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Large-scale quantum information processors or quantum communication networks will require reliable
exchange of information between spatially separated nodes. The links connecting these nodes can be
established using traveling photons that need to be absorbed at the receiving node with high efficiency. This
is achievable by shaping the temporal profile of the photons and absorbing them at the receiver by time
reversing the emission process. Here, we demonstrate a scheme for creating shaped microwave photons
using a superconducting transmon-type three-level system coupled to a transmission line resonator. In a
second-order process induced by a modulated microwave drive, we controllably transfer a single excitation
from the third level of the transmon to the resonator and shape the emitted photon. We reconstruct the
density matrices of the created single-photon states and show that the photons are antibunched. We also
create multipeaked photons with a controlled amplitude and phase. In contrast to similar existing schemes,
the one we present here is based solely on microwave drives, enabling operation with fixed frequency
transmons.
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One of the most important challenges in the rapidly
developing field of quantum information processing and
quantum communication is efficient quantum state transfer
between spatially separated quantum bits. Even though
systems incorporating only a few qubits successfully use
coupling schemes based on atomic vibrational modes [1],
discrete electromagnetic modes of microwave cavities [2],
or on-chip resonators [3,4], itinerant rather than localized
photons are preferable as information carriers for distrib-
uting entanglement and quantum networking over larger
distances [5].
A quantum channel between distant qubits can be

established in a variety of ways, for example, in heralded
schemes using interference and subsequent detection of
photons radiated [6,7] or scattered [8] from the qubits. A
deterministic approach relying on reabsorption of a photon
emitted from one qubit by another has been the subject of
several theoretical proposals [9,10]. This scheme requires
efficient generation of single photons on demand [11–13],
their entanglement with the emitting qubit [14–19], and a
temporal shape of the photon that allows time reversal of
the emission process. It necessitates techniques for the
generation of controllably shaped single photons that have
been realized with optical photons [20–23] and shown to

enable photon reabsorption [24], albeit with a limited
efficiency.
Here, we utilize superconducting circuits as one of the

promising platforms for quantum information processing,
offering good coherence times [25–28] and strong coupling
between qubits and microwave photons [29] in an easily
controllable and compact solid-state system. In this so-
called circuit quantum electrodynamics architecture [30],
the field emitted from a superconducting circuit is confined
to a one-dimensional transmission line without any addi-
tional need for spatial mode matching. It can easily be
routed between different elements of a network and it has
been recently shown that a classical microwave field can be
received and stored with high fidelity [31,32]. For super-
conducting systems, photon-shaping schemes have been
proposed [10] and experimentally realized based on tunable
couplers controlling the emission rate of a photon localized
in a resonator into a transmission line [33,34]. Systems with
a fixed resonator emission rate but a tunable coupling
between the resonator and the qubit [35] can also be used
for photon shaping. Both of these approaches rely on flux
tuning of a SQUID loop to achieve control over the
qubit-resonator or resonator-transmission line coupling.
However, because of the varying Josephson inductance
of the loop, the frequency of the resonator changes along
with the coupling. Therefore, to control the phase of the
emitted photon as well as its envelope, the frequency
shift needs to be compensated by an additional tunable
parameter, such as the qubit-resonator detuning [36].
In this paper, we present an alternative, microwave-based

approach to photon shaping. Both the amplitude and the
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phase of the emitted photon are controlled by a single
phase- and amplitude-modulated microwave signal that
induces an effective tunable qubit-resonator coupling via a
second-order process to transfer the qubit excitation to the
resonator field. Since qubit frequency and coupling remain
fixed in this scheme, it can be realized in circuits without
additional tuning elements.
Our device, described in more detail in Appendix A,

consists of an on-chip single-sided λ=2 transmission line
resonator with resonance frequency ωr=2π ¼ 7.224 GHz
and linewidth κ=2π ¼ 24 MHz coupled with strength
g=2π ¼ 35 MHz to a transmon-type superconducting cir-
cuit [37]. The transition frequency between the ground state
jgi and the first excited state jei of the transmon is tuned to
ωq=2π ¼ 8.640 GHz. In the presented photon-shaping
protocol, we make explicit use of the multilevel structure
of the transmon, approximating it as an effective three-level
ladder-type system with the transition frequency between
the first and the second excited state jfi offset from ωq by
the anharmonicity α=2π ¼ −421 MHz. The direct transi-
tion between states jgi and jfi is forbidden to first order.
The bare eigenstates of the qubit-resonator system are

coupled by the time-independent Jaynes-Cummings inter-
action and by an external microwave drive [Fig. 1(a)]
applied to the qubit through its gate line. The coupled
system is in the dispersive regime [30]; that is, the qubit
and the resonator are detuned from each other by
Δ ¼ ωq − ωr ≫ g. Therefore, energy exchange between
the two is strongly suppressed.
To obtain a tunable Jaynes-Cummings-type coupling

allowing effectively resonant swapping of excitation, we
use second-order processes [38–40]. We apply a qubit drive
at the frequency ωd ¼ 2ωq þ α − ωr corresponding to the

energy difference between the states jf0i and jg1i, where
the numbers in the kets label Fock states of the resonator.
In a reference frame rotating at the frequency ωd, the
Hamiltonian of the system is

HðtÞ ¼ δqb†bþ 1

2
αb†b†bbþ δra†aþ gðab† þ a†bÞ

þ 1

2
½Ω�ðtÞbþΩðtÞb†�;

with the effective transition frequencies of the transmon
δq ¼ωq−ωd ¼−Δ−α and the resonator δr ¼ ωr − ωd ¼
−2Δ − α. ΩðtÞ ¼ Ω0ðtÞeiϕðtÞ is the complex drive strength
corresponding to the real drive signal Ω0ðtÞ cos½ωdt − ϕðtÞ�
with slowly varying amplitude Ω0ðtÞ and phase ϕðtÞ. The
operators a, a† are the annihilation and creation operators
of the resonator and b, b† their analogs for the transmon
b ¼ jgihej þ ffiffiffi

2
p jeihfj þ ffiffiffi

3
p jfihhj þ � � � [37]. This sim-

plified picture of the transmon as an anharmonic oscillator
with a Kerr-type nonlinearity is a good approximation in
the limit of small anharmonicity; that is, jαj ≪ ωq. In the
sample used for our experiment, we have jαj=ωq ≈ 1=20
and we employ high drive amplitudes up to Ω=2π≈1GHz.
To obtain good quantitative agreement between the exper-
imental data and numerical simulations, we need to use the
full model of the transmon-resonator system [37].
The states jf0i and jg1i are resonant in the rotating

frame, while the intermediate states je0i and je1i are far off
resonant. They can, therefore, be adiabatically eliminated,
giving rise to an effective Jaynes-Cummings-type coupling
between the resonator and the two-level system consisting
of qubit states jgi and jfi [Fig. 1(b)]. This interaction is
described by the effective Hamiltonian

HeffðtÞ ¼ Δf0g1ðtÞjf0ihf0j þ ~gðtÞjf0ihg1j þ H:c:; ð1Þ

which we simplify by absorbing the parts of the ac Stark
shifts independent of Ω into the renormalized frequencies
of the qubit and the resonator. The remaining ac Stark shift
Δf0g1ðtÞ of the transition frequency between jf0i and jg1i
is to leading order quadratic in the drive strength Ω. Using
perturbation theory, the effective second-order coupling
~gðtÞ [41] can be expressed as

~gðtÞ ¼ 1
ffiffiffi
2

p gα
ΔðΔþ αÞΩðtÞ: ð2Þ

Within the second-order approximation valid for coupling g
and drive strengthΩmuch smaller than jΔj and jΔþ αj, the
strength of the effective coupling is limited to j~gðtÞj ≪ jαj.
In typical transmon circuits with anharmonicities on the
order of few hundred MHz, this restricts ~g=2π to values
below approximately 10MHz and, thus, the shortest time in
which a photon can be generated using this scheme to
roughly π=~g≳ 50 ns. To suppress decoherence during the
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FIG. 1. (a) Energy level diagram of the qubit-resonator system.
The matrix elements of the drive Ω and the Jaynes-Cummings
coupling g are indicated by solid lines and dotted lines,
respectively, connecting the coupled bare states. The two sec-
ond-order paths connecting the states jf0i and jg1i are indicated
by arrows. (b) In the rotating frame of the drive, the states jf0i
and jg1i are nearly resonant. The second-order effective coupling
~g between them after adiabatic elimination of the intermediate
states je0i and je1i is indicated by the solid blue line. The decay
of the state jg1i into jg0i by photon emission is shown by the
yellow arrow.
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emission process, stronger effective couplings and,
therefore, shorter photon pulses may be achievable with
more anharmonic qubits, such as the fluxonium [42].
Alternatively, transmon geometries with longer coherence
times [26–28] may be employed.
In analogy to the optical domain experiment with atoms

in Ref. [21], we use the tunable effective coupling to
generate single photons by controllably transferring pop-
ulation of the jf0i state into jg1i, which decays into jg0i by
photon emission. Since the drive is off resonant from the
jg0i → je0i transition, the system remains trapped in the
ground state [Fig. 1(b)], ensuring that only a single photon
is emitted. By modulating the amplitude and the phase of
the drive signal in time using sideband mixing, we control
the temporal shape of the output field aoutðtÞ ¼

ffiffiffi
κ

p
aðtÞ

[43], resulting in the emission of a single photon
state j1i ¼ R

ψðtÞa†outðtÞj0idt characterized by its mode
function ψðtÞ.
For the initial characterization of the created single-

photon states j1i, we prefer to analyze their superposition
with vacuum ðj0i þ j1iÞ= ffiffiffi

2
p

. In contrast to a single-photon
Fock state j1i, this superposition state has a nonzero
average voltage proportional to the output field haoutðtÞi
[44] given by ψðtÞ=2. In circuit QED, this voltage is readily
determined using standard heterodyne measurements,
which also capture the phase of the mode function ψðtÞ.
In addition, we characterize single-photon Fock states j1i
directly by measuring the emitted power proportional to
ha†outðtÞaoutðtÞi ¼ jψðtÞj2 and also higher-order moments of
the output field that allow us to extract their full density
matrices [13,45].
In order to prepare the photon superposition state

ðj0i þ j1iÞ= ffiffiffi
2

p
, we drive the jgi → jei and jei → jfi

transitions sequentially [Fig. 2(a)] to initialize the transmon
in the state ðjgi þ jfiÞ= ffiffiffi

2
p

. This state is then mapped
coherently onto ðj0i þ j1iÞ= ffiffiffi

2
p

by driving the second-
order process discussed abovewith a pulse [Fig. 2(b)] of the
form

ΩðtÞ ¼ Ω0sin2ðπt=TÞ exp½iϕðtÞ�: ð3Þ

The pulse ΩðtÞ is parametrized by its maximum amplitude
Ω0, its duration T, and its phase ϕðtÞ. We adjust the
phase ϕðtÞ to compensate for the amplitude-dependent
Stark shift Δf0g1ðtÞ, keeping the phase of the photon
waveform constant over the duration of the pulse (see
Appendix B). We choose this sin2 shape of the drive pulse
as a particularly simple continuous function with only two
free parameters and—unlike other candidates such as a
Gaussian function—with no need for an arbitrary cutoff.
To determine the waveform of the photon state, we

measure both voltage quadratures IðtÞ and QðtÞ of the
output field emitted into the detection line in a heterodyne
setup [13]. The averaged value hvðtÞi of the complex signal

vðtÞ ¼ IðtÞ þ iQðtÞ is then proportional to the expectation
value haoutðtÞi ¼ ψðtÞ=2. To detect the weak single-photon
signal, a broadband low-noise high-electron mobility tran-
sistor (HEMT) amplifier is used. For measurements requir-
ing only narrow bandwidth not exceeding approximately
10 MHz, we also employ a phase-preserving Josephson
parametric amplifier [46,47] to operate at higher signal-to-
noise ratio [45]. A boxcar filter is applied to the digitized
signal to reduce noise and to filter out the pump tone of the
parametric amplifier as well as to compensate the dc offset
of the analog-to-digital converter.
We perform measurements of the photon waveform for

different values of T and Ω0 to study the dependence of the
photon shape on these parameters [see Appendix B and
Figs. 6(a) and 6(b)] and to maximize its symmetry. We
quantify the photon symmetry using a parameter s given by
the scalar product of the waveform with its time inverse
[see Eq. (B1)]. By choosing T and Ω0 resulting in high
values of the symmetry parameter s, we are able to prepare
symmetric photons of controlled length in good approxi-
mation, as shown in Fig. 2(c). Performing qubit tomogra-
phy measurements after the photon emission process shows
that, for the two longer photon pulses (T ¼ 200 ns,
T ¼ 500 ns), the initial jf0i state is nearly emptied by
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FIG. 2. (a) Amplitude of the drive signal used to initialize the
transmon and (b) transfer the excitation into the resonator to
generate a symmetric photon shape. (c) The normalized voltage
amplitude jI þ iQj of shaped photons obtained for drive pulses
withT ¼ 20 ns,Ω0=2π ¼ 680 MHz (blue triangles),T ¼ 200 ns,
Ω0=2π ¼ 700 MHz (orange squares), and T ¼ 500 ns, Ω0=2π ¼
600 MHz (green circles). The dashed lines show the simulated
photon shapes scaled to normalize their peak values to unity. The
measured traces are fitted to the simulation with only the time
shifts and scaling factors as fit parameters. The inset shows both
voltage quadratures I and Q of the photon pulses.
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the drive pulse, having a residual population on the order of
1%–2%. On comparable time scales, the reduction of the
population due to relaxation is negligible. The peak drive
strengths for these pulses are Ω0=2π ¼ 700 MHz and
Ω0=2π ¼ 600 MHz, respectively. The corresponding peak
amplitudes of the effective coupling ~g=2π given by Eq. (2)
are 5.2 and 4.4 MHz, consistent with numerical diagonal-
ization of the Hamiltonian, which yields values of ~g=2π ¼
5.5 and 4.6 MHz. The symmetry parameter s reaches a
value of 0.98 for both longer pulses. This high symmetry
can be obtained only for pulses much longer than the cavity
rise time 1=κ ≈ 7 ns. For comparison, we show a short
pulse with T ¼ 20 ns. This photon pulse is not long enough
for a complete population transfer from jf0i to jg1i with
the drive pulse amplitudes used, which leads to a reduced
emission efficiency. Its symmetry parameter s ¼ 0.92 also
does not reach the high values obtained for the longer
pulses.
To prepare a symmetric photon state that can be easily

reabsorbed by a quantum node, it is important that not only
its amplitude but also its phase is symmetric in time. We
achieve this using the ac Stark shift calibration procedure
described in Appendix B. By choosing the time-dependent
phase ϕðtÞ of the drive pulse given by Eq. (3) such that
_ϕðtÞ ¼ −Δf0g1ðtÞ, we make the phase of the photon pulse
constant in time, as illustrated in the inset of Fig. 2(c),
noting that the ratio of the two signal quadratures is in good
approximation time independent for each of the three
pulses.
The system dynamics including imperfections of the

second-order transition and decoherence are modeled by
solving the master equation for the full Jaynes-Cummings
Hamiltonian including three resonator and six transmon
levels and evaluating the output field aoutðtÞ to obtain the
simulation data in Fig. 2(c).
To demonstrate the single-photon nature of the emitted

field, we measure its moments using the propagating field
tomography method described in detail in Refs. [45,48]. We
first determine the mode function ψðtÞ of the photon pulse,
which is proportional to the observed averaged coherent
signal hvðtÞi. Then, in each realization of the experiment, the
measured single-shot voltage vðtÞ is processed by a digital
Chebyshev filter with a shape approximately matched to
ψðtÞ and the result V is recorded in a 2D histogram. The
observableV can be described by an operatorAþ h†, where
A is the temporal field modeA ¼ R

ψ�ðtÞaoutðtÞdt and h is a
noise mode, assumed to be in a thermal state that is
characterized by the effective noise temperature of the
amplification chain [45]. Themoments hðV�ÞmVni extracted
from the recorded histogram and the noise moments
hðh†Þkhli determined in an equivalent measurement with
only vacuum at the input of the detection chain are used to
calculate the field moments hðA†ÞiAji [45].
For both the symmetrically shaped photon superposition

state ðj0i þ j1iÞ= ffiffiffi
2

p
and the single-photon Fock state j1i

described above, we find the normalized fourth-order
moments gð2Þð0Þ ¼ hA†A†AAi=hA†Ai2 of 0.03� 0.07
and 0.06� 0.02, respectively, which lie well below the
classical limit of gð2Þð0Þ ¼ 1 expected for coherent states,
showing a high degree of antibunching. The density
matrices ρ with fidelities F ¼ 86% and 76% of the
respective photon states shown in Fig. 3 are extracted
from the measured moments [45] by employing a maxi-
mum likelihood algorithm. From the numerical simulation
of the emission process, we find the normalization con-
ditions hA†Ai ¼ 0.39 and 0.79. This is lower than the
values of hA†Ai ¼ 1=2 and 1 expected for the ideal states
ðj0i þ j1iÞ= ffiffiffi

2
p

and j1i due to the reduced photon emission
efficiency of ð79� 1Þ% limited by the finite lifetime
Tf
1 ¼ ð550� 5Þ ns of the jfi state. This accounts for the

deviation of the diagonal elements of ρ from the theoretical
values while the off-diagonal elements are reduced due to
the loss of coherence between the qubit states jgi and jfi on
a time scale of Tgf

2 ¼ ð580� 30Þ ns. This estimate of the
emission efficiency assumes perfect initialization of the
transmon in the jfi state in order to evaluate the shaping
process separately from the preparation procedure. The
total efficiency including a realistic initial state preparation
is approximately 76%, that is, about 6% lower due to
relaxation during the initialization pulses and thermal
population of the excited states (see Appendix A).
To demonstrate the rapid amplitude- and phase-

modulation capability of our all-microwave photon-shaping
scheme, we prepare six-peaked single-photon pulses similar
to the double-peaked pulses demonstrated with optical
frequency photons [21]. For this purpose the transmon is
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FIG. 3. The real and imaginary parts of the measured density
matrices ρ of the symmetric temporal photon mode with fidelities
F ¼ 76% and F ¼ 86% to the respective ideal states j1i and
ðj0i þ j1iÞ= ffiffiffi
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. The wire frames show the single-photon Fock
state j1i (all density matrix elements equal to 1 or 0) and the ideal
superposition state ðj0i þ j1iÞ= ffiffiffi
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(all density matrix elements
equal to 1=2 or 0). The ticks in the bars represent increments
of 0.1.
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again prepared in the state ðjgi þ jfiÞ= ffiffiffi
2

p
[Fig. 4(a)]. The

subsequent photon-shaping signal consists of a train of six
identical sin2 pulses of amplitude Ω0=2π ≈ 350 MHz and
length T ¼ 60 ns separated by 170 ns [Fig. 4(b)]. These
parameters are adjusted to make the overlap between the
photon peaks small while keeping the overall duration of the
pulse train short to minimize decoherence.
We show that the phases of the individual peaks in the

photon waveform can be controlled independently. As an
example, we change the phase of any one of the subsequent
photon peaks by π by adjusting the phase of the corre-
sponding drive pulses leading to a change of sign in the
detected voltage, Fig. 4(c). This phase control can be

achieved while keeping the emitted power unchanged, as
illustrated in Fig. 4(d). The power is measured as a function
of time by squaring and subsequent averaging of the
digitized and filtered voltages. The noise power is then
subtracted in postprocessing.
In conclusion, we present a photon-shaping technique

relying fully on a phase- and amplitude-controlled micro-
wave drive acting on three transmon levels. We show that
this method can be used to generate single-photon pulses of
symmetric shapes with a controllable amplitude and phase.
We prepare a multipeaked photon with individually tunable
phases of all the peaks. Such photon states may be used to
encode information in the rich multidimensional time-bin
Hilbert space of a traveling photon [49]. The shaping
method can be refined by using simulations and optimiza-
tion techniques to find drive pulses needed to generate
desired photon shapes. With the time-reversed scheme
applied to a second distant qubit, the emitted photon can,
in principle, be reabsorbed to map its quantum state onto a
qubit [9]. The simple nature of this scheme with respect to
the required control elements also makes it a prime
candidate for use in 3D circuit QED architectures [25].

This work was supported by the European Research
Council (ERC) through a Starting grant, by the Swiss
National Science Foundation through the National Center
of Competence in Research “Quantum Science and
Technology,” and by ETH Zurich.

APPENDIX A: SYSTEM PARAMETERS

Here, we provide supplemental information about param-
eters of the sample, measurement setup, and methods.
We pattern the transmission line resonator using

photolithography on a niobium-coated sapphire wafer
[Fig. 5(a)]. The transmon circuit is fabricated by e-beam
lithography and shadow evaporation of aluminium. We
measure the charging energy EC=h ≈ 406 MHz and maxi-
mum Josephson energy Emax

J =h ≈ 25 GHz of the device. To
tune the transition frequency of the transmon, we apply a
magnetic flux bias using a superconducting coil, and to
measure its quantum state, we employ dispersive readout
[50] by probing the reflection coefficient of the resonator
[Fig. 5(b)].
The microwave pulses used to initialize the transmon in

the jf0i state and to transfer its excitation into the resonator
are generated by single sideband mixing using in-phase and
quadrature channels synthesized by an arbitrary waveform
generator (AWG).
The output of the transmission line resonator is routed to

a Josephson parametric dimer (JPD) amplifier of the type
described in Ref. [47] via two circulators—the first serving
to separate the incoming drive signal from the output of the
resonator, the second to separate the input and output of the
parametric amplifier—and a directional coupler used to
pump the amplifier [Fig. 5(b)]. The pump tone is split and
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FIG. 4. (a) Amplitude of the drive signal used to initialize the
transmon and (b) transfer the excitation into the resonator to
generate a multipeaked photon shape. (c) The real part of the
measured output field aout as a function of time for six-peak
photons with phases of each of the peaks flipped by π one by one.
The bottom-most trace is a reference with all peaks having the
same phase. (d) Averaged emitted power as a function of time for
the same photon pulses as in (c).
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applied to two inputs of the directional coupler with relative
phase and amplitude chosen to ensure destructive interfer-
ence of the pump tone in the amplified signal. We operate
the parametric amplifier in the phase-preserving mode with
a pump detuned from the signal by 240 MHz. Its gain is
adjusted to approximately 20 dB with a bandwidth of
30 MHz. For measurements that do not require the added
gain, the parametric amplifier is not pumped and the signal
is reflected with a gain of unity. The signal is then filtered
by a 4–8 GHz bandpass filter and amplified by a cryogenic
HEMT amplifier with a gain of 35 dB. At room temper-
ature, the signal is further amplified by 60 dB and down-
converted with a local oscillator detuned by 25 MHz from
the resonator frequency. The resulting intermediate fre-
quency (IF) signal is digitized by a Field-Programmable
Gate Array (FPGA) equipped with an analog-to-digital
converter at a rate of 100 MS=s. The two quadrature
components of the IF signal are then determined by digital
down-conversion and low-pass filtering and are further
averaged. Alternatively, their values are integrated and
the result recorded in a histogram. The efficiency of the
detection chain is characterized by comparing the measured
noise floor with the measured power of a single-photon
pulse, resulting in a noise number of N0 ≈ 10, which
corresponds to a detection efficiency of approximately
9%. This efficiency is limited predominantly by the losses
between the sample and the parametric amplifier, the noise

added by the detection chain, and imperfections in mode
matching due to the used Chebyshev digital filter being
only an approximation of the true photon shape.
The state preparation pulses driving the qubits from jgi to

jei and from jei to jfi areGaussianwith a standard deviation
σ ¼ 5 ns truncated to a finite length of 6σ.We calibrate their
amplitudes by Rabi oscillation measurements and their
frequencies using Ramsey interferometry. The latter meas-
urement is also used to extract the dephasing times of the
transmon Tge

2 ¼ ð1640� 50Þ ns, Tef
2 ¼ ð557� 8Þ ns, and

Tgf
2 ¼ ð580� 30Þ ns. The relaxation times Te

1 ¼ ð2000�
200Þ ns and Tf

1 ¼ ð550� 5Þ ns are determined by time-
resolvedmeasurements of the excited-state population using
three-level quantum state tomography [51].
The steady-state thermal population of the first excited

state of the transmon is measured to be approximately 13%,
significantly higher than the theoretical equilibrium value
0.2% corresponding to the physical base temperature of
50 mK. The source of the excess thermal population is
likely due to undesired elevated temperatures of the still
and 100 mK stages of the employed cryostat. To prepare the
transmon in its ground state, we swap the thermal pop-
ulation of the first excited state jei into jfi and make use of
the jf0i → jg1i transition to further transfer it into the
resonator. As the resonator relaxation rate κ is much higher
than the qubit decay rate, this results in a decrease of the
total system energy. By repeating the cooling step several
times, we reach jei state thermal population of approx-
imately 3%. This also indicates that the mean thermal
excitation of the resonator is significantly lower than that of
the qubit.

APPENDIX B: CALIBRATION OF THE
PHOTON-SHAPING DRIVE PULSE

Here, we explain the methods used to calibrate the
photon-shaping drive pulses.
To determine the optimal values of Ω0 and T in the drive

pulse [Eq. (3)] for generating a symmetric photon shape,
we measure the heterodyne voltage of the shaped super-
position state ðj0i þ j1iÞ= ffiffiffi

2
p

for a range of T between 60
and 500 ns and Ω0=2π between 0 and 1000 MHz. A set of
the measured photon pulse waveforms chosen to illustrate
the dependence of the shape on Ω0 and T is shown in
Figs. 6(a) and 6(b).
The observed effect of the drive pulse length on the

length of the photon pulse and the efficiency of its
emission, which is reflected in the amplitude of the detected
voltage, is illustrated in Fig. 6(a). Shorter drive pulses lead
to shorter photon waveforms (curves at the bottom of the
plot) and vice versa.
The influence of the drive pulse amplitude is shown in

Fig. 6(b). Photon shapes generated with stronger drive
pulses are shorter and display signatures of Rabi oscilla-
tions (the smaller side peaks in the two curves at the top of
the plot). On the other hand, weak pulses result in an

FIG. 5. (a) A false color microscope image of the chip showing
the transmission line resonator coupled to the transmon circuit
(rectangular structure in the middle) and the microwave control
lines: the resonator input/output port, the transmon charge line
(blue), and the unused flux line (gray). (b) Schematic of the
measurements setup (see Appendix A). The control electronics is
shown in blue, the measurement chain in yellow, and the
transmon circuit coupled to the transmission line resonator
(TLR) in orange.
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incomplete population transfer and, therefore, reduced
efficiency of the emission process, as illustrated by the
reduced amplitude of the bottom-most waveform.
In order to quantify the symmetry of the measured

waveform, we calculate the overlap s of the averaged
signal hvðtÞi ¼ hIðtÞ þ iQðtÞi with the time-reversed copy
of itself:

s ¼ max
t0

j R hvð2t0 − tÞi�hvðtÞidtj
R jhvðtÞij2dt : ðB1Þ

We then numerically maximize s with respect to the
amplitude Ω0 and length T of the drive pulse. We find
values of s close to 1 for various combinations of
these parameters, e.g., s ¼ 0.98 for Ω0=2π ¼ 700 MHz,
T ¼ 200 ns, and s ¼ 0.99 for Ω0=2π ¼ 600 MHz,
T ¼ 500 ns, whose corresponding photon waveforms are
also shown in Fig. 2(c).
The maximization of the symmetry parameter also helps

us fine-tune the frequency of the drive pulse to resonance
with the jf0i → jg1i transition. Since a constant detuning
leads to a linear phase drift in the emitted photon waveform,
the symmetry value s is reduced when the drive pulse is off
resonant. Alternatively, we can fine-tune the drive fre-
quency using direct measurements of the photon frequency
as shown in Fig. 6(c). Here, we plot the Fourier transform

of the photon waveform and observe that its peak shifts as
the drive frequency ωd is tuned across the jf0i → jg1i
transition frequency ω0 ¼ 2ωq þ α − ωr expected in the
zero-amplitude limit. We then adjust the drive frequency
to eliminate the detuning of the photon. The results of
these two methods for calibrating the drive frequency are
consistent with each other.
The conversion between the output amplitude of the

drive signal set at the AWG and the drive parameter ΩðtÞ is
obtained using measurements of the ac Stark shift presented
in Fig. 6(d). We prepare the transmon in the jfi state, apply
pulses with different frequencies close to ω0, and extract
the drive detuning at which the jfi state is maximally
depleted after the pulse. This detuning determines the Stark
shift. By repeating the measurement for different ampli-
tudes of the drive pulse and comparing the obtained Stark
shifts with the results of numerical diagonalization of the
transmon-resonator Hamiltonian, we can match each AWG
output amplitude with the corresponding value of Ω0.
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