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The effective Lagrangian for Nambu-Goldstone bosons (NGBs) in systems without Lorentz invariance
has a novel feature that some of the NGBs are canonically conjugate to each other, hence describing 1
dynamical degree of freedom by two NGB fields. We develop explicit forms of their effective Lagrangian
up to the quadratic order in derivatives. We clarify the counting rules of NGB degrees of freedom and
completely classify possibilities of such canonically conjugate pairs based on the topology of the coset
spaces. Its consequence on the dispersion relations of the NGBs is clarified. We also present simple scaling
arguments to see whether interactions among NGBs are marginal or irrelevant, which justifies a lore in the
literature about the possibility of symmetry breaking in 1 + 1 dimensions.
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I. INTRODUCTION

In studies of any macroscopic physical systems, the
behavior of the system at low temperatures, small energies,
and long distances is determined predominantly by micro-
scopic excitations with small or zero gap. It is, hence,
important to develop a general theory to discuss gapless
excitations. Barring special reasons, however, we generally
do not expect any gapless degrees of freedom in a given
system. The important exceptions are (1) a Fermi liquid
with the Fermi level within a continuous band, (2) second-
order phase transitions with scale (and often conformal)
invariance, (3) states protected by topological reasons such
as edge states of topological insulators or quantum Hall
states, and (4) Nambu-Goldstone bosons (NGBs) of spon-
taneous symmetry breaking. The first three cases are
discussed extensively in the literature. We focus on the
last case in this paper because a general theory, so far, has
surprisingly been lacking, despite its importance and long
history.

Spontaneously broken symmetry is a common theme
through all areas of physics. The examples are numerous:
Bose-Einstein condensates of cold atoms, superfluids of
“He or *He, crystal lattices, neutron stars, ferromagnets,
antiferromagnets, liquid crystals, chiral symmetry in QCD,
and cosmic inflation. The universal feature is that it
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guarantees the existence of gapless excitations when the
relevant symmetries are continuous. Once promoted to
gauge symmetries, it is the basis to discuss superconduc-
tivity, the Englert-Brout-Higgs mechanism, and cosmic
strings. The crucial question is the following: What is the
general theory that can describe the number of NGB
degrees of freedom, their dispersion relations, and their
interactions among each other and to other degrees of
freedom? Ideally, the theory does not depend on specifics
of a given system or perturbation theory but is rather
determined by symmetries alone, so that it is applicable
even when the system is strongly coupled or we lack
understanding of the microscopic description.

In systems with Lorentz invariance, the general theory has
already been established back in the 1960s by the celebrated
Nambu-Goldstone theorem [1-3] and later with “phenom-
enological Lagrangians” by Callan, Coleman, Wess, and
Zumino [4,5]. It is important to formulate the theory using
Lagrangians because a Lagrangian is a self-contained pack-
age to describe a system. It determines the degrees of
freedom, equations of motion, Noether currents for sym-
metries, and commutation relations and provides the basis
for perturbation theory using Feynman diagrams and many
nonperturbative methods based on path integrals. In com-
parison, the Hamiltonian formalism [6,7] requires additional
input: what the degrees of freedom are and what their
commutation relations (or Poisson brackets) are. Especially
when at least one of these two is not clear at the beginning of
the discussion, which turns out to be the case for our
purposes, the Lagrangian formulation is essential.

However, many systems we are interested in are not
Lorentz invariant. A finite temperature violates Lorentz
invariance because the Boltzmann weight depends on the
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energy, which is the time component of the energy-
momentum four-vector and hence requires a specific choice
of the reference frame. A chemical potential needed to
describe systems with finite densities couples to the charge
density, which is also the time component of a conserved
four-current. Often, the surrounding environment violates
Lorentz invariance as well. In all of these cases, rotational
invariance may still be present, while Lorentz invariance is
certainly not there.

It is, therefore, of foremost importance to develop a
general theory of NGBs based on symmetry principles
alone without assuming Lorentz invariance. We develop
such a theory in this paper.

NGBs without Lorentz invariance have been discussed
for their obvious importance, as discussed above. The
nonrelativistic [8] analog of one aspect of the NG theorem,
that which ensures the appearance of at least one NGB, was
already discussed back in the 1960s [9-12]. However, the
number and the dispersion of the NGBs have only been
studied on a case-by-case basis until quite recently.

The Nambu-Goldstone theorem says that there must be
one gapless excitation for every broken-symmetry gener-
ator, assuming Lorentz invariance. Moreover, Lorentz
invariance constrains the dispersion relation for gapless
excitation to be @ = ck, where c is the speed of light.

However, these predictions are known to be false in
systems without Lorentz invariance. A classic example is a
ferromagnet. When spins line up macroscopically due to
the nearest-neighbor interaction, it spontaneously breaks
the SO(3) spin-rotational symmetry with three generators
down to the unbroken SO(2) axial symmetry with only
one generator. Despite the two spontaneously broken
symmetries, the ferromagnet exhibits only one NGB.
Moreover, its dispersion is quadratic rather than linear.
In contrast, an antiferromagnet supports two NGBs with a
linear dispersion, although it shows the same symmetry-
breaking pattern SO(3) — SO(2).

More recent examples appeared in relativistic field theo-
ries with nonzero chemical potentials, where examples of an
“abnormal number of Nambu-Goldstone bosons™ are iden-
tified in many contexts [13—19]. Also, spinor Bose-Einstein
condensates in cold-atom systems added a number of new
examples and realized some of them in the actual experi-
ments [20,21]. The dispersion of the softest NGB immedi-
ately modifies the thermodynamic property of the system at a
low temperature. For example, the low-temperature heat
capacity behaves as C(T) « T¢/% for the NGB with the
dispersion @ « k* in d 4+ 1 dimensions. In general, the low-
energy dynamics of systems with spontaneous symmetry
breaking is governed by NGBs, and hence, it is clearly
important to establish a general theorem that predicts the
correct number, dispersion, and interactions of NGBs.

In their pioneering work [22], Nielsen and Chadha
established an inequality that relates the number of
NGBs to their dispersion relations. In their approach,

NGBs are classified as type I (type II) if their dispersion
in the long-wavelength limit behaves as @ o« k*'~!
(w « k*"). Based on the analytic property of correlation
functions, Nielsen and Chadha proved that the number of
type-I NGBs plus twice the number of type-II NGBs is
greater than or equal to the number of broken-symmetry
generators. Note that their conclusion is merely an
inequality, and hence, it does not give any lower or upper
bound for each type of NGB. Also, their classifica-
tion breaks down when the dispersion is anisotropic,

e.g., woxy/ (ky)?+C(k,)*. (See Sec. VI A for an example.)

In a relatively recent paper, Schifer et al. [14] pointed
out the importance of expectation values of the commu-
tators of the broken generators in reducing the number of
NGBs. They showed that the number of NGBs must be
equal to the number of broken generators if ([Q,. Q,]) =0
for all combinations of broken generators. Although their
argument is physically plausible, it contains a few ques-
tionable points. They identified the NG state associated
with the charge Q, as Q,|Vy) (|¥y) is the quantum many-
body ground state) and discussed the possibility of linear
dependence among such vectors. However, it is well known
that, once symmetries are spontaneously broken, broken
generators themselves are ill defined. We should rather
use commutation relations of generators with other local
quantities.

Nambu [23,24] was probably the first to obtain the
correct insight into this problem. He observed that the
nonzero expectation value ([Q,, Q,]) makes zero modes
associated with these generators canonically conjugate to
each other, and hence, the number of NGBs is reduced by 1
per such a pair. However, he did not prove this claim on
general grounds.

With these previous works in mind, the current authors
unified all of the above observations into a simple and well-
defined form by proving them using field theory [25]:

ny = dimG/H — rankp, (1)
1
ng = Erankp, (2)
. 1
nngg = dimG/H — 3 rankp, (3)
ny 4 2ng = dim G/H, 4)
ipab = <[Qa?]19(0)]> (5)

Equation (3) was conjectured earlier in Ref. [26] and was
also obtained independently in Ref. [27]. Here, n, and ng
represent the numbers of type-A and type-B NGBs,
respectively, and nygg = ny + np is the total number of
NGBs. Equations (3) and (4) follow from Egs. (1) and (2).
Ja(x) is the conserved current associated with a broken
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charge Q,= [d’xj)(x). The Lie group G represents the
original symmetry of the system, and H is its unbroken
subgroup, so that dim G/H represents the number of
broken-symmetry generators. Clearly, the symmetry-
breaking pattern G — H is not sufficient to fix the number
of NGBs, and we need additional information [the matrix
p in Eq. (5)] about the ground state.

The definitions of type-A and type-B NGBs are not
based on their dispersion relations but on their symplectic
structure, as we will discuss in detail later. For now, we just
note that, generically, type-A NGBs have a linear dispersion
and type-B NGBs have a quadratic dispersion, but there
are exceptions. Therefore, Eq. (4) can be understood as the
equality version of the Nielsen-Chadha theorem for
most cases.

The above-explained theorem by Schifer et al. can also
be understood as the special case where the matrix p
vanishes, and hence, nygg = dim G/H from Eq. (3). The
matrix p must always vanish in the Lorentz-invariant case,
because [Q,, j(X,1)] = if,<j2(%. 1) in the absence of
central extensions and j#(0) is a Lorentz vector, which
cannot have an expectation value without breaking the
Lorentz symmetry.

In order to prove the counting rule of NGBs and clarify
their dispersion relations, we develop the nonrelativistic
analog of the phenomenological Lagrangian a la Refs. [4,5],
following Leutwyler’s works [28,29]. We derive an
explicit expression of the effective Lagrangian for a general
symmetry-breaking pattern G — H. In this process, we find
a set of terms that have not been taken into account in the
literature.

This fully nonlinear effective Lagrangian contains only a
few parameters that play the role of coupling constants
between NGBs. By analyzing the scaling law of the
dominant interaction, we discuss the stability of the
symmetry-broken ground state. In sufficiently high dimen-
sions, the system is essentially free, as expected. However,
it turns out that, in general, internal symmetries can be
spontaneously broken even in 1+ 1 dimensions. This is
one of the aspects enriched by the absence of Lorentz
invariance—in a Lorentz-invariant theory, the well-known
Coleman theorem [30] prohibits that possibility.

The explicit form of the effective Lagrangian leads to
another nontrivial prediction, that is, a no-go theorem for a
certain number of type-A and type-B NGBs. One might
think that any combination of n, and np subject to Eq. (4)
should be possible. However, for given G and H, possibil-
ities are quite restricted, because type-B NGBs are
described by symplectic homogeneous spaces, which are
special types of coset spaces that admit the so-called Kihler
structure, if G is semisimple. We will discuss how the
possible numbers for type A and type B can be completely
enumerated for any given G and H.

This paper is organized as follows. In Sec. II, we discuss
the most general form of the effective Lagrangian for

nonrelativistic systems and derive differential equations
for the coefficients appearing in the effective Lagrangians
by paying careful attention to the gaugeability of the
symmetry G. We present an analytic solution of the
differential equations in terms of the Maurer-Cartan form
in Sec. III. We also clarify the obstacle to gauge Wess-
Zumino-Witten terms and algebras with central extensions.
Analyzing the free part of our effective Lagrangian, we
prove the counting rule in Sec. IV and derive their dispersion
in Sec. V. We discuss the interaction effect and spontaneous
symmetry breaking in 1 4 1 dimensions in Sec. VL

In Sec. VII, we present the mathematical foundation of
the canonically conjugate (presymplectic) structure among
some NGBs. With this preparation, we completely classify
the presymplectic structure and prove a no-go theorem that
prohibits a certain combination of type-A and type-B NGBs
in Sec. VIIL It is followed by concrete demonstration
thorough familiar examples in Sec. IX.

We will not discuss the counting of NGBs associated
with spacetime symmetries. For those symmetries, the
number of NGBs is reduced not only by forming canoni-
cally conjugate pairs but also by other mechanisms, e.g.,
linear dependence among conserved currents. Hence, the
above counting rule does not hold. See Refs. [31-34] for
more details. Nevertheless, we explain how to impose the
Galilean symmetry, if it exists, on the effective Lagrangian
in Sec. X.

For the reader’s convenience, we present a peda-
gogical introduction to the cohomology of Lie algebra in
Appendix A. We also review how to couple matter fields to
NGBs in Appendix B. Finally, we clarify a confusion in the
existing literature on the relation between type-B NGBs
and the time-reversal symmetry in Appendix C.

II. EFFECTIVE LAGRANGIAN FOR
NONRELATIVISTIC SYSTEMS

In this section, we describe the general effective
Lagrangian for NGBs on the coset space G/H. One way
of deriving the effective Lagrangian is to integrate out all
high-energy modes from an assumed microscopic model.
However, there is an alternative universal approach, which
is more convenient for our general discussion. Namely, we
simply write down the most general Lagrangian that has the
assumed symmetry [35]. Clearly, the Lagrangian derived
from the former approach always falls into this general
form, and all terms allowed by symmetry should be
generated at least in the process of renormalization.

We assume rotational invariance of space but no Lorentz
invariance. There are terms that have not been considered
traditionally. The Lagrangian is considered to be an
expansion in the number of derivatives to study long-range
and low-energy excitations of the system. We restrict
ourselves to terms up to second order in derivatives because
they are sufficient to read off the number and dispersion
relations of NGBs for most purposes. To work out
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symmetry requirements on the functional forms of each
term in the Lagrangian, differential forms turn out to be
very useful.

A. Coset space

Suppose that the symmetry group G of a microscopic
Lagrangian is spontaneously broken down to its subgroup
H. The set of the degenerate ground states forms the coset
space G/H. The low-energy effective Lagrangian is the
nonlinear sigma model with the target space G/H. We
consider only exact symmetries (i.e., without anomalies or
explicit breaking). We also set 7 = 1 throughout the paper.
Except in Sec. X and a few examples in Sec. VI A, we
assume that G and H are compact Lie groups for internal
symmetries.

Let z# (a=1,...,dimG/H) be a local coordinate of
G/H. By definition, the number of fields always equals
the number of broken generators dim G/H. Every point on
this space is equivalent, and we pick the origin z¢ =0
as our ground state. The NG field z(x,r) is a map z:
RY*! — G/H. (d is the spatial dimension.)

z%’s form a nonlinear realization of G. They transform
under €' Q; as

5. = €'hé(r). (6)
Generators h¢(z) can be viewed as vector fields on G/H

hi(x) = ()0, Dy =0 7)
on

and their Lie bracket is identified with the commutation
relation

(i hj) = (R20,he — R2O,HE)D, = fifhe.  (8)

Here, i, j, k, ... refer to generators of G.

In general, we will look for the most general Lagrangian
Lo (7, 7, V, 7,7,V , 74, V,V 29, ...) that only changes by
total derivatives under the transformation in Eq. (6). A
particularly useful choice of the nonlinear realization is
given by the Callan-Coleman-Wess-Zumino coset con-
struction [4,5], which we introduce in Sec. III A.

If the symmetry can be gauged, parameters of symmetry
transformations are local €'(x), and we may introduce
gauge fields that transform as

5:A}(x) = [Dye(x)] = V,ie (x) + /Al (x). (9)

where Al, = (A’,Z’) and V, = (V,, V). However, not all
symmetries can be gauged. Such examples are discussed
in Sec. IITE. In order to keep the full generality, we first
proceed without gauging the symmetry. We will then
discuss the local symmetry and clarify the obstruction.

B. Derivative expansion and symmetry requirements

We postulate the locality of the microscopic Lagrangian;
i.e., it does not include terms containing fields at two

separated points (X,7) and (X,#). Then, the effective
Lagrangian obtained by integrating our higher-energy
modes should stay local [36].

To study the low-energy structure of the effective
Lagrangian systematically, we employ the derivative
expansion. Namely, we expand the Lagrangian in the
power series of the time derivative V, and the spatial
derivative V, (r,s = 1,...,d). We do not require Lorentz
invariance but we do require spatial rotational symmetry.
Because of the lack of the Lorentz invariance, the space
and time derivatives may scale differently. For example,
O(V?) and O(V?) may not be of the same order in a
derivative expansion. We also assume the broken sym-
metries are internal symmetries, and hence, the NG fields
are spacetime scalars.

To avoid possible confusion, we use V,. to represent the
spatial derivative and V, or a “dot” to represent the time
derivative. 0, = /07 (a = 1, ...,dim G/H) refers to the
derivatives with respect to internal coordinates of G/H.

With these cautions in mind, we find the most general
form of the effective Lagrangian [28] up to the second order
in derivatives in 3 4 1 dimensions and above:

1 1 -
‘Ceff: Cq (”)jra +§gab(7[)ﬁaitb _Egab(”)v”a 'v”b' (10)

In 1+ 1 dimensions, there is no spatial rotation, and
therefore, we can add three more terms:

Co(m)V o + Gup () 7V 7" + b (m)a*V,xb.  (11)

Also, in 2 + 1 dimensions, there is an invariant antisym-
metric tensor €, and therefore,

1
_Eb“b (n)e" V7V  z° (12)

is allowed. 9,5, 9up» and g,,, are symmetric, and b, and I;ab
are antisymmetric with respect to a and b. Terms that
contain 7%, V,z%, and V,V 7 can be brought to the above
form by integration by parts.

We discuss that the ¢, () term can be interpreted as the
Berry phase in Sec. IITF. The terms in Eqgs. (11) and (12)
have not been taken into account in Ref. [28]. However,
they preserve the assumed rotational invariance in 1 4 1 or
2 4 1 dimensions and therefore are allowed, in general. We
present an example of them in Sec. III B 4.

There are two subtleties about the terms ¢,(rz) and
b.y(z). First, the energy functional derived by the
Lagrangian (10) plus the terms in Eq. (11) is

1 1 -
/ ddx |:§ gubi.l'aﬁ'h + Egabvxﬂavxﬂ'b — Cuvxﬂ'a . (13)
In the Fourier space, the second term is O(k2) and the last
term is O(k,). Thus, the energy is minimized by a nonzero
k. and the translational symmetry will be spontaneously
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broken. Although the O(k,) term and the O(k2) term
balance against each other, this solution may still be
consistent with the derivative expansion if the coefficient
of the O(k,) term is somehow small. Since our main
interest is in the situation with unbroken translational
symmetry, we will not discuss the consequences of this
term any further.

Second, ¢,(z) and b,,(7) cannot be Wess-Zumino-
Witten-type terms (see Sec. IIIE). They appear in the
energy functional, unlike the terms c,(z) and by (%),
which are linear in the time derivative. In order for
the energy to be well defined, [dx¢,(x)V .z and
[ d?x(1/2)b(w)e™V,xV x° cannot possess the ambi-
guity of 2zk (k € Z). Another way of putting it is the
Wick rotation. In the case of ¢, () and b, (), the factor
of i from their time derivative 0, and from dr in the
integral measure cancel each other out under the Wick
rotation and the ambiguity of the action remains to be an
integer multiple of 2zi. However, if either ¢, () or b, (x)
were a Wess-Zumino-Witten-type term, the absolute value
of the path-integral weight would not be well defined
after the Wick rotation due to the lack of a time
derivative.

Our task is to determine coefficients c,(z), ¢,(x),
gah(ﬂ)’ gab(ﬂ)’ gab(ﬂ)’ bab(ﬂ)’ and bab(”) by imposing
the global symmetry G.

Under global transformation (6), the first term of the
Lagrangian (10) transforms as

8:(cait®) = (h2Bycy + cpDuh?)ic. (14)

By requiring that this combination is a total derivative
V,(e; + c,h?), we find

(abca - aacb)h? = aaei- (15)
Similarly, for &,(z), b(x), and b(x), we have
(abaa - aazzlb)hzb = aaéiv (16)

(aabbc =+ ahbea =+ acbab)hg = 8a€§b - 8beéa’

(17)
(aal;bc + abl;ca + acl;ab)hzq - aaé;'b - ahé;a' (18)

Here, ¢;(x), ¢!,(r), and ¢!, () are also related to the change
of the Lagrangian by total derivatives V,(e; 4 ¢, h¢),
V. [e7 (e}, + baph?)Vab], and V,[(&}, + byyh)V ab]—
vx[(ab + Babh?)ﬁb}‘

In contrast, the second term of Eq. (10) must be invariant
by itself; i.e., they cannot change by a surface term:

5:(gupVr® - Vrb)
— (HEDoGap + GepDahS + GucOph)Va®-Vab =0.  (19)

If the left hand side of Eq. (19) were a total derivative V, A7,
Al would take the form f;,(7)V,z*. However, V, Al then

contains a term V2z¢, which was absent in Eq. (19). Thus,
A7 has to be 0. Therefore,

h$0.Gap + 9epOahi + gacOphi = 0. (20)
The same equation holds for g,,(z) and g,,(x):

B0 Gap + GepOuh + GucOphs =0, (21)

hi0:Gab + GevOahf + JacOphi = 0. (22)

In summary, coefficients in the effective Lagrangian must
obey the differential equations (15)—(18) and (20)—(22)
in order that the Lagrangian has the symmetry G. We also
have to derive the differential equations for e;(x), ¢;(x),
el (n), and ¢!, (x), and it can easily be done by using the

mathematical technique we introduce in the next section.

C. Geometric derivation
1. Equations on c¢(xt)’s and g(x)’s

Here, we rederive the above differential equations by
using differential geometry, to set up notations and
introduce useful mathematical tools for later calculation.
The terms in the effective Lagrangian can be viewed as
one-forms

c(r) = c (n)dn®, (23)
&(n) = ¢u(n)dn®, (24)
symmetric tensors
9(n) = gup(m)dn ® dr”, (25)
9(n) = gap(n)dn ® da”, (26)
§(7) = fup(m)dn® @ dr”, (27)
and two-forms
b(n) = by (n)dn® A dr®, (28)
b(x) = bay(m)dn® A dr® (29)

on the manifold G/H. Note that ¢(z), ¢(z), b(x), and b(r)
do not necessarily exist globally.

In the following, we use Cartan’s magic formula that
relates the Lie derivative Ly, the exterior derivative d, and
the interior product iy:
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Equation (30) is true for arbitrary forms @ and vector fields
X [37,38].

We require the Lie derivative of the effective Lagrangian
along a vector h; to be a total derivative

Ly Logg = dA,;. (31)

Let us first focus on the one-form c¢. To fulfill the
symmetry requirement

Ly.c=d(ipc) +ipdc=d(e; + iyc), (32)
we need
ipdc = de;. (33)

Equation (33) is nothing but Eq. (15). In the same way, one
can obtain

iy de = de;, indb = de/, indb=de/, (34)
which correspond to Eqgs. (16)—(18). Note that the defi-
nitions of ¢;, ¢;, ¢;/, and ¢;/ in Egs. (33) and (34) fix them
only up to a constant or a closed one-form. We will come
back to this ambiguity shortly.

Finally, Egs. (20)—(22) are nothing but the Killing
equation for G-invariant metrics

‘Chig: 0, Eh‘@: 0,

i

If z¢ transforms irreducibly under the unbroken symmetry
H, the invariant metric on G/H is unique and g, g, and g
may differ only by an overall factor. In general, they may
differ by overall factors for each irreducible representation
[see Eq. (84)].

2. Equations on e;(n)’s and e;(n)’s
In order to solve Egs. (15)—(18), we have to specify the
functions e¢;(r) and ¢,(r) and one-forms ¢/(z) = ¢}, (7)dn"
and ¢;/(n) = é!,(x)dn". Now, we show that they obey the
differential equations

Lye;= f,»jkek + zij» (36)
Lye;=fi*er+ 2 (37)
Ly, ¢} = fijkel +dzl, (38)
Lye; = fij*e, +dzj;, (39)

where z;; and Z;; are constants and zj;(z) and Zj;(x) are
functions. For example, given the initial condition e;(0)
and the constants z;;, we can solve Eq. (36) to find e;().

If possible, we always remove z;;, Z;;, z;;(%), and Z};()
from Egs. (36)-(39) by shifting e;(z) and e;(z) by

constants and e}(z) and &}(z) by closed one-forms using
the above-mentioned ambiguity. However, they cannot
always be completely removed. For example, z;; cannot
be eliminated when the second cohomology of the Lie
algebra H?(g) is nontrivial. (See Appendix A for a brief
review of this subject.) In Sec. III E, we show that the
nontrivial z;; corresponds to a central extension of the Lie

algebra.
To derive Eq. (36), we first note that the Lie derivative of
the two-form dc vanishes:

Ly de =d*e; + iy d*c =0. (40)

We also use the commutativity £, d = dL;, and a property
of the interior product

Lyin, = fij¥ing + in,Lh,- (41)
Combining Egs. (40) and (41) with Egs. (33), we obtain

d(ﬁh[ej) = Eh[(dej) = Eh[(l‘h‘/_dC’)
= fij*(ip,dc) + i, (Ly,dc)
= d(fijkek)v (42)

which proves Eq. (36). Exactly the same derivation applies
to Egs. (37)-(39).

D. Local symmetry
Here, we discuss the case where the symmetry G can
be gauged. Since gauge fields appear in covariant deriv-
atives, it is natural to assume that A}, = (A}, A") is of the

same order as V, = (V,, V) in derivative expansion.

Equation (10) is then replaced by the sum of the following
terms [28,29]:

LG = cu(m)i + e;(m)AL (43)
£<0‘2)—1‘ anh
eff _Egab(”)ﬂ %
. - o
- R (@A + 3Ry ANL )

1 .
€80 = Ly 5
=i 2 1 ~i 7
+ hi(m)A -Vﬂ'“—iklj(n’)A AL (45)
Here, k;j(z) and k;;(z) are symmetric with respect to i
and j.

As discussed before, one can add

L0V = ¢, (2)V,2 + &;(n)AL, (46)
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L8 = Gy ()79, 2" — iy () (AIV 2% + AL79)

+ Ky (m)AAL (47)
ﬁ(lvl)” — l; -a b >/ i a i~a
eff - ah( ) v 4 +eia(ﬂ)(Atvx” _Ax” )
+ a;(m)AlA] (48)

in 1 + 1 dimensions, and

1 .
ﬁgf,o)/ =73 by (m)e*V, 2V z° — el (n)e ALV z°

1 o

S ay(m)er ALl (49)

in 2 + 1 dimensions. Here, I~c,-j(7r) is symmetric and a;;(7)
and a;;(r) are antisymmetric.

We require that the action Sz, A] =
invariant under the local transformatlons 7'(x) = n(x) +
S.x(x)and A'(x) = A(x) + 5,A(x), where 5,7¢ and 5.A(x)
are defined in Egs. (6) and (9). Here, we assume that the
infinitesimal parameters ¢’(x) vanish as |x| - 0. The
invariance of the action can be reexpressed as

[ d?xdtL is

0= 5eSeff[ﬂ’ A}

6Seff 5Seff
dxdt a S5.A]
/ [ O s

) oS 08,
= /dddeGI ()C) |:§eaff h? — (Dﬂ)i] 5Aejff:| s (50)

1"

where (D,)/ =67V, + fy/AL. Therefore, the effective
Lagrangian must satisfy

oS eff

() 22— (p, ) Oett
or

SAL

(51)
This condition leads to the differential equations we have
derived above. For example, Eq. (51) for Ei(f)f’l) is

0 = #°[hf(Dyc) —
+ Al[h80,e;

dpca) — Opei]
- fijkek]a (52)

which leads to the differential equations for c,(z) and

ei(r):

hi(Dacy, — Opca) = Ope;, (53)
h?aaej = fl'jkek. (54)
Similarly, for Eé(f)lél) /,
h?(aaéb - abaa) = Ope, (55)
hfaaéj — fijkék' (56)

We can easily work out all the other terms in the effective
Lagrangian in the same way.

Symmetric terms ng)f’z), ng‘o), and Eé}f’l)/ can be
compactly expressed as
1
0.2 _ B
£y = 5 9ab(m) Dy D,x’, (57)
1 - -
£g” = —Egab(ﬂ)pﬂa - D, (58)
ﬁ(l,l)/ - u b
eff gab(”)Dt” Dx” . (59)

Here, D,z = V,z% — h{Al, is the covariant derivative and
9ap(7), Gap(), and g, (7) are G-invariant metrics of G/H,
obeying the Killing equation (35). To verify Eqs. (57)—(59),
one has to use the Lie bracket [Eq. (8)] several times.

Similarly, antisymmetric terms ﬁeff and Ee}fl " can
also be written by the covariant derlvatlve
1
L& = 5 bap (m)e" D,n D, (60)
LG = by (1) DDy (61)

In addition, the two-form b(z) obeys the following
equations:

iy, db = de;, (62)
h€j = fijke;w (63)
in €+ i € =0, (64)
and b(7) obeys
ipdb = dé, (65)
£,8) = .4, (66)
in€j+iye; =0. (67)

These differential equations are almost identical to those
we derived before, except for the following two constraints.
L. zij, Zij, 2jj(#), and Zj;(x) in Egs. (36)~(39) have to
vanish. 2. Additional constraints [Eqgs. (64) and (67)] must
be satisfied. Thus, the requirement of the local invariance is
stronger than the global symmetry. If these additional
constraints are not fulfilled, the symmetry cannot be
gauged. See Sec. II1 E for a detailed discussion of examples
that violate at least one of these conditions.
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III. SOLUTION WITH MAURER-CARTAN FORM

In this section, we present the exact analytic solutions to
the differential equations derived in the previous section.
We initially assume the two conditions listed in Sec. II D,
namely, when the symmetry is gaugeable. Since the end
result can be understood without technical details, readers
without interest in the derivation can directly go to
Sec. III C, where we summarize our result. We obtain
the same result using an alternative formalism of gauging
the right translation by H in Sec. III D. Finally, in Sec. Il E,
we discuss the additional terms allowed when the sym-
metry is not gaugeable.

A. Preliminaries

The Callan-Coleman-Wess-Zumino coset construction
is a famous and useful formalism to achieve a non-
linear realization and building blocks of the effective
Lagrangian [4,5].

The coset space G/H can be parametrized as U(z) = e
with IT = 7°T,. Here, T; is a faithful representation of the
Lie algebra g. Throughout this paper, we use the following
notation. 1. i, j, k, ... refer to generators g, including both
broken and unbroken ones. 2. a, b, c, ... refer to broken
generators g/§). 3. p, 6, 4, ... refer to unbroken generators .
If G is compact, we can always find a unitary representation
of G such that T;’s are Hermitian and orthogonal
tr(7,T;) = A6;;. As aresult, the structure constants become
fully antisymmetric; i.e., f;* = —f,’/ = 0. However, it is
not always convenient to work in this orthogonal basis,
especially when G is not semisimple, and in this section, we
only use f;* = —f;*, which follows just by the antisym-
metric property of commutators.

The transformation law of NG fields under the action of
g € G is defined through the decomposition of the product
gU(z) into the form

gU(x) = U(#'(m, g)) hy(m),

il

hy(m)€H.  (68)

Now, we define an important g-valued one-form on
G/H, the so-called Maurer-Cartan one-form:

w(r) = —iU(n)"dU(n)

- i (,Ej:)ln), L (I, ..., [ILdI0)...]).  (69)
n=0 . —_—

n

In the following, we use the notation w(z) = w,(x)dz* =
o' (m)T; = wly(7)dnT; and A = A'T; = A} T;dx".
Infinitesimal transformation h¢(z) is defined by 7/ =
7% + €h?(x) + O(e?) for g = €Ti. To find their explicit
expression, we compare the order-¢ terms in Eq. (68):

iy, 0 = hi(r)w,(r) = v/ (2)T; = T,k (x).  (70)

where k/(z, g) is defined by h,(z) = €/* =97, and

:i(‘n’? L[ LT (71)

By solving Eq. (70), we can compute h¢(x) around the
origin as

1
Bo(x) = 2 i+ 3B o+ O), (72)

|
hZ(ﬂ') = 5Z +§ﬂ'cfc/,a + O(ﬂ'z). (73)

Note, in particular, that A7(0) = &}, and A5 (0) = Oatz = 0,
meaning that the broken generator /i, shifts z¢ and that
the unbroken generator s, does not change the ground
state.

The transformation law of the Maurer-Cartan form
follows from the definition (68):

(x') = —i(h,U'g")d(gUh)
= h,o(n)hy — ih,dh}. (74)
It is convenient to decompose the Maurer-Cartan forms

o =, + o), where o, = 0T, are in g/h while o =
@’T, are in §. Since hgdhz, € b, we have

o, (') = hyw, (z)hj. (75)
wy (') = hywy(7)hj — ih,dh. (76)
Their infinitesimal versions are

Ly,0°(z) = —f k] (m)oo" (7), (77)

1

Lyaf (n) = =f"ki(m)o (x) — dik(z).  (78)

When we gauge the symmetry G by introducing gauge

fields that obey the transformation rule in Eq. (9), the

Maurer-Cartan form no longer transforms covariantly, i.e.,

does not obey Eq. (75) for local transformation. Instead, the
combination

(@1),Dr" = (w.),(dn" — h{A")
= [-iUT(d —iA)U|, (79)
transforms covariantly.

It is also straightforward to verify the following useful
relations:
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doo*(x) = % fitol (m) A wl(x), (80)

£I1,-ij (7)

dvit()

= fijll/lk(”) - f/)lkké)(”)pjl(”)v (81)
= [ (m)v!(m). (82)

Finally, we note that the last line of Egs. (69) and (71) is
written in terms of commutation relations. Therefore, the
Maurer-Cartan form @(z) and generators h;(z) do not
fundamentally depend on a specific choice of the repre-
sentation of T;.

With these preparations, we now present our analytic
solutions to the differential equations derived in Sec. Il one
by one.

B. Explicit solutions

1. g(m)’s
As the first example, here, we show that
9(7) = gup(0)* (7) @ () (83)

is the solution to the Killing equation (35). If NGBs
transform irreducibly under the unbroken subgroup H,
constants g.,(0) must be proportional to ;. In the most
general case, g.4(0) has to be invariant under unbroken
symmetries; namely,

fpacgcb (0) + fpbcgac(o) =0, (84)

which can be derived from the Killing equation (35) at the
origin 7 = 0 with the help of Eq. (72).

To see that g(z) in Eq. (83) is the solution of Eq. (35), we
use Eq. (77):

Ly,9 = L,[9:4(0)0 (7) @ 0 (7)]

= 9ea(0)[(Ly,0°) @ 0 + 0 @ (L},0)]

- _kf[ged(o)fpce + gce(o)fpde]wc ® wd' (85)
The combination in the square brackets vanishes thanks to
Eq. (84). Solution (83) also respects the initial value since
o = drn® at # = 0. Hence, Eq. (83) is the unique solution

of Eq. (35).
The same is true for g,,(z) and g,,(7); i.e.,

9(7) = gup(0)a () ® " (7). (86)

9(7) = G (0)0’ (7) ® 0" (7). (87)
with

Fra“Gen(0) + fpp°Gac(0) = 0, (88)

Fa“9eb(0) + S b Gac (0) = . (89)

2. e;(m)’s
We now prove that
e;(n) = v/ (n)e;(0) (90)

is the solution of Eq. (36) when z;; = 0. By multiplying
e;(0) to Eq. (81), we get

Ly, v (m)e(0)]
= fij' v/ (x)e(0)] —

The second term vanishes because Eq. (36) at 7 =10
implies

[l er(O)]K] (m)v)! (=).  (91)

fpjkek(O) =0. (92)

Therefore, Eq. (90) satisfies the differential equation (36).

Combined with v;/(0) = 5! [see Eq. (71)], we conclude that
Eq. (90) is the unique solution that is consistent with the
initial value.

Similarly,

Z’i(”) = l/ij(”)éj<0)’ fpiké

is the solution of Eq. (37).

«(0)=0  (93)

3. c(n)’s
Next, we claim that
c(n) = —w'(n)e;(0) + dy, (94)

is a solution of Eq. (33), where y is a smooth function. First,
we multiply e, (0) to Egs. (80) and (82) to get

Ao (x)e,(0)] = 3 f* 0 () A o (2)e,(0) (95)
dey(r) = dluy (x)e,(0)] = f 0/ (2) (£)er 0).
(96)

Further operating ij, to the former equation, we have

iy, de () = iy, [~ (z)e,(0)]

=—fz, [is, @' ()]0’ (7)€, (0),

= fi'vi () (w)er(0) — [f " ex (0)]K] ()’ (m)

= de;(rx). (97)
In the derivation, we use Egs. (70), (92), and (96).
Therefore, ¢(z) in Eq. (94) indeed obeys the differential
equation. The undetermined part dy is a total derivative

term in the Lagrangian.
Similarly, ¢(z) = —w'(x)e;(0) up to a closed one-form.
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4. e/(x)’s and b(n)’s

In the same way, it is not difficult to verify that

&i(n) = &, (0)} (m)w (n) (99)
are the solutions of Egs. (38) and (39) and that

b(n) = —e.,(0)o(z) A 0¥ (x) +dy’,  (100)

b(x) = =2 (0)a" (z) A () +df  (101)

are the solutions of Eq. (34). Constants ¢/,(0) and ¢/,(0)
have to satisfy

,,(0) =0, el,(0)+e,,0) =0,
fpace/ch(o) + fpbceilc(o) =0 (102)
and
E;)a (0) = O’ é;b(o) + E/ba (O) = 0’
f/)acélcb (0) + f/)bcéilc (O) =0. (103)

One can see that a condition for the gaugeability (64) is
indeed fulfilled since

in €, () = € ()8 ()i, 0 (x)] = € (O)h(x)us (104)
is antisymmetric with respect to i and j, thanks to the
second relation of Eq. (102).
Among constants ¢/,(0) that satisfy the above condi-
tions, those which can be written as
e;’a(o) = fiakckv f/)ikck =0 (105)
give only a total derivative term in the Lagrangian. Indeed,
from Eq. (80) and f,;*C; = 0, it follows that
d[Ck(l)k] = fabkckwa A (l)b. (106)
For example, for G/H = SO(3)/SO(2) = §?, the choice
el (0) = e, satisfies all conditions in Eq. (102). In this
case, €,,0" A o is nothing but the 6 term:

(107)

up to an overall factor, which is expected since ¢, can be
written as f,° = €4p.. (C; =1, and C, = C, =0.)

An example of b,,;,(7) terms that are not a total derivative
is given by the coset SU(3)/U(1) x U(1). We use the
standard notation of Gell-Mann matrices 4; (i = 1,...,8)
and set T; = 4;/2. In this case,

0’ A @’ (108)
are candidates for b, (7)dn® A dz”, but we have to pay
attention to

1
do’ = o' /\wz—l—i(w“/\ws—w6/\w7), (109)

3
da)8:7(a)4/\a)5—|—a)6/\w7). (110)
Therefore, only one of the three in Eq. (108) is not a total
derivative and affects the equation of motion.

C. Summary of the Lagrangian

Let us summarize what we have shown above. We found
explicit analytic solutions for differential equations derived
in Sec. II under the assumptions that the symmetries can be
gauged. (See the conditions discussed in Sec. 11 D.)

In 34+ 1 dimensions, the most general effective
Lagrangian that has the internal symmetry o.7%=
€'(x)h¢(n) and §.Al, = V,€'(x) + [ 'Ajek(x) as well as
the spatial rotation is given by

Lo = cq(m)7" 4 ¢;(n)A]

1 1 > >
+’§ab(”)pt”apz”b _igab(”)pﬂu - Dr” (111)

2
to the quadratic order in derivatives. Here, D,z = V 7 —
h¢(m)A}, is the covariant derivative. The coefficients ¢,(r),
e:(7), gup(x), and Gy () are given by

ca(m) = —wl(m)e;(0), (112)
ei(m) = v (x)e;(0), (113)
9ab(7) = gea(0) a0l (w) e} (7). (114)
Gab (%) = Gea(0)ooG (m)f (7). (115)

Here, o} (7)T; = —iU(z)"0,U(x) [U(x) = €™ 1] is the
Maurer-Cartan form. The function v;/(x) is defined by
v/ (m)T; = U(x)"T;U(x). The generator h¢(rr) can also be
solved from hé(m)wh(x) = v (n).

The Lagrangian contains only a few parameters
(coupling constants) e;(0), g¢,,(0), and §,,(0). They
have to be invariant under unbroken-symmetry
transformation; i.e.,

fpijej(O) =0, (116)
fpacgcb(o) + fpbcgac(o) = Ov (1 17)
fpacgcb (0) + fphcgac (O> =0. (1 18)
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If we further demand the Lorentz invariance, g,,(0) =
¢ 29,(0) and e;(0) =0, so that the Lagrangian is
reduced to

1
‘Ceff = Egab(ﬂ)pﬂﬂapﬂﬂb. (119)
Equation (119) is exactly the leading-order term of the
standard chiral perturbation theory. Therefore, our effective
Lagrangian equally applies to Lorentz-invariant systems.
In 2 + 1 dimensions, one can add

1
~5 by (7)€" D,nDynb (120)
to the effective Lagrangian (111), where
bay() = —e. ,(0)w(m) ol () (121)

with constraints [Eq. (102)] on €/, (0).
Similarly, in 1 + 1 dimensions, the following terms are
allowed:

¢ V.1 + &AL + §,,DaD,x’ + b, D,nD,xb, (122)

where
Ea(m) = =0y (m)2,(0), (123)
e;(n) = u,f(n)?z](o), (124)
Ja(7) = Gea(0) s (m) i (7), (125)
bap(7) = —&,4(0) s (m) (), (126)

with constraints [Eqgs. (89), (93), and (103)] on coupling
constants.

D. Gauging H rather than modding

It is well known (see Ref. [39] for a review) that the coset
construction on G/H is equivalent to that on G with the
right translation by H gauged. Here, we use the notation H
that commutes with the left translation by G, as opposed to
H C G, that does not commute with G. The gauging of the
unbroken H symmetry eliminates unwanted NGBs. Using
this method, it is now somewhat more transparent to derive
the action in the differential-geometric method above
because the transformation laws are linear.

We first consider U = e with I1 = 7T, + n* T, for all
generators of g. Namely, 7, € § and T, € g/}. Under the
global symmetry G, U transforms as the left translation

U(r) - gU(x) = U(x). (127)
On the other hand, we require a local symmetry under the
right translation by H

U(z) - U(r)h(x). (128)
Note that gauging the right translation of H is different
from the gauging we studied in the previous sections that
corresponds to the left translation.

The point here is that one can always take the gauge
77 = 0. In order for U to stay in this gauge, the global
transformation needs to be accompanied by a gauge
transformation

U(x) — gU(x)hi(x) = U(x) (129)

with a suitable choice of i, € ‘H. The end result is therefore
equivalent to writing the theory on G/H.

We introduce a gauge field A = A’T, = A,dx* for the
right-translation gauge group H so that the Lagrangian is
invariant under both the global G and the local H. Note that
we use a different symbol from the gauge field A’ in the
previous section [see, e.g., Eq. (79)] for the left translation
under G. The Maurer-Cartan form @ = —iU'dU is invari-
ant under the global G, while it transforms as

w — —ih"U'd(Uh) = h'wh — ih'dh. (130)

On the other hand, the gauge field transforms as usual:

A = W' Ah + ihidh. (131)

Then, the combination

w+ A (132)

is gauge covariant. As before, we decompose the Maurer-
Cartan forms @ = @, + w), where , = 0T, are in g/}
while w; = @”T, are in §. Then, the inhomogeneous
transformation occurs only on wj:

(133)

w, = h'w, h,

)+ A= h(o) + A)h. (134)
Therefore, we can build an invariant Lagrangian just by
focusing on local H invariance on @, and o + A.

We introduce the notation for the pullback of Maurer-
Cartan forms to space and time:

m'w = @dt + @ - dx = —iU'0;U(z'dt + V' - dX).

(135)

They are decomposed as
=T, +a'T,, (136)
o =a'T,+&'T,. (137)

The general Lagrangian at the second order in the time
derivative is
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1_ o 1 . i
‘ceff = Eguh (O)wuwh + Egpa(o) (a)ﬂ + Aﬁ‘))(w” + A?)
1 ey =y 1 ey
=59 (0)" - & =2 o (0)(@ + A') - (@ + A7).

(138)

945(0), G,5(0), 9a,(0), and g,,,(0) are all constants subject
to H invariance, as in the previous section [see Eqgs. (117)
and (118)].

Because the Lagrangian is quadratic in A, we can
integrate it out and find
In addition, we can perform a gauge transformation in H

to remove all 7” without a loss of generality. Then, the
Lagrangian reduces to the form

1 1

Lett = = Jap(0)@1 @5 — = g, (0)@4 - @Y,

5 5 (140)

which can be easily verified to be the same as what we
derived in earlier sections.

So far, everything is well known. Now come the new
terms we discussed in previous sections.

We first discuss terms with a single derivative. If the
generator T, € g/} commutes with H, »* — h'w’ h = o°
and hence is invariant. Therefore, we can add it to the
Lagrangian. On the other hand, if the generator 7, €
commutes with H, it generates a U(1) subgroup, and hence,

o — ho’h—i(hdh) = o’ —id(logh)’.  (141)
Namely, the shift is a total derivative. It is also allowed as
a term of the Lagrangian. In addition, the combination
(w” + A”) is invariant. Therefore, the following terms are
allowed:

LOY = —¢,(0)0" —e,(0)0” —2,(0)(w + A7) (142)
The last term is removed after integrating over .4” together
with the quadratic terms. Therefore, we only need to
consider the first two terms, which are nothing but

ﬁé%ll) = —e;(0)w), 7%, (143)
which we derived in Eq. (94).

The antisymmetric tensor can also be included in the
same fashion:

L = =5 €)@ x

e’ ,(0) is invariant under H [see Eq. (102)]. The second line

is again eliminated by integrating out A”, and the first line
again can be shown to be the same as the previous result.

The central extension or Wess-Zumino-Witten terms,
however, cannot be written using Maurer-Cartan forms
because they are not gaugeable, as we discuss in the
following section.

The advantage of this formulation is that the only
question is to find H-invariant tensors. It is, therefore,
easier to generalize to higher-derivative terms than solve
the differential equations. In that case, integration over the
gauge field needs to be done by an order-by-order basis
because the Lagrangian is no longer quadratic in the
gauge field.

Note that we integrate out the gauge fields .A to show the
equivalence to the results in the previous sections.
However, they can be kept in the Lagrangian as non-
dynamical auxiliary fields. For some applications, such as
large-N expansion, it is more convenient to keep them.

E. Central extensions and Wess-Zumino-Witten term

We have presented our analytic expressions of the
effective Lagrangian in terms of Maurer-Cartan forms,
assuming that the symmetry G is gaugeable. The conditions
for the gaugeability are summarized in Sec. II D. In this
section, we discuss examples in which at least one of these
conditions is violated, making it impossible to gauge the
symmetry.

1. Central extensions

Let us consider the case G = U(1) x U(1) and H = {e}.
The NG fields ¢* (a =1, 2) independently change by a
constant under G. In such a case, the effective Lagrangian
may contain
(145)

. C )
ca(@)p* = Eeab(ﬂa§0b ,

with C a constant.

Here, we explain that the one-form ¢ = (C/2)e ,¢"dg”
ends up with nonzero z;;’s in Eq. (36). To that end, we first
compute e,(¢) following the definition in Eq. (33):

C
de = Eeabd(p“ A do?, (146)
i, dc = Cepdg® = de,,, (147)

where h, = 8,. Therefore, e, = Ce,,¢" up to a constant.
Their Lie derivative is

Ly ep = 04ep = —Cépp. (148)
Comparing Eq. (148) with Eq. (36), we see z,, =
—Ce,, # 0. Therefore, the symmetry G cannot be gauged.
The Lagrangian
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on C )
Eéff )= — €@ @’ + CeyppPAl

> (149)

changes not only by a surface term V,(Ce,,ep”)/2 but
also by €9z,,A5 = —Ce, e Ab.

To make a connection to central extensions, we note that
conserved charges of the internal symmetry G are domi-
nated by Q, = [dxj% = [ d’xCe,,¢". Their commuta-
tion relation can be computed by using the commutation

- =/

relation [p! (X, 1), @*(¥',1)] = —C7'64(x — ¥') as

[Qa’ Qb] = —i€ahCQ, (150)

where Q is the volume of the system. Naively, the shift
symmetries ¢“ — @ 4 ¢ for a = 1 and a = 2 commute
with each other but Noether charges do not. The right-hand
side of Eq. (150) is the central extension of the g = u(1) x
u(1) algebra.

The shift symmetry v’ =y + ¢ (c € C) of the free-
boson Schrodinger field theory [40]

_ Lt — i) — Ot §
L=sWh—yly)—5 Vy' - Vy (151)
cannot be gauged due to the same reason, although the
phase rotation y — e can be gauged.

The central extension is possible only when the second
cohomology of the Lie algebra H?(g) is nontrivial. Namely,
G must have at least two Abelian generators that commute
with all the other generators. [See Appendix A for a brief
review of H?(g).] Therefore, the corresponding terms in the
Lagrangian are always of the form —(1/2)z,,¢%¢®", where
@® are the NG fields for such Abelian generators, which
leads to the extended algebra [Q,, Q)] = i7,,9Q.

Note that the coefficient C is quantized when G/H is

compact. See the discussion at the end of Sec. VII D.

2. Example of Z;()
We now give an example of nonzero Z;; (z) inEq. (39). We
take G=U(1)={(¢".¢*.¢°)|p'€[0,27)} and H={e}.
The effective Lagrangian may contain

1,1 7 . .
‘C’iff "= bab((p)goavx(pb = 5 eabcgocwavx(pba

k
3(2x)
(152)

which can be regarded as the two-form b = (k/3!)(27) 2x
€ape@ dp® A dp”. The one-form ¢,/ (¢) can be computed as

~ k
db = —— de® A doP A do°, 153
3!(2ﬂ>2€abc P P @ ( )
db = d —~ bdee ) = de,/ 154
lp,db = 2(2—ﬂ)2€abc€0 @ | =ae,. ( )

Therefore, &, (@) = (k/2)(27) %€ 4.0"dp° up to a closed
one-form.

Let us check conditions for gaugeability summarized in
Sec. II D one by one. First, Eq. (64) is satisfied since

ipep = 2(2—ﬂ)2€abc€0c (155)

is antisymmetric with respect to a and b. However,

k -
(= sppgpens ) =

Hence, 7/, (¢) = —(k/2)(27) € p.° # 0 up to a constant.
This nonzero 7/, is the obstruction to gauge the symmetry G.

Note that the coefficient k must be an integer to ensure
that the Lagrangian changes only by integer multiples of 2z
under the periodic shift ¢* — ¢@* + 27z, because the inte-
grand e’ in the path integral must be single valued even
though the action S itself is multivalued. (See the discussion
at the end of Sec. VIID.) On the other hand, this type of
term is not allowed in ng.o)f:_(l /2)bay, (7)€" V .29V 1t
in Eq. (49) because the Hamiltonian must be single valued.

['haéb/ - (156)

3. Wess-Zumino-Witten term

In general, we can write a similar term whenever
H3:(G/H) [37,38] is nontrivial. (Here and below, H'
refers to de Rham cohomology, the space of closed but not
exact n-forms.) Then, there is a nontrivial closed three-form

@3 on G/H. Because wjs is locally exact w; = db, we can
take the (1 + 1)-dimensional spacetime that is Wick rotated
and compactified to Euclidean space S?> = 0B; as a
boundary of a three-ball B;, and we can have

fom=
Bs §?

as a part of a Lagrangian or a Hamiltonian.

Note that there is, in general, more than 1 B; in G/H
whose boundary is $? = OB;. Therefore, the action is
defined only up to an integral of w3 over a closed three-
surface in G/H. To ensure that ¢’/" in the path integral is
single valued, the difference may only be integer multiples
of 2zh [41]. It requires a quantization condition on the
coefficient of terms of this type. The same quantization
condition can be obtained from the requirement of the
associativity of the group elements [42].

An important example is the Wess-Zumino-Witten
term [43]. This term exists for any compact simple G and
H = {e} because H3(G) = R. It is defined with

(157)

kA
-1 31 — a b c
7 ”tr[(U dU)’| 24ﬂfabca) NN
(158)

w3 =
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with k an integer, which is sometimes referred to as the
level. Here, we normalize T, as tr[T,T}] = A8, so that the
structure constant is completely antisymmetric. In order for
the path integral ¢’S to be single valued, k must be an
integer in 1 4+ 1 dimensions. (See the discussion at the end
of Sec. VIID.) Also, because of this ambiguity of 27k, the
Wess-Zumino-Witten term cannot be used to construct a
b(r) term since it takes part in the energy functional, as
noted before.

Consider the transformation U(x) — U(z') = gU(x).
Obviously, for a global g, w3 does not change. However,
b can change. To see this possible change in b, let us
temporarily regard g = ¢’ as local and consider infinitesi-
mal change up to the linear order in idv = g~'dg

127, -~
7”5(5119) = tw{[U~'dU + U~ (g7 dg)U)® — (U~'dU)>}
=3tr[g'dg(UdU")?]
= 3idtr[p(UdU")?], (159)
and hence,
- ik B
b = te[p(UdU~)?). (160)
iy4

Now, we can set v to be constant. Then, we see that

~ ik ik
8b = — u[o(UdU")*] = ——du[pUdU™! 161
ulo(UaU ) =~ duloUdU] (161)
is indeed a total derivative. _
There is no compact way to write w3 = db, but the
following trick works for a power-series expansion in z. By
defining U, = /™ for a real parameter t, it is easy to show

0
—U;'dU, = U7 (d)U,, (162)
Ot
and therefore,
9 —1 3 ; —1
g tr[(U;'dU,)°| = =3idu[[1dU, A dU;). (163)
T
We can integrate the both sides and find
- ik [1 .
b=—— [ dwtr[l1dU, A dU;] (164)
A 0

to obtain an explicit form in a power-series expansion in IT.
To the leading order in 7z, we find

=~ kA
b= ——fupen®dn® A dn¢ + O(z*). (165)
247

Since z¢ shifts under the G transformation, we can see that
b changes by a total derivative.

It is well known that the Wess-Zumino-Witten term
cannot be gauged. To clarify the obstruction, we now
compute ¢;(x):

oo~ kA, 1
i, db = E(lhd@a) <§fabca)b A COC)
kA . _ ki . .
—Eydd(l) ——Ed(uda) ), (166)

where we use Egs. (70) and (80). (Since we assume all
generators are broken, terms with indices p, o, ... should be
neglected.) The last equality can be shown backward:
d(V4e®) = (dvf) N o + v4dw®
= (fape®™05) N 0 + V4da*
= —V5f upe @ N o’ + vida®

= -205do + Vjdo® = —1v5dw”, (167)

where we use Eq. (82) in the first line. Comparing Eq. (166)
with Eq. (34), we find

e, = ——150° (168)

up to an exact one-form.
Having obtained ¢/, (7), let us now check the gauge-
ability condition. First, the Lie derivative of e}, () satisfies

kA

Ly e, = ~in (L, vh)0f + v5 (L), 0°)]
kﬂ C C ~!
= _E (fabdydw + O) = fabcew (169)

meaning that z/, (7) does vanish, according to Eq. (38).
However, since

k kA k
. > C (5 C\ — C4,C
ip €, = —4—”1/b(1haa) ) =——Uivs = ——0u

170
A 4 (170)

i, €, is symmetric, rather than antisymmetric, with respect
to a and b, and therefore does not satisfy Eq. (67).
Therefore, the Wess-Zumino-Witten term cannot be made
gauge invariant.

In the derivation of Egs. (169) and (170), we use
Eqgs. (70), (71), (77), and (81).

Another example of this type is G/H =U(1) x
SO(3)/S0(2) = ' x §* with H3x(G/H) = Hlx(S") x
H3; (S?) = R. Parametrizing the coset space with ¢ for
S! and the unit vector 1 for S, we can write

L) — kﬁﬁ (7 x V,70). (171)
Under a constant shift of ¢ by 2z, the change is a total
derivative in space, and hence, the Lagrangian is U(1)
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invariant. However, for a local shift of ¢, it changes the
Lagrangian and hence is not an invariance.

Note that the shift of ¢ by 2z does not change e
path integral because

in the

| R >
/dtdxgn -(nxVun)ez (172)

is the winding number of §? — §2, as long as k € Z.

F. Berry’s phase

Finally, we discuss the interpretation of the linear time-
derivative term of the effective Lagrangian as the Berry
phase. Terms of our interest are

L = co(m)i® + e;(n)A]

— —wi(n)ie,(0) + e, (O (WAL (173)
We apply a set of infinitesimal external fields A} = u/(t)
that slowly depend on time. NG fields z¢ condense in such

a}dlm G/H

a way that {n minimize the potential

(174)

at each time. Now, we consider a closed path x/(f) in the
parameter space {u'}¥mMG NG fields adiabatically depend
on time through external fields, i.e., 7 = 7z%(u(t)). Under
this process, the ground state |¥,) evolves as

V(1)) = e

where Q, = [ d?xj%(%, 1) are broken generators. Note that
7% here is a ¢ number, not an operator, that is fixed by u(z).
The Berry phase acquired under this cyclic process is

Opp = /dti<\I/(t) jt\ll(t)>

0w, (175)

=- / dtwé(ﬂ(ﬂ(t)))w<wo|Qi‘\Po>
= —/dtddxa)ﬁl(zr)ir“e,-(O), (176)
where ¢;(0) = (¥|Q;|Wo)/Q = (W[} (%, 1)|¥o) due to

the translational invariance of the ground state. Again,
we have used the fact that the Maurer-Cartan form w/,(r)
only depends on the commutation relation and not on
the specific representation. Equation (176) reproduces the
c,(m) 7 term of the effective Lagrangian, except for the x
dependence of 7.

To treat the coordinate dependence properly, we intro-
duce external fields ' = u'(x,t) that are slowly varying
over both space and time. In this case, the ground state is
given by

[T (1)) = M Ty). (177)

(t) = /dtd"xjg(?c, Hrtlu(x,1)]. (178)

To compute the Berry phase, we have to evaluate commu-
tation relations

(Wol[IL [...,
~—

n

[IL V. 1]....J][%)

— [ drdali (1L .. 1. 2GR ). 0
~—~

n

— 729V (Uo|[IL [.... [TL. J, (%, £)]..

~—

n

o)l (179)

Here, we use the current conservation V,j(X,7)+

V-j, (x,1) = 0. The second line vanishes since we assume
the rotational symmetry of the ground state. Also, due to
the translational symmetry of the ground state, the
expectation value of the commutator in the first line
does not actually depend on X or . Using the current
algebra [j0(x. 1), 2(X'. )] = if;;*jL(X)6?(X — X'), one can
easily show Eq. (176) with the proper coordinate depend-
ence of z¢.

IV. NUMBER OF NAMBU-GOLDSTONE BOSONS

In the next two sections, we will make use of the
effective Lagrangian developed in the previous section to
derive several rigorous results on the number of NGBs. To
be consistent with the assumed broken symmetries, in this
section and the next sections, we assume 2 + 1 or higher
dimensions.

In order to discuss the number and dispersion relations of
NGBs, we focus on the free part of the Lagrangian. We will
justify ignoring the interaction terms in Sec. VI A. Keeping
only the quadratic terms in 7 in Eq. (111) and setting
Al, =0, we find

1
Legt = = fab ek(o) b

1 1 > >
+_gab(0)”aﬂb - Egab( )v”a : v”b'

5 (180)

Note that the b(r) term does not contribute to the free part.
When z;; in Eq. (36) does not vanish, e;(z) and ¢;(x)

receive a contribution from z;;:

ei(m)

= ¢;(0) + 7°[f 1, ex(0) + 23] + O(x?), (181)

ulr) = €,0) + 32 futen(0) + 2] + O(). (182)
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[The condition [Eq. (92)] should also be replaced by
f pibeb(O) + z,; = 0.] Including this contribution, we have

1 1 1 - -
L = E%hﬁaﬂb + Egah(o)ﬁ%b - Egah(o)v”a -Va?,

(183)

where 6,5, = f %€ (0) + z4p-

A. Derivation 1

The parameter ¢;(0) is related to the expectation value
of the conserved charge density. From Noether’s theorem,
the conserved current associated with 6;7¢ = h{ can be
derived as

P) = eilx) - Gu(@he@a.  (184)
Note that the conserved-current operators are free of
anomalous dimensions even in the presence of interactions
because j¢ — Zj? would violate the commutation relations
0. 90 = if i )(x)5(x — y). The absence of the
anomalous dimensions is the nonrenormalization theorem
of conserved currents. Therefore, its expectation value is
that of the origin

(185)

We present explicit calculations in Sec. VIB and an
alternative argument in Sec. VIC to support this point.
Now, let us define a real and antisymmetric matrix p by

ipar = ([Qar Jp(¥)])- (186)

Assuming the translational invariance of the ground state,

Pap 18 independent of x. We see that p,, is related to the first
term in the effective Lagrangian:

Pab = _i<[Qaﬂ Jg(x)]>

= fap' U} (%)) + zap = Oup- (187)

One can always block diagonalize p by an orthogonal
matrix as

lO'yll

(188)

Here, o, is the Pauli matrix and m = (1/2)rankp. On this
basis, the first term of the effective Lagrangian becomes

> dgmie Tt = ymPil e A, (189)

a=1

In the presence of these single time-derivative terms, one
can neglect O(V?) terms at a sufficiently low energy.
Therefore, A,7°* (no sum) is, in fact, a canonically
conjugate valuable to z?*~!. They together represent 1
low-energy degree of freedom, rather than 2. We call those
NGBs that are generated by a pair of canonically conjugate
generators type B, while the rest are type A. By definition,
the number of type-A and type-B NGBs is given by

ny = dim G/H — rankp, (190)

1
ng = 3 rankp.

Equation (190) proves the counting rules in Egs. (1) and
(2). As a corollary, the number of NGBs always falls into
the range

% dim G/H < nygg < dimG/H. (191)
Equation (191) is obvious since 0 < rankp < dimG/H.

Note that our definitions of type-A and type-B NGBs are
not based on the dispersion relation. They are instead
classified based on the structure of time derivatives that
defines the presymplectic structure (see, e.g., Ref. [44]), as
we discuss in Sec. VIL. These canonically conjugate rela-
tions among fields are the close analogs of Poisson brackets
in the Hamiltonian formalism [6,7]. Note, however, that
they had to provide the Poisson brackets in order to
reproduce the microscopic theory, while in our case, we
derive the commutation relations from the first principles for
each possibility we can classify.

B. Derivation 2

Another way of deriving the same result is to make use of
the canonical commutation relation. Let us go back to the
first term of the Lagrangian %aabnbﬁ“. Here, we assume
that ¢ is block diagonalized as

: /
io, Ay

A #0(a=1,...,m).
ioy Ay,

o
(192)

We denote by ¢’ the 2m x 2m upper left part of the matrix
o, which has the full rank.

When we neglect the O(V?) term of the effective
Lagrangian, there are m constraints of the second class
in the system. By following Dirac’s quantization procedure,
one can derive the equal-time commutation relation
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(%X, 1), 2" (X', 1)] = i(o'~")Pasd(x — X') (193)
for 0<a<?2m and 0<ZLb<2m. By definition,
ny = dimG/H —ranke’ and np = (1/2)ranke’. In this
approach, we have to prove that ranke’ = rankp.

The Noether current in Eq. (184) can be expanded
around the origin as

Ja(x) = €4(0) + 0,," (x) + O(7%). (194)

By neglecting the contribution from higher-order terms,
Pab = _i<[Qa’j2(z’ t)]>

_ / dx ([0, 1), 2R 1))

=0, ('), =d,. (195)
Therefore, ranks’ = rankp.

Finally, let us comment on the locality of the effective
Lagrangian. Even if the microscopic model does not have
long-range interactions, long-range interactions among
NGBs may be mediated by other gapless degrees of
freedom in the system. When the effective Lagrangian
fails to be local, would-be NGBs may acquire a gap and the
counting rule may not hold. (See Ref. [45] for more
details.)

Moreover, if we allow nonlocal effective Lagrangians, the
classification of types A and B becomes ambiguous. As an
example, let us take a free theory of a type-B NGB described

by a local Lagrangian L. = Y., ,_1,(6/2)€n " —

Dacinlg/ 2)%71“ - Va%in3 + 1 dimensions. After integrat-
ing out the field z?, one finds a nonlocal effective
Lagrangian in terms of z':

o2

1 1o o1/
La=1 / Pxd i (5,0) Tl (7.)

- g / dxVr' (3.1) - Va' (% 1). (196)
This nonlocal Lagrangian can still describe the mode with
the same quadratic dispassion @ = (g/c)k?, but now, it is
described by a single field 7! and hence may be classified as
type A. Therefore, the classification of types A and B makes
sense only when we restrict ourselves to local effective
Lagrangians.

V. DISPERSION RELATION

In this section, we discuss the dispersion relation of
NGBs. In particular, we show that type-A NGBs generi-
cally have linear dispersions, while type-B NGBs are
quadratic.

The linearized effective Lagrangian in Eq. (183) leads to
the equation of motion G, 7" (k,w) = 0, where

G = iow + §(0)w?* — g(0)k>. (197)

The dispersion relations of NGBs are determined by
solving detG = 0. If type-A and type-B NGBs do not
coexist, the situation is pretty simple. When ¢ = 0 (only
type A), the dispersion is always linear since ®® has to
balance with k2. In contrast, when ¢ has the full rank
(only type B), we can ignore §(0)w? < icw in the low-
energy limit, and the dispersion is quadratic by the same
argument.

Note that g(0) must always be full rank as long as we
consider an internal symmetry group G, because the field-
transformation rule in Eq. (6) does not explicitly depend on
coordinates, and thus, there are no symmetries that prohibit
the appearance of the O(k?) term. In Sec. VI A, we explain
examples of NGBs associated with spacetime symmetries
that lack the O(k?) term, but for now, let us focus on internal
symmetries.

When type-A and type-B NGBs do coexist, and espe-
cially when there are NGBs of the same representation
under H, the metrics ¢(0) and § may mix them and the
discussion of the dispersion becomes complicated. To
discuss the dispersion even in such a general situation,
here, we develop a perturbation theory for small w.

Assuming that ¢(0) is positive and nonsingular, we
can always write it as g(0) = Z%, with Z a symmetric,
positive, and nonsingular matrix. Substituting this expres-
sion into G, we have

§=7'62"=iZw+Z'9(0)Z7'0?* — k>,  (198)
where ¥ = Z7'6Z~!. Because X is still real and antisym-

metric, one can always find an orthogonal matrix O such
that

io, A
S=0A0", A= (199)
6y A,
(0]

Here, A, >0 for a=1,...,m = (1/2)rankp. Now,
detG = 0 is equivalent to detG” = 0, where
G'=0"G0 = ihw + Go* — k? (200)

and G = 07Z7'g(0)z 0.
We regard O(w?) terms as a small perturbation.
Following the standard procedure for the degenerate

perturbation theory, we diagonalize the bottom right n x
n (n = dim G — 2m) block of G:
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* k% *
* *
_ * k% *
G=1. * 8 0 (201)
*
* e % 0 s”

Asterisks stand for unknown elements. This diagonaliza-
tion is compatible with the above transformation of X,
since all relevant components of A vanish.

The upper left 2m x 2m block has a nonzero unperturbed
term that reads

k2
lqwoy, + kKrog =0 & w,(k) = 7 (202)
for a=1,...,m. The off-diagonal component wo, is

reminiscent of the presymplectic structure in Eq. (189).
Therefore, these modes with quadratic dispersion may still
be called type-B NGBs, although, strictly speaking, fields
describing these modes are, in general, a mixture of type-A
and type-B NG fields, according to the definition in
Sec. IVA.

On the other hand, in the bottom right n x n block,
where the zeroth-order term vanishes, the linear order
correction gives

k

2 _ 12
s;0” —k* =0 & wz(k) = £ —— (203)
ViS¢
for £ = 1, ..., n. Because there is no presymplectic structure

in this block, these linear dispersions can be regarded as
type-A NGBs. Our ground state is stable only when all of
s > 0. Note that the mixing between upper and lower
blocks induces only negligible corrections of O(w?).

We have shown here that generically type-A NGBs have
a linear dispersion and type-B NGBs have a quadratic
dispersion. Therefore, the equality version of the Nielsen-
Chadha theorem is now proven.

When the O(V?) term of the effective Lagrangian is
somehow absent, type-A NGBs may have a quadratic
dispersion and type-B NGBs may have a quartic dispersion.
As explained above, that never happens for internal
symmetries, but there are examples of NGBs originated
from spacetime symmetries that lack the O(V?) term. See
Sec. VI A for more details.

VI. STABILITY OF THE SYMMETRY-BREAKING
GROUND STATE

In identifying the degrees of freedom and reading off
their dispersion relations, in previous sections, we used
the perturbation theory and studied the quadratic part of
the effective Lagrangian. One may be concerned that the
interactions may upset the conclusion. Namely, the

question is whether the cubic and higher terms can modify
the dynamics at long distances, which is equivalent to the
question about the stability of a long-range order.

A. Scaling of interactions among NGBs

Here, we examine the scaling law of the most relevant
interactions among NGBs to see the stability of the
symmetry-breaking ground state.

We start with the situation when there are only type-A
NGBs. In order to keep the free action

/ d"xdt(g“bz(o) wb —79“1’2(0) ﬁﬂu-%”) (204)

invariant, NG fields z¢ should transform as 7'%(ax, at) =
al=)/27(%,¢). In 1 + 1 dimensions, we should include
Ga»(0)7%V 2" in the free action, but it does not change the

scaling law. Note again that the b(z) and b(r) terms do not
have the free part, and the ¢, () term causes an instability
to a translational symmetry-broken phase, as discussed
before, and hence, we do not consider them here. The most
relevant interactions d?xdtV?x> and d?xdtV2z* then scale
with a(1=9/2. Therefore, if the spatial dimension d is
greater than 1, all interactions are irrelevant and the system
flows into the free fixed point. In this case, the symmetry-
breaking ground state is stable and one can understand the
property of the system via the standard perturbation theory.
On the other hand, when d = 1, the interaction is marginal,
so that broken symmetries are restored and the low-energy
spectrum may get gapped.

This result is consistent with the Coleman theorem that
guarantees the absence of continuous symmetry breaking in
1 4 1 dimensions for the Lorentz-invariant case ¢,;, = G
[30]. Superfluids in 1 + 1 dimensions are in the Kosterlitz-
Thouless phase, which possesses only a quasi-long-range
order (power-law decay) and has a gapless density wave.
The S = 1/2 antiferromagnetic chain also shows a quasi-
long-range order and supports gapless excitations called
des Cloizeaux-Pearson modes. These gapless excitations
are qualitatively different from free NGBs; rather, they can
be understood as Tomonaga-Luttinger liquids [46]. In
contrast, the § = 1 antiferromagnetic chain is believed to
be in the Haldane phase and to be gapped.

We can easily extend our analysis for other types of
dispersion. Although spacetime symmetries are not the
main focus of the current paper, type-A NGBs that
originated from spontaneously broken spacetime sym-
metries sometimes have weird dispersions. In such a case,
the criteria we have derived for internal symmetries may be
violated. For example, in a rotating superfluid in 2 + 1
dimensions, a vortex lattice breaks the magnetic translation.
The NG bosons, the so-called Tkachenko mode, are
described by the effective Lagrangian
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/ Pxdt B‘ P — g (V2<p)2]. (205)

Note that the term (V¢)? is prohibited by symmetry
transformation 8¢ o X [32]. In this case, it is easy to see
that the dominant interaction is marginal, which destroys
the long-range phase correlation even at 7 = 0 [47]. This
conclusion makes contrast with the usual superfluids or
crystals in 2 + 1 dimensions, which are stable at 7 = 0.
Another example is a helical magnet. Because of the spin-
orbit coupling, the spin rotation must be accompanied by
the spatial one. The helical (spiral) order breaks some
combination of the rotation and translation. It turns out that
there is only one gapless mode [48], which is described by

[ s {g P~ (VP - SUVE+ V)P, (200

Again, the terms (V,¢)? and (V,¢)? are prohibited by
symmetry. As a result, the dispersion of the NGB is
anisotropic @ = \/(B/A)kg + (C/A)(k% 4 k3)?, which is
an example of NGBs that cannot be classified as either type
I or type II, although it can be unambiguously classified as
type A. All interactions are irrelevant at 7 = 0, but there are
marginal interactions at a finite temperature, despite the fact
that usually broken symmetries are stable at a finite
temperature in three dimensions.

Let us go back to the usual case z =1 and instead
consider a finite temperature. When 7' > 0, all imaginary-
time dependences drop out at a sufficiently long-distance
and low-energy scale, leaving only the n = 0 component of
the Matsubara frequency. Then, the free part of the action is
just =T [ d%x[g,,(0)/2]Vz® - V7’ and fields transform as
7' (ax) = a>)/27%(%). The most relevant interaction
d*xV% 7 scales as a'>~9)/2, so that the stability condition
is given by d > 2, which is nothing but the Mermin-Wagner
theorem.

Next, we discuss the case where only type-B NGBs are
present. To keep the free action

0
/ dxdt (% 7mb + g“bT()Vﬂ” . Vﬂb)

(207)

invariant, NG fields should obey the scaling law
7' (ax,a?t)=a~?z%(x,t). We could add §,,(0)7z*V, z"
in 1+ 1 dimensions, but it is clearly higher order in
derivatives. In this case, the most relevant interactions
d?xdtV, 7> and d?xdtV3n3 scale as a~%/2. Therefore, the
theory is essentially free in all dimensions, and hence,
broken symmetries can never be restored. This conclusion
might sound surprising for high-energy theorists, but
actually, it is a well-known fact in condensed-matter physics
[49]. We will come back to this point in Sec. VIC.

TABLE 1. The stability condition for the symmetry-breaking
ground state in d spatial dimensions, obtained by evaluating
the scaling law of interactions and the infrared divergence for
NGBs.

T=0 T>0
Only type-A NGBs d>1 d>?2
Only type-B NGBs d>0 d>?2

Type-A NGBs with a quadratic dispersion ® o k>
(z = 2) and type-B NGBs with the same dispersion have
a completely different effect on broken symmetries. The
former destroys the order parameter if d <2, while the
latter does not do anything if d > 0.

The discussion for a finite temperature for type-B NGBs
is identical to the type-A case, since all imaginary-time
dependences drop out. We summarize our result in Table 1.

B. Fluctuation of order parameters

The stability of the symmetry-breaking ground state
can also be discussed by evaluating the quantum correc-
tion to the expectation value of order parameters. The
infrared divergence originated from gapless NGBs tends to
destroy the symmetry-breaking order parameters in lower
dimensions.

Again, assuming that the free theory is a good starting
point, we express the expectation value of order parameters
in terms of the free Green functions G%(x —y) =
(Tn(x)z"(y)). For example, the Noether charge density
J9(x,1) plays the role of the order parameter for charges
Q, for which ([Q,, j%(x)]) # 0 for some b. The current
density jo(%,7) in Eq. (184) can be expanded in terms of
NG fields as

1 .
7 = ex(0)|8; + 7" fp* + Efaijfjbk”u”h + O(n*)

= Gap(0)[7°8% + Ceb 7¢7? + O(V,7%)],

1C

(208)

where C47, = f,“8) for unbroken currents (i = p) and
C = f..°85+ (1/2)8¢f 4" for broken currents (i = e).

ecd
Therefore, the dominant contribution to the expectation

value is given by

(/) = e (0) |55 + %faijfjbkgab(()) + . (209)

For superfluids, (¥, 1) = |/mge’?™ is the order param-
eter, and its expectation value with quantum fluctuation is

(£0FD) — o=(1/2{0GP) — o~(1/2)900), (210)

(Note that 0 itself is not a good quantity to look at since
it does not have the assumed periodicity of 2z.) As one
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can see, we need |G4(x = 0,7 = 0)| < 1 in order for the
quantum correction to be small compared to the
classical value.

We can easily evaluate G*’(0) by scaling. When only

type-A NGBs appear, i(Gy'),, (k. @) = §up®* — gupk* and

- A
/ddkda)g“b(k, o) cx/ dkk®2, (211)
0

- A
Y / dkG® (k,iw,) x T / dkkd=3, (212)

0

for T =0 and T > 0, respectively. Here, we have intro-
duced the ultraviolet cutoff A. Therefore, for the conver-
gence of the infrared contribution, we need d > 1 at zero
temperature and d > 2 at a finite temperature. Similarly,

when only type-B NGBs appear, i(G, l)ab(%, ) =
—iaaba) — gabk2 and

N A
/ dkdwG® (k, w) o / dkk®1, (213)
0

dpcab (7 ; A d-3
TZ/dkg“ (k,la)n)ch/O dkkd=3. (214)

Therefore, there is no infrared divergence, even at 1 + 1
dimensions at zero temperature. These results are con-
sistent with those summarized in Table 1.

In Sec. IVA, we discussed the nonrenormalization
theorem of (j9(0)). However, Egs. (209) and (213) may
appear to indicate that (j?(0)) receives a finite correction
due to quantum fluctuations. Now, we show that it is not the
case by explicitly evaluating the magnetization of ferro-
magnets at the one-loop level. The effective Lagrangian
(183) for the coset G/H = SO(3)/SO(2) reads

-

L Z%eo(ZZ—%Z) +§o%i—govf'6l (215)

to the quadratic order in z = (7' + iz?)/v/2. According to
Eq. (208), the magnetization including the fluctuation is
JY = eq — eyzz — igy(z 2 —zz). Therefore,

ddk ey + 2§0ia),,
(J2) = ey — / ; - .
) Zn: (2m)? —epiw, + Gowy, + gok*

(216)

We can perform the Matsubara summation using the
standard trick and find

(72) = eo = n(@) + n(e), (217)

where n(e) = (/¢ — 1)~ is the Bose distribution function,

\/T_Tf—f_
@I Z ey oy (218)

240 €

is the dispersion of the gapless Goldstone mode (magnon),
and

—+0
24, 90

o =V e+ 49(_)§ok2 +e_ e (K2)

(219)

is the dispersion of the gapped mode. [The existence of
the gapped mode is questionable since this solution
balances the O(V,) term and the O(V?) term of the
effective Lagrangian. It is easily eliminated from calcu-
lation by taking the limit § — 0.] Since n(w) = n(@’) =0
at T = 0, the one-loop correction to the expectation value
of the magnetization vanishes in the ground state. Clearly,
the finite-temperature correction is dominated by magnons
and is proportional to 7¢/2 at low temperature, which is
known as Bloch’s law [50].

So far, we have only considered the case where only one
type of NGB appears, since both of our above arguments
are essentially based on scaling. However, in general, type-
A and type-B NGBs can coexist. In such a case, there is no
field transformation that keeps all of the free parts invariant
unless type-A and type B NGBs are somehow completely
decoupled. When they interact, we have no choice but to
respect the scaling rule of the softer modes (type-B NGBs).
Then the free Lagrangian of type-A NGBs are not kept
invariant and their velocities diverge in the infrared limit.

In the next section, we present some arguments that can
be used in type-A and type-B coexisting cases.

C. Spontaneous symmetry breaking in 1 + 1 dimensions

The usual argument for ferromagnets in 1 4+ 1 dimen-
sions is as follows [49]. As the ferromagnetic order
parameter S, commutes with the Hamiltonian H, one
can simultaneously diagonalize H and S, and obtain
quantum many-body eigenstates |¥g,,) labeled by the
eigenvalue of H and S,. Since |Vg,,) is an eigenstate,
there is no quantum fluctuation of order parameter
(Vem|SHYem) = (VeS| Wpa)?. From the transla-
tional invariance of the ground state, it follows that
(e ml[Se X, 0)]|[ g y) = iM/Q, where Q is the volume
of the system. As usual, applying the magnetic field —B,S,
to pick up a particular state, taking the large volume limit
first, and then switching off the field, one finds the
definition of symmetry breaking of S, [{[S,./9(x.1)]) =
im#0], with m the magnetization density.

This argument can be easily extended to the general case,
as long as the Cartan generators are not spontaneously
broken. As discussed above, only Cartan generators, which
commute with each other by definition, can have nonzero
expectation values. We can thus simultaneously diagonalize
all of them (except for the Abelian-invariant algebra of G
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that never plays the role of an order parameter) and the
Hamiltonian. This argument is an alternative proof of
the nonrenormalization theorem of the expectation value
of the current operator at 7 = 0, discussed in Sec. IVA. (At
a finite temperature, we no longer use a pure quantum
eigenstate but take an ensemble over all states, and the
expectation value gets a finite-temperature correction.)

However, the simultaneous eigenstate of the Hamiltonian
and Cartan generators can never break those symmetries
generated by the Cartan generators themselves. Therefore,
this argument has to be modied when applied to, for
instance, a magnetic order that completely breaks the
SU(2) symmetry and has a ferromagnetic order (S.), an
example of which in 1 4 1 dimensions is recently discussed
in Refs. [51,52]. Even for this case, we can still argue that the
ferromagnetic long-range order will not be completely
destroyed by quantum fluctuations. In order to break S,
one has to take a superposition of some simultaneous
eigenstates with different eigenvalues of S,. In this super-
position, we do not have to include those with a positive and
a negative eigenvalues of S, with the equal amplitude.
Therefore, the expectation value is generically nonzero,
unless dictated by the unbroken time-reversal symmetry etc.

In Ref. [53], it has been proved that continuous
symmetry breaking in 1 + 1 dimensions is possible only
when uniform susceptibilities of broken charges diverge.
Indeed, we can show the divergence of uniform suscep-
tibility whenever type-B NGBs appear. Equation (208) tells
us that the current-current correlation function of charges
associated with type-B NGBs is dominated by

(6/0(%,1)873(0)) = ex(0)es(0)f ca* fap” (n¢ (%, )24 (0)).
(220)

Therefore, the uniform susceptibility

Zab = Tim [(873(k, i0,)5/ (=K, —i@,)),, o] (221)

[%]—0
diverges due to poles of Green’s functions corresponding
to type-B NGBs.

In contrast, when type-B NGBs do not exist, all ¢;(0)’s
in Eq. (208) vanish and the correlation function is
dominated by
(8ja(%. 1)875(0)) = Fuc(0)gpa(0) (#° (x. )74(0)).  (222)
Additional time derivatives cancel the divergence, and the
uniform susceptibility converges.

An example of continuous symmetry breaking at 1 + 1
dimensions, which supports both a linear and a quadratic

dispersion, is given by spinor Bose-Einstein condensates
[54-58]. The model is defined by

i ) Vy' -V
=5y —cc) — Tyt — . (223)

L
2m 2

Here, y = (w,y,)7 is a two-component complex scalar
field and ny = N/L. (N is the number of bosons, and L is
the system size.) The dimensionless coupling constant is
given by y = mg/n,.

At the tree level (mean-field approximation), the system
exhibits a long-range order (y) = (0, v)” and then the U(2)
symmetry (generated by S, . and Q) is spontaneously
broken into a U(1) symmetry (generated by S, + Q). There
are two NGBs, a type-A NGB (sound wave) with a linear
dispersion @y, (k) = (no/m),/yk and a type-B NGB (spin
wave) with a quadratic dispersion wgy(k)=4k*/2m as

|7<| — 0. However, the strong fluctuation caused by the
linear dispersion invalidates this simple analysis.

The ground state in this case cannot be an eigenstate of
S., because S, is also broken. Instead, the ground state |0)
can be taken as an eigenstate of S, + Q. From the tree level
result, it is natural to take the simultaneous eigenstate with
(S, + 0)|0) = 0. Then, in particular, (S, + Q) =0 and
([Sy. S,]) = i(S.) = —i(Q) # 0, which imply the sponta-
neous breaking of S, and S,.

Surprisingly, there exists an exact solution of this model
based on the Bethe ansatz [55]. The solution exhibits the
ferromagnetic long-range order, showing the spontaneous
breaking of spin rotation. Correspondingly, there is a well-
defined spin-wave excitation with the dispersion wgy (k) =
[1—(2y/7/37) + ---](k*/2m) in the weak-coupling limit
y < 1 and wsw(k)=[(27%/3y)+--](k? /2m) in the strong-
coupling limit y > 1 [55].

On the other hand, the phase-phase correlation is not
truly long ranged. As a result, the sound wave should be
understood as a Tomonaga-Luttinger liquid rather than as a
type-A NGB [56-58].

VII. TOPOLOGY

In this section, we discuss the geometry behind the type-
B NGBs that do not appear in Lorentz-invariant theories.
There is an underlying geometrical foundation called a
presymplectic structure. Understanding the geometry of
NGBs turns out to be important for classifying a possible
division between type-A and type-B NGBs in the next
section.

A. Presymplectic structure

We have seen that the one-form ¢ = c,dz® on the
cotangent space T*(G/H) is, in general, not invariant
under G, while the two-form @ = dc is [see Eq. (40)].
Therefore, we should focus on @, which is a closed and
G-invariant two-form on G/H. If the antisymmetric
matrix @ = w,,(7)dz® A dr’ has a nonzero determinant
detw,, () # 0, it defines a symplectic structure on G/H.
The combination of a manifold and a nondegenerate closed
two-form (M,w) is called a symplectic manifold.
In physics terminology, it is nothing but a phase space
of a dynamical system with well-defined canonical
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*w=dc G/H<4—F=U/H

!
w B=G/U

FIG. 1. Fibration responsible for the presymplectic structure.
UCG is the subgroup that commutes with all Cartan generators
T; with nonvanishing e;(0). The base manifold B = G/U is
symplectic, which describes the type-B NGBs, while the fiber
F = U/H describes the type-A NGBs. The symplectic form @ on
B is pulled back to m*w = dc on G/H.

commutation relations among its coordinates given by
(7%, 7%] = i(w™')?. It is obvious that it requires G/H to
be even dimensional. If G/H is compact, its second
cohomology H?(G/H) must be nontrivial. Note that many
coset spaces do not satisfy these requirements.

If @ is degenerate, namely, if detw,, = 0, it is called a
presymplectic structure, or partially symplectic, because
only a subset of the coordinates z¢ participates in the matrix
o,y Recall that a symplectic structure on a manifold is
what defines the canonical commutation relation on a phase
space (7%, 2] = i(w")?. If it is only partially symplectic,
™! is singular. Then, the coset space G/H is partially a
phase space and partially a coordinate space. Only a subset
of the coordinates participates in the canonical conjugate
pairs, while the remainder does not. The former corre-
sponds to type-B NGBs, while the latter corresponds to
type A.

One crucial theorem from mathematics on the presym-
plectic structure was proven by Chu [59]: “If the second
dimension cohomology group H?(g) of the Lie algebra g
for a connected Lie group G is trivial, then every left-
invariant closed two-form on G induces a symplectic
homogeneous space.” In our case, we have a presymplectic
form on G/H that can be pulled back to G. If G is
semisimple, H?(g) is trivial (see Appendix A). Then, the
theorem states that G can be projected down to a symplectic
homogeneous space G/U. Namely, there is the structure of
fibration, as shown in Fig. 1. For a nonsemisimple case,
however, there is a possibility of central extension that we
will discuss in Sec. VIIC.

B. Compact semisimple case

It is important to ask the following question: What kinds
of coset space support a presymplectic structure? We have a
definite answer to this question when G is compact
semisimple.

As we have seen, ¢(7) = ¢;(0)w’ is completely specified
in terms of constants ¢;(0), where the generator T
commutes with the entire H [see Eq. (92)]. Therefore,
we can enlarge H to include all generators that commute
with T; to define the subgroup U such that U'e;(0)T;U =
¢;(0)T; in G. Mathematically, ¢;(0)T; generates an Abelian

-’

O

Type A o,

o,

> @
N ; - ) '\l Type B O
s’ ’52

FIG. 2. Graphical representation of the fibration §'— 5% 5 52,
where the projection z is the Hopf map. On each point
on S?, there is an S fiber where the type-A NGB can fluctuate.
The fiber on each point is shown with different colors. The type-B
NGB:s fluctuate on S2. On the left, the entire S is shown using a
stereographic projection onto R3. S! fibers are shown as circles,
and the collection of circles form the entire S°. Note that every
circle is intertwined with every other circle.

group T, which is called a torus. Then, U is called a
centralizer of the torus 7 in G. The following theorem
proven by Borel [60] is then useful: “Let G be compact
semisimple and U be the centralizer of a torus. Then, G/U
is homogeneous Kihlerian and algebraic.” A torus 7 in
this context means an Abelian subgroup of G. Now, here
is a new theorem of our own that follows from Eq. (94):
The presymplectic structure is determined uniquely
with a Cartan element of the Lie algebra. Namely, once
e;(0) is specified, we know the symplectic structure.
And, ¢;(0) generates a torus. For instance, an SU(N)
group is simple and has many possible Abelian subgroups
T =U(1),U(1)2,...,U(1)"~!. In general, a simple group
admits a torus up to T, = U(1)", where r is the rank of its
Lie algebra, called the maximal torus 7,,,. An Abelian
subgroup is called a torus because it is a manifold of
coordinates with periodic boundary conditions for each,
just like the surface of a doughnut (a two-torus). A
centralizer U of a torus 7 is defined by the collection of
elements in G that commute with every element of 7, i.e.,
U = {u € Glutu™" = t,VYt € T}. For instance, for

ny ny ng

. = =
T = {ezdlag(al ,,,, A1, Oy Oy ak)},
where > ¥, n;=N and > % na =0 (traceless),

T=U(1)*"'cSU(N), and its centralizer is U = U(1)*x
_SU(n;). Borel’s theorem then states that G/U=
SU(N)/[U(1)*'x]T«,SU(n;)] is Kéhler. A Kihler mani-
fold always allows for a symplectic structure.
Therefore, this kind of a partially symplectic structure is
possible on the coset space by considering the following

fiber bundle F<>G/H-> B, where the base space B = G/U
is symplectic. (Note that we use the boldface 7 here to
avoid a possible confusion with the NG field z.) The fiber
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is F = U/H. The symplectic structure @ on B is pulled
back by the projection 7 as 7*w on the entire coset space
G/H. Since the closedness dw =0 on B implies the
closedness d(z*w) =0 on G/H, we can always find a
one-form ¢ such that dc = 7*w locally on G/H. Therefore,
what we see in the Lagrangian at the first order in the time
derivative is this pullback z*w@ (further pulled back to
spacetime by 7).

The simplest example to see this structure is the S =
U(2)/U(1) as an S' fibration over 2, as shown in Fig. 2. In
this example, type-B NGBs live on the base space S?, while
the type-A NGB fluctuates along the S' fibers.

The projection on a symplectic manifold makes sense
from a physics point of view. In the long-distance limit, the
modes with quadratic dispersion (typically, type B) have
much lower energies than those with linear dispersion
(typically, type A). Therefore, keeping only the type-B
modes, namely, those with canonically conjugate pairs,
would make sense in this limit. It corresponds to the
projection on the symplectic base manifold that describes
type-B NGBs while eliminating the fiber that describes
type-A NGBs.

The symplectic structure on B = G/U is specified by
parameters e;(0). Going back to the example of
G/U = SU(N)/[U(1)*! x TT~, SU(n;)], using the exact
sequence of the homotopy groups, it is seen that
7, (G/U) =, [U(1)*1]/z,(G)=7Z*", while the Hurewicz
theorem says that H,(G/U)=r,(G/U) when z,(G/U)=0.
In addition, because G/U is compact without a boundary,
H’z = H,(G/U,R) (de Rham theorem). Therefore, there
are k—1 generators of H3y (G/U) (0, ,, ..., w,_) thatcan
be used for the symplectic form o = Zf‘;ll a;w; on G/U.
These numbers a;(i=1,...,k—1) specify o =dc, and
hence, ¢ = c,dz® in the Lagrangian. The number of q; is
precisely the same number of parameters as e;(0) for this
coset space.

In general, dim H3; (G/U) is the same as the number of
U(1) factors in U when G is semisimple [i.e., no U(1)
factors in G]. Pulled back to G/H, the possibilities of
presymplectic structure correspond to the number N, of
Cartan generators in G that commute with H. We will use
this fact extensively when we present the classification of
possible presymplectic structures in the next section.

Note, however, that the linear combination w =

*1 a;0; may be degenerate for a certain choice of the
parameters a;. For instance, G/H = SU(3)/U(1) x U(1) is
Kihler, has H*(G/H) = Z?, and supports a symplectic
structure. There are two linearly independent closed invari-
ant two-forms in Eq. (108): dw® [Eq. (109)] and dw®
[Eq. (110)]. Note that @* and w® are not globally defined,
as they transform inhomogeneously under the group trans-
formations [see Eq. (76)]. Therefore, these two two-forms
are closed but not exact, generate H3; [SU(3)/U(1)xU(1)],
and are candidates for the symplectic structure. Indeed,
dw® =dr' A dr* + (1/2)(dr* Adr® —dn® A dr) + O(x)?

and hence is nondegenerate. On the other hand, if we pick
dw®=(\/3/2)(dn* Adn® +drn® Adr")+O(x)?, it does not
provide a canonical structure between z' and 72, and hence,
it is degenerate. There is actually a larger symmetry
that preserves this choice because the torus is U(1)
generated by Tg and its centralizer is U(2). Then, it can
be projected down to SU(3)/U(2) = CP?, where the fiber is
U(2)/U(1)xU(1)=S2. This fibration is an example where
the fiber is not a group [61].

C. Case with central extensions

So far, we have assumed that G is compact semisimple.
If G is not semisimple, especially if it has more than one
U(1) factor, its second cohomology H?(g) is nontrivial and
it allows for a central extension. See Appendix A for more
discussions on the central extension.

In this case, G/ H may not necessarily be projected down
to a symplectic manifold. Considering G = U(1)? and
H = {e}, for an example, parametrized by three angles,
T° =G/H = {¢p* € [0,2n)]a = 1,2,3} is a three-torus.
We can introduce a presymplectic structure [59]

o = dp' A (dg? + rde?). (224)
If r is a rational number r = p/q for p and g relatively
prime, the orbit winds around 73 g times and closes on
itself. Then, there is a well-defined projection down to 772,
On the other hand, if r is an irrational number, there is no
well-defined projection because the orbit winds around 73
infinite times without closing on itself.

We suspect that such a pathological case would not arise
in physical systems. Yet, we do not have a concrete proof of
what goes wrong in such a case.

D. Quantization condition

The normalization of the presymplectic structure may be
quantized. All discussions above are, so far, concerned with
the invariance of the action up to a surface term. In classical
physics, the action itself does not have a physical meaning
while its variation leads to the equations of motion. In
quantum physics, however, the action itself goes into the
path integrals as ¢S/ and hence, its value matters. Yet, a
change in the action by integer multiples of 2z# does not
change the path integral. Recall that we use the unit # = 1
in this paper, and henceforth, we drop 7 in expressions.

When @ = dc is closed but not exact, namely, an
element of H3(G/H), its coefficient is quantized.
Considering a time integral to be a periodic loop L' on
G/H, the loop can be viewed as a boundary of a two-disk.
[Here, we assume z;(G/H) = 0, so that every loop on
G/H is contractible to a point.] However, nontrivial H(ziR
implies nontrivial H,, and hence, there are noncontractible
two-cycles on G/H. Namely, there are nontrivial closed
two-dimensional surfaces C, in G/H. Then, C, = C3 UC;
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is a union of two surfaces that share the same boundary
L' = 9C5 = —9dC;. The simplest example is C, = 52,
where L! is the equator, Cj the northern hemisphere, and
C5 the southern hemisphere. For the action

Sa/ddx/c
Ly

to give a single-valued e, its ambiguity

AS:/ddx/ dc—/ddx/ dC:/ddx/dc
ct o C,
(

226)

(225)

must be quantized in units of 2z. This discussion is
the same as the one on Wess-Zumino-Witten terms in
Sec. I E 3.

When the system is finite Q = [ d?x < oo, the quanti-
zation condition restricts the normalization of c¢. In
other words, Qdc is an element of H>(G/H,Z) rather
than H3;(G/H) = H*(G/H,R).

The same consideration applies to central extensions.
When the target space is compact, the (pre)symplectic
form is quantized. For example, for U(1)>=
{(9".0?)|p'€[0.22)}, Qdc = k(2x) 'dg' A dp* with
k€ Z. On the other hand, when the target space is
noncompact, such as R?> =C in the case of the free
Schrodinger field mentioned in  Sec. IIIE and
Appendix C, the coefficient is not quantized.

VIII. CLASSIFICATION OF POSSIBLE
PRESYMPLECTIC STRUCTURES

As we have seen in Sec. VII, a presymplectic structure on
a coset space G/H is characterized by its fibration on a
symplectic base space B = G /U with the fiber F = U/H,
when G and H are compact semisimple. U C G is the
subgroup that commutes with generators with nonzero
¢;(0). Since ¢;(0)’s need to be invariant under H [Eq. (92)],
H c U. The base space describes type-B NGBs while the
fiber describes type-A NGBs. In this section, we show how
such structures can be completely classified.

A. Preliminary discussions

The number of type-A and type-B NGBs is given by the
counting rule in Egs. (1) and (2). If the rank of p explores all
the possible integral values in the range

0 <rankp <dimG/H, (227)
the number of type-A and type-B NGBs can be any combi-
nations between (14,n) = (dimG/H.0) and (0,3dimG/H).
Indeed, in the case of Heisenberg magnets G/H =
S0O(3)/S0O(2) (dim G/H = 2), antiferromagnets and ferro-
magnets, respectively, realize the case rankp = 0, 1. However,

in this section, we discuss that, in general, allowed values of
rankp are strongly constrained.

In general, we can always choose the basis of generators
in such a way that only Cartan generators [62] of G that
commute with all generators of H may have a nonzero
expectation value (j7(X, 1)) # 0 [26], as we have discussed
in previous sections. Their expectation values specify ¢;(0),
and the corresponding generators generate the torus 7.
Each nonzero expectation value of conserved charge
densities defines a presymplectic structure on G/H by
¢ =—¢;(0)o" [Eq. (94)]; namely, it makes NG fields
associated with broken generators Q, and Q,, canonically
conjugate to each other, as discussed in Sec. VII

For a given G and H, let N be the number of Cartan
generators of g that commute with §. Based on the above
considerations, we know that these generators are the
only ones that are allowed to have nonvanishing e;(0).
Therefore, there are N parameters to specify the possible
presymplectic structure on G/H. This counting takes into
account only the connected component G, of the identity,
and the discrete subgroup G/G, might further restrict
allowed presymplectic structures.

Therefore, we first consider the case when H is generated
by Cartan generators alone, so that all Cartan generators
commute with § to maximize N.

B. Flag manifolds

To study the case of maximum N for a given G, let us
consider the flag manifolds G/U(1)", where No = r > 1 is
the rank of the simple group G. We can systematically
enumerate all possibilities of presymplectic structures for
them. It turns out that this list allows us to also classify
possibilities for other G/H as well. In this sense, the
discussion here is the basis of all other cases. For
concreteness, we first discuss SU(n + 1)/U(1)".

A flag manifold is Kéhler, thanks to the Borel theorem
[60], and is hence symplectic. Indeed, for SU(n + 1)/
U(1)", dimG/H = n(n+ 1) is always even. Since all
Cartan generators of G remain unbroken, N- = n, and
there are many presymplectic structures that can control the
number of type-A and type-B NGBs. The simplest case of
SU(3)/U(1)? with N¢ = 2 is shown in Table II.

The two limiting cases can easily be understood.
Any symplectic manifold is endowed with an associated
symplectic two-form, which always realizes the case
rankp = dim G/H. (Unless discrete, the subgroup puts

TABLE II. Possible number of type-A and type-B NGBs for
SU(3)/U(1) x U(1).

ny ng F=U/H B=G/U

6 0 SU(3)/U(1) x U(1) {e}

2 2 SU(2)/U(1) SU(3)/SU(2) x U(1)
0 3 {e} SU(3)/U(1) x U(1)
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out an obstacle.) Thus, we know that (ny, ng) = (0,n(n +
1)/2) is possible. Also, by setting all expectation values of
charge densities to be 0, one can realize the case where
rankp = 0, and hence, (ny,np) = (n(n+1),0).

The question is whether it is possible to realize combi-
nations of (n4,np) between these two limiting cases.
Although there are N- = n parameters to control, the
number of integers in the range Eq. (227) grows as n2,
so obviously, it is not possible to realize all of these values
for a large n. For example, there is a minimum value of
rankp (except for 0), which is achieved by the presym-
plectic structure that appeared in the above discussion of
the SU(n + 1)/U(n) = CP" model. This presymplectic
structure gives rankp =n, and O <rankp <n is
prohibited.

The case for simple classical groups is straightforward to
work out. The smallest possible H that makes G/H
symplectic is the flag manifold H = U(1)", where r is
the rank of G. All Cartan generators commute with U(1)”,
and hence, N = r. Therefore, this case allows for the
largest number of possible choices for U.

Because ¢;(0) belong to the adjoint representation, the
corresponding generators 7; generate a torus 7, and its
centralizer U is generated by all generators of g that leave
¢;(0) invariant. Such symmetry-breaking patterns have
been studied extensively in the literature (see, e.g.,
Ref. [63]).

For SU(n) groups, the possible form of ¢;(0)7; is

ny ny ny

. A~ A~ =
e;(0)T; =diag(ay,...,a;, 0y, ..., Agy oo, Ay oy ;),  (228)

and the corresponding centralizer is

anak =0.

k

U=U(1)1x HSU(nk), n= an,
(229)

In this expression, SU(1) counts as a trivial group.

For SO(n) groups, any element of the adjoint represen-
tation is an antisymmetric matrix that can be skew
diagonalized. Therefore, the possible form of e;(0)T; is

s
, O, ...,ak) ® i02,
(230)

m n
ei(O)T,- = dlag(O, ...,O,GI, PNATEEE

and we find the centralizer

U = SO(m) x HU(nk), n=m+ 2an. (231)
2 T

Finally, for Sp(n) groups [we use the notation that the rank
is n for Sp(n)], every element g € Sp(n) preserves

0 I,
J= ( ), glgt =J. (232)

I, O

Therefore, the adjoint representation is a 2n x 2n matrix of
the form

A B
s

c _AT>, ST+JST=0.  (233)

Here, B” = B and CT = C are symmetric matrices. The
Cartan generators are given by the diagonal matrices in A

with B=C=0 and therefore have the form
S = Agiag ® 03. In general,
N n g
e;(0)T; = diag(0, ...,0,a, ..., @, ..., Ay ..., ) Q 03,
(234)

and we find

U=Sp(m)x [[U(m). n=m+> n. (235)

The problem is basically listing up a partition of integers.
Once all possibilities U are listed, it is easy to count
ny =dimU/H and ng = dim G/U. We present all pos-
sible cases for rank-five groups in tables: SU(6) (Table III),
SO(10) (Table IV), and SO(11) and Sp(5) (Table V).
Looking at Table IV, one might think that U = SO(6) x
U(1)? and U = U(4) x U(1) are the same because 80(6)
and 3u(4) are identical Lie algebras. They are not. The
spectrum of the 14 type-B NGBs on SO(10)/[SO(6)x
U(1)?]=S0(10)/[SU(4)/Z,xU(1)?] consists of 14=6 +
6+1-+1 under SO(6), while those on SO(10)/[U(4) x
U(1)] = SO(10)/{[SU(4) x U(1)]/Z, x U(1)} consist of
14 =4 + 4 + 6 under SU(4). The same comment applies
to SO(4)xU(1)* vs U(2)’2xU(1) as 8o(4) = 3u(2) ®
3u(2). On SO(10)/[SO(4) x U(1)?], the type-B spectrum

TABLE III.  Possible number of type-A and type-B NGBs for
SU(6)/U(1)>.

ny ng U

30 0 {e}

20 5 SU(5) x U(1)

14 8 SU(4) x SU(2) x U(1)
12 9 SU(4) x U(1)?

12 9 SU(3)? x U(1)

8 11 SU(3) x SU(2) x U(1)?
6 12 SU(3) x U(1)3

6 12 SU(2)3 x U(1)?

4 13 SU(2)2 x U(1)3

2 14 SU(2) x U(1)*

0 15 U(1)?
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TABLE IV. Possible number of type-A and type-B NGBs for
SO(10)/U(1)5.

ny ng U
40 0 {e}
2 8 SO(8) x U(1)

20 10 Uu(s)

14 13 SO(6) x U(2)
12 14 SO(6) x U(1)?
12 14 U(4) x U(1)
10 15 SO(4) x U(3)
8 16 U(3) x U(2)
6 17 SO(4) x U(2) x U(1)
6 17 UE) < U(1?
4 18 SO(4) x U(1)?
4 18 U(2)* x U(1 )
2 19 U(2) x U(1)*
0 30 u(1)y’

is 18=4x3+1x6 under SO4), while for SO(10)/
[U(2)?>xU(1)],itis 18 = (2,2) x 2+ (2,1) x 2+ (1,2) x
2+ (1,1) x 2 under U(2) x U(2). Therefore, one has to be
careful about not identifying local isomorphisms among
groups.

On the other hand, in the case of SO(n) with n even, it
can break to U = SO(2) x [[,U(ny). Turning ¢;(0) for the
SO(2) generator would “break” it further to U(1) with no
difference in the group structure or representations of
NGBs. Namely, two cases are continuously connected
without an order parameter that distinguishes them.
Therefore, we can identify SO(2) and U(1) and we have
eliminated duplicates from Table IV.

TABLE V. Possible number of type-A and type-B NGBs for
SO(11)/U(1)% and Sp(5)/U(1).

ny,  ng U c SO(11) U c Sp(5)

50 0 {e} {e}

32 9 SO(9) x U(1) Sp(4) x U(1)

20 15 SO(7) x U(2) Sp(3) x U(2)

20 15 UGs) UGs)

18 16 SO(7) x U(1)2 Sp(3) x U(1)?

14 18 SO(5) x U(3) Sp(2) x U(3)

14 18 SO(3) x U(4) Sp(1) x U(4)
1219 U(4) x U(1) U(4) x U(1)

10 20 SO(5) x U(2) x U(1) Sp(2) x U(2) x U(1)
8 21 SO(5) x U(1)3 Sp(2) x U(1)3

8§ 21  SO(B3)xUB)xU(l)  Sp(l)xU(3)xU(l)
8§ 21 U(3) x U(2) U@3) x U(2)

6 22 SO(3) x U(2)>2 Sp(1) x U(2)?

6 2 U(3) x U(1)>? U(3) x U(1)>

4 23 SO(3)xU(2) x U(1)>  Sp(1) x U(2) x U(1)?
4 23 U(2)? x U(1) U(2)? x U(1)

2 24 SO(3) x U(1)* Sp(1) x U(1)*

2 24 U(2) x U(1)} U(2) x U(1)?

0 25 u(1)s u(1)s

Note that there is a duality between Sp(n) and SO(2n+-1)
groups in each symmetry-breaking pattern because the
dimensions of the group match: (1/2)(2n+1)2n=n(2n+
1) for SO(2n+1), and (1/2)2n(2n+1)=n(2n+1) for
Sp(n).

It should be possible to enumerate possibilities for
exceptional groups G,, Fy, and Eg ;¢ as well, but we do
not attempt it here.

C. General H

For more general G/H, we start with the list of possible
U for G/U(1)" and remove those that do not commute with
H. It gives all possible presymplectic structures. The number
of type-B NGBs is given by nz = (1/2) dim G/U, while
ny = dimU/H. Let us discuss a few examples below.

For instance, one can consider SU(6)/SU(5), whose
dimension is 35 —24 = 11. Note that SU(6)/SU(5) =
U(6)/U(5) = S'"', which is discussed in Sec. IXC.
Looking at the list in Table III, the only U that commutes
with SU(5) is in the top two. Therefore, there are two types
of presymplectic structures possible on SU(6)/SU(5). If U
is trivial, all 11 are type-A NGBs. If U = SU(5) x U(1),
B =SU(6)/[SU(5) x U(1)] = CP> and there are five
type-B NGBs for (1/2) dimB = 5. There is only one
type-A NGB.

If the same SU(6) is broken by an order parameter in a
rank-three antisymmetric tensor, the unbroken group is
H =SU(3) x SU(3). In this case, there is no U that
commutes with H except for the trivial one. Namely, this
coset space allows for no presymplectic structure, and
hence, n, = 19 and ng = 0. However, if one of the SU(3)
is further broken completely by order parameters in
fundamental representations (at least two of them), H =
SU(3) commutes with the first seven choices of U in
Table III, and there are accordingly seven possibilities
of (ny,ng).

This way, one can work out all possibilities of (ny, ng)
for a given G and H if compact and simple. Then, we look
at discrete subgroups if G or H has more than one
connected component to further eliminate some possibil-
ities. It is also straightforward to study examples with
additional U(1) factors, paying attention to possible central
extensions.

This way, one can enumerate all possible presymplectic
structures for a given G/H and write down the most general
effective Lagrangians using the explicit forms we found in
Sec. III.

IX. EXAMPLES

Having developed a complete classification of presym-
plectic structures, we revisit popular examples of coset
spaces in the literature and show what effective Lagrangians
are possible for them.
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A.O(n+1)/O(n) =S"

For O(n+1)/0(n) = 8", SO(n + 1)/SO(n) = §", and
O(n +1)/[0(n) x Z,] = RP", there is no possible pre-
symplectic structure for n > 3. As seen in Tables IV and V,
there is no nontrivial U that commutes with the SO(n)
subgroup within SO(n + 1), and hence, N = 0. Therefore,
we can only have n type-A NGBs. The most general
Lagrangian is hence

1 1 = -
Lot = = Gonin; — Egov”i -Vn,

5 (236)

up to the second order in derivatives, where 7is anormalized
(n + 1)-component vector.

When n = 2, all of these examples have N = 1 and the
coset SO(3)/SO(2) = 5? indeed describes both ferro- and
antiferromagnets. However, for O(3)/0(2) = $?, there is
no presymplectic structure that is consistent with the
discrete subgroup {+1,—1}, at least when we realize it
as an internal symmetry. To see this point, let us para-
metrize the coset S? by the spherical coordinate (6, ¢). The
candidate of a one-form that is associated with the would-
be symplectic structure is cos f¢, but it changes sign under
—1: 0 > 7—0 and ¢ - ¢ + = unless the discrete sym-
metry incorporates with the time reversal t — —t. The coset
0(3)/[0(2) x Z,] = RP? can be discussed in a similar
fashion, but since RP? is not even orientable, there is
obviously no symplectic structure that is consistent with the
global topology of G/H.

B. SU(r +1)/U(n) = CP"

The CP" (n > 1) model is a natural generalization of
ferromagnets based on S?=CP!. For G/H = SU(n + 1)/
U(n) = CP", Nc =1 because there is a unique Cartan
generator diag(n,—1,...,—1) that commutes with H =U(n).
Therefore, there is a unique symplectic structure on G/H
(up to an overall normalization). The effective Lagrangian
can be most conveniently expressed in terms of an n-
component complex field z(x,7) € C", and the most
general effective Lagrangian to the quadratic order in
derivatives is given by

2'z—71z

077"" Gab (QOE”ZZ’ —goﬁz“ . 6Zb), (237)
1+27'z

Eeff =1is

where

S (1 +722) —22°
(1+zz)?

Gap(2.2) = (238)
is the Fubini-Study metric on CP" [37,38]. In 2+ 1
dimensions, we can add a topological term (6 term)
(i/27)G 4(2.2)€79;7°0,2". The n =1 case is identical
to ferromagnets (recall that CP! = §?). The coefficient of
the first term s, is the charge density of the ground state

(J5,(x)), where py is the U(l) part of the unbroken
subgroup H = U(n). This term s5,Q must be quantized
to a half-integer, where Q is the volume of the system, as
discussed in Sec. VIID. When s, # 0, the system resem-
bles ferromagnets: The real and imaginary parts of z¢
become canonically conjugate to each other, and there are n
type-B NGBs. On the other hand, when s, = 0, the ground
state is antiferromagnetic and there are 2n type-A
NGBs. Other possibilities (n4,n5)=(2,n—1),(4,n—2),...,
(2n—2,1) cannot be realized.

C.U(n+1)/U(n) = §*+1
U(n+1)/U(n) = $>*! (n>1) is topologically the
same as SO(2n +2)/SO(2n + 1), yet its field theory is
very different because No=1 for the generator
diag(n,—1,...,—1). It is closely related to the CP" model

since it admits a fibration S!'<>S$2>""'5CP", where type-B
NGBs live on the base manifold CP" and a type-A NGB is
in the fiber S'. Therefore, there are only two possibilities
(ng,ng) = (1,n) and (2n + 1,0), which is expected from
Nc = 1. The case n = 1 of this model describes the physics
of Kaon condensation [13,14]. The generalization to n > 1
is discussed in Ref. [64].

As a concrete example, let us consider a U(n + 1)-
symmetric Schrodinger field

o 1 = = A
L= iyl =Ny - Vy =S (w'y —ng)%, (239)

where w(x) is a complex (n+ 1)-dimensional column
vector. A similar model was discussed in Refs. [13,14].
At the tree level, it has the vacuum

(240)

In this case, the original U(n + 1) symmetry is broken to
U(n) symmetry. The coset space U(n + 1)/U(n) = §?"+!
does not admit a symplectic structure.

Therefore, we have to carefully parametrize the coset
space. Since U(n + 1)/[U(n) x U(1)] = CP", which does
admit a symplectic structure, we view S as a U(1)
bundle on CP". The symplectic two-form lives on CP". We
parametrize the field y(x) as

() e

where z(x) is an n-dimensional column vector. Substituting
the above parametrization, we find
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. T. .T . T. .-‘- 2
. 1z2'z—2'2 1 /. iz'lz—2'z
Lgg=ny0+-""—")—— 04+
" nO( +21+Z"'Z) 2/1< +21+z"‘z)
I AVAT v N
ng 1Z2'VZ 7'z
U () v/ B S S
2m< U )
_ M (Wﬁz B WZTZ)(ZWZ)) .
2m \1+z'z  (1+77z)? '

(242)

The second term arises from integrating out n at the tree

level and looks the same as the terms O(Vz), except for the
overall normalization because of the irreducible nature of 8
and z' under H = U(n).

The terms in the last parentheses above are nothing but
the Fubini-Study metric on CP”", which is Kihler. On the
other hand, the first term defines a one-form

Tdz — d7’
c:,’%’ (243)
I+2z'z

while its exterior derivative

(1 +7'2)dz" A dz— (dZ'7) A (z7dz)

dc=1i
(1+z77)2

(244)

is the Kéhler form on CP" associated with the Fubini-Study
metric. The coordinate 6 represents the U(1), which is
orthogonal to the tangent vectors of CP".

In Sec. X, we derive the effective Lagrangian for n = 1
based purely on the Galilean symmetry and the U(2)
internal symmetry. We should be able to rewrite the
Lagrangian (242) in terms of the Galilean-covariant
derivatives

. (VO)?
Dﬁ:g_ﬂ7
2m

(245)

. Dz=Vz,  (246)
neglecting higher-order derivatives. Comparing Eq. (239)
with Eq. (291), we notice that the Lagrangian lacks the term
that contains D,z'D,z. In general, if we start from a
particular microscopic model and work only at tree levels,
the effective Lagrangian may not include all possible terms
allowed by symmetries. Missing terms are often generated
by higher corrections [65].

X. GALILEAN INVARIANCE

So far, our discussions have focused on the spontaneous
breaking of internal symmetries. However, in many inter-
esting physical systems, spacetime symmetries are also
spontaneously broken. For the sake of the clarity of our
discussions, we restrict ourselves to translationally and
rotationally invariant systems in this paper. Therefore, we

discuss spontaneously broken Galilean invariance as an
illustrative example in this section. We demonstrate how
spacetime symmetries can be discussed within our effective
Lagrangian formalism and see how they provide additional
constraints on the parameters in the theory. The so-called
inverse Higgs mechanism provides a heuristic method to
show how would-be NGB degrees of freedom can be
consistently removed from the physical spectrum in accor-
dance with observations. This method was discussed
mostly in Lorentz-invariant systems, and our presentation
here shows how it can be successfully extended to Lorentz-
noninvariant systems.

It has recently been argued [66] that some classes of
Galilean-invariant theories can be promoted to be non-
relativistic general-coordinate invariant, by introducing the
spatial metric g;;(X,7) and the U(l) gauge field and by
assigning their nontrivial transformation rule. The Galilean
symmetry itself is global in the sense that the velocity
parameter in X’ = X + v is a constant, but the nonrelativ-
istic general-coordinate invariance allows a more general
local transformation X’ (X, ¢) with arbitrary time dependence
(but still, 7 =f). Such an extended symmetry strongly
restricts the response of the system to external fields.
Our discussion below should be useful to systematically
produce general-coordinate-invariant combinations.

A. Coset construction with spacetime symmetries

In condensed-matter physics, superfluid helium and
various types of Bose-Einstein condensates often sponta-
neously break the Galilean symmetry as well as the U(1)
phase rotation. In such a situation, one has to make sure that
the effective Lagrangian has the Galilean symmetry.

Here, we discuss how to incorporate spacetime sym-
metries in our effective Lagrangian. Spacetime symmetries
are those which change coordinates x* = (z, X) in addition
to the fields. For example, the transformation rule of the
superfluid phase under the Galilean transformation is

!

X' =X+ ot /=t (247)

mod

O, 1) =0(x,1) —mvy-x ———1, (248)
for a constant vector 7, € R3. Since X changes, Galilean
symmetry is a spacetime symmetry.

For simplicity, here, we discuss the situation where the
spacetime translation P, = (H,—P) is not broken, and
unbroken generators Q, are internal symmetries, while
broken generators Q, may contain spacetime symmetries
such as the Galilean boost generator.

Following Ref. [67], we use

U(x, n(x)) = e Prein'(¥)C (249)

to define the Maurer-Cartan form w:
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o(x,z(x)) = —iUTdU

:e”Pﬂ—l—wJ_—l-w”. (250)
Again, , = w?Q, is the broken part and o) = @0, is
the unbroken part. e = eydx” is called a vielbein, and
G, = npaeﬁe;’ gives a spacetime metric that transforms
nicely. Especially, the spacetime-invariant volume form is

given by d?xdt /| detG|.
The symmetry transformation of x and z(x) under the
action of ¢ is defined by [see Eq. (68)]

gU(x,n(x)) = U(X', 7' (x')) hy(x, 2(x)). (251)

Since P, is unbroken, one may be confused by the ™"
factor of U, but, thanks to this factor, we can realize the
spacetime symmetry in this way. Analogously to Egs. (75)
and (76), we have

et (x, 7 (X)) = e*(x, z(x)), (252)
o, (&, 7' (X)) = hyw, (x, 7(x))hj, (253)
oy (X, 7 (X)) = hyoy (x, n(x))hl — ih,dhj. — (254)

Here, we have used the assumption that unbroken gen-
erators are internal.

Let us first discuss the broken part of the Maurer-Cartan
form. We define the spacetime-covariant derivative D, ¢
through

e'D,n" = w. (255)

According to Eq. (253), it indeed transforms covariantly:

(D) Qy = hy (D, Q)i (256)
thanks to the covariance of the vielbein e#(x, z(x)) [see
Eq. (252)]. If we had defined the covariant derivative by
dx”f)ﬂﬂ” =’ (257)
instead of Eq. (255), ﬁﬂn“ would not transform covariantly,
since dx* is not covariant; i.e., dx'* # dx*.
For the same reason, the unbroken part aﬂn“wﬁ does not
transform covariantly. From Eq. (254), we have

, ox* ) . B
(0,702)' Q) = = [hy(3, 7@ Q, ) hy — ih,O,h).

Ox'H
(258)

If the factor Ox* /Ox'* were absent, as in the case for internal
symmetries, the unbroken part would transform covariantly
up to the inhomogeneous term —ihgﬁyh;, which may be
just a total derivative. In such a case, the unbroken part can
be added to the effective Lagrangian, as discussed in

Sec. 11 D. However, nontrivial 9x*/Ox* poses an obstacle,
as we shall see shortly.

Covariant derivatives in Eq. (255) are the building
blocks of the effective Lagrangian. The case considered
in Sec. III, where only internal symmetries are broken, can
be understood as the spatial case of e#(x, z(x)) = dx*. In
the following, we will demonstrate what we have said here
using a concrete example.

B. Example

In this section, we discuss the effective Lagrangian for
the microscopic model

bty — WY g

L=5hi—cc) . 5 Wy —no)*. (259)
This model can be seen as the nonrelativistic version
of the model for the Kaon condensation discussed in
Refs. [13,14]. Here, w = (y;,w,)" is a two-component
complex scalar field. The ground-state expectation value
(w) = /n(0, 1)" breaks the U(2) symmetry down to U(1)
symmetry. Broken-symmetry generators are o, 0,, and
03 — 0y, where 01,5 are Pauli matrices and o, is the
identity matrix.

The Lagrangian (259) possesses the Galilean symmetry
=1,

¥ =34 T, (260)

lI//(;C/, t’) _ e’"DO'H(l/Z)’"”g’y/(}, t), (261)
in addition to the internal U(2) symmetry. The low-energy
effective Lagrangian must respect it.

Note that our discussion below is solely based on the
internal U(2) symmetry and the Galilean symmetry, so that
it applies to any microscopic Lagrangians as long as they
respect these symmetries and show the same symmetry-
breaking pattern.

1. Without Galilean symmetry

Before going into the detailed discussion on the conse-
quences of Galilean invariance, let us first review what we
developed in Sec. III without paying attention to the
Galilean symmetry for comparison. We parametrize the
coset as

U = ein“Ta _ ei[ﬂ10|+ﬂ202+9(63—60)]' (262)
We compute the Maurer-Cartan form
w=—iU'dU
= (03 + 0p) + [@'0) + @?0, + @3 (03 — 6p)].  (263)

Then, w’,’s defined by @ = drn“w,T; are building blocks of
the effective Lagrangian, as explained in Sec. III. To the
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quadratic order in derivatives, the most general form of the
effective Lagrangian for this symmetry-breaking pattern is

Lot = —e3(0)@° — €o(0)@°
0 0) oy =; =5 =
+g“2( )(a) w1+a)2@2)—g“2( )(w'-w‘+w2-w2)
0 0., -
+9%32( )@ 3a3 — 9332( )ws @, (264)

where we use the notation introduced in Sec. III D; namely,
@ = w7 and @' = !, Vr°. There are six parameters in
this Lagrangian. We will see soon that the Galilean
invariance reduces them to four.

There is a trick to easily compute the Maurer-Cartan
form w for this example. We decompose U into the product
U = UyU,, where Uy = ¢~ and

(265)

) i .
U, = e™% = ¢, cosp +—n%c,sinp
p

with the constraint 7z° =6. Here, a=1, 2, 3 and
p =+vr'z®. Using the property of Pauli matrices, the
Maurer-Cartan form for U, and U,

—iUdUy = 6,Q°, (266)
—iUdU, = 6,Q" + 6, + 5;Q° (267)
can easily be evaluated as
Q0 = —do, (268)
2
Q' = dr Ka‘ab —2 > Sin2p
2p
I ——
—eat | —| |.
p2 p

The full Maurer-Cartan form @ = —iUEf)dUO - iUTdUl
is given by

(270)

93_90
2

Q3+ Q0
a :T7 Q) =

(271)

2. With Galilean symmetry
To implement the Galilean symmetry, we introduce the
boost operator B as well as the spacetime translation
P, = (H, —TD) Their nonzero commutation relations are
Qu> Oy) = 2i€q, Q. and [B,H] = —iP, and [B',P/] =
—imQoY is centrally extended (see Appendix A). Qj,

QZs Q3 -

0, and B are spontaneously broken. The

unbroken generator Q + Q3 is internal, so that the
assumption in the previous section is fulfilled. Therefore,
we use

[ = ¥ Py gin (5:1)Qu—i0(F.0)Q—it(3.1) B (272)

Here, we introduce a new vector field (%, ) that does not
describe any physical modes and will be eliminated later in
favor of real NG fields z!, #2, and 7> = 0.

The Maurer-Cartan form @ = —iU'dU is given by

@ =a"Q3+ Q) + [0 Q) + @*Q, + @ (03 — Q)]
+ P, — B-di, (273)

where @123 stands for those defined in Eq. (263):

1 2
@ =+ = (o dt — m - d¥ (274)
2\ 2
@ =’ _Lfm —dt— mv - dx (275)
2\ 2
and
O(x,1) = dt, é(x,t) = dx —v(x, t)dt.  (276)
¢ is indeed covariant:
(X, 1) =d(x + vot) — [0(X, 1) + Doldt
=dx —v(x,t)dt = é(x,1). (277)

In this case, detG is trivial and d%xdrt, by itself, is an
invariant volume form.

Following the definition in Eq. (255), covariant deriv-
atives are given by

7! =o', (278)
Drn? = &2, (279)
Bt =+ L. (280

D' =a' +7-Dr', (281)
Dx? = a? + 7 - Dr?, (282)
D’ =a — mTlﬂ +3-Dr (283)

Let us now focus on Dz>. It contains a linear term of ¥
without derivatives. Thus, we can impose a covariant

constraint Dz = 0, so called the inverse Higgs constraint
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[67], to eliminate the unphysical field v in terms of true
NG fields

20°

5=

- (284)

This constraint is a heuristic way to get rid of unphysical
fields in the coset construction with spacetime symmetries.
See Refs. [34,68,69] for more details.

After imposing this constraint, covariant derivatives
become

Dr! = &', (285)

Dr? = @7, (286)

Dl =l — 2 Da, (287)
m

D = @* — %aﬁ . Dr?, (288)

DA =& — %6)3 @ (289)

Combinations in Egs. (285)-(289) are the Galilean-
covariant building blocks of the effective Lagrangian.
For the usual superfluid, the inverse Higgs constraint is

DO = §9+m?) =0 and the combination in Eq. (289)
corresponds to  D,0 = 0 — (VO)>/2m. Quantities in
Eqgs. (287) and (288) correspond to the second term in

Eq. (12) of Ref. [70] for supersolids.
According to Eq. (258), @° = @%z® transforms as

-

(@°) (X +Dgt, 1) = @° (X, 1) + Dy @°(X,1) + (V, + 7y - V)A
(290)

for some A. Therefore, the change of @° is more than a
surface term and it cannot be added to the effective
Lagrangian.

In summary, the most general form of the effective
Lagrangian that respects the Galilean symmetry is

Lot = —63(0)2):”3

+ 1 (a1 1 (D2 + 2 (D
0

—~ N
~—

<

11
2

(D' - Dr' + D2 - Dn?), (291)

which now contains only four parameters. Compared to
Eq. (264), we have two restrictions:

e(0) =0, 933(0) = —

Since ¢((0) represents the classical expectation value of
(03 + Q)/Q, the spin must be fully polarized and
e3(0) = (03— 0)/Q = —2n < 0, where n is the number
density of the particles. This conclusion is consistent with
the rigorous result in Ref. [54].

Galilean-invariant combinations contain mixed powers
of derivatives, and one can drop higher-order-derivative
terms, as it does not affect the physics to the aimed order of
the derivative expansion.

One may think that introducing the unphysical field
v(x, 1) first and eliminating it by imposing a covariant
condition is just a complicated and useless way of
deriving the effective Lagrangian. However, as we have
demonstrated here, it is actually a convenient way to
systematically generate terms with proper spacetime
symmetries.

Finally, let us discuss the power counting of the
derivative expansion. In this paper, we assign 7¢ = O(1)
so that V,z* = O(k,) and expand the Lagrangian in the
series of derivatives. However, Refs. [66,70] introduced an
alternative way of power counting, which assigns
V,n* = O(1), provided that the Lagrangian does not
depend on z¢ without derivatives. In this power-counting
method, the lowest-order term is the sum of all invariant
combinations with one derivative per field. This counting
has an advantage that it can deal with the situation with
large fluctuation z¢ = O(k~!) from the ground state, but it
works only for Abelian groups G; otherwise, the effective
Lagrangian depends on fields without derivative, as one can
see from the example discussed in this section.

XI. CONCLUSION

In this paper, we derived the explicit form of the most
general nonrelativistic Lagrangian of NGBs in terms of
Maurer-Cartan form, which must be quite useful to system-
atically discuss quantum corrections. By using the free
part of the effective Lagrangian, we proved the counting rule
of NGBs and clarified the dispersion relation of NGBs for a
general setup. We also completely classified possible
numbers of type-A and type-B NGBs for a given choice
of G/H.

To discuss additional constraints on the effective
Lagrangian from spacetime symmetries, we showed explic-
itly the consequence of Galilean invariance. In addition, we
presented an intuitive interpretation of the presymplectic
structure as Berry’s phase of the ground state.

Having derived the most general effective Lagrangian,
we could develop simple scaling arguments and show why
a long-range order is stable in 1+ 14 when only type-B
NGBs are present, while the stability requires 2 + 14 and
above for type-A NGBs. It remains an interesting question
whether there is a general rule of thumb when both types of
NGBs coexist.
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APPENDIX A: LIE-ALGEBRA COHOMOLOGY

The cohomology of Lie algebra was introduced by
Chevalley and Eilenberg [71] as a way to compute the de
Rham cohomology of compact connected Lie groups using
their Lie algebras. On the other hand, most physics literature
is more familiar with de Rham cohomology. We use
the work by Chevalley and Eilenberg backward to describe
Lie-algebra cohomology using de Rham cohomology.

The existence of a central extension of a Lie algebra g is
determined by its second cohomology H?(g). The question
relevant to us is whether a central extension

[T, T;) = if i Ty + izyj, (A1)
where z;; is the center (an element that commutes with the
rest of @), is possible for a given Lie algebra. Then, the
question is whether it is consistent with the Jacobi identity

{T, [T, T} +{T;, [Ty. T;]} +{T. [T, T;]} = 0.
(A2)

A form on a Lie algebra w;, € Q*(g) is a map from AF g
to R

i (8rs -5 8) ER (A3)
antisymmetric among arguments
(81 - Bis oo s Bi)
= —@(G1s 1 Gjr oo er B v ees B)- (A4)

A two-form w, is exact if it can be obtained from a one-
form w, = dw;:
do,(g1.82) = @1([81. 62))- (A5)

On the other hand, it is closed if

dwy (81,82, 83) = @2(81, (82, 83]) + @2(81, [82, 83])

+ (g1, [92.93]) =0 (A6)
for any g; ;. This condition is called the cocycle condition.
For an exact two-form, it is nothing but the Jacobi identity,
and hence, it is automatically closed.

The possibility of @, (g;, g,) that cannot be written as the
original commutation relation yet satisfies the Jacobi
identity is the central extension and hence can be described
by the second cohomology H>(g).

According to the theorem by Chevalley and Eilenberg,
H*(g) = H%:(G) if G is the compact connected group
generated by g. Since all compact simple Lie groups have
trivial second cohomology, central extensions are not
possible for their Lie algebras. On the other hand, if there
are U(1) factors,

nn—1)

dim 3 [U(1)"] = =0, (A7)

generated by dp® A dg”. Therefore, the Lie-algebra coho-
mology H*[u(1)"] is also nontrivial, and hence, a central
extension is possible.

Note that the Lie algebra knows only about the local
information, and hence, it makes no distinction between
(1) and R. For instance, consider the Galilean group of
rotations M;;, translations P;, and Galilean boosts B;:

[Mi Pk] = i(5ikpj - 5ijpk)’

o (A8)

[Mi Bk] = i<5ikBj - 5ijBk)v (A9)

je

M, M| = i(6uMj; — 6,uM . — 6My; + 5;;M ), (A10)

P and B form R? individually, which allows for a central
extension

where the eigenvalue of the operator M is the mass of the
particle and a center of the Lie algebra (i.e., commutes with
everything else). The rotational invariance restricts the form
to be proportional to §;;. The exception is for the 2 + 1
dimension, where ¢;; allows for alternative extensions
[Py, Py| x €, =1[72].

Another example of central extension based on R is
the shift symmetry of the Schrodinger field mentioned
in Sec. HIE. It has a central extension thanks to
H*(R?*) =R #0.
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APPENDIX B: MATTER FIELDS

In this paper, we establish the effective Lagrangian of
NGBs for systems without Lorentz invariance. The effective
Lagrangian can also describe the situation where other low-
energy degrees of freedom (matter fields) couple to NGBs.
In this Appendix, we review how to write down such low-
energy theory for the reader’s convenience. Such matter
fields are important in many physical systems, e.g., fermions
coupled to a spin system and nucleons coupled to pions.

1. Approach 1: Modding H

As discussed originally in Ref. [5], any representation of
H y — p(h)y, where p(h) is a representation matrix, can
be promoted to transform under the full G by

w =y = p(hy(z))y. (B1)
Since h,(7) is an element of H, the above expression is well
defined. To see that it is a consistent transformation law, we
perform two successive transformations

U(r) = 991U (n) = gZU(”/)hg] (7)

= U(a")h,, (7" )h, (z), (B2)

while

w = p(hy, (7' )y, (m))y = p(hy, (7)) p(hy, () )y,

given that p is a representation of H.

Note that this transformation law is local in the sense that
p(hy(7(X,1))) is position dependent. As a result, dy does
not transform in the same way as y does:

(B3)

(dy)' = dlp(hy)w] = p(hy)[d + p(hydhy)ly.  (B4)
However, the inhomogeneous part can be exactly compen-
sated by the unbroken component of the Maurer-Cartan
form [see Eq. (78)]

p(@)) = p(hgwyhy) = ip(hydh). (BS)
Therefore, the combination
Dy = [d+ ip(ay)ly (B6)

is covariant. [This fact also means that D"y (n > 0) is
covariant.] Then, the question is how to write down H-
invariant combinations out of these H-covariant building
blocks. For example, 'y, i(y'D,y—c.c.), and
DMI//TDVI// are all invariant combinations. Since D contains
o), they describe interactions between NGBs and matter
fields. We can also multiply invariants such as g,;,(0)® -
@" to them. Since all Maurer-Cartan forms come with at
least 1 derivative acting on NG fields, all interactions
become smaller and smaller in the low-energy limit.

What may be surprising is that the matter fields need to
be only in linear representations of H, not G. For instance,
when electrons are coupled to ferromagnets, G = SO(3),
H =S0(2), and the electrons need to transform only
under U(1) representation with a particular charge ¢,
namely, p(T,) = g and ' = ¢y Then, the low-energy
effective Lagrangian for the interacting system of electrons
and magnons (the NGB in ferromagnets) is given by
Lot = 'Cmag + 'Cel+im, where

1. R
Luag = =" =2 g0[(@")* + ()], (B7)
i, . + EI//T . bl[/
Leryim =5 W'Dy —c.c.) —py'y —————
= (@) + (@) ]yt (B8)

to the order 0(V,,§2). Here, D, =V, + ig®»* and

D=V+ iqw®, s is the magnetization density, m is the
effective mass, and y is the chemical potential of electrons.

The interaction Lagrangian (B8) may be derived from a
microscopic model

VUt . Vo

i
= (U'V,¥ —cc.)—puliw—

—Ji -t % v, (B9)
where W(x,7) is a two-component spinor and 7n(X, 1)
represents the magnetization of the ferromagnet, including
the fluctuation. At this moment, the interaction term A7 - s
does not contain any derivatives and the weakness of the
interaction at a long distance is less apparent. To get the
effective Lagrangian (B8), we define locally a unitary
transformation U(n(x, 1)) [49,73] such that
U'n-oU = o, (B10)

and rewrite Eq. (B9) in terms of (y,y’)T = U¥. Then,
An -5 becomes just a constant lo./2, giving different
chemical potentials to w and y’. The derivative of ¥
now contains the Maurer-Cartan form

dV = U(d + io)(y,y')T. (B11)
Since y’ electrons have a gap J, we can integrate them out,
ending up with Eq. (B8) with ¢ = 1/2and A = 1/8m to the
current order of the derivative expansion.

2. Approach 2: Gauging H

The translation law in the previous section is often
awkward to deal with because it is nonlinear. Using the
formalism to gauge the right translation of U by H, we can
identify the above transformation law as the gauge
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transformation with the gauge #” = (. Therefore, we

consider U = ¢/*'Ta+#Ts) for the entire G and its global
transformation
U(x) > gU(n).  w—y, (B12)
while the local H transformation is
U(z) > Um)h(x),  y—p(h'(x))y.  (BI3)

Then, we can construct an invariant Lagrangian using y
and its covariant derivatives

Dy = [d —ip(A)ly,

where A= A’T, transforms as in Eq. (131).
Equation (B14) is indeed covariant under the right
translation:

(B14)

(Dy)' = [d — ip(h A + il di)|p (i )y
— p(")[d + p(hdh®) — ip(A + i(dh) )y

= p(h")|d — ip(A)lw = p(h") Dy (B15)

At the end of the day, we integrate the gauge fields out
and stick to the gauge 7 = 0. Within this gauge, h(x) =
hy(z) and p(h*(x)) = p(h,(7)), as desired.

APPENDIX C: TIME-REVERSAL SYMMETRY

In this Appendix, we clarify a confusion on discrete
symmetries in the existing literature [74,75]. Contrary to
the claim made in these references, we argue that type-B
NGBs can appear without breaking any discrete sym-
metries such as the time-reversal symmetry (TRS).

In the case of ferromagnets, the expectation value

(5. 8,]) = i(S:) #0 (C1)
spontaneously breaks not only the spin-rotational sym-
metry but also TRS, since under the time reversal, the spin

operator S flips its sign S — —S. However, in general,

<[Qa’ Qb]> - ifabc<Qc> 5& 0

does not necessarily mean that TRS is broken. In order to
respect TRS, all generators that have a nonzero expectation
value (Q.) have to be even under the time reversal. Then,
Eq. (C2) dictates that either the Q, or Q,, that appears in the
commutator must be even and the other one must be odd,
since TRS is antiunitary and flips the sign of the right-
hand side.

The simplest example is again given by the free-boson
model in Eq. (151). In this model, we identify the free
bosons with the dispersion @ = k?/2m as the type-B NGB
corresponding to the spontaneously broken shift symmetry

(C2)

v = v+ ¢ (c € C) [12]. The Noether charge for shifting
the real and imaginary parts of y is given by Qr=
i[dx(w—y') and Q;=[d'x(y+y’), respectively.
Because of the commutation relation [y (X, 1), w' (X', )] =
54(x —X'), Qg and Q; do not commute and [Qg, Q;] =
2iQ. In this case, the field y transforms under TRS as
Ty(x,t)T~" = w(x,—t), and hence, Q is odd and Q; is
even under TRS.

A more nontrivial example is the model discussed in
Sec. X that exhibits the symmetry-breaking pattern
U(2) — U(1). The field y transforms as y' = ¢’y under
the SU(2) symmetry, and corresponding conserved charges
are given by Q; = [ dxyToy.

There are several consistent definitions of the time-
reversal symmetries for this model. If y is a scalar, 7 acts

v as

Ty, )T =y(x,—1). (C3)
In this case, QO and Q3 are even and Q, is odd since o, is
imaginary. Thus, ([0, 0,]) = 2i(Q3) # 0 does not break

this TRS while a type-B NGB appears in this model. é /2
represents a pseudospin. Another way of defining 7°
symmetry is
Ty, )T~ = icoy (X, —t). (C4)
This time, all of the Q,’s are odd under 7 and é/Z
represents the real spin. ([Q;, Q,]) = 2i(Q3) # 0 breaks
this TRS.
Other discrete symmetries, such as the parity P and the
charge conjugation C, if they exist, can be discussed in the
same way.
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