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Quantum phase transitions are usually studied in terms of Hermitian Hamiltonians. However, cold-atom
experiments are intrinsically non-Hermitian because of spontaneous decay. Here, we show that non-
Hermitian systems exhibit quantum phase transitions that are beyond the paradigm of Hermitian physics.
We consider the non-Hermitian XY model, which can be implemented using three-level atoms with
spontaneous decay. We exactly solve the model in one dimension and show that there is a quantum phase
transition from short-range order to quasi-long-range order despite the absence of a continuous symmetry
in the Hamiltonian. The ordered phase has a frustrated spin pattern. The critical exponent ν can be 1 or 1=2.
Our results can be seen experimentally with trapped ions, cavity QED, and atoms in optical lattices.
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I. INTRODUCTION

A quantum phase transition occurs when the ground state
of a many-body system experiences a sudden change as a
parameter is tuned through a critical point [1]. In the last
few decades, a great deal of work has led to a broad
understanding of quantum criticality. It is now known how
the ordering and critical exponents depend on the sym-
metries of the Hamiltonian. In the study of quantum phase
transitions, it is generally assumed that the Hamiltonian
is Hermitian since solid-state systems are governed by
Hermitian Hamiltonians. However, it turns out that non-
Hermitian Hamiltonians arise in cold-atom experiments
because of spontaneous decay [2–6]. Thus, cold-atom
experiments provide the opportunity to discover new
classes of phase transitions beyond the framework of
Hermitian critical phenomena.
In thispaper,weexactly solve thenon-HermitianXYmodel

in one dimension and show that it violates several tenets of
Hermitian systems. There is a sharp transition already for
two atoms. In a long chain, there is a quantumphase transition
from short-range order to quasi-long-range order despite the
absence of a continuous symmetry in the Hamiltonian. The
ordered phase has a frustrated spin pattern despite the short-
range interaction. The critical exponent ν can be either 1 or
1=2, the latter value being unusual for a spin chain. The phase
boundaries are also completely modified.

As we discuss in detail below, the non-Hermitian XY
model can be experimentally simulated using three-level
atoms in a variety of setups, including trapped ions, cavity
QED, and atoms in optical lattices. The non-Hermiticity is
from measuring whether a spontaneous decay has occurred
[Figs. 1(a) and 1(b)]. The non-Hermitian model is heralded
by the absence of a spontaneous decay event, which can
be measured with a high degree of accuracy [7–9]. This is
similar to heralded entanglement protocols in which a
measurement signals the preparation of the desired state
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FIG. 1. (a) Experimental setup with a chain of atoms. The
population in the auxiliary state jai is measured by scattering
photons off of it. (b) The non-Hermitian model is heralded by the
absence of population in jai, i.e., the absence of fluorescence.
(c) j↑i decays into the auxiliary state jai. (d) The population of jai
is measured by exciting it with a laser and detecting the fluores-
cence (red arrows). (e) Level scheme for a 171Ybþ ion, showing
optical pumping (black arrows) and detection (red arrows).
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without destroying it [10–14]. In fact, for realistic exper-
imental parameters, one can implement the non-Hermitian
XY model with at least 20 atoms with a higher success
probability than heralded entanglement protocols. We also
show that 20 atoms are enough to experimentally observe
our results.
In recent years, non-Hermitian models have drawn

interest because they exhibit a variety of rich behavior
[15–18], such as localization [19,20], PT symmetry
[21–23], and spatial condensate order [24]. Recent works
have discovered dynamical phase transitions that occur
when physical parameters are extended to the complex
plane [25–29]; theseworks motivate the study of correlation
functions as well as the experimental implementation of
non-Hermitian Hamiltonians. In this paper, we show how
non-Hermitian quantum mechanics leads to new magnetic
behavior that can be observed in current cold-atom setups.

II. MODEL

Consider a one-dimensional chain of atoms that interact
via the anisotropic XY model with nearest-neighbor inter-
actions [1,30,31]:

H ¼
X
n

ðJxσxnσxnþ1 þ Jyσ
y
nσ

y
nþ1Þ: ð1Þ

Each atom has states j↑i and j↓i, which constitute the
relevant Hilbert space, and σxn, σ

y
n, σzn are the Pauli matrices

for atom n. We assume that j↑i decays into an auxiliary
state jai with rate γ [Fig. 1(c)]. Then, in the absence
of a decay event, the system evolves with the effective
non-Hermitian Hamiltonian [2–6],

Heff ¼ H −
iγ
4

X
n

ðσzn þ 1Þ; ð2Þ

as explained in Appendix A. This counter-intuitive effect is
due to the fact that the atoms are coupled to the environ-
ment, and the environment continuously measures whether
a photon has been emitted. Even when no atom has decayed
to jai, the null measurement of photons still affects the
wave function of the atoms. The measurement back-action
is accounted for by the non-Hermitian term in Eq. (2),
which transfers population from j↑i to j↓i in a nonunitary
way. (When calculating observables, the wave function
should be normalized to 1.) The non-Hermitian evolution
has been experimentally observed for a single atom [7,9].
A many-body wave function can be written as a super-

position of the eigenstates of Heff . The eigenvalues of
Heff are complex and have negative imaginary parts [32].
When the wave function is evolved using expð−iHefftÞ, the
imaginary parts of the eigenvalues cause the weight in each
eigenstate to decrease over time [Fig. 2(a)]. However, the
eigenvalue with the largest (least negative) imaginary part
decreases the slowest, so after a sufficient amount of time,

the wave function consists mostly of the corresponding
eigenstate [Fig. 2(b)]. We call this surviving eigenstate the
steady-state wave function, and we study its phase diagram.
The experimental protocol is as follows. In each exper-

imental run, the atoms interact via Eq. (1) while possibly
decaying into jai. After a sufficient amount of time, one
measures the population in jai to check whether any atom
has decayed. The experimental runs without decay events
evolve solely with Heff and thus simulate the model of
interest. To measure the population in jai, one laser-excites
jai and looks for fluorescence [Fig. 1(d)]. If an atom is in
jai, it will scatter many photons during this measurement;
the absence of fluorescence signals the absence of pop-
ulation in jai. This way, one can measure the population
with almost 100% efficiency [8]. If one finds no population
in jai, then the atoms are in the steady-state wave function,
and one proceeds to measure the correlation functions
discussed in Sec. IV. (If the steady state is difficult to reach,
one can use Fourier analysis to distinguish between
eigenstates, as explained in Sec. VI).
This scheme is similar to heralded entanglement proto-

cols: When a trial succeeds, it is heralded by a measurement
outcome [10–14]. Importantly, the heralding itself does not
destroy the state. The magnetic model we study is heralded
by the absence of population in jai. In Sec. VI, we show
that one can implement this scheme with at least N ¼ 20
atoms with a relatively high success probability.
We emphasize that our model is different from the

typical dissipative model described by a master equation
for the density matrix ρ,

_ρ ¼ −i½H; ρ� þ γ
X
n

�
σ−nρσ

þ
n −

1

2
ðσþn σ−nρþ ρσþn σ−n Þ

�
: ð3Þ

This master equation applies when j↑i decays into j↓i and
was discussed previously in Refs. [33,34]. Below, we show
that the phase diagram ofHeff is quite different from that of
the master equation as well as H. The master equation with
dissipation on the boundaries was studied in Refs. [35,36].
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FIG. 2. Population in the six slowest-decaying eigenstates of
Heff during the non-Hermitian evolution (a) without normaliza-
tion and (b) with normalization. This is from exact diagonaliza-
tion of N ¼ 10 atoms with open boundary conditions, the initial
condition j↓↓ � � �↓i, J0 ¼ 0.12γ, and J ¼ 0. The thick red line
denotes the steady state.
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Master equations of other spin models were considered
in Refs. [37–50]. We also emphasize that our model is
different from the spin-boson model [51]: We study the
nonequilibrium steady state of the system, instead of the
equilibrium ground state of the system and environment.
For convenience, we rewrite Heff as

Heff ¼
X
n

�
2Jðσþn σ−nþ1 þ σ−nσ

þ
nþ1Þ

þ 2J0ðσþn σþnþ1 þ σ−nσ
−
nþ1Þ −

iγ
4
ðσzn þ 1Þ

�
; ð4Þ

where J ¼ ðJx þ JyÞ=2 and J0 ¼ ðJx − JyÞ=2. There is
competition between the non-Hermitian term (measured
by γ) and the anisotropic interaction (measured by J0) that
coherently excites pairs of atoms. This competition leads to
the critical behavior discussed below.

III. TWO ATOMS

A. Exceptional point

We first consider the case of two atoms since it is the
easiest to realize experimentally. (We assume periodic
boundary conditions to match up with the results for
larger chains.) Heff has four eigenvalues: λ�1 ¼ −iγ=2�
ð1=2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
64J02 − γ2

p
and λ�2 ¼ −iγ=2� 4J, corresponding to

eigenstates,

ju�1 i ¼
1

N

0
BBBBB@

−iγ�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
64J02−γ2

p
8J0

0

0

1

1
CCCCCA; ju�2 i ¼

0
BBBBB@

0
�1ffiffi
2

p

1ffiffi
2

p

0

1
CCCCCA; ð5Þ

in the basis fj↑↑i; j↑↓i; j↓↑i; j↓↓ig. N is a normalization
constant.
When jJ0j < γ=8, the steady state is juþ1 i since its

eigenvalue λþ1 has the largest imaginary part. A degeneracy
occurs when jJ0j ¼ γ=8 since λþ1 ¼ λ−1 there. This degen-
eracy leads to nonanalytic behavior of the steady state as
jJ0j passes through γ=8. The nonanalyticity is most easily
seen in hσzni: When jJ0j < γ=8, hσzni ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 64ðJ0=γÞ2

p
,

while when jJ0j ≥ γ=8, hσzni ¼ 0 as plotted in Fig. 3(a).
Thus, the non-Hermitian model already has a sharp

transition for two atoms. The ability to have sharp tran-
sitions in finite systems is a unique feature of non-
Hermitian Hamiltonians, and non-Hermitian degeneracies
are known as “exceptional points” [15–17]. In contrast,
Hermitian Hamiltonians exhibit avoided crossings in finite
systems.

B. Physical interpretation

Suppose the wave function starts out as a superposition
of eigenstates of Heff . Under the non-Hermitian evolution
(and before normalizing the wave function), the population
in each eigenstate decreases over time because of the
chance of a decay event to jai. The rate of this decrease
for each eigenstate is

−2Im λ ¼ Nγ

�hσzni þ 1

2

�
; ð6Þ

as can be checked using Eq. (5). There is thus a close
connection between an eigenvalue’s imaginary part and hσzni.
Since the steady state is the eigenstate whose eigenvalue

has the largest (least negative) imaginary part, it is also the
eigenstate with the smallest hσzni. This is because the
smaller hσzni is, the smaller the probability of a decay
event to jai. If there is no decay event for a sufficient
amount of time, the wave function consists only of the
steady state because the null measurement of a decay event
projects the system into the eigenstate least likely to have a
decay event.
J0 is a coherent process that excites pairs of atoms and

thus acts as a drive [Eq. (4)]. As J0 increases, hσzni of the
steady state increases [Fig. 3(a)], and so its eigenvalue’s
imaginary part decreases (becomes more negative)
[Eq. (6)]. In other words, as J0 increases, the steady state’s
eigenvalue approaches other eigenvalues. For sufficiently
large J0, the eigenvalues become degenerate and a transition
occurs. This intuition also holds for larger systems.

IV. LONG CHAIN

Although two atoms already exhibit nonanalytic behav-
ior, in order to discuss phases and phase transitions, we
have to consider a long chain of N atoms. We solve this
exactly using the Jordan-Wigner transformation, which
maps the interacting model to a model of free fermions
[1,30,31]. Although this is a standard technique for
Hermitian systems, there are important differences due
to the non-Hermitian nature. Note that the spectra of
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FIG. 3. hσzni for (a) two atoms and (b) an infinite chain with
J ¼ 0 (blue solid line) and J ¼ 0.1γ (red dashed line). The critical
point is J0 ¼ γ=8 for all cases. Panel (a) is independent of J.
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other non-Hermitian spin chains were considered in
Refs. [20,22,23,29].
We map each spin to a fermion: j↑i ¼ j1i and j↓i ¼ j0i.

The spin operators are written in terms of fermionic creation
and annihilation operators: σþn ¼ c†n expðiπ

P
m<nc

†
mcmÞ

and σzn ¼ 2c†ncn − 1. After going to Fourier space,
cn ¼ ðe−iπ=4= ffiffiffiffi

N
p ÞPke

ikn ~ck, and doing a Bogoliubov trans-
formation, Eq. (4) becomes

Heff ¼
X
k

�
ϵðkÞ

�
η̄kηk −

1

2

�
−
iγ
4

�
; ð7Þ

ϵðkÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4J cos k − iγ=2Þ2 þ ð4J0 sin kÞ2

q
; ð8Þ

in terms of non-Hermitian Bogoliubov quasiparticles,

ηk ¼ uk ~ck þ vk ~c
†
−k; η−k ¼ −vk ~c†k þ uk ~c−k;

η̄k ¼ uk ~c
†
k þ vk ~c−k; η̄−k ¼ −vk ~ck þ uk ~c

†
−k: ð9Þ

The expressions for uk and vk are given in Eqs. (B3)
and (B4). η̄k and ηk obey fermionic statistics: fη̄k; ηk0 g ¼
δkk0 and fηk; ηk0 g ¼ fη̄k; η̄k0g ¼ 0. So η̄k and ηk act as
fermionic creation and annihilation operators. But η̄k ≠ η†k
because of the non-Hermitian nature, as seen from
Eqs. (9), (B3), and (B4).
Thus, Eq. (7) is a model of free η fermions. We define the

vacuum state jGi as the state that satisfies ηkjGi ¼ 0 for
all k. (But note that hGjη̄k ≠ 0.) The eigenstates of Heff are
given by jGi and its fermionic excitations: η̄k1 η̄k2 � � � η̄kn jGi.
The eigenvalue of jGi is λG ¼ −

P
k½ϵðkÞ þ iγ=2�=2.

There is freedom in choosing either the þ or − branch
in Eqs. (8) and (B3). In fact, one can choose either branch
for each value of k. For convenience, we choose the sign
convention for each k such that the imaginary part of ϵðkÞ is
always negative. This way, jGi is the steady-state wave
function since all other eigenvalues have smaller (more
negative) imaginary parts [52]. Figure 4 plots the imaginary
part of ϵðkÞ, while Fig. 5 plots the real part.
The other eigenvalues are found using Eq. (8). For

example, the eigenstate η̄π=2jGi has the eigenvalue

λG þ ϵðπ=2Þ. The eigenstate η̄π=4η̄π=2jGi has the eigenvalue
λG þ ϵðπ=4Þ þ ϵðπ=2Þ. We emphasize that ϵðkÞ does not
represent the eigenvalues; rather, it represents the offset
between eigenvalues.
A phase transition of jGi occurs when ϵðkÞ ¼ 0 for

some k, since then an eigenstate is degenerate with jGi. As
seen from Fig. 4, this occurs first for k ¼ �π=2. We define
the gap,

Δ ¼
����Im ϵ

�
π

2

�����; ð10Þ

as the difference in imaginary parts between the eigenvalue
of jGi and the eigenvalue of η̄π=2jGi [53]. The gap indicates
how quickly the steady state is reached during the non-
Hermitian evolution. The gap closes and a phase transition
occurs when jJ0j ¼ γ=8, which is the same as for two atoms.
To characterize the phases, we calculate several

observables for jGi: hσzni, hσxmσxni, hσymσyni, and hσzmσzni.
Appendix C provides details on how to calculate these
observables, which are quite different from the Hermitian
case. Note that hσxni ¼ hσyni ¼ 0.
We now describe the phases on both sides of the

transition. There are two qualitatively different cases,
J ≠ 0 and J ¼ 0, which we consider separately.

A. Case of J ≠ 0

Figure 4(a) shows Im ϵðkÞ. When jJ0j < γ=8, Im ϵðkÞ is
always negative, so jGi is gapped, i.e., Δ > 0. When
jJ0j ≥ γ=8, Im ϵðkÞ ¼ 0 for k ¼ �π=2, so jGi has gapless
excitations.
Figure 6(a) shows the correlation functions for jGi.

In general, hσxmσxni and hσymσyni are zero for odd distances,
which implies that the chain divides into two alternating
sublattices with a degree of freedom between them. When
jJ0j < γ=8, the correlations hσxmσxni, hσymσyni, and hσzmσzni −
hσzmihσzni for even distances decay exponentially with
distance. When jJ0j ≥ γ=8, they all decay according to a
power law. So within each sublattice, there is short-range
order for jJ0j < γ=8 and quasi-long-range order for
jJ0j ≥ γ=8 [Fig. 7(a)].
The quasi-long-range order here is quite surprising.

In Hermitian systems, quasi-long-range order occurs
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only when the Hamiltonian has a continuous symmetry.
However, Heff does not have a continuous symmetry when
both J; J0 ≠ 0.
Figure 6(a) shows that the ordered state is frustrated

within each sublattice: hσymσyni is ferromagnetic with the
second neighbor but antiferromagnetic with the fourth
neighbor. This is in contrast to hσxmσxni, which shows
conventional antiferromagnetic ordering within each sub-
lattice. The frustration of hσymσyni is surprising since the
lattice is one dimensional and has only nearest-neighbor
interactions. In contrast, Hermitian systems exhibit frus-
tration when the lattice is triangular [54] or the interaction is
long range [55].
As jJ0j increases towards γ=8, the correlation length

ξ diverges as ∼ðγ=8 − jJ0jÞ−ν, where ν is the critical
exponent (Fig. 8). In Appendix D, we analytically calculate
hσzmσzni − hσzmihσzni for large distances and show that
ν ¼ 1, which is the same as for Hermitian spin models
in one dimension [1]. Numerically, we find that hσxmσxni and
hσymσyni also have ν ¼ 1.
The dynamical critical exponent z is given by the

divergence of the gap at the phase transition [1]. We
find from Eqs. (8) and (10) that the gap diverges as
Δ ∼ ðγ=8 − jJ0jÞ1=2. Thus, zν ¼ 1=2 and z ¼ 1=2.

B. Case of J ¼ 0

Figure 4(b) shows Im ϵðkÞ for this case. When
jJ0j < γ=8, the steady state is gapped as before. When

jJ0j ¼ γ=8, the gap closes at k ¼ �π=2. But when
jJ0j > γ=8, Im ϵðkÞ ¼ 0 for an extended range around
k ¼ �π=2, which is an important difference from the
J ≠ 0 case.
Figure 6(b) shows the correlation functions for jGi. In

general, hσxmσxni ¼ hσymσyni. When jJ0j < γ=8, hσxmσxni,
hσymσyni, and hσzmσzni − hσzmihσzni are zero for odd distances,
and their values for even distances decay exponentially in
distance. But when jJ0j ≥ γ=8, they are nonzero for all
distances and form a spin-density-wave pattern, whose
magnitude decays according to a power law [Fig. 7(b)].
In Appendix D, we show analytically that the correlation

length ξ diverges with critical exponent ν ¼ 1=2. It is
surprising that this is not 1, which is the value for J ≠ 0 as
well as for Hermitian spin chains. From the divergence of
Eq. (10), we again find zν ¼ 1=2, so z ¼ 1.
Figure 3(b) plots hσzni. When jJ0j ≤ γ=8, hσzni ¼

−ð2=πÞEð64J02Þ, where EðxÞ is the complete elliptic
integral of the second kind. Interestingly, dhσzni=dJ0 exhib-
its a logarithmic divergence at jJ0j ¼ γ=8. (This singularity
does not occur when J ≠ 0.)

C. Exact diagonalization for a small chain

The above results assumed an infinite chain. In this
section, we consider a small chain of N ¼ 10 with open
boundary conditions since it is the more experimentally
relevant situation. Figure 9(a) shows the gap, defined as
the difference in imaginary parts between the eigenvalue
with the largest imaginary part and the eigenvalue with the
second largest imaginary part. In the limit of N → ∞, we
should recover Eq. (10). Figure 9(a) shows that the gap for
N ¼ 10 is very similar to that for N ¼ ∞. It is important to
notice that already for N ¼ 10, the gap closes, leading to
nonanalytic change of the steady state; when J ¼ 0, the gap
closes at J0 ¼ 0.131γ. (But recall from Sec. III that the gap
closes even for N ¼ 2.)
Before the gap closes, there is a unique steady state.

After the gap closes, there are four eigenvalues with the
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FIG. 6. Ordered-phase correlation functions: hσxmσxni (blue solid
line) and hσymσyni (red dashed line) for J0 ¼ 0.13γ with
(a) J ¼ 0.1γ and (b) J ¼ 0.
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largest imaginary part, meaning that there are four steady
states. The eigenvalues have different real parts, which
allows them to be differentiated via Fourier analysis, as
discussed in Sec. VI. We now define the “second gap” as
the difference in imaginary parts between the four eigen-
values with the largest imaginary part and the eigenvalue
with the fifth largest imaginary part. The second gap
indicates how quickly the system settles into the manifold
of four steady states. Figure 9(a) shows that the second gap
is nonzero for an interval of J0. The existence of the second
gap makes it experimentally easier to distinguish between
the steady states since there are only four of them.
Figure 9(b) shows the correlations between the first atom

and the other atoms. There is a visible difference in the
correlations before and after the phase transition. Before the
transition, the correlations are zero for odd distances, while
after the transition, the correlations are always nonzero
because of the emergence of the spin-density wave. One
can also see that the correlation decays slower after the
phase transition, just like in an infinite chain.
In summary, with N ¼ 10 atoms, the behavior already

resembles that of an infinite system. In particular, there is a
transition from short-range order to the spin-density wave.
This is the experimental advantage of non-Hermitian
models: There are sharp transitions even for small systems,
so one does not need a large number of atoms as in
Hermitian models.

V. COMPARISON WITH THE HERMITIAN
MODEL AND MASTER EQUATION

The ground state of the Hermitian model [Eq. (1)] is
either ferromagnetic or antiferromagnetic [30]. There is
long-range order, except when jJxj ¼ jJyj, in which case
there is quasi-long-range order. If H included a real fieldP

nðh=4Þσzn, then there would be short-range order when
jJj < h=8 with ν ¼ 1 [31].
The steady-state density matrix of the master equation

[Eq. (3)] has only short-range order in one dimension [34].

Mean-field theory predicts that when JxJy > −γ2=64, the
system is in the staggered-XY phase, characterized by
hσxmσxni and hσymσyni being 0 for odd distances and both
positive for even distances [33].
The magnetic behavior of the non-Hermitian model is

qualitatively different from both the Hermitian model and
the master equation. It has a phase transition in one
dimension and in fact already exhibits a sharp transition
for two atoms. There is quasi-long-range order for
jJ0j > γ=8, which is an extended area in Jx, Jy space
instead of a line as in the Hermitian case. ν can be 1=2,
which is different from the Hermitian case. The ordered
phases are also different. Since hσxmσxni and hσymσyni always
have opposite signs when J ≠ 0, the ordered phase is
different from both the staggered-XY phase and the anti-
ferromagnetic phase. In addition, the spin-density-wave
phase (for J ¼ 0) is not present in either the Hermitian
model [30] or the master equation [33,34].
We emphasize that Heff has different critical behavior

than the master equation even though both include dis-
sipation. Recent works indicate that phase transitions of
master equations are in the universality class of classical
phase transitions [37] and thus should not have phase
transitions in one dimension. Since Heff does have a
phase transition in one dimension, it is a quantum phase
transition [1].

VI. EXPERIMENTAL IMPLEMENTATION

The Hermitian XY model [Eq. (1)] can be implemented
using trapped ions [56–59], an array of cavities [34,47],
atoms within a cavity [46], and Rydberg atoms in an optical
lattice [33,60–62]. These experimental setups are able
to tune J and J0. To implement the non-Hermitian model
[Eq. (2)], one would optically pump j↑i into the auxiliary
state jai.
We discuss a specific realization using trapped 171Ybþ

ions [Fig. 1(c)]. Let j↓i be jS1=2; F ¼ 0i, let j↑i be
jD3=2; F ¼ 2i, and let jai be jS1=2; F ¼ 1i. One would
optically pump j↑i to jP3=2; F ¼ 2i, which decays into jai
instead of j↓i because of dipole selection rules. (The
excitation to jP3=2; F ¼ 2i should be much weaker than
the decay so that the level can be adiabatically eliminated.) J
and J0 can be on the order of 2π × 1 kHz [59], and one can
set γ ¼ 2π × 10 kHz so that J, J0 ∼ 0.1γ. To detect whether
an atom has decayed to jai, one would laser-excite jai to
jP1=2; F ¼ 0i and observe the fluorescence; the absence of
fluorescence means the atom has not decayed. If one finds
that no atom has decayed, one stops the laser excitation of
jai and then proceeds to measure correlation functions.
To observe the phase transition, one would measure the

correlations of the steady state for jJ0j < γ=8 and jJ0j > γ=8
to see the onset of quasi-long-range order. If the gap
[Eq. (10)] is so small that reaching the steady state is
difficult, one can use Fourier analysis to distinguish
between the eigenstates. Each eigenstate of Heff oscillates
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FIG. 9. Exact diagonalization of N ¼ 10 atoms with open
boundary conditions and J ¼ 0. (a) Gap (red dashed line) and
second gap (red dotted line). The gap for N ¼ ∞ (solid black
line) is from Eq. (10). (b) Correlations between the first atom
and other atoms for J0 ¼ 0.12γ (blue solid line, circles) and
J0 ¼ 0.14γ (green dashed line, triangles).
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with a frequency given by the real part of its eigenvalue.
Figure 5 shows that jGi and other long-lived eigenstates
have different oscillation frequencies. Thus, when the wave
function is a superposition of these eigenstates, observables
will be time dependent because of the interference of the
different frequencies. By measuring the observables over
time and then taking the Fourier transform, one can identify
each long-lived eigenstate.
We now estimate the probability that a given experi-

mental run has no decay to jai. Each run should be
long enough so that the system converges into the steady
state. The time scale is estimated by 1=Δ, where Δ is
the gap [Eq. (10)]. The number of decay events during this
time interval is Poissonian with an average of
μ ≈ γNðhσzni þ 1Þ=2Δ, so the probability of no decay
events during a run is P ≈ e−μ. For example, suppose
J0 ¼ J ¼ 0.1γ and γ ¼ 2π × 10 kHz. Then, each run lasts
for about 50 μs. For N ¼ 2, P ≈ 0.3. For N ¼ 20,
P ≈ 0.007. This success probability is several orders of
magnitude higher than that for heralded entanglement
protocols [11–14], and N ¼ 20 atoms is enough to see
the results described in this paper, as discussed in Sec. IV C.
We emphasize that sharp transitions occur for any N ≥ 2.

VII. CONCLUSION

The non-Hermitian model exhibits phases and phase
transitions that are absent from the Hermitian model and
master equation. Thus, non-Hermitian quantum mechanics
is a promising route to find new condensed-matter phenom-
ena. For future work, perhaps one can map aD-dimensional
non-Hermitian quantum model to a ðDþ 1Þ-dimensional
classical model like in the Hermitian case [1]. One can
also see whether the entanglement between atoms exhibits
critical behavior at the phase transition, as in the Hermitan
model [63] and master equation [34]. Furthermore, one
can consider the effect of disorder using a real-space
renormalization group [20]. Finally, it would be interesting
to study the Lee-Yang zeros of the non-Hermitian model
[25–29].
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APPENDIX A: ORIGIN OF THE
NON-HERMITIAN HAMILTONIAN

Here, we explain why the wave function evolves with
a non-Hermitian Hamiltonian in the absence of a decay
event. This was thoroughly discussed in previous works
[2–6], but we sketch out the derivation here for the reader’s
convenience. For simplicity, we consider only one atom.
But in addition to the atomic wave function, we keep track

of the number of photons around the atom. The photonic
state is jni, where n is the number of photons.
Suppose the atom starts in a superposition,

jψðtÞi ¼ ðαj↓i þ βj↑iÞj0i: ðA1Þ

In a short time interval dt, the probability that the atom
decays is p ¼ γjβj2dt ≪ 1. The wave function then
evolves to

jψðtþ dtÞi ¼ αj↓ij0i þ β

�
1 −

γdt
2

�
j↑ij0i þ ffiffiffiffi

p
p jaij1i:

ðA2Þ
In other words, j↑i decays with probability p to jai,
emitting a photon in the process.
At this point, the environment detects whether or not

there is a photon. If it detects a photon, the j1i component
of Eq. (A2) is projected out:

jψðtþ dtÞi ¼ jaij1i: ðA3Þ

If no photon is detected, the j0i component is projected out
(and normalized):

jψðtþ dtÞi ¼ α

�
1þ γjβj2dt

2

�
j↓ij0i

þ β

�
1 −

γjαj2dt
2

�
j↑ij0i: ðA4Þ

Comparing Eqs. (A1) and (A4), we see that the population
in j↑i decreased a little, while the population in j↓i
increased a little. In other words, the nondetection of a
photon shifts the atom towards j↓i in a nonunitary way.
To account for this effect, we add the non-Hermitian term
to the Hamiltonian [Eq. (2)]. Thus, in the absence of a
decay event, the atom evolves with Heff .
Now, how can the experimentalist measure whether a

decay happened? Detecting the single photon in Eq. (A3) is
difficult. A much better way is to measure the population
in jai by laser-exciting it to another state [Fig. 1(d)]. If the
atom is in jai, it will scatter many photons, allowing one to
measure the population with almost 100% efficiency [8].
Note that it is easier to measure jai after the experimental

run than during. Before doing the measurement, one
would set γ ¼ 0 by turning off the optical pumping laser.
This way, a decay will not occur during the measurement.
(It takes some time to achieve a high measurement
efficiency [8].)

APPENDIX B: JORDAN-WIGNER
TRANSFORMATION

Here, we provide more details of the Jordan-Wigner
calculation for the non-Hermitian model since there are
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some important differences from the Hermitian model.
After doing the Jordan-Wigner transformation and going
to Fourier space, cn ¼ ðe−iπ=4= ffiffiffiffi

N
p ÞPke

ikn ~ck, Eq. (4) of
the main text becomes

Heff ¼
X
k>0

��
~c†k ~c−k

�
Mk

�
~ck
~c†−k

�
−
iγ
2

�
; ðB1Þ

Mk ¼
�
4J cos k − iγ=2 −4J0 sin k

−4J0 sin k −ð4J cos k − iγ=2Þ

�
: ðB2Þ

Let the right eigenvectors of Mk be ðuk; vkÞT and
ð−vk; ukÞT , where

uk ¼
iγ − 8J cos k� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4J cos k − iγ=2Þ2 þ ð4J0 sin kÞ2

p
C

;

ðB3Þ

vk ¼
8J0 sin k

C
; ðB4Þ

where the normalization constant C is such that
u2k þ v2k ¼ 1. The sign convention in Eq. (B3) is the same
as for ϵðkÞ; i.e., the sign convention for each k is such that
the imaginary part of ϵðkÞ is negative.
Then, after diagonalizing Mk, we obtain

Heff ¼
X
k

�
ϵðkÞ

�
η̄kηk −

1

2

�
−
iγ
4

�
; ðB5Þ

ϵðkÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4J cos k − iγ=2Þ2 þ ð4J0 sin kÞ2

q
; ðB6Þ

in terms of non-Hermitian Bogoliubov quasiparticles,

ηk ¼ uk ~ckþ vk ~c
†
−k; η−k ¼−vk ~c

†
kþuk ~c−k;

η̄k ¼ uk ~c
†
k þvk ~c−k; η̄−k ¼−vk ~ckþuk ~c

†
−k: ðB7Þ

The vacuum state jGi is defined via ηkjGi ¼ 0 and is
given explicitly by

jGi ¼ 1ffiffiffiffiffi
N

p
Y
k>0

ðuk − vkc
†
kc

†
−kÞj0i; ðB8Þ

where N ¼ Q
k>0ðjukj2 þ jvkj2Þ is the normalization

constant. Equation (B8) is similar to the BCS ground state
(see p. 272 of Ref. [64]). It is easy to check that ηkjGi ¼ 0.
Note that jukj2 þ jvkj2 ≠ 1 for the non-Hermitian case.
From Eq. (B8), one finds

hσzni ¼
1

π

Z
π

0

dk
−jukj2 þ jvkj2
jukj2 þ jvkj2

: ðB9Þ

APPENDIX C: WICK EXPANSION

Now, we calculate

hσxmσxni ¼ hBmAmþ1Bmþ1 � � �An−1Bn−1Ani; ðC1Þ

hσymσyni ¼ ð−1Þn−mhAmBmþ1Amþ1 � � �Bn−1An−1Bni; ðC2Þ

hσzmσzni ¼ hAmBmAnBni; ðC3Þ

for jGi, where An ¼ c†n þ cn and Bn ¼ c†n − cn. To calcu-
late these, we use Wick’s theorem. However, when apply-
ing Wick’s theorem, it is convenient to use ηk, η

†
k instead of

ηk, η̄k since hGjη†k ¼ 0 while hGjη̄k ≠ 0. So we note that

~ck ¼
u�kηk − vkη

†
−k

jukj2 þ jvkj2
; ~c−k ¼

u�kη−k þ vkη
†
k

jukj2 þ jvkj2
; ðC4Þ

and hηkη†ki ¼ jukj2 þ jvkj2. Then, we do a Wick expansion
of Eqs. (C1)–(C3) in terms of contractions of operator
pairs. For example,

hσzmσzni ¼ hAmBmihAnBni − hAmBnihAnBmi
− hAmAnihBmBni ðC5Þ

¼ hσzmihσzni − hAmBnihAnBmi
− hAmAnihBmBni: ðC6Þ

The pair contractions for An and Bn are

hAmAni ¼ δmn þ
1

π

Z
π

0

dk sin kðn −mÞ
�
ukv�k − u�kvk
jukj2 þ jvkj2

�
;

ðC7Þ

hBmBni ¼ −δmn þ
1

π

Z
π

0

dk sin kðn −mÞ
�
ukv�k − u�kvk
jukj2 þ jvkj2

�
;

ðC8Þ

hBmAni ¼ −hAnBmi ðC9Þ

¼ −
1

π

Z
π

0

dkcoskðn−mÞ
�jukj2 − jvkj2
jukj2 þ jvkj2

�

þ 1

π

Z
π

0

dk sinkðn−mÞ
�
ukv�k þ u�kvk
jukj2 þ jvkj2

�
: ðC10Þ

These expressions are different from the Hermitian case
[30]. In particular, hAmAni and hBmBni can be nonzero
even whenm ≠ n. (This prevents us from writing hσxmσxni in
terms of a Toeplitz determinant and from using Szegö’s
theorem [1,31].)
Since hσxmσxni and hσymσynimay contain many operators, it

is useful to write them in terms of the Pfaffian of a skew-
symmetric matrix [31]:
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hσxmσxni ¼ pf

0
BBBBBBBBBBBBBBBBBBB@

0 hBmBmþ1i hBmBmþ2i � � � hBmBn−1i hBmAmþ1i hBmAmþ2i � � � hBmAni
0 hBmþ1Bmþ2i � � � hBmþ1Bn−1i hBmþ1Amþ1i hBmþ1Amþ2i � � � hBmþ1Ani

0 � � � ..
. ..

. ..
. ..

. ..
.

hBn−2Bn−1i hBn−2Amþ1i hBn−2Amþ2i � � � hBn−2Ani
0 hBn−1Amþ1i hBn−1Amþ2i � � � hBn−1Ani

0 hAmþ1Amþ2i � � � hAmþ1Ani

0 � � � ..
.

hAn−1Ani
0

1
CCCCCCCCCCCCCCCCCCCA

;

ðC11Þ

and similarly for hσymσyni. The elements on the bottom left
are given by the skew symmetry. This matrix has dimen-
sions 2jm − nj × 2jm − nj. The Pfaffian of a matrix can be
efficiently computed using the fact that pfðDÞ2 ¼ detðDÞ,
but this method does not give the sign of the Pfaffian. If
one needs the sign of hσxmσxni, it is necessary to explicitly
calculate the Wick expansion, which is computationally a
lot slower.

APPENDIX D: ASYMPTOTIC BEHAVIORS OF
THE CORRELATION FUNCTIONS

In this section, we analytically evaluate the asymptotic
behaviors of the z-component correlation function,

CzzðxÞ ¼ hσz0σzxi − hσz0ihσzxi
¼ −hA0BxihAxB0i − hA0AxihB0Bxi; ðD1Þ

for long distances. The main goal is to calculate the critical
exponent ν, which describes the divergence of the corre-
lation length as jJ0j increases toward γ=8. We consider the
cases of J ¼ 0 and J ≠ 0 separately.

1. Case of J ¼ 0

In this case, the sign conventions of ϵk and uk are
independent of k. When jxj > 1, we have hA0Axi ¼
hB0Bxi ¼ 0 and CzzðxÞ ¼ −hB0Axi2, where

hB0Axi ¼ −
1

π

Z
π

0

dk cos kx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
8J0

γ

�
2

sin2k

s
; ðD2Þ

which is nonzero only for even x. We follow the procedure
introduced in Ref. [65] to evaluate the above integral in the
limit jxj ≫ 1. We first transform Eq. (D2) into a contour
integral by a change of variable z ¼ ieik, so that

hB0Axi ¼
2ixjJ0j
πγ

I
dzzx−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz2 − z21Þðz2 − z22Þ

z2

s
;

z1 ¼
γ

J0

�
1

8
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1

8

�
2

−
�
J0

γ

�
2

s �
;

z2 ¼
γ

J0

�
1

8
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1

8

�
2

−
�
J0

γ

�
2

s �
; ðD3Þ

where the contour is along the unit circle [solid line in
Fig. 10(a)] and the integral is real. The branch points are
along the real axis because we have defined z ¼ ieik. The
branch cuts are along several segments of the real axis
[jagged lines in Fig. 10(a)]. The branch cuts are chosen so
that the integrand is continuous along the contour. We then
deform the contour to lines between −z1 and z1 [dashed
line in Fig. 10(a)]. Making a further change of variable
y ¼ z=z1, we obtain the integral expression,

hB0Axi ¼ −
8ijJ0j
πγ

ðiz1Þxþ1

×
Z

1

0

dyyx−2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy2 − 1Þ

�
y2 −

�
z2
z1

�
2
�s
: ðD4Þ

Re z

Im z

0 z1-z1-z2 z2

(b)(a)

Re z

Im z

0 z1z2z4 z3

FIG. 10. Contours for the evaluation of pair contraction
functions for (a) J ¼ 0 and (b) an example of J ≠ 0. Solid lines
are the original contours. Dashed lines are the deformed contours.
Jagged lines are the branch cuts.
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Now, we expand the above integral for large x. As in Ref. [65], because of the presence of the yx−2 term, the integrand is
dominated by y ≈ 1. Expanding around y ¼ 1 results in a 1=x expansion of the overall integral:

hB0Axi≐ −
8ijJ0j
πγ

ðiz1Þxþ1
X
n¼0

ð−1Þnþ1ð2n − 3Þ!!
2nn!

��
z2
z1

�
2

− 1

�1−2n
2

×
Z

1

0

dyyx−2ð1 − y2Þ2nþ1
2

¼ −
4ijJ0j
πγ

ðiz1Þxþ1
X
n¼0

ð−1Þnþ1ð2n − 3Þ!!
2nn!

��
z2
z1

�
2

− 1

�1−2n
2

×
Γðnþ 3

2
ÞΓðx−1

2
Þ

Γðx
2
þ nþ 1Þ

¼ −4i
ffiffiffi
2

π

r
jJ0j
γ

ðiz1Þxþ1x−
3
2

��
z2
z1

�
2

− 1

�1
2

�
1þ 3

2x

��
z2
z1

�
2

− 1

�
−1

þO
�
1

x2

�	
; ðD5Þ

where≐means that the two expressions are asymptotically
the same. Consequently, the z-component correlation has
the following asymptotic behavior for even x:

Czzðx ≫ 1Þ≐ −
32

π

�
J0

γ

�
2

x−3z2xþ2
1

×

��
z2
z1

�
2

− 1þ 3

x
þO

�
1

x2

��
; ðD6Þ

or CzzðxÞ ∼ x−3e−x=ξ with ξ ¼ −1=ð2 ln z1Þ. Near the
critical point,

ξ ¼ 1

8ð1
8
− jJ0j

γ Þ
1
2

; ðD7Þ

so the critical exponent ν is 1=2.

2. Case of J ≠ 0

The asymptotic behavior for the J ≠ 0 case can be
carried out in a similar manner. We shall consider only
even x. For jxj > 1, we find

hB0A�xi ¼ Re

�
−
sgnðJÞ

π

Z π
2

−π
2

dk

�
−i cos kx� sin kx

�
−1þ 8iJ cos k=γ

8J0 sin k=γ

�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ði − 8J cos k=γÞ2 þ ð8J0 sin k=γÞ2

q 	
; ðD8Þ

where sgnðJÞ is the sign of J, hA0Axi ¼ hB0Bxi ¼ 0, and
hA0Bxi ¼ −hB0A−xi. We convert the integral into a contour
integral using ~z ¼ ieik again, and we obtain

hB0A�xi ¼ Re

�
ixsgnðJÞ

π

I
d~z~zjxj−1

×

�
4ðJ0∓JÞ � 8J=γþ~z

1þ~z2 γ

4J0

�
~Fð~zÞ1=2

	
; ðD9Þ

~Fð~zÞ ¼ 16ðJ02 − J2Þ
γ2

~z2 −
8J
γ
~zþ

�
32ðJ02 þ J2Þ

γ2
− 1

�

þ 8J
γ
~z−1 þ 16ðJ02 − J2Þ

γ2
~z−2; ðD10Þ

where the contour is along the upper arc of the unit circle
in the counterclockwise sense [solid line in Fig. 10(b)].
Similar to the J ¼ 0 case, we deform the contour along the
branch cut defined by the roots of ~Fð~zÞ ¼ 0 and the origin.

Note that only the segment of the line integral along the
branch cut is real and contributes to Eq. (D8). There are
four and two real roots when jJ0j ≠ jJj and jJ0j ¼ jJj,
respectively. The correlation length is determined by the
largest root with j~zLj < 1 through ξ ¼ −1=ð2 ln j~zLjÞ.
For the purpose of obtaining the critical exponent,
we solve ~Fð~zÞ ¼ 0 near the critical point and get
j~zLj ≈ 1 − ð1=8 − jJ0j=γÞγ=jJj. Therefore, for J ≠ 0, we
have

ξ ¼ jJj=γ
2ð1

8
− jJ0j

γ Þ
; ðD11Þ

so ν ¼ 1.
Following the same procedure, the asymptotic behavior

of the z-component correlation can be evaluated in a
lengthy but straightforward way by expanding Eq. (D9).
We shall not repeat the derivations, but we summarize the
result of the large and even x expansion here:
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CzzðjxjÞ ¼

8>>>>>>>><
>>>>>>>>:

4ðJ2−J02Þ
π jxj−3

�� P
i¼1;2

~zjxji

�
gþi;0 þ

3gþi;1
2jxj

��� P
i¼1;2

~zjxji

�
g−i;0 þ

3g−i;1
2jxj

��
þO

�
1
x2

�	
jJ0j > jJj

4ðJ02−J2Þ
π ~z2jxj2 jxj−3

��
gþ2;0 þ

3gþ
2;1

2jxj

��
g−2;0 þ

3g−
2;1

2jxj

�
þO

�
1
x2

��
jJ0j < jJj

2J
π ~z2jxj1 jxj−3

��
gþ1;0 þ

3gþ
1;1

2jxj

��
g−1;0 þ

3g−
1;1

2jxj

�
þO
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ðD12Þ

where the coefficients g�i;n are obtained from the expansion

G�ð~ziyÞ ¼
X
n¼0

g�i;nð1 − yÞ2nþ1
2 ; ðD13Þ

where we have defined

G�ð~zÞ ¼

8>>><
>>>:

�
4ðJ0∓JÞ�8J=γþ~z

1þ~z2
γ

4J0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~z−~z1Þð~z−~z2Þð~z−~z3Þð~z−~z4Þ

~z2

q
jJ0j ≠ jJj�

4ðJ0∓JÞ�8J=γþ~z

1þ~z2
γ

4J0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~z−~z1Þð~z−~z2Þ

~z

q
jJ0j ¼ jJj:

The roots of Eq. (D10) are labeled such that j~z1j < j~z2j <
1 < j~z3j < j~z4j when jJ0j ≠ jJj, and j~z1j < 1 < j~z2j when
jJ0j ¼ jJj. Figure 10(b) provides a particular example of the
branch structure. We note that the purpose of the expansion
in Eq. (D13), though not convergent around y ¼ 1, is to
obtain the first few coefficients g�i;n for the correlation
function, according to Ref. [65].
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