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We propose a waveguiding mechanism based on the effective gauge potential for photons. The

waveguide geometry consists of core and cladding regions with the same underlying dispersion relation,
but subject to different gauge potentials. This geometry can be realized in a dynamically modulated
resonator lattice and provides a conceptually straightforward and dynamically reconfigurable mechanism

for generating a one-way waveguide.
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I. INTRODUCTION

Waveguides are fundamental building blocks of inte-
grated photonics. The most commonly used waveguide
consists of a high refractive index core surrounded by a low
refractive index cladding [1], as shown in Fig. 1(a). In such
a structure, light is guided in the core by total internal
reflection. In recent years, there has also been very active
research in exploring new mechanisms for waveguiding.
Notable examples include photonic band gap guiding [2,3]
and waveguides based on surface plasmons [4].

In this paper, we propose an alternative light guiding
mechanism based on the concept of an effective gauge field
for photons. Photons are neutral particles, and hence there
is no naturally existing gauge field that couples to photons.
Nevertheless, in recent years, various mechanisms for
creating effective gauge field for photons have been pro-
posed [5—14] and demonstrated [15—17]. In particular, it has
been pointed out by Fang et al. [18] that a photonic gauge
field can be created in a dynamically modulated photonic
structure by controlling the modulation phase. Moreover,
one effect of such a photonic gauge field is to shift the
dispersion relation in the wave vector space [19]. Building
upon the proposal in Ref. [19], we show that such a shift can
be utilized to construct a waveguide for light based on the
effective gauge field for photons [Fig. 1(b)].

The proposed gauge-field waveguide exhibits two major
advantages. First of all, it is dynamically reconfigurable.
While other waveguides have their structure determined at
fabrication, in our proposed waveguide, the dynamic
modulation phases can be readily changed, thus allowing
the temporal reconfiguration of the waveguide structure.
Secondly, dynamically modulated structures exhibit
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nonreciprocity, which is absent in other waveguide struc-
tures unless magneto-optical or nonlinear materials are
used. With the proposed system, we can achieve one-way
waveguiding naturally.

The one-way waveguide concept presented here differs
from the one-way guiding discussed in Ref. [18] in signifi-
cant ways. Reference [18] proposes a photonic analog of the
integer quantum Hall effect. The one-way guiding there was
supported by edge modes, which are located at the surface of
abulk subject to anonzero effective magnetic field. The edge
mode arises from the nontrivial topological properties of the
bulk. In contrast, in the present design, both the core and the
cladding regions have zero effective magnetic fields and
zero Chern numbers. Hence, both the core and the cladding
regions by themselves are topologically trivial. The non-
trivial one-way guiding arises from the nontrivial topologi-
cal features of the interfaces between the core and cladding.

Furthermore, in the present design, the guided mode
intensity is concentrated at the center of the core region. In
contrast, in edge-mode guiding systems [11,12,15-18], the
intensity maximum is located at the edge. This difference is
of great importance in practice. The entire modern optical
information processing system, including both optical fiber
networks and on-chip optical interconnect systems, are built
upon the kinds of guided modes we propose here. Compared
with edge modes, such guided modes are better confined and
therefore better insulated from external interferences. Our
design therefore represents an important step forward in
using one-way waveguide modes in practical information-
processing circuits.

This paper is organized as follows: in Sec. II, we briefly
review the theoretical background, including both the rel-
evant aspects of the standard waveguide theory (Sec. I A) as
well as the effects of gauge fields (Sec. II B). In Sec. III, we
explain the principle of gauge-field guiding, set up the
waveguide theory framework, and analytically solve a simple
model to illustrate some general features of such a wave-
guide. In Sec. IV, we propose a physical system consisting of
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a dynamically modulated resonator lattice where such a
gauge-field waveguide for photons may be realized and
calculate the waveguide dispersion and some related
properties. We conclude in Sec. V.

II. THEORETICAL BACKGROUND

A. Relevant aspects of standard waveguide theory

We start by briefly reviewing relevant aspects of the
standard waveguide theory [1]. The standard waveguide
theory is applicable to the geometry shown in Fig. 1, where
a core region is sandwiched between two cladding regions.
For our purpose, it is sufficient to consider only the
symmetric waveguide configuration where the two clad-
ding regions are made of the same material. The core and
the cladding regions are uniform media with dispersion
relation  @eere (ky. ky) and  @cjaqding (ki ky), respectively,
where k, is the wave vector along the waveguide. A guided
mode exists if at a given (@, k, ) there is a propagating mode
in the core that is decoupled from any propagating mode in
the cladding. For such a mode, the transverse field profile
is exponentially decaying in the cladding region and
sinusoidally oscillating in the core region, i.e.,

—a,|x|
e
)~

cos k,x or sink,x

|x| > d/2

|x| < dj2. W)
Here, k, is obtained from the dispersion relation of the core
region weo (k. ky) and a, is determined by the analytical
continuation from the dispersion relation of the cladding
@cladding (Ky» k) into the complex k, plane. Throughout this
paper, we define the width of the core region as d.

Starting from this field profile in Eq. (1), and assuming
that both the field and its derivative are continuous
across the core-cladding interface, we obtain the following
equation:

-0 III

FIG. 1. Structures and isofrequency contours corresponding to
two different waveguiding mechanisms: (a) index guiding, where
the core region has a high refractive index and the cladding has a
low refractive index; (b) gauge-field guiding, where the core
region has a nonzero gauge potential A and the cladding has
a zero gauge potential. The dashed line on the isofrequency
contours demonstrates the absence of k,-matching states in the
cladding region.

even mode

k, tan(k.d/2)
«={ @
—k, cot(k,d/2) oddmode,
Solving Eq. (2), we then obtain the mode profile and the
dispersion relation of the guided mode.

The derivation above is standard. It was, however,
typically carried out to describe the conventional slab
waveguide geometry of Fig. 1(a). Here, we reproduce these
derivations to emphasize that Eq. (2) applies to slab con-
figurations in general, independent of the form of dispersions
of the media in the slab configuration, and, therefore, is
applicable to our structure of interest here in Fig. 1(b).

B. Effect of gauge field on dispersion relation

It is well known in quantum mechanics that to describe
the dynamics of an electron in an electromagnetic field one
needs to replace the kinetic momentum in the Hamiltonian
with the canonical momentum; i.e.,

—iV - —iV — A,

Here, we define A = qzi, where ¢ is the charge of the
electron and A is the vector potential for electrons. We
choose the unit such that # = ¢ = 1, and in the following
refer to A, rather then A, as the gauge potential, so that the
similarity between electronic and photonic gauge fields
becomes more transparent. As a result, suppose we have an
electronic system described by a dispersion relation w(k)
in the absence of the gauge potential, where @ is the
frequency and k is the wave vector of a mode of the system.
When a uniform gauge potential A is applied, its dispersion
relation becomes w(k — A); i.e

o(k) = ok —A).

The effect of gauge field is a shift of the dispersion relation
in k space, as specified by A. This applies to electrons
in free space and in crystal lattice when subject to a
magnetic field.

Photons are neutral particles that do not interact directly
with a magnetic field. However, recent theoretical works
[11,12,18,20] have shown that an effective magnetic field
for photons can exist if light would accumulate a direction-
dependent phase when propagating. Consequently, the
discussion above for electrons applies to photons in an
effective gauge field as well: a properly designed photonic
gauge field should be able to shift the dispersion relation in
the k space. An explicit demonstration of some of the
consequences of such a shift has been provided in Ref. [19].

III. GENERAL PRINCIPLES OF WAVE
GUIDING BY GAUGE FIELD

A. General principles

Having reviewed the relevant backgrounds, we now
consider the geometry in Fig. 1(b). In this geometry, the
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cladding region is described by a material with a dispersion
relation w(k,, k,). The core region is described by a
material with the same dispersion, but, in addition, subject
to a uniform gauge potential along the y direction, i.e.,
A =A,J. Based on the discussion in Sec. IIB, the
dispersion relation of the core region is then described
by w(k,, k, —Ay).

The principle of waveguiding in the structure of Fig. 1(b)
can be understood by an isofrequency contour analysis [21]
analogous to a conventional waveguide. For both slab
waveguide structures shown in Fig. 1, the wave vector
component k, parallel to the interface is conserved. For
conventional index guiding in Fig. 1(a), the core region has
a larger isofrequency contour than the cladding region.
Consequently, the core supports states that do not have
matching states in the cladding region. For our proposed
gauge-field waveguide in Fig. 1(b), the isofrequency con-
tours of the core and the cladding regions have the same
shape; they are, however, shifted away from each other along
the y direction due to an effective gauge field in the core
region. As a result, there are now propagating modes in the
core region, for example, the modes corresponding to the
intersections between the dashed line and the constant
frequency contour of the core in Fig. 1(b), which cannot
match and couple to the propagating modes in the cladding.
Thus, applying a gauge potential along the propagation
direction in the core region can create a waveguide based on
gauge field.

B. Simple model for gauge-field waveguide

In this section, we study in detail a simple model system
represented by Fig. 1(b) so as to demonstrate the novel
properties of the proposed gauge-field waveguide. In the
absence of the gauge potential, we assume a linear intrinsic
dispersion relation to facilitate comparison with conven-
tional waveguides. The cladding and core are therefore
described by

o ks + ks
k4 (k, —A,)? coreregion.

cladding region

The projected band diagrams for the cladding and the
core regions are plotted in blue and pink in Figs. 2(b)-2(d).
The blue shaded region corresponds to the extended modes
in the cladding region, as obtained by projecting the
dispersion w” = k3 + k3 onto the w-k, plane (this shaded
region is also referred to as the light cone). The pink shaded
region corresponds to the light cone in the core region. The
overlapping part of the two light cones is shaded purple.

Solving Egs. (2) and (3) at different @ generates the @
versus k, dispersion relation of the guided mode(s) as
shown by the red curves in Figs. 2(b)-2(d). In the plots, we
define ¢ =A,d/2, which is the only dimensionless

constant that carries all the structural information of the
gauge-field waveguide system discussed in this section.
A guided mode should be evanescent in the cladding
region and propagating in the core region. Therefore, the
guided mode should be outside the light cone of the cladding
region, and should lie within the light cone of the core
region, which we observe in all four dispersion-relation
plots. From Fig. 2 alone, we can already conclude some
special features of the gauge-field waveguide, many of
which are different from the conventional waveguide.
(1) Nonreciprocity. For the gauge-field waveguide shown
in Figs. 2(b)-2(d), the pink region is shifted to the right along
the k, axis by A, with respect to the blue region. Based on
what we argued before regarding the position of the guided
mode dispersion with respect to the light cones, with A, > 0,
the guided mode can exist only in the region to the right
of the cladding light line w = k,, i.e., with ky > 0. We
indeed observe this in the waveguide mode calculation.
In a conventional waveguide system, such as Fig. 2(a),
on the other hand, the light cones for both the core and the
cladding are symmetric with respect to k, = 0, and so is the
guided mode dispersion, due to time-reversal symmetry.

(a) n=1.4 (b) $=0.3x
1 1
) )
& 05 & o5
e s
0
-2 -2 0 2
ky (27/d) ky (2n/d)
(C) $=0.53n (d) o=1x
1 1
) )
&os & o5
s s
0 0
-2 0 2 -2 0 2
ky (27/d) k (2n/d)

FIG. 2. Dispersion relation of the guided mode (red solid line)
for (a) a conventional waveguide with cladding index n = 1 and
core index n = 1.4, (b) a gauge-field waveguide with ¢ = 0.37,
(c) a gauge-field waveguide with ¢ = 0.537, with the inflection
point [22] marked by a black circle, (d) a gauge-field waveguide
with ¢ = z. The pink and blue regions show the light cones for
the core and cladding regions, respectively. Isofrequency con-
tours for (e) small and (f) large ¢ at the same frequency w. Panel
(e) has only guided mode with v, > 0 while panel (f) has guided
modes with v, > 0 and v, < 0.
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Since A, # 0 breaks time-reversal symmetry, one should
certainly expect some effect of nonreciprocity in the wave-
guide dispersion relation. However, in contrast to many
previously considered waveguide systems [8—10], where
nonreciprocity is typically manifested in a dispersion with
w(ky) # w(—k,), the complete absence of guided mode with
ky, <0 is a rather remarkable feature of the gauge-field
waveguide system. (2) Single-mode one-way waveguide.
Also evident from Figs. 2(b)-2(d), within certain @ range,
for example, the frequency range w € [0.15,0.6](27/d) in
Fig. 2(b), there exists only one guided mode and the slope of
the guided mode has a constant sign, signaling the existence
of single-mode one-way guiding. Such a single-mode one-
way waveguide should provide robust transport that is
immune from disorder-induced backscattering [9]. Unlike
some of the earlier systems where single-mode one-way
waveguide arises from topological features in the bulk of
magneto-optical photonic crystal [8—10], the use of the
gauge potential provides a simple model where one-way
waveguide naturally emerges. (3) Group velocity and
inflection point. For small |A | [Fig. 2(b)], the group velocity
is largely positive (Jw/0k, > 0). This is because the
isofrequency contours of the core and the cladding regions
are still partially overlapping, and only states with a positive
group velocity are guided, as shown in Fig. 2(e). On the other
hand, for large |A,| [Fig. 2(d)], the group velocity can be
either positive or negative, since the isofrequency contours
are shifted sufficiently apart to create guided states with
group velocities in both directions, as shown in Fig. 2(f). For
one particular A, corresponding to ¢ = 0.53z, there is a
stationary inflection point in the guided mode dispersion
with dw/ 0k, = 0, *w/0k; = 0, and *w/0k; # 0, shown
by the black circle in Fig. 2(c). As discussed in Ref. [22],
such a point is of great interest for slow light applications.
(4) Cutoff in the fundamental mode. In waveguide theory,
the cutoff of a mode is defined as the frequency where the
guided mode emerges from the cladding region light cone.
Examining the light cones in Figs. 2(b)-2(d), we observe
that the cutoff has to have a nonzero frequency, including the
cutoff for the fundamental mode. The reason being that there
is no phase space of the core light cone available around the
cladding light line for @ < |A,|/2. This is again a feature not
seen in a conventional waveguide. In a conventional wave-
guide, the core light cone encompasses the cladding light
cone, so the fundamental mode can emerge into the core
light cone starting from @ = 0, as shown in Fig. 2(a).

IV. PROPOSAL FOR REALIZING
GAUGE-FIELD WAVEGUIDE

The simple model discussed in the previous section
demonstrates many novel waveguide features. However, it
is a nontrivial task to generate an effective gauge field for
photons [5-10,18]. In this section, we propose a realization
of optical wave guiding by an effective gauge field.

The physical system is an array of dynamically coupled
resonant cavities where the nearest-neighbor couplings are
modulated by active refractive index modulations with
controlled modulation phases. First, we briefly summarize
the relevant results of Ref. [18], which has shown that the
modulation phase emerges as an effective gauge potential
in a square lattice of coupled resonators. Then, we define a
waveguide geometry in this system and analytically cal-
culate the band structure and wave function of the guided
mode using the real-system Hamiltonian and compare the
result with our waveguide theory analysis.

A. Effective gauge field for photons with
dynamic modulation

To achieve a photonic gauge field in a physical model, we
follow the proposal of Fang et al. in Ref. [18]. Consider that
a lattice consists of two interpenetrating sets of resonators
with resonant frequencies w4 and wp (w4 < wg). The
spacial separation between nearest neighbors is a.
Assume that the nearest-neighbor coupling is achieved by
a time-dependent harmonic index modulation with fre-
quency  and coupling strength V. The Hamiltonian
describing the system is

H = a)AZajai + (‘)sz;bj
i J

+ ZVCOS(QH-(]ﬁ,-j)(d,Tbj +b;ai)' (4)
(i)

Assume the modulation is on resonance; i.e., Q = wp — @,.
In the limit V < Q, we can use the rotating-wave approxi-
mation to transform the Hamiltonian of Eq. (4) into

HRWA = Zg(eid)iicj.cj' +€7i¢’jC;Ci), (5)
(ij)
where ¢;;) = e'”*®'a;(b;). Notice thatif all ¢;; = 0,Eq. (5)
describes a simple tight-binding model on a square lattice,
with spatial periodicity a in both the x and y directions.
Comparing Egs. (4) and (5), we see that the modulation
phase ¢;; gives rise to a direction-dependent hopping term
between nearest neighbors and generates an effective gauge
potential for photons. The strength of the gauge potential at
a bond (ij) is related to ¢;; by

Figure 3 shows the projected band diagram calculated
from Eq. (5) for two different {¢;;} configurations. The
shaded regions here correspond to the extended states in the
lattice. Therefore, drawing analogy to the case discussed in
Sec. II, we refer to these shaded regions as “light cones” as
well, even though these regions are no longer of a cone
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FIG. 3. Projected band diagrams for a modulated square lattice

(a) with no gauge field and (b) with an effective gauge field of
¢ = 0.57. The insers show the lattice configuration with the
corresponding modulation phases.

shape. Figure 3(a) corresponds to zero gauge field
everywhere. In this case, the dispersion relation of the
lattice is

w = V(cosk.a + coskya).

Figure 3(a) is the projection of such a dispersion relation
onto the w-k, plane. Figure 3(b) corresponds to uniform
A = (¢/a)y = A,9. The dispersion relation is

o = V[cosk.a + cos(kya — ¢)].

Figure 3(b) is the projection of this dispersion relation onto
the w-k, plane. Comparing Fig. 3(a) with Fig. 3(b), we see
that the effect of the gauge potential is a shift of the light
cone along the k, axis by A,.

B. Implementing gauge-field fuiding in dynamically
coupled resonator arrays

Building upon the resonator model above, we now
construct a waveguide. Consider a strip of resonator lattice
finite in x (lateral confinement direction) and infinite in y
(wave propagating direction). The modulation phase dis-
tribution [Fig. 4(a)] is such that an effective gauge field
A =A,9 = (¢/a)y is present in the central N columns
(core region with d = Na), as shown in Fig. 4(b), while
being uniformly zero on both sides (cladding region). The
cladding region is assumed to be much wider than the core
region. This configuration provides an implementation of
our conceptual system in Fig. 1(b).

Figure 4(b) can be characterized by a set of directional
coupling phases {¢(x,)}, which is only a function of the x
position. ¢(x,) = 0 when x,, is in the cladding region and
¢(x,) = ¢ #0 when x, is in the core region. Since the
system preserves translational symmetry in the y direction,
ky is a good quantum number. Thus, the Hamiltonian in
Eq. (5) is block diagonalized. In each subspace charac-
terized by k,, we can write out the Hamiltonian in the
x-position base |x,,):

(a)
of o o o -o o |-0 |0 |o o
ol o o -0 o - |o |0 Jo |o
—0—0—0—0- - -6 —0—0—0o—9o
of o o o -o¢ o |-6 |0 |o o
of o o -o o - |o |o Jo |o
N— o e y
d=Na L
X
of of o of of to |te jo o o
ol of of of of to |te jo o o
of of o of of to |te jo o o
ol of of of of to [to [0 o o

FIG. 4. (a) A square lattice of resonators with resonant
frequencies w, (red) and wp (blue) described by the time-
dependent Hamiltonian of Eq. (4). The label on each vertical
bond denotes the phase of the dynamic modulation between
nearest neighbors along the y direction. All the horizontal
couplings have a zero modulation phase. (b) A square lattice
of identical resonators with nearest-neighbor couplings described
by Eq. (5), which is obtained after performing the rotating wave
approximation on Eq. (4). In the core region, there is a direction-
dependent coupling phase (4¢ hopping upward and —¢ hopping
downward), which corresponds to a uniform gauge potential.
Thus, under rotating wave approximation, the modulation phase
in (a) is mapped into a time-independent gauge potential in (b).

H(ky {(x)}) =V _coslkya—g(x,)]el o,
Ve, & .
+EZ(C%+| ke an ky + meky CXrHrl ky ) : (6)

It is straightforward to solve for the eigenstates and
eigenvalues of the Hamiltonian in Eq. (6) and obtain the
band structure. Figure 5 shows the result for d = 2a and a
cladding width of 10a on each side.

We immediately observe several features that are rem-
iniscent of the waveguide dispersion relation for our simple
model in Sec. II. (1) The guided modes exist in the light
cone of the core region (pink regions in Fig. 5), and lie
completely outside the light cone of the cladding region
(blue regions in Fig. 5). For any nonzero value of A, the
structure always supports a fundamental mode. As a rather
curious feature, the dispersion relation of the fundamental
mode always connects between two points where the
boundaries of the two light cones intersect. In Sec. IV C,
we account for this feature analytically using waveguide
theory. For values of ¢ near O or 27, the difference between
the core and the cladding light cones is relatively small,
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Guided mode dispersions obtained by solving the Hamiltonian in Eq. (6) with a core region width d = 2a (N =2) and a

cladding region width of 10a on each side for ¢ = Aya = [1/3,2/3,1,4/3.5/3]z (a)—(e).

and the structure supports only a fundamental mode. For
values of ¢ near z, the core and cladding light cones
significantly differ, and higher-order modes could emerge.
(2) Nonreciprocity. With the exception of ¢ = O and ¢p = 7,
the dispersion relation is nonreciprocal, i.e., w(k,) #
w(—k,). (3) Single-mode one-way guiding. For ¢ # 0 and
¢ # =, the guided mode dispersion exhibits one-way guiding
behavior in certain frequency ranges. This results from a
combination of nonreciprocity and the dispersion relation
being monotonic in certain frequency ranges. The frequency
range for single-mode one-way guiding is particularly large
for the cases with smaller |A, |, where the structure supports
only the fundamental mode. In such a case, the system
provides single-mode one-way guiding for almost the entire
range of frequencies where the system supports a guided
mode. Thus, many of the aspects we highlighted in Sec. III B
using a simple model for a gauge-field waveguide should, in
fact, be quite general in different gauge-field waveguides.

There are, on the other hand, some aspects of the
waveguide dispersion relation in the present system that
are uniquely related to the discrete nature of the lattice.
Most notably, the spatial quantization introduces a perio-
dicity in the wave vector space, and a periodicity in A, as
well. A change of 2x for ¢ = A,a corresponds to a change
of the magnetic flux through a unit cell by one flux quanta,
for which the Hamiltonian is unchanged. Also, at ¢ = 7,
the Hamiltonian is real with no time-reversal symmetry
breaking. The resulting guided mode dispersion at ¢p =
is, therefore, symmetric.

From Fig. 5, we also observe some prominent Sym-
metries of the guided mode dispersion and the correspond-
ing wave function. (1) The guided mode dispersion for two
systems subject to opposite gauge potentials is related by
(A, k,) = o(—A,, —k,). (2) At every value of the gauge
field, the guided mode dispersion has the relation
w(ky + n/a) = —w(k,). The wave functions of the two
corresponding eigenstates differ by an alternating sign
in their |x,) coefficients, as shown in Fig. 6. These
symmetries are embedded in the Hamiltonian in Eq. (6).

In fact, these symmetries exist not only for our specific
gauge-field configuration in Fig. 4, but also for any
{¢(x,)} (.e., any modulation phase distribution in the
Landau gauge), since the Hamiltonian in Eq. (6) itself
describes a generic Landau gauge system.

C. Comparison with waveguide theory

Here, we compare the results of exact numerical sim-
ulation of the tight-binding model, with the standard
waveguide theory as discussed in Sec. II B, where the core
and cladding regions are described in terms of their bulk
dispersion relations. Such a standard waveguide theory
ignores some of the discrete nature of the lattice model.
Strictly speaking, the bulk dispersion relations of the core
and cladding regions are applicable only when the width of
the core and cladding regions are both infinite. Nevertheless,
the agreement with the exact calculation based on the tight-
binding model is remarkably good even down to a core
region width d = a (N = 1), as shown in Fig. 7.

Furthermore, the waveguide theory also provides a simple
analytical expression for the cutoff ¢, (which represents a
cutoff in the gauge field) for higher-order modes, above
which a higher-order mode emerges. At cutoff @, = 0, the
sth-order mode thus has k, = (s — 1)(z/N), and hence the
cutoff condition

s <N.

L
= 2 arcsin | =£si ZL
b, arcsin ( sin N ),

This result predicts nonzero cutoffs for higher-order modes
with s > 1. For s = 1, it predicts ¢, = 0, which confirms
our observation in Sec. IV B that a fundamental mode exists
for any nonzero A,. The theoretical result is plotted in Fig. 8
together with the numerical results from the tight-binding
model. The two sets show excellent agreement. Therefore, in
general, one can use the standard waveguide theory to

(@ 1 (b) 1
I
. 05 | . 05 |
X ! X ‘
~—" I ~ I
> | E |
I I
I I
-0.5 ‘ -0.5 ‘
-10-5 0 5 10 -10-5 0 5 10
Xn Xn

FIG. 6. Guided mode wave function (amplitudes as a function
of x,) for ¢ = x at (a) the highest band at k, = z/a and (b) the
lowest band at k, = 0. The calculation is based on N = 1 in the
core region and 10a on each side in the cladding region.
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FIG. 7. Guided mode dispersion for ¢ =0.57 and N =1
obtained by (a) numerically solving the tight-binding model
Hamiltonian in Eq. (6) with cladding region width of 10a on each
side and (b) waveguide theory calculation.

0.8

0.6

0.4

¢C/7t

0.2

0 5 10
N

FIG. 8. Cutoff ¢, for higher-order modes when N > 2. The
mode order varies from s = 2 (in blue) to s = 5 (in red). Circles
represent numerical results from tight-binding model. Curves
represent analytical results from waveguide theory.

understand various aspects of the gauge-field waveguide
implemented in a lattice model.

The waveguide theory also provides an analytical explan-
ation for the following feature observed in Fig. 5: the
dispersion relation of the fundamental mode always con-
nects between two points where the boundaries of the two
light cones intersect. We prove this by explicitly construct-
ing the solution for Eq. (2). Notice that at the intersect we
have ky,a = ¢/2 or kya = ¢/2 — n. For the upper band,
the analytical continuation is from (k,, k,) = (0,0), so the
intersect has a, = 0 in the cladding and k, = 0 in the core,
with @ = 1 £ cos(¢p/2). It is easy to verify that this set
of parameters satisfies both the cladding and core disper-
sion relations shown in Sec. IVA, as well as Eq. (2).
Similarly, for the lower band, the analytical continuation
is from (k,, k,) = (7/a,x/a), so the intersect has a, = 0
in the cladding and k, =z/a in the core, with
@ = —1 £ cos(¢/2). This set of parameters also satisfies
all the relevant equations.

V. FINAL REMARKS AND CONCLUSION

As a final remark, we comment on the experimental
feasibility of the theoretical proposal. The feasibility of the

experimental demonstration of the Hamiltonian of Eq. (5)
has been discussed extensively in Ref. [18] for both rf and
optical frequency ranges. As a very important first step
towards experimentally realizing the Hamiltonian of Eq. (5),
the existence of a photonic gauge potential has been proven
through the experimental realization of the photonic
Aharonov-Bohm effect for rf [23] and optical frequency
photons [24,25]. In Refs. [23-25], the gauge potential for
photons was demonstrated in systems with two mixers or
modulators, where the local oscillator phases at each mixer
or modulator were controlled to provide the photonic gauge
potential. To demonstrate the Hamiltonian of Eq. (5)
requires integration and control of a larger number of mixers
or modulators as compared to what has been used in
Refs. [23-25]. We do think that such a task should be
feasible, given the state-of-the-art microwave circuits and the
rapid development of large-scale silicon-integrated photonic
circuits. Once a scalable system with individually control-
lable coupling modulation is conceived, a rich system of
arbitrarily engineered effective gauge fields can be realized,
providing the potential to explore a wider range of phenom-
ena in gauge-field physics that is difficult to realize in solid-
state systems. We also note that similar gauge-field concepts
should be experimentally implementable in the optical
analogs of topological insulators, where a gauge potential
depending on photon spin has been theoretically proposed
and experimentally realized [12,13,15,16,26].

In summary, we present a new kind of waveguide
realized by an inhomogeneous effective gauge field in a
square lattice of photonic crystal resonators. Furthermore,
we account for the properties of such a waveguide by
extending the standard waveguide theory. The gauge-field
waveguide provides a very rich set of novel nonreciprocal
waveguide features.
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