by
considering only one valley). That is why iσ̂y K̂ is referred
to as “effective single-valley time-reversal symmetry.”
While it remains a good symmetry as long as H is well
approximated by the Dirac Hamiltonian, the implication of

not being the “true” time-reversal operation is that it can be
easily violated by different microscopic mechanisms.
For instance, effective time-reversal symmetry is vio-

lated by the quadratic momentum terms that are neglected
when making the linear approximation in the continuum,
which leads to the Dirac Hamiltonian. It is obvious that—
being quadratic—these terms do not change sign upon
inverting the sign of k, whereas the linear terms in the Dirac
Hamiltonian do. As a result, when including both the linear
and quadratic terms in k, the single-valley Hamiltonian is
not invariant upon effective single-valley time-reversal
symmetry. This mechanism, however, cannot account for
our experimental observations (τ� ≃ τ independent of
carrier density): the effect of the quadratic terms becomes
more relevant as EF is increased further away from the
charge neutrality point. If these terms were the relevant
ones in determining the characteristic time scale τ�, we
should find that τ� becomes shorter at larger carrier density,
contrary to what we observe experimentally [see Fig. 4(c)].
Additionally, this mechanism cannot explain why τ� ≃ τ,
because the quadratic terms in k do not cause any scattering
of electron waves.
The other two mechanisms that break effective time-

reversal symmetry are strain and the presence of a “gap”
term in the Dirac Hamiltonian. Strain breaks the effective
time-reversal symmetry by generating a random pseudo-
magnetic field. Indeed, within a single valley, this pseu-
domagnetic field acts on the orbital degrees of freedom in
all regards as a true magnetic field, i.e., it is described by a
gauge potential minimally coupled to the momentum. If the
dominant source of scattering is spatial inhomogeneities in
this gauge potential, such a mechanism very naturally
explains why the elastic scattering time τ and the time
needed to break the effective time-reversal symmetry τ�
nearly coincide, as scattering and effective time-reversal
symmetry breaking originate from the same term in the
Hamiltonian.
A gap term—i.e., a difference Δ in on-site energy

between the A and B carbon atom in the unit cell of
graphene—also breaks the effective single-valley time-
reversal symmetry. In that case, the Hamiltonian becomes

H ¼
� Δ=2 ℏvFðkx þ ikyÞ
ℏvFðkx − ikyÞ −Δ=2

�
: ðC2Þ

The fact that this Hamiltonian is not invariant upon
iσ̂y K̂ can be checked by a direct calculation. It is also
obvious without doing any calculation, if we observe that
this Hamiltonian is formally identical to that of Rashba
spin-orbit interaction in the presence of a Zeeman term
(with gμB corresponding to Δ=2), a system that lacks time-
reversal symmetry.
In our experimental case, charged impurities on a

substrate can contribute to the breaking of effective
time-reversal symmetry through this mechanism. More
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specifically, charge impurities would generate random
electrostatic potentials. On average, these potentials would
be the same on the A and B atoms forming graphene.
Nevertheless, fluctuations would exist so that locally the
electrostatic on-site energy would be slightly different on
the A and B atom in each unit cell, i.e., locally a nonzero Δ
term would be present. However, in our experiments, this
mechanism cannot explain why the scattering time τ and
the characteristic time for breaking effective time-reversal
symmetry τ� would coincide. In fact, as discussed in the
main text, this mechanism would predict that τ� ≫ τ,
because τ is determined by the Fourier components of
the potential at kF, whereas Δ is determined by the
components at k≃ 1=a (with a long-ranged potential,
the latter are much smaller).
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