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We study the ground state of N weakly interacting electrons (with N ≤ 10) in a two-dimensional
parabolic quantum dot with strong Rashba spin-orbit coupling. Using dimensionless parameters for the
Coulomb interaction λ≲ 1 and the Rashba coupling α ≫ 1, the low-energy physics is characterized by an
almost flat single-particle dispersion. From an analytical approach for α → ∞ and N ¼ 2, and from
numerical exact-diagonalization and Hartree-Fock calculations, we find a transition from a conventional
unmagnetized ground state (for λ < λc) to an orbital ferromagnet (for λ > λc), with a large magnetization
and a circulating charge current. We show that the critical interaction strength λc ¼ λcðα; NÞ vanishes in the
limit α → ∞.
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I. INTRODUCTION

The electronic properties of few-electron quantum dots
in semiconductor nanostructures have been widely studied
over the past few decades [1–3]. Typically, electrons in the
two-dimensional (2D) electron gas formed at the interface
between different semiconductor layers are confined to a
localized region in space by means of electrostatic trapping.
The resulting confinement is usually well approximated
by a parabolic potential with oscillator frequency ω,
suggesting a simple 2D oscillator spectrum. However,
Coulomb interactions are important in such devices, and
their impact can readily be seen in transport spectroscopy
[2]. Apart from the ubiquitous Coulomb-charging effects,
they are also predicted to induce a transition to a finite-size
Wigner crystal ofN electrons, the “Wigner molecule” [4,5],
where the electrostatic repulsion suppresses quantum
fluctuations and interelectron distances are maximized
[6–8]. The ratio between the confinement scale lT ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=meω

p
, with the effective mass me and the Bohr radius

aB ¼ ℏ2ε0=mee2, defines a dimensionless interaction-
strength parameter [3]

λ ¼ lT
aB

¼ e2

ε0ℏωlT
: ð1Þ

Interactions are here described by the standard Coulomb
potential VðrÞ ¼ e2=ε0r, where the dielectric constant ε0
accounts for static external screening. The crossover from
the weakly interacting Fermi-liquid phase (realized for

λ ≪ 1) to the Wigner molecule then happens around λ ≈ 1
and is known to be rather sharp, despite the finite-size
geometry [5]. Because of the confinement-induced reduc-
tion of quantum fluctuations, the corresponding electron
densities near the transition are much higher than the one
required for bulk Wigner-crystal formation [3].
Another modification of the 2D oscillator spectrum is

caused by spin-orbit coupling. We here focus on the Rashba
term caused by interface electric fields, which is often the
dominant spin-orbit coupling and can be tuned by gate
voltages [9]. Other types of spin-orbit coupling are
expected to generate similar physics as described below,
assuming that one can reach the corresponding strong-
coupling regime. In particular, the model studied below
applies directly to the case of Dresselhaus spin-orbit
coupling [9]. With the Rashba wave number k0, it is
convenient to employ a dimensionless Rashba coupling

α ¼ k0lT ¼ k0

ffiffiffiffiffiffiffiffiffi
ℏ

meω

s
: ð2Þ

The single-particle spectrum of a dot with weak Rashba
coupling α ≲ 1 has been discussed, e.g., in Refs. [10,11].
Interaction effects in few-electron dots with α ≲ 1 have
been investigated by density-functional theory [12],
quantum Monte Carlo simulations [13–15], and exact-
diagonalization [16–18] and configuration-interaction
calculations [19]. With increasing α, the Wigner-molecule
transition was found to shift to weaker interactions, i.e.,
to smaller λ. As noted in Refs. [20,21], the related bulk
Wigner-crystal formation is also easier to achieve when the
Rashba term is present.
In this paper, we study interacting few-electron quantum

dots in the regime of large Rashba spin-orbit coupling
α ≫ 1. This regime appears to be within close experimental
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reach [22–29] and is also of considerable fundamental
interest. In fact, many materials with strong spin-orbit
coupling are known to realize a topological insulator phase
[30,31]. Near the boundary of a noninteracting 2D topo-
logical insulator with time-reversal symmetry (TRS), an
odd number of gapless one-dimensional (1D) helical edge
states must be present [30,31], where the spin is tied to the
momentum of the electron. As we do not address magnetic
field effects here, the Hamiltonian below enjoys TRS.
Moreover, it is characterized by strong spin-orbit coupling
and it resembles a topological insulator in the absence of
interactions.
Given the above developments, it is not surprising that

several theoretical works [32–36] have already addressed
the physics of noninteracting electrons in quantum dots
with α ≫ 1. In this limit, the low-energy spectrum of a
parabolic dot is well described by a sequence of almost flat
Landau-like bands (see Sec. II A)

EJ;n ≃ ℏω

�
nþ 1

2
þ J2

2α2

�
; ð3Þ

with half-integer total angular momentum J and the band
index n ¼ 0; 1; 2;…, such that states with the same n but
different J are almost degenerate. Equation (3) reflects the
spectrum of a 1D (radial) oscillator plus a decoupled rotor
with a large moment of inertia. Assuming that the Fermi
energy is within the n ¼ 0 band, with corresponding Fermi
angular momentum JF, the Kramers pair with J ¼ �JF has
eigenfunctions localized near the “edge” of the dot. In fact,
those states have the largest distance from the dot center
among all occupied states and form a helical edge with
opposite-spin orientation of the counterpropagating �JF
states [32]. By virtue of the bulk-boundary correspondence
[30], the authors of Ref. [32] argued that a noninteracting
dot with α ≫ 1 has features similar to the finite-size version
of a 2D topological insulator. Indeed, time-reversal-
invariant single-particle perturbations, e.g., representing
the effects of elastic disorder, are predicted not to mix
opposite-spin states, and the helical edge is therefore
protected against such sources of backscattering. In the
finite-size dot geometry, however, the Z2 invariant com-
monly employed to classify the topological insulator phase
is not well defined.
For a dot with α ≫ 1, since the noninteracting spectrum

is almost flat, one can expect that interactions have a
profound effect. For instance, in lattice models hosting a
topological insulator phase for weak interactions, Mott-
insulator or spin-liquid phases emerge for strong inter-
actions [37]; for the case of interacting bosons, see
Refs. [38–42]. Moreover, the conspiracy of a single-particle
potential with sufficiently strong Coulomb interactions can
induce two-particle umklapp processes destroying the
helical edge state [43,44]. Motivated by these develop-
ments, we here study the ground state of interacting

electrons in a quantum dot with strong Rashba spin-orbit
coupling. We find it quite remarkable that the relatively
simple Hamiltonian below captures such diverse behaviors
as Wigner-molecule formation, the presence of helical edge
states, and—as we shall argue—the molecular equivalent of
an orbital ferromagnet. This Hamiltonian is also expected
to accurately describe semiconductor experiments, where
recent progress holds promise of reaching the ultrastrong-
Rashba-coupling regime. Let us now briefly summarize our
main results, along with a description of the structure of
the paper.
In Sec. II A, we present the single-particle model for the

quantum dot and summarize its solution for a large Rashba
parameter α. While our general conclusions hold for
arbitrarily radially symmetric confinement, quantitative
results are provided for the most important case of a
parabolic trap. We introduce a single-band approximation
valid for weak-to-intermediate interaction strength λ≲ 1
and energy scales below ℏω, which allows one to make
significant analytical progress. In Sec. II B, we then discuss
the general properties of Coulomb-matrix elements. The
limit of ultrastrong Rashba coupling α → ∞ is addressed in
Sec. II C, where a simple analytical result for the Coulomb-
matrix elements is derived. For the resulting α → ∞ model
H∞, weak interactions already induce strongly correlated
phases. The Coulomb-matrix elements not included inH∞,
arising for large but finite α, are addressed in detail in
Sec. II D.
Next, in Sec. III, we present the exact ground-state

solution of H∞ for two electrons (N ¼ 2). While the above
discussion may suggest that a Wigner molecule will be
formed, we find an orbital ferromagnetic state. The N ¼ 2
ground state of H∞ (see Sec. III A) is shown to be highly
degenerate in Sec. III B. However, perturbative inclusion of
Coulomb corrections beyondH∞ (see Sec. III C) breaks the
degeneracy and suggests the possibility of spontaneously
broken TRS in an interacting N ¼ 2 dot (for a more precise
characterization of this phenomenon, see Sec. III), with a
large value of the total angular momentum found already
for weak interactions. The emergence of a finite magneti-
zation [45] Ms ≠ 0 suggests a finite-size (“molecular”)
version of an orbital ferromagnet. This remarkable behavior
appears at arbitrarily weak (but finite) interaction strength,
with giant values of the magnetization. We estimate
Ms ≈ ðλαÞ1=4ℏ; see Sec. III C. This estimate highlights
that the orbital angular momentum is behind this phe-
nomenon; see also Ref. [46].
In Sec. IVA, we then present exact-diagonalization

results for the ground-state energy of N ¼ 2 and N ¼ 3
electrons in the dot for α ¼ 10 and α ¼ 15, going beyond
the α → ∞ model H∞. We now find that only above a
critical interaction strength λ > λcðα; NÞ does the dot
develop a magnetization Ms ≠ 0. The parameter λc
becomes smaller with increasing α, which is consistent
with λcðα → ∞Þ → 0, as obtained from H∞ in Sec. III. In
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Sec. IV B, we then discuss Hartree-Fock (HF) results for
particle numbers up to N ¼ 10, where exact diagonaliza-
tion becomes computationally too expensive. The HF
results show qualitatively the same effects, indicating that
orbital ferromagnetism represents the generic behavior of
weakly interacting electrons in quantum dots with ultra-
strong Rashba coupling. Finally, we conclude in Sec. V,
where we also discuss perspectives for experiments.
Additional details about the α → ∞ limit are given in
the Appendix.

II. COULOMB INTERACTIONS
IN A RASHBA DOT

A. Single-particle problem

We consider electrons in a 2D quantum dot with
parabolic confinement in the xy plane. Including the
Rashba spin-orbit coupling, the single-particle Hamiltonian
reads [9]

Hdot ¼
ℏ2

2me
k2 þme

2
ω2r2 −

ℏ2k0k
me

Ph; ð4Þ

where k ¼ −ið∂x; ∂yÞ, r ¼ ðx; yÞ, ω is the trap frequency
(defined in the absence of spin-orbit coupling), and the
positive wave number k0 determines the Rashba coupling.
With Pauli matrices σx;y;z referring to the electronic spin, the
Hermitian helicity operator Ph ¼ ðkyσx − kxσyÞ=k has the
eigenvalues �1. In the absence of the trap (ω ¼ 0), helicity
and momentum are conserved quantities. Writing k ¼
kðcosϕ; sinϕÞ, it is a simple exercise to obtain the Ph
eigenspinors Φ�ðϕÞ, with conserved helicity �1. The
dispersion relation is then (up to a constant shift) given by
ℏ2ðk∓k0Þ2=2me. Low-energy states have positive helicity
with

ΦþðϕÞ ¼
1ffiffiffi
2

p
�

1

−ieiϕ

�
; ð5Þ

and, for a given k ≈ k0, a U(1) degeneracy is realized,
corresponding to a ring in momentum space.
In the presence of the trap, however, helicity and

momentum are not conserved anymore. The system now
has two characteristic length scales, namely, the confine-
ment scale lT ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ=meω
p

and the spin-orbit length 1=k0.
Their ratio determines the dimensionless Rashba parameter
α in Eq. (2). In this paper, we discuss the case α ≫ 1, where
positive helicity states are separated from Ph ¼ −1 states
by a huge gap of order ℏ2k20=me ¼ α2ℏω. As a conse-
quence, negative helicity states can safely be projected
away. Noting that the total angular-momentum operator
Jz ¼ −iℏ∂ϕ þ ℏσz=2 is conserved, with eigenvalues ℏJ
(half-integer J), the low-energy eigenstates of Hdot for
α ≫ 1 have the momentum representation

ψJ;nðκ;ϕÞ ¼
eiðJ−1=2Þϕffiffiffiffiffiffiffiffi

2πκ
p uJ;nðκÞΦþðϕÞ; ð6Þ

where we use the dimensionless positive wave number
κ ¼ klT . The radial wave function uJ;nðκÞ obeys the
effective 1D Schrödinger equation [32,35]

�
−
1

2
∂2
κ þ

1

2
ðκ − αÞ2 þ J2

2κ2
−
EJ;n

ℏω

�
uJ;nðκÞ ¼ 0; ð7Þ

where n ¼ 0; 1; 2;… labels the solutions. For α ≫ 1,
it is justified to approximate Eq. (7) by replacing
J2=2κ2 → J2=2α2. The radial problem then decouples from
the angular one and becomes equivalent to a shifted 1D
oscillator with energy levels ðnþ 1=2Þℏω. Moreover, the
angular problem reduces to a rigid rotor with the large
moment of inertia α2=ℏω. We thus arrive at the EJ;n quoted
in Eq. (3), where n serves as band index and J labels the
almost degenerate states within each band. We find that
corrections to the energies in Eq. (3) scale as 1=α3 for
α ≫ 1. In fact, a recent numerical study of Hdot has
reported that Eq. (3) is highly accurate for α≳ 4 [35].
For weak-to-intermediate Coulomb-interaction strength,

only low-energy states are needed to span the effective
Hilbert space determining the ground state. It can then be
justified to retain only n ¼ 0 modes. This step implies the
restriction to angular-momentum states with jJj≲ α, since,
otherwise, n > 0 states should also be included. For the
results below, we have checked that this “single-band
approximation” is indeed justified. From now on, the
single-particle Hilbert space is restricted to the n ¼ 0 sector
(and the n index will be dropped). In momentum repre-
sentation, this space is spanned by the orthonormal set of
states [47]

ψJðκ;ϕÞ ¼
π1=4lTffiffiffi

κ
p e−ðκ−αÞ2=2eiðJ−1=2Þϕ

�
1

−ieiϕ

�
: ð8Þ

Up to the zero-point contribution, the corresponding single-
particle energy is EJ ¼ J2ℏω=2α2. The momentum-space
probability density for all states is independent of J,
representing a radially symmetric Gaussian peak centered
at k ¼ k0:

ρJðkÞ ¼ jψJj2 ¼
2

ffiffiffi
π

p
lT

k
e−ðk−k0Þ2l2T : ð9Þ

The coordinate representation of Eq. (8) now follows by
Fourier transformation

~ψJðρ; θÞ ¼
iJ−1=2

lT
eiðJ−1=2Þθ

� FJ−1=2ðρÞ
eiθFJþ1=2ðρÞ

�
;

FmðρÞ ¼
Z

∞

0

dκ
ffiffiffi
κ

p
2π3=4

e−ðκ−αÞ2=2JmðκρÞ; ð10Þ
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where r ¼ rðcos θ; sin θÞ with ρ ¼ r=lT , and we use the
Bessel functions JmðxÞ (integer m).
It will be convenient to use a second-quantized formal-

ism below, with the noninteracting Hamiltonian

H0 ¼
X
J

EJc
†
JcJ; EJ ¼

J2

2α2
ℏω; ð11Þ

where fermion-annihilation operators are denoted by cJ
for the half-integer J. The electron field operator is then
given by

ΨðrÞ ¼
X
J

~ψJðrÞcJ: ð12Þ

The noninteracting ground state is a Fermi sea with all
states jJj ≤ JF ≲ α occupied. For an even number of
electrons in the dot N ¼ 2JF þ 1, the ground state is
unique and has the energy E0 ¼ NðN2 − 1Þℏω=24α2.
When N is odd, however, the ground state is twofold
degenerate. Note that the single-band approximation can
only be justified for N ≲ α.
Next, we introduce the total angular-momentum operator

of the interacting N-electron dot

M̂s ¼ ℏ
X
J

Jc†JcJ; ð13Þ

which is conserved even in the interacting case. Noting that
the Hamiltonian respects TRS, a finite ground-state expect-
ation value Ms ¼ hM̂si ≠ 0 corresponds to a spontaneous
magnetization of the dot and thus would imply that the
ground state breaks TRS. For the noninteracting case,
recent work has discussed a spin-orbit-induced orbital
magnetization in similar nanostructures, either in the
presence [48] or absence [49] of a magnetic Zeeman field.
We find below that, in the absence of a magnetic field but
with strong spin-orbit coupling, already weak interactions
can induce a transition to an orbital ferromagnet, where a
large magnetization is present and the electrons in the dot
carry a circulating charge current. This behavior appears for
λ > λc, where the critical interaction strength λc vanishes in
the limit α → ∞.

B. Coulomb-matrix elements

The second-quantized Hamiltonian H ¼ H0 þHI , with
H0 in Eq. (11), includes a normal-ordered Coulomb-
interaction term

HI ¼
1

2

Z
d2r1d2r2Vðr1 − r2ÞΨ†ðr1ÞΨ†ðr2ÞΨðr2ÞΨðr1Þ;

ð14Þ
where VðrÞ is the Coulomb potential. Inserting the field
operator (12) and taking into account angular-momentum
conservation, we find

HI ¼
X

J1;J2;m

VðmÞ
J1;J2

c†J1þmc
†
J2−mcJ2cJ1 ; ð15Þ

with the integer angular-momentum exchange m. The real-
valued Coulomb-matrix elements in Eq. (15) take the form

VðmÞ
J1;J2

¼ 2πλℏω
Z

π

0

dθ cosðmθÞ

×
Z

∞

0

dρ
Z

∞

0

dρ0
GJ1;J1þmðρÞGJ2;J2−mðρ0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2 þ ρ02 − 2ρρ0 cos θ
p ; ð16Þ

where we define

GJ;J0 ðρÞ ¼ ρ
X
σ¼�

FJþσ=2ðρÞFJ0þσ=2ðρÞ ¼ GJ0;JðρÞ; ð17Þ

with FmðρÞ in Eq. (10). Using a well-known expansion
formula,

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ρ02 − 2ρρ0 cos θ

p ¼ 1

ρ>

X∞
l¼0

�
ρ<
ρ>

�
l
Plðcos θÞ; ð18Þ

where ρ> (ρ<) is the larger (smaller) of ρ and ρ0, and the
denominator in Eq. (16) is expressed as a series involving
Legendre polynomials PlðxÞ. This step allows us to
perform the θ integral in Eq. (16) analytically, and, after
some algebra, we obtain

VðmÞ
J1;J2

¼ 2π2λℏω
X

l¼jmj;jmjþ2;…

RðmÞ
l

Z
∞

0

dρ
ρlþ1

Z
ρ

0

ρ0ldρ0

× ½GJ1;J1þmðρÞGJ2;J2−mðρ0Þ þ ðρ↔ρ0Þ�; ð19Þ

with the numbers (see also Ref. [50])

RðmÞ
l ¼ ð2l − 1Þ!!

2ll!

YðlþjmjÞ=2

n¼1

ðn − 1=2Þðl − nþ 1Þ
nðl − nþ 1=2Þ ð20Þ

and Rð0Þ
0 ¼ 1. The Coulomb-matrix elements in Eq. (19)

are in a convenient form for numerics [51]. In addition, as
we discuss next, Eq. (19) also allows for analytical progress
in the limit α → ∞.

C. Ultrastrong Rashba coupling

The interaction-matrix elements (19) can be computed in
closed form for α → ∞. For consistency with the single-
band approximation, this limit is taken as k0 → ∞ with lT
held finite; i.e., we assume ultrastrong Rashba coupling in
the presence of the dot. Taking the limit in opposite order
gives similar but slightly different results; we provide a
discussion of this point in the Appendix.
For α → ∞, using Eq. (10) and ρ ¼ r=lT , the single-

particle states have the asymptotic real-space representation
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~ψJðρ;θÞ≃ iJ−1=2eiðJ−1=2Þθe−ρ2=2

π3=4lT
ffiffiffi
ρ

p
�

cosðαρ− πJ
2
Þ

eiθ sinðαρ− πJ
2
Þ
�
; ð21Þ

where the Gaussian e−ρ
2=2 factor reflects the trap potential

and the Rashba coupling causes rapid oscillations.
Equation (17) is well defined in the α → ∞ limit, where
GJ;JþmðρÞ → π−3=2e−ρ

2

cosðπm=2Þ. Notably, for oddm, we
find G ¼ 0, leading to the even-odd-parity effect described
below. Performing the remaining integrations in Eq. (19),
we obtain a surprisingly simple result for the Coulomb-
matrix elements

lim
α→∞

VðmÞ
J1;J2

¼ λℏωSm: ð22Þ

In terms of theRðmÞ
l in Eq. (20), the numbers Sm ¼ S−m are

nonzero only for even m

Sm ¼ δm;even

X
l¼jmj;jmjþ2;…

e−ηlRðmÞ
l Cl; ð23Þ

with the coefficients

Cl ¼
2ffiffiffi
π

p
Z

π=4

0

dϕ
tanlϕ
cosϕ

: ð24Þ

The small parameter η ≪ 1 in Eq. (23) (we take η ¼ 0.01
for concreteness below) regularizes the l summation, which
for η ¼ 0 is logarithmically divergent with respect to the
upper limit. In physical terms, this weak divergence comes
from the singular r → 0 behavior of the 1=r Coulomb
potential, which, in practice, is cut off by the transverse (2D
electron-gas) confinement. Expressing the corresponding
length scale as ηlT , we arrive at the regularized form
in Eq. (23). Numerical results for the Sm are shown in
Table I: Sm has a maximum for m ¼ 0 and then decays
with increasing jmj [52].
It is worth pointing out that the α → ∞ Coulomb-matrix

elements in Eq. (22) are valid for arbitrarily radially
symmetric confinement, where different confinement
potentials only lead to different coefficients Cl. While
Eq. (24) describes the parabolic trap, taking, for instance,

a hard-wall circular confinement [53], we find Cl¼
4=½πðlþ1Þ�.
An important consequence of Eq. (23) is that all

Coulomb-matrix elements with odd m vanish identically.
Equation (22) therefore predicts a pronounced parity effect:
Depending on the parity of the exchanged angular momen-

tumm, VðmÞ
J1;J2

is either finite or 0. Another important feature

is that the VðmÞ
J1;J2

in Eq. (22) are completely independent of
the “incoming” angular momenta J1 and J2. This property
can be rationalized by noting that in the α → ∞ limit, we
arrive at an effectively homogeneous 1D problem corre-
sponding to a ring in momentum space; see also the
Appendix. For a homogeneous electron gas, on the other
hand, it is well known that interaction-matrix elements only
depend on the exchanged (angular) momentum but not on
particle momenta themselves [54]. WithH0 in Eq. (11), the
conserved particle number N ¼ P

Jc
†
JcJ, and noting that

Sm ¼ 0 for odd m, the α → ∞ Hamiltonian takes the form

H∞ ¼ λℏω
X
m≠0

Sm
X
J1;J2

c†J1þmc
†
J2−mcJ2cJ1 þH0 þ Es; ð25Þ

with the energy shift Es ¼ S0NðN − 1Þλℏω. Since S0
enters only via this energy shift but otherwise disappears
in H∞, it is convenient to put S0 ¼ 0 from now on and let
the sum in Eq. (25) include m ¼ 0; the energy Es will be
kept implicit in what follows. Corrections to H∞ at finite α
originate from Coulomb-matrix-element contributions
that vanish for α → ∞, in particular, those with odd m.
In Sec. III, we shall discuss the exact ground state of H∞
for N ¼ 2.

D. General properties of Coulomb-matrix elements

We proceed by presenting symmetry relations relating
different Coulomb-matrix elements in Eq. (19). Note that
our discussion here is not restricted to α → ∞ but applies to
finite Rashba couplings with α ≫ 1. First, by virtue of
particle indistinguishability,

VðmÞ
J1;J2

¼ Vð−mÞ
J2;J1

: ð26Þ

Additional symmetry relations follow from the time-reversal
invariance of the interaction Hamiltonian HI. Indeed,
because of TRS, Eq. (17) yields G−ðJþ1Þ;−ðJþ1þmÞðρÞ ¼
ð−1ÞmGJ;JþmðρÞ, which then leads to the symmetry
relations [55]

VðmÞ
J1;J2

¼ Vð−mÞ
−J1;−J2 ¼ ð−1ÞmVðmÞ

−J1−m;J2
¼ ð−1ÞmVðmÞ

J1;−J2þm:

ð27Þ

In particular, for odd m and arbitrary J, Eq. (27) yields

VðmÞ
−m=2;J ¼ VðmÞ

J;m=2 ¼ 0: ð28Þ

TABLE I. Nonvanishing Sm for jmj≤16 from Eqs. (23) and (24).

m Sm

0 1.117 57
2 0.172 844
4 0.086 297 1
6 0.055 603 5
8 0.040 137 6
10 0.030 900 1
12 0.024 796 4
14 0.020 483 8
16 0.017 287 7
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The parity effect found in Sec. II B for α → ∞, with

VðmÞ
J1;J2

¼ 0 for all odd m, is consistent with Eq. (28):
While the finite-α relation (28) only implies that certain
odd-m matrix elements have to vanish, the ðJ1; J2Þ inde-
pendence of the Coulomb-matrix elements in the limit
α → ∞ forces all of them to vanish for odd m. Finally,

numerical calculation of the VðmÞ
J1;J2

can take advantage of
Eqs. (26) and (27), since all Coulomb-matrix elements

follow from the knowledge of Vðm≥0Þ
J1J2

, with J1;2 ≥ 1∓m=2
when m is odd and J1;2 ≥ ð1∓mÞ=2 when m is even.
Numerical results for α ¼ 10 and several m are shown in

Figs. 1 and 2. We draw the following conclusions.
(i) With increasing jmj, the absolute magnitude of the

Coulomb-matrix elements quickly decreases.
(ii) Pronounced differences between even and oddm are

not yet visible for α ¼ 10. Additional calculations
for α ¼ 15 and α ¼ 30 (not shown here) confirm
that the matrix elements for oddm become more and
more suppressed relative to the even-m case. How-
ever, the ideal parity effect, where all odd-m matrix
elements vanish for α → ∞, is approached rather
slowly.

(iii) For α ¼ 10, Figs. 1 and 2 show that the VðmÞ
J1;J2

carry
a significant dependence on the indices ðJ1; J2Þ.
This dependence ultimately disappears for α → ∞.

(iv) For a given value of m, the matrix element VðmÞ
J1J2

has
maximal absolute magnitude along the two lines
J2 ¼ −J1 and J2 ¼ J1 þm in the ðJ1; J2Þ plane.
Noting that the single-particle eigenfunctions are
localized near a ring of radius k0 in momentum
space, these two lines can be interpreted as BCS-like
and exchange-type scattering processes, respec-
tively; see the Appendix. The two lines of maximal
absolute magnitude are orthogonal to each other and

cross at the point (−m=2, m=2) in the ðJ1; J2Þ plane.
While, for even m, this point is not a physically
realized one (since J1;2 must be a half-integer), it is
always the symmetry center.

(v) VðmÞ
J1J2

is positive definite along the line J2 ¼
J1 þm, for both even and oddm, while it is negative
(positive) definite along the line J2 ¼ −J1 for odd
(even) m.

(vi) For even m, the interaction-matrix elements are
maximal at the four points where ðJ1; J2Þ is
either given by (−ðm� 1Þ=2, ðm� 1Þ=2) or by
(−ðm� 1Þ=2, ðm∓1Þ=2). For odd m, the matrix
elements vanish along the lines J1 ¼ −m=2 and
J2 ¼ m=2, in accordance with the symmetry
relation (28).

III. TWO INTERACTING ELECTRONS FOR
ULTRASTRONG RASHBA COUPLING

In this section, the α → ∞ model H∞ [Eq. (25)] is
studied for N ¼ 2 electrons. H∞ neglects all Coulomb-
matrix-element contributions beyond Eq. (22) but includes
the kinetic termH0. We assume that the interaction strength
is finite, but λ≲ 1 is needed to validate the single-band
approximation.

A. Two-particle eigenstates

The two-particle Hilbert space is spanned by c†J1c
†
J2
j0i,

where we set J1 > J2 to avoid double counting and j0i is
the N ¼ 0 state. This space is composed of decoupled

FIG. 1. Color-scale plot of the Coulomb-matrix elements VðmÞ
J1;J2

in the J1-J2 plane, normalized to their maximum value in the
shown region, for the Rashba parameter α ¼ 10 and various m.
Matrix elements taken along the solid lines are shown in Fig. 2.
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FIG. 2. Coulomb-matrix elements, in units of λℏω, vs angular
momentum J2. The plots are for α ¼ 10 and variousm. The upper
(lower) panel shows the case J2 ¼ J1 þm (J2 ¼ −J1), respec-
tively; see the solid lines in Fig. 1.
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subspaces, which are invariant under the action ofH∞. The
corresponding states jM; γi are labeled by the integer M
and a “family” index γ ¼ 1, 2, 3; see Fig. 3 for an
illustration. With amplitudes βJ>0 subject to the normali-
zation condition

P
J>0jβJj2 ¼ 1, and employing an aux-

iliary index iγ with values iγ¼1 ¼ 0 and iγ¼2;3 ¼ 1, those
states are defined as

jM; γi ¼
X
J>0

βJc
†
JþMþiγ

c†−JþMj0i; ð29Þ

where, for γ ¼ 2 (γ ¼ 3), only even (odd) J þ 1=2 are
included in the summation.
Using the energies EJ [Eq. (11)], some algebra shows

that the action of H∞ on such a state yields

H∞jM; γi ¼
X
J;J0>0

½ðEJþMþiγ þ E−JþMÞδJJ0

þ 2λℏωðSJ−J0 − δγ;1SJþJ0 Þ�
× βJ0c

†
JþMþiγ

c†−JþMj0i; ð30Þ

with S0 ¼ 0 (see above). Equation (30) confirms that each
family of states stays invariant underH∞. When looking for
the ground-state energy, we note that anM dependence can
only originate from the EJ ∼ 1=α2 terms. For α → ∞, all
jM; γi states with different M but the same γ, therefore,
have the same energy. As a consequence, the interacting
ground state is highly degenerate for α → ∞. This degen-
eracy is only lifted by finite-α corrections resulting from the

kinetic energy and from Coulomb-matrix elements
beyond H∞.
Importantly, since the energy-lowering contribution

−SJþJ0 is absent in Eq. (30) for γ ≠ 1, the ground state
must be in the γ ¼ 1 sector. The γ ¼ 2, 3 states are
separated by an energy gap of approximately λℏω, and
we neglect these higher-energy states from now on (and
omit the γ index). Since the magnetization operator M̂s in
Eq. (13) is conserved, the jMi states are also magnetization
eigenstates. Indeed, one immediately finds that the corre-
sponding eigenvalue is Ms ¼ 2Mℏ.

B. Distribution function

For a given total angular momentum Ms ¼ 2Mℏ, we
found in Sec. III A that the eigenstate of H∞ with lowest
energy can be constructed from the ansatz

jMi ¼
X
J>0

βJc
†
JþMc

†
−JþMj0i; ð31Þ

with hM0jMi ¼ δMM0 . Clearly, the unmagnetized M ¼ 0
state in Eq. (31) describes a superposition of time-reversed
states and thus preserves the TRS of the Hamiltonian.
However, TRS is violated by all other states jM ≠ 0i.
Some algebra yields from Eq. (30) the matrix elements

hM0jH∞jMi ¼
�
M2

α2
þ 2λE

�
δMM0ℏω; ð32Þ

with the dimensionless “energy”

E ¼
X
J;J0>0

�
J2

2λα2
δJJ0 þ SJ−J0 − SJþJ0

�
βJβJ0 : ð33Þ

Since the matrix appearing in Eq. (33) is real symmetric, we
can choose real-valued βJ. Moreover, since the matrix is
independent of M, its lowest eigenvalue Emin is also M
independent and depends on the interaction strength and on
the Rashba coupling only through the combination λα2.
The corresponding normalized eigenvector is easily
obtained numerically and directly gives the βJ. Thereby,
we also obtain the normalized ground-state distribution
function nJ ¼ jβJj2. Typical results for βJ and nJ are shown
in Fig. 4. We find a rather broad distribution function nJ,
very different from a Fermi function. To reasonable
approximation, the numerical results can be fitted to a
Gaussian decay nJ ∼ e−ðJ=J�Þ2, with J� ∼

ffiffiffi
α

p
. Since

J� ≪ α, the relevant angular-momentum states have
jJj ≪ α, and the single-band approximation is self-
consistently fulfilled. As shown in the inset of Fig. 4,
the βJ exhibit a pairwise oscillatory behavior, where βJ < 0
for J ¼ 1=2 and 3=2 but βJ > 0 for J ¼ 5=2 and 7=2, and
so on.
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FIG. 3. Schematic illustration of the invariant two-particle
states jM; γi (with integer M and family index γ ¼ 1, 2, 3)
[see Eq. (29)] in the J1-J2 plane. These states span the complete
two-particle Hilbert space. Our ordering convention J1 > J2
implies that only states below the main diagonal (dashed red
line) appear. Yellow cells correspond to γ ¼ 1, where the
respective numbers indicate M. Green (blue) cells refer to
γ ¼ 2 (γ ¼ 3). The interacting ground state has γ ¼ 1.
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C. Ground-state magnetization

The above results indicate that for α → ∞ and given M,
the lowest energy is

Eð∞Þ
M ¼

�
M2

α2
þ 2λEmin

�
ℏω: ð34Þ

While Eq. (34) suggests that the ground state has M ¼ 0,
the M2=α2 term (due to H0) is, in fact, subleading to
Coulomb corrections beyond H∞, which approximately
scale as 1=α; see Eq. (A7). We therefore have to take these
Coulomb-matrix elements into account when determining
the ground state. To that end, using the symmetry relation
(26) and exploiting that M̂s is conserved, we note that HI
[Eq. (15)] has the matrix elements

hM0jHIjMi ¼ 2δMM0
X
J;J0>0

βJβJ0

× ðVðJ−J0Þ
−JþM;JþM − VðJþJ0Þ

−JþM;JþMÞ: ð35Þ

Therefore, the energies Eð∞Þ
M in Eq. (34) will be independ-

ently shifted by this perturbation, and the ðJ1; J2Þ depend-
ence of the Coulomb-matrix elements becomes important;
see Sec. II D. In particular, terms with odd angular-
momentum exchange m will contribute. Treating the
Coulomb corrections in perturbation theory, the lowest
energy for fixed M is

EM ¼ E−M ¼ Eð∞Þ
M þ hMjHIjMi − 2λEminℏω; ð36Þ

where EM ¼ E−M follows from the symmetry relations in
Sec. II D. Comparing EM to the respective M ¼ 0 value
δEM ¼ EM − EM¼0, we finally obtain

δEM ¼M2

α2
ℏωþhMjHIjMi− hM¼ 0jHIjM¼ 0i; ð37Þ

with hMjHIjMi in Eq. (35).
The numerical result for δEM is shown in Fig. 5, where

we take α ¼ 30 and λ ¼ 1 as concrete examples.
Interestingly, the unmagnetized M ¼ 0 state represents a
local energy maximum. This finding can be rationalized by
noting that the βJ have pairwise-alternating signs; see
Fig. 4. For small but nonzero jMj, Eq. (35) is thus
dominated by the J ¼ J0 contribution due to VðJ−J0Þ

−JþM;JþM,
resulting in the estimate

δEM ≈ 2
X
J>0

nJðVð0Þ
−JþM;JþM − Vð0Þ

−J;JÞ < 0: ð38Þ

The inequality here follows by noting that Coulomb-matrix
elements with m ¼ 0 are always positive and have a
maximum for jJ2j ¼ jJ1j; see Sec. II D. For large jMj,
however, the M2 contribution in Eq. (37) becomes crucial.
As a consequence, we arrive at a symmetric double-well
behavior for δEM, with two minima at M ¼ �M0. This
simple argument is consistent with our numerical results
based on Eq. (36); see Fig. 5.
Since we typically find M0 ≫ 1 (see Fig. 5), this effect

must come from the orbital angular momentum. The value
ofM0 ¼ M0ðα; λÞ can be estimated analytically as follows.
Evaluating δEM from Eq. (37) and employing the approxi-
mation in Eq. (38) and the expression for the matrix
elements in Eq. (A7), we find

δEM

ℏω
≃M2

α2
−
2λ

πα

Z
π=2

0

dφ
sinφ
cos2φ

sin2ð2MφÞ: ð39Þ

The minimum of δEM with M ¼ þM0 then follows from
the equation
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FIG. 4. Distribution function nJ ¼ jβJj2 vs J for the N ¼ 2
ground state of H∞. We here take λα2 ¼ 104, which leads to
Emin ≃ −0.099 272 5. We stress that both βJ (shown in the inset)
as well as nJ are independent of the total angular momentum
Ms ¼ 2Mℏ. Dotted lines serve only as guides to the eye.
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FIG. 5. Lowest two-particle energy for fixed M relative to the
M ¼ 0 state δEM [Eq. (37)] vs M. We here consider α ¼ 30 and
λ ¼ 1, where δEM is given in units of ℏω.
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M0 ¼
2λα

π

Z
π=2

0

dφ
φ sinφ
cos2φ

sinð4M0φÞ: ð40Þ

Assuming M0 ≫ 1, the main contribution to the integral
comes from φ≲1=M0, and performing the subsequent
integration implies M0 ≈ ðλαÞ1=4. Clearly, this result sug-
gests that M0 can be very large even for weak interactions.
The ground state of the N ¼ 2 dot

jΦi ¼
X
�
c�j �M0i;

X
�
jc�j2 ¼ 1 ð41Þ

is spanned by the two degenerate states j �M0i, with
magnetization Ms ¼ �2M0ℏ, respectively. Unless
cþc− ¼ 0, we note that jΦi is not an eigenstate of the
conserved operator M̂s. However, the magnetization
expectation value hΦjM̂sjΦi ¼ 2ðjcþj2 − jc−j2ÞM0ℏ is
finite, except when jcþj ¼ jc−j. This fact suggests that
by application of a weak magnetic field perpendicular to the
2D plane, the magnetization can be locked to one of the two
minima, say, Ms ¼ þ2M0ℏ. Adiabatically switching off
the magnetic field, we then expect jΦi ¼ jM0i, since there
is an energy barrier to the j −M0i state. Since the barrier is
not infinite, we cannot exclude that quantum-mechanical
tunneling effects will ultimately establish an unmagnetized
ground state with jcþj ¼ jc−j, in particular, when taking
into account violations of the perfect rotational symmetry
of the dot assumed in our model. For instance, such
imperfections correspond to an eccentricity of the confine-
ment potential or the presence of nearby impurities. As long
as such imperfections represent a weak perturbation,
however, the associated tunneling time scales connecting
the two degenerate states j �M0i are expected to be very
long. We shall discuss this issue in some detail in Sec. V.
For practical purposes, assuming that quantum tunneling

is not relevant on the time scales of experimental interest,
adiabatically switching off the magnetic field then effec-
tively results in the ground state jΦi ¼ jM0i. This state
carries a large magnetization Ms ¼ 2M0ℏ and thus also a
circulating charge current. Such a state appears to sponta-
neously break the TRS of the Hamiltonian and is inter-
preted here as a molecular orbital ferromagnet.
The above discussion pertains to the idealized T ¼ 0

case. In practice, the zero-temperature limit also governs
the physics at temperatures well below the above energy
barrier kBT ≪ jδEM0

j. However, at higher temperatures,
thermally induced transitions between both minima happen
on short time scales, and the overall magnetization of the
dot vanishes. Nonetheless, M̂2

s still has a finite expect-
ation value.

D. Spin and charge density

Before proceeding with a discussion of numerical results
for N > 2, let us briefly address the spin and charge

density for α → ∞. We assume that the N ¼ 2 system is
in a definite ground state, say, jM0i.
The total spin density at position r ¼ rðcos θ; sin θÞ

follows as

Sðr; θÞ ¼
X
J>0

nJ½sJþM0
ðr; θÞ þ s−JþM0

ðr; θÞ�; ð42Þ

where sJ ¼ ðsxJ; syJ; szJÞ is the spin density for the single-
particle state ~ψJðr; θÞ. Using Eq. (21), we obtain, e.g.,

sxJðr; θÞ≃ ℏ
2

e−r
2=l2T

π3=2lTr
cosðθÞ sinð2k0r − πJÞ: ð43Þ

As a consequence, the two contributions in Eq. (42)
precisely cancel each other, and Sx ¼ 0. By the same
argument, we also find that the y and z components of the
spin density vanish. In the limit α → ∞, the spin density S
is therefore identically 0. In practice, finite contributions
may come from subleading (approximately 1=α) terms, but
these contributions are small for α ≫ 1.
We now turn to the charge density ρcðrÞ, which is always

radially symmetric. For α → ∞, all single-particle states
[ ~ψJ in Eq. (21)] lead to the same probability density in
space, and we therefore conclude that ρcðrÞ must be
independent of Coulomb interactions. For λ≲ 1 and
arbitrary particle number N, we thus obtain

ρcðrÞ ¼
eN

π3=2lTr
e−r

2=l2T ; ð44Þ

which satisfies the expected normalization
2π

R∞
0 drrρcðrÞ ¼ eN. We mention in passing that the

edge-state property of the single-particle states, i.e., that
states with larger jJj live further away from the dot center,
can be seen from the finite-α wave functions in Eq. (10)
[32], but not anymore from their asymptotic α → ∞ form in
Eq. (21). The λ independence of ρcðrÞ at large α is in
marked contrast to the case of weak spin-orbit coupling,
where ρc contains information about interactions and can
be used to detect Wigner-molecule formation [5,14].
Instead, the charge density in Eq. (44) is featureless for
arbitrary N, pointing once again to the absence of the
Wigner molecule for α ≫ 1 and λ≲ 1. Finally, we note that
by computing the pair-distribution function [54], we also
find no trace of Wigner-molecule formation in this limit.

IV. EXACT-DIAGONALIZATION AND
HARTREE-FOCK CALCULATIONS

We now discuss numerical results for the ground-state
energy and magnetization for N ≤ 10 electrons in the dot.
These results are obtained by means of the standard exact-
diagonalization technique and by HF theory from
H ¼ H0 þHI , with H0 in Eq. (11), HI in Eq. (15), and
the Coulomb-matrix elements (19); see Sec. II. Therefore,
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the following results are not restricted to the α → ∞ limit
considered in Sec. III. However, we are limited to rather
weak interactions λ≲ 1 and moderate particle numbers
N < α because of our single-band approximation. We first
describe our exact-diagonalization results and then turn to
HF theory.

A. Exact diagonalization

Using the Rashba parameter α ¼ 10, exact-diagonaliza-
tion results for N ¼ 2 and N ¼ 3 electrons in the dot are
shown in Fig. 6. While E0ðλÞ at first sight seems rather
featureless (top panel), there are nonanalytic features that
become visible when plotting the first derivative (center
panel). Let us discuss this point in detail for N ¼ 2; see the
left side of Fig. 6. The first nonanalytic feature occurs at
λc ≈ 0.25, where the second derivative diverges
d2E0=dλ2 → −∞ as the interaction parameter λ approaches
the critical value λc from below. In close analogy to the
results obtained from H∞ in Sec. III, the ground state for
λ > λc has the magnetization Ms ¼ �2M0ℏ, where M0 is
an integer and the ground state is degenerate with respect to
both signs. In the exact diagonalization, the “initial con-
ditions” selecting the eventually realized state
(Ms ¼ þ2M0ℏ or Ms ¼ −2M0ℏ) correspond to unavoid-
able numerical rounding errors. In contrast to the α → ∞
limit, however, the interaction parameter λ must now
exceed a critical value λc to allow for the orbital ferro-
magnet. For λ < λc, the M ¼ 0 state is the ground state,
which is adiabatically connected to the noninteracting
ground state. Since energy levels of states with different
conserved total angular momentum Ms can cross each
other, the critical value λc marks a quantum phase

transition. However, once disorder or eccentricity of the
quantum dot are present, angular-momentum conservation
breaks down and the transition will correspond to a smooth
crossover phenomenon. The observed large value of the
magnetization jMsj ¼ 6ℏ for λ > λc (see Fig. 6) again rules
out a purely spin-based explanation. In fact, additional
jumps to even higher jMsj are observed for larger λ
in Fig. 6.
Similar features are also observed for N ¼ 3, where

exact-diagonalization results are shown on the right side of
Fig. 6. Again, the first derivative of E0ðλÞ displays
nonanalytic behavior. For small λ, the state stays close
to a doubly degenerate Fermi sea; see Sec. II A. For
λ > λc ≈ 0.31, however, a large magnetization emerges
jMsj ¼ 11.5ℏ.
The results of Sec. III show that the critical interaction

strength λc vanishes for α → ∞. We therefore expect λc to
decrease with increasing α. To study this point, exact-
diagonalization results for α ¼ 15 are shown in Fig. 7. All
qualitative features observed for α ¼ 10 are recovered, and
the critical value λc is indeed found to decrease: For N ¼ 2,
we now find λc ≈ 0.17 (instead of λc ≈ 0.25 for α ¼ 10),
while forN ¼ 3, we obtain λc ≈ 0.22 (instead of λc ≈ 0.31).
This result confirms that with increasing spin-orbit-
coupling strength, the orbital ferromagnetic state is reached
already for weaker interactions.

B. Hartree-Fock calculations

Finally, let us turn to numerical results for larger N,
where exact diagonalization becomes computationally too
expensive. We have carried out an unrestricted Hartree-
Fock analysis following the textbook formulation [54], in
order to find the energy and the total angular momentum of
the N-electron ground state. We note that HF calculations
are known to provide a reasonable description for α ¼ 0
[4,56,57]. We find that a diagonal HF density matrix is
sufficient, with variational parameters nJ ¼ hc†JcJi for a
half-integer J subject to the normalization condition
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FIG. 6. Exact-diagonalization results for the ground-state en-
ergy E0 and the magnetization Ms vs the interaction parameter λ,
for α ¼ 10 and N ¼ 2 (left) and N ¼ 3 (right). The top row
shows E0ðλÞ, where singular structures are visible in the
derivative dE0=dλ, as depicted in the center panels. The bottom
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P
JnJ ¼ N. Up to a constant, the resulting HF Hamiltonian

is given by

HHF ¼
X
J

�
EJ þ 2

X
J0
½Vð0Þ

J;J0 − VðJ0−JÞ
J;J0 �nJ0

�
c†JcJ: ð45Þ

The self-consistent HF ground state is numerically found
by iteration, starting from randomly chosen initial distri-
butions. The converged fnJg distribution yields the mag-
netization Ms and the ground-state energy. For λ
approaching the (HF value of the) critical interaction
parameter λcðα; NÞ, the energy shows similar nonanalytic
features, as found from exact diagonalization; see Sec. IV
A. For λ > λc, a large ground-state magnetization is
observed, again corresponding to orbital ferromagnetism.
Our HF results for λc and Ms are shown in Fig. 8. We

consider the Rashba spin-orbit coupling α ¼ 30 and up to
N ¼ 10 electrons in the dot. Unfortunately, we cannot
address larger N, for, otherwise, our single-band approxi-
mation is not justified anymore. For N ¼ 2, the corre-
sponding exact-diagonalization values are also given. The
HF value for λc is only slightly smaller than the exact one,
which suggests that HF theory is at least qualitatively
useful. That the HF prediction is below the exact one for
N ¼ 2 can be rationalized by noting that HF theory
generally tends to favor ordered phases such as orbital
ferromagnetism, resulting in a smaller value for λc. The
magnetization for λ > λc, however, is a more difficult
quantity to predict due to the shallow minima of the
free-energy curves in Fig. 5. Indeed, the inset of Fig. 8
shows that the HF value of the magnetization (which
appears to scale as Ms ∼ N) is significantly smaller than
the exact one. With increasing N, the HF predictions for λc
indicate that the transition to the orbital ferromagnet
persists. Moreover, this transition can even be reached at
weaker interactions.

V. DISCUSSION

In this work, we have studied the interacting N-electron
problem for a parabolic 2D quantum dot (with N ≤ 10) in
the limit of strong Rashba spin-orbit coupling α ≫ 1. This
regime is characterized by an almost flat single-particle
spectrum, where we find that already weak-to-intermediate
Coulomb interactions (our single-band approximation per-
mits us to study the regime λ≲ 1 only) are sufficient to
induce molecular orbital ferromagnetism. This state is
observed for λ > λcðα; NÞ, where our N ¼ 2 solution in
Sec. II shows that the critical strength λc → 0 for α → ∞.
For finite (but large) α, however, λc will be finite. The
orbital ferromagnet has a giant total angular momentum,
accompanied by a circulating charge current.
Coming back to our discussion in Sec. III C, we now

address issues concerning the experimental observation of
the predicted orbital ferromagnetism for a single quantum
dot. The transition to this state could be induced, in
practice, by varying the electrostatic confinement potential
and/or the gate-controlled Rashba spin-orbit coupling in
order to reach the regime defined by α ≫ 1 and λ > λc. By
allowing for an eccentricity of the dot-confinement poten-
tial, which can also be achieved with appropriate gate
voltages, quantum tunneling processes connecting the free-
energy minima with opposite magnetization Ms ¼ �Mmin
are expected to become relevant; see Sec. III C. The
corresponding time scale for such processes can be esti-
mated as follows. We first note that the free-energy barrier
between both minima Bℏω corresponds to a number
B ≈ 0.1;…; 0.15; see Fig. 5. We next employ a paradig-
matic effective low-energy model to include the effects of
imperfections breaking the ideal rotational symmetry

Heff ¼
�
ϵ

2
ϕ2 þ B

ðM2
s −M2

minÞ2
M4

min

�
ℏω: ð46Þ

The first term describes the dot eccentricity, with a small
dimensionless parameter ϵ, where the polar angle ϕ is
conjugate to the magnetization Ms. The second term
approximates the double-well potential in Fig. 5. The
two lowest eigenenergies for Heff are known exactly
[58]. From the result, we find the level splitting

δE ¼
ffiffiffi
2

π

r
64Bℏω exp

�
−
4

ffiffiffiffiffiffi
2B

p

3
ffiffiffi
ϵ

p Mmin

�
: ð47Þ

The resulting time scale for tunneling processes τ is thereby
estimated as

ωτ ¼ ℏω
δE

≈ 0.2e5.96Mmin ; ð48Þ

where, for simplicity, we have put B ¼ 0.1 and ϵ ¼ 0.01.
For the value Mmin ≈ 18 observed in Fig. 5, we get the
estimate ωτ ≈ 1045. This astronomically long tunneling
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FIG. 8. Hartree-Fock results (black diamonds) for the critical
interaction strength λc vs particle number N for α ¼ 30
(main panel). The red circle shows the corresponding exact-
diagonalization result for N ¼ 2. Inset: Magnetization Ms
(in units of ℏN) found for λ≳ λc vs particle number N.

ORBITAL FERROMAGNETISM IN INTERACTING FEW- … PHYS. REV. X 4, 031033 (2014)

031033-11



time strongly suggests that on experimentally accessible
time scales, the orbital ferromagnet described in this paper
will be indistinguishable from a true equilibrium state.
It is also useful to contrast the behavior reported here to

the well-known persistent currents in normal-metal quan-
tum rings [59–63], where a circulating equilibrium electric
current flows and can be experimentally detected; see
Ref. [64] and references therein. First, a persistent current
flows already in noninteracting quantum rings but requires
a nonzero flux threading the ring, while orbital ferromag-
netism in a 2D dot is generated by the interplay of Coulomb
interactions and strong spin-orbit coupling. Second, the
total angular momentum (magnetization) predicted here
for a 2D Rashba dot can be very large. Therefore, the
circulating currents in our case should by far exceed the
persistent currents observed in quantum rings. Despite
these differences, the persistent current analogy also
suggests ways to observe our predictions experimentally.
Another possibility is to study the response to a weak
magnetic field applied perpendicular to the 2D plane. The
low-field susceptibility is then expected to be singular, just
as in an ordinary ferromagnet. At elevated temperatures
approaching the free-energy barrier height discussed above,
the orbital magnetization in our system will be thermally
suppressed and ultimately disappear. The relevant temper-
ature scale for this crossover is Tc ≈ Bℏω=kB. For typical
quantum dots [2], Tc ≈ 1 to 10 K.
To conclude, we hope that our prediction of orbital

ferromagnetism in Rashba dots will stimulate further
theoretical and experimental work. For instance, it remains
an open question to address the transition from the orbital
ferromagnet to a Wigner molecule with increasing inter-
action strength for large Rashba coupling. In order to
achieve this description, one needs to go beyond the
single-band approximation employed in this work.
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APPENDIX: ON ULTRASTRONG
RASHBA COUPLINGS

In this Appendix, we address an alternative calculation of
the interaction-matrix elements VðmÞ

J1;J2
for α → ∞. Instead

of taking this limit as k0 → ∞ with finite lT (see Sec. II C),
we here formally assume a fixed spin-orbit momentum k0
but large lT . The α → ∞ limit taken in this manner is subtle
since (i) the resulting expressions require infrared regu-
larization with lT setting the effective system size and
(ii) the single-band approximation requires a finite confine-
ment frequency in order to be justified. However, it is also
beneficial since one can proceed directly in momentum

space and thereby obtain an intuitive understanding of the
parity effect.
We start by noting that the states (8) describe a Gaussian

distribution of the probability density in momentum space
around k ¼ k0, where 1=lT sets the amplitude of zero-point
fluctuations of k around k0. For lT → ∞, this density
becomes jψJðkÞj2 ≃ ð2π=k0Þδðk − k0Þ. The states (8) thus
have the limiting behavior

ψJðkÞ≃
ffiffiffiffiffiffiffiffiffiffiffi
2π3=2

k0lT

s
eiðJ−1=2Þϕδðk − k0Þ

�
1

−ieiϕ

�
; ðA1Þ

describing localization on a ring in momentum space. The
interaction Hamiltonian is

HI ¼
1

2

Z
d2q
ð2πÞ2

2πe2

ε0q
∶ρð−qÞρðqÞ∶; ðA2Þ

where the colons denote normal ordering and

ρðqÞ¼
Z

d2k
ð2πÞ2Ψ

†
kþqΨk; Ψk ¼

X
J

ψJðkÞcJ: ðA3Þ

Writing

k ¼ k

�
cosϕ
sinϕ

�
; q ¼ q

�
cosϑ
sin ϑ

�
; k0 ¼ kþ q;

ðA4Þ
it is now crucial to take into account the constraints k ¼
k0 ¼ k0 coming from the δ functions in ψJðkÞ. In effect, all
momenta for incoming k1;2 and outgoing k0

1;2 electrons
must be located on a ring of radius k0 in momentum space.
This severe phase-space restriction is only met by two types
of interaction processes, as explained next.
Shifting the integration variable ϕ → ϕþ ϑ, some alge-

bra yields (integer m) [65]

VðmÞ
J1;J2

¼ e2

4ε0l2T

Z
2k0

0

dq
Z

2π

0

dϕ1dϕ2

2π

× δðk01 − k0Þδðk02 − k0Þeimðϕ2−ϕ1Þ
X

σ1;σ2¼�

×

�
1þ q

k0
eiϕ1

�
J1þmþσ1=2

�
1 −

q
k0

eiϕ2

�
J2−mþσ2=2

;

ðA5Þ

where the δ function implies the constraint

k01ðϕ1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 þ q2 þ 2k0q cosϕ1

q
¼ k0 ðA6Þ

and similarly for k02. This constraint leads to the condition
cosϕ1 ¼ − cosϕ2 ¼ −q=2k0, which is met by two types of
scattering processes only, namely, (a) for ϕ2 ¼ π þ ϕ1

(BCS-like pairing) and (b) for ϕ2 ¼ π − ϕ1 (exchange-type
process); see Fig. 9. Such spin-orbit-induced constraints on
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interaction processes were also recently pointed out in
Ref. [66]. Parametrizing q ¼ 2k0 cosφ in Eq. (A5), we
obtain

VðmÞ
J1;J2

¼ ð−1ÞJ1þJ2þm−1 e2

2πε0k0l2T

Z
π=2

0

dφ

×sinφ
−cos½2ðJ1þ J2Þφ� þ cos½2ðJ1− J2þmÞφ�

cos2φ
;

ðA7Þ

where the first (second) term in the numerator results
from BCS-like (exchange-type) processes. Importantly, the
above integral is infrared divergent for q ¼ 2k0 cosφ → 0.
To regularize this singularity, we employ lT as an effective
system size and require qlT > 1. After some algebra, we
find the ðJ1; J2Þ-independent result VðmÞ

J1;J2
≃ λℏωδm;even,

which recovers the parity effect in Sec. II C, including the
ðJ1; J2Þ independence of the matrix elements. In contrast to
Eq. (22), however, the even-m Coulomb-matrix elements
found here are also independent of m. This fact indicates
that the limits k0 → ∞ and lT → ∞ do not commute.
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