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Can quantum mechanics help us build intelligent learning agents? A defining signature of intelligent
behavior is the capacity to learn from experience. However, a major bottleneck for agents to learn in real-
life situations is the size and complexity of the corresponding task environment. Even in a moderately
realistic environment, it may simply take too long to rationally respond to a given situation. If the
environment is impatient, allowing only a certain time for a response, an agent may then be unable to cope
with the situation and to learn at all. Here, we show that quantum physics can help and provide a quadratic
speedup for active learning as a genuine problem of artificial intelligence. This result will be particularly
relevant for applications involving complex task environments.
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I. INTRODUCTION

The levels of modern-day technology have, in many
aspects, surpassed the predictions made in the mid-20th
century, as is easily witnessed, for example, by the sheer
computing power of the average “smart” mobile phone.
Arguably, the most striking exception to this, apart from,
perhaps, human space exploration, lies in the development
of genuine artificial intelligence (AI), the challenge of
which has initially been greatly underestimated. The
unceasing setbacks in the general AI problem caused
research to shift emphasis to the production of useful
technology, a direction now called applied AI. That is,
emphasis was placed to specific algorithmic AI tasks—
modules, such as data clustering, pattern matching, binary
classification, and similar—and reduced from the holistic
task of designing an autonomous and intelligent agent.
The discovery that the laws of quantum physics can be

employed for dramatically enhanced ways of information
processing [1–6] has already had a positive influence on
specific algorithmic tasks of applied AI [7–12]. However,
to our knowledge, it has not been demonstrated so far that
quantum physics can help in the complemental task of
designing autonomous and learning agents. The latter task
is studied in the fields of embodied cognitive sciences and
robotics [13–18], which promote a behavior-based
approach to intelligence and put a strong emphasis on

the physical aspects of an agent. The approach to AI we
adopt in this work is along the lines of the latter perspective.
We are guided by a few basic principles, inspired by
biological agents, which include autonomy (implying that
the agent must learn in, and adapt to, unknown dynamic
environments), embodiedness (implying that the agent is
situated in, and actively interacts with, a physical environ-
ment), and homogeneity (meaning that all possible separate
“cognitive units” arise as possible configurations of one, or
a few, homogeneous underlying systems that are, in
principle, capable of growth). An example of a model that
one could consider homogenous, aside from the projective-
simulation model [19] we will consider here, would, for
example, be artificial neural networks. One may then
envision that true AI will emerge by growth and the
learning of an agent, rather than through deliberate design.
In this paper, we show that in such an embodied framework
of AI, provable advancements of a broad class of learning
agents can be achieved when we take the full laws of
quantum mechanics into account.

II. LEARNING AGENTS AND QUANTUM PHYSICS

How could quantum physics help design better agents?
An embodied agent is always situated in an environment
from which it receives a sensory input, that is, a percept
(from some set of percepts S ¼ fs1; s2;…g), and, based on
the received percept, it produces an action from the possible
set of actions A ¼ fa1; a2;…g; see Fig. 1. The capacity to
learn implies that the agent is at every instant of time in
some internal state that can change based on previous
sequences of percept-action events. That is, it has a memory
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that reflects the agent’s history. The typical model for such
autonomous learning agents we consider here is the
reinforcement-learning model [20,21], where to each per-
cept-action event, a reward in Λ ¼ f0; 1g (for simplicity,
we consider binary rewards, but this reward system can be
easily generalized in our model) is assigned when the
action is correct.
Each percept-action-reward sequence constitutes an

external time step (or cycle) of the activity of an agent.
The learning process of the agent is characterized by an
update rule of the internal state (based on the previous
percept-action-reward sequences), and the (local) policy of
the agent [21] is defined by what action is output, given the
current internal state and the received percept. Unlike in
typical reinforcement-learning settings, in embodied active
agents, the required time to evaluate the policy (decide on
an action) must be taken into account, and we refer to it as
internal time.
The agent’s learning process is reminiscent of computa-

tional oracle-query models, in which an unknown oracle
(environment) is queried (via an action) by the agent, in an
iterative quest for the best responses. It is tantalizing to
consider employing the powerful quantum searching
machinery [3,23,24], which has been proven to outperform
classical algorithms in computational settings, in an attempt
to improve the agent.
However, contrary to computer algorithms, an embodied

agent, such as a robot, operates in a physical environment
that is, for most existing applications, classical [25]. This
prohibits querying in quantum superposition, a central
ingredient to all quantum search algorithms. Thus, such
naïve approaches to quantizing learning agents are doomed
to fail [26].
Nonetheless, while the physical nature of the agent and

the environment prohibits speedup through quantum
queries of the environment, the physical processes within
the agent, which lead to the performed actions, can be
significantly improved by employing full quantum
mechanics [27]. In particular, the required internal time

can be polynomially reduced in the model we present next.
In general learning settings, this speedup alone will con-
stitute an overall qualitative improvement of performance,
for instance, when the environment changes on time scales
not overwhelmingly larger than the agent’s internal “think-
ing” time.

III. QUANTUM AGENTS BASED
ON PROJECTIVE SIMULATION

A. The PS-agent model

The AI model of the agents we consider in the following
is the so-called projective-simulation (PS) model [19],
whose conceptual framework is in line with the desired
guiding principles we highlighted earlier. The PS model is
based on a specific memory system, which is called
episodic and compositional memory (ECM). This memory
provides the platform for simulating future action before
real action is taken. The ECM can be described as a
stochastic network of so-called clips that constitute the
elementary excitations of episodic memory and can be
implemented as excitations of suitable physical systems.
The percepts (S) and actions (A), along with sequences
thereof, are represented within an agent as the aforemen-
tioned clips, and the set of the clips comprises the clip space
C ¼ fc ¼ ðcð1Þ; cð2Þ;…ÞjcðkÞ ∈ S∪Ag. In this assumption
work, we consider clips that are unit-length sequences,
representing a memorized percept or an action, which we
denote using the same symbols, so C ¼ S∪A [28], but this
can easily be generalized. The internal states of the agent,
i.e., the total memory, comprise weighted graphs Gs over
subsets of the clip space, which are assigned to each percept
s. This graph dictates the hopping probabilities from one
clip to another, and the hopping process realizes a Markov
chain (MC). Thus, the elementary internal processes of the
agent, which implement the transitions from clip to clip, are
discrete-time stochastic diffusion processes. These diffu-
sion processes can be realized in a variety of physical
systems, as we discuss later.
The deliberation process of the agent is based only on the

diffusion processes over the clip space of a certain (and, in
general, variable) size, making this model homogeneous in
the sense we explained earlier. The PS agents also perceive
rewards Λ ¼ f0; 1g and, based on the perceived percept s,
realized action a, and the resulting reward, the weights of
the graph Gs (that is, transition probabilities) are updated
via simple rules [29].
While the PS framework allows for many additional

structures (see Appendix C for further details on the PS
model), we will, for simplicity, only consider percept-
specific flags—corresponding to rudimentary emoticons in
Ref. [19]—which are subsets of actions assigned to each
percept, formally F ¼ ffðsÞjfðsÞ⊆A; s ∈ Sg. Such flags
may be used to represent the agent’s short-term memory, in
which case they significantly improve the performance of

FIG. 1. An agent is always situated in an environment. It is
equipped with sensors, through which it receives percepts from
the environment, and with actuators, through which it can act on
the environment. Based on perceptual input, the agent will after
some internal processing engage its actuators and output an
action. This figure is adapted and modified from Refs. [20,22].
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the model [19]. For example, one can consider a possible
mechanism in which, for each percept, all actions are
initially flagged. If the agent outputs some action a, given a
percept s, and this action is not rewarded, a is removed
from fðsÞ. Once the set fðsÞ has been depleted (indicating,
for instance, that the environment has changed its policy), it
is reset to contain all actions. The meaning of flags may be
more general, and in this work, we only assume the sets of
flags are always nonempty.
In the process of deliberation, the relevant Markov chain

is diffused a particular number of times, depending on the
particular PS model, until an action is output via so-called
output couplers [30]. The choice of the action—and thereby
the policy of the agent—is dictated by the probability
distribution over the clip space, which is realized by the
diffusion process. The latter depends on the agent’s
experience, manifest in the specified MC. Intuitively, this
distribution represents the agent’s state of belief regarding
what is the right action in the given situation.
A particular model of PS we introduce here, so-called

reflecting PS (RPS) agents, draws its name from the
reflection process [19] in which the diffusion processes
are repeated many times. Such agents approximate the
complete mixing of their MCs, simulating infinite
deliberation times. Once the mixing is (approximately)
complete, the reflecting agent samples from the realized
stationary distribution over the clip space (and, if needed,
iterates the mixing process) until a flagged-action clip has
been sampled. The internal states of reflecting PS agents
are thus irreducible, aperiodic, and reversible MCs over
subsets of the clip space (which contain all action clips).
Reflecting PS agents can be seen as a generalization of so-
called standard PS agents, and a comparison between a
well-studied class of PS agents and RPS agents is provided
in Appendix E.
In the limit of complete mixing, given a percept s and the

current internal state (the MC Ps), the RPS agents output an
action a distributed according to ~πs given as follows: Let πs
be the stationary distribution of Ps, and let fðsÞ be the
subset of flagged actions; then,

~πsðiÞ ¼
� πsðiÞP

j∈fðsÞπsðjÞ
if i ∈ fðsÞ

0 otherwise;
ð1Þ

which is the renormalized stationary distribution πs modi-
fied to only have support over flagged actions. We will
often refer to ~πs as the tailed distribution.
In general, complete mixing is not possible or needed. To

realize the (approximate) tailed distribution, as given in
Eq. (1), the classical agent will iteratively have to prepare
the approximate stationary distribution of Ps (by applying
Ps to the initial distribution tcmix times) and sample from it,
until a flagged action is hit. It is well known that, in order to
mix the MC, tcmix should be chosen in ~Oð1=δsÞ [31] (where

δs is the spectral gap of the MC Ps defined as δs ¼ 1 − jλ2j
and λ2 is the second-largest eigenvalue of Ps in absolute
value), and the expected number of iterations of mixing and
checking that have to be performed is tccheck ∈ ~Oð1=εsÞ
[where ϵs ¼

P
i∈fðsÞπðiÞ is the probability of sampling a

flagged action from the stationary distribution πs]. Here, we
will use the label Ps of the transition matrix as a synonym
for the MC itself. Note that the internal time of the classical
agent, i.e., the number of primitive processes (diffusion
steps), is therefore governed by the quantities 1=δs
and 1=ϵs.

B. Quantum speedup of reflecting PS agents

The procedure the RPS agent performs in each deliber-
ation step resembles a type of random-walk-based search
algorithm that can be employed to find targeted items in
directed weighted graphs [24]. In that context, the theory of
quantum walks provides us with analogs of discrete-time
diffusion processes, using which the search time can be
quadratically reduced [23,24,32,33]. To design the quan-
tum agent, inspired by these approaches to searching, here,
we introduce a quantum-walk procedure that can be seen as
a randomized Grover-like search algorithm (the quantum
counterparts of classical search algorithms), most closely
matching the main protocol in Ref. [24].
However, there are essential differences between search-

ing problems and the problems of designing intelligent AI
agents, which we expose and resolve in this work. First, we
note that, for the task of simple searching, the procedure the
RPS agent follows is known not to be optimal, in general
[24,34]. In contrast, for the task of the RPS agent, which is
to output a flagged action, according to a good approxi-
mation of the tailed distribution in Eq. (1), this algorithm is,
in general, optimal [35]. The optimality can be seen by the
known lower bounds for mixing times tcmix of reversible
MCs. (See Appendix B for details.)
Furthermore, while as a direct consequence of the results

in Ref. [24], the quantum RPS produces a flagged action in
time that is quadratically faster than that achieved using the
procedure employed by the classical agent, prior works
provide no guarantees that the output actions will be
distributed according to the desired tailed distribution.
Recall, in the context of AI, that all agents produce some
action, and it is precisely the output distribution that
differentiates one agent from another in terms of behavior
(and thus, success). In this work, we prove that both the
output distributions of the reflecting classical and quantum
agents approximate the distribution of Eq. (1) and thus are
approximately equal. That is, they belong to the same
behavioral class. (For a formal definition of the behavioral
classes that we introduce, see Appendix D.) Consequently,
the quantum reflecting-agent construction we give realizes,
in a full sense, quantum-enhanced analogs of classical
reflecting agents.
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While quantum approaches to sampling problems have
not until now been exploited in AI, we observe that the
methodology we use is, in spirit, related to the problem of
sampling from particular distributions. These approaches
have been extensively explored, often in the context of
Markov-chain Monte Carlo methods, where quantum
speedup can also be obtained [36–39]. There, the quantum
walks were mostly used for the important purpose of
sampling from Boltzmann-Gibbs distributions of (classical
and quantum) Hamiltonians.
In order to define the quantum reflecting agent, we first

review the standard constructions and results from the
theory of classical and quantum random walks [23,24,33]
and refer the reader to Appendix B for more details.
The quantum RPS agent we propose uses the standard

quantum discrete-time diffusion operators UPs
and VPs

that act on two quantum registers, sufficiently large
enough to store the labels of the nodes of the MC Ps.
The diffusion operators are defined as UPs

jiij0i ¼ jiijpii
and VPs

j0ijji ¼ jp�
jijji, where jpii ¼

P
j

ffiffiffiffiffiffiffiffiffiffiffi
½Ps�ji

q
jji and

jp�
ji ¼

P
i

ffiffiffiffiffiffiffiffiffiffiffi
½P�

s �ij
q

jii. Here, P�
s is the time-reversed MC

defined by πiPji ¼ πjP�
ij, where π ¼ ðπiÞi is the stationary

distribution of Ps [40]. Using four applications of the
diffusion operators above, it has been shown that one can
construct the standard quantum-walk operator WðPsÞ
(sometimes referred to as the Szegedy-walk operator),
which is a composition of two reflections in the mentioned
two-register state space. In particular, let Π1 be a projection
operator on the space spanfjiijpiigi and Π2 be the
projector on spanfjp�

jijjigj. Then, WðPsÞ ¼ ð2Π2 − IÞ×
ð2Π1 − IÞ.
Using the quantum-walk operator and the well-known

phase-detection algorithm [5,24], the agent can realize the
RðPsÞðq; kÞ subroutine that approximates the reflection
operator 2jπsihπsj − 1, where jπsi ¼

P
i

ffiffiffiffiffiffiffiffiffiffi
πsðiÞ

p jii is the
coherent encoding of the stationary distribution πs. The
parameters q and k control the fidelity (and the time
requirement) of this process, i.e., how well the reflection
is approximated as a function of the number of applications
of the quantum-walk operator.
More precisely, in the implementation of the RðPsÞðq; kÞ

operator, the quantum RPS agent utilizes an ancillary
register of q × k qubits. To ensure the correct behavior,
q is chosen as q ∈ ~Oð1= ffiffiffiffi

δs
p Þ, which depends on the square

root of the spectral gap of the MC Ps. Under this condition,
it has been shown that the distance between the ideal
reflection operator and the realized approximate operator is
upper bounded by 21−k, under a suitable metric. (See
Appendix B, Theorem 3, for details.) That is, the fidelity
of this reflection operator approaches unity exponentially
quickly in the parameter k [24].
To produce a flagged action according to the desired

distribution, the quantum RPS agent will first initialize its

quantum register to the state jπiniti ¼ UPs
jπsij0i, which

requires just one application of the diffusion operator UPs
,

provided the state jπsi ¼
P

i

ffiffiffiffiffiffiffiffiffiffi
πsðiÞ

p jii is available. Here,
like in the standard frameworks of algorithms based on
quantum walks with nonsymmetric Markov chains, we
assume that the state jπsi is available, and in Appendix E,
we provide an example of reflecting classical and quantum
agents where this is easily achieved [41].
Following the initial step, the agent performs a random-

ized Grover-like sequence of reflections, reflecting over
flagged actions (denoted as ref½fðsÞ�), interlaced with
reflections using the approximate reflection operator
described previously. After the reflections have been
completed the required number of times, the resulting state
is measured and the found flagged action is output. In the
case that a nonaction clip is hit, the entire procedure is
repeated [42].
Since Grover-like search engines guarantee that the

overlap between the final state and a state with support
just over the actions is constant, the probability of not
hitting a flagged action decreases exponentially quickly in
the total number of iterations and does not contribute
significantly to our analysis. In Appendix D, we provide a
detailed analysis and propose a method for the efficient
repreparation of the required initial state (by recycling of
the residual state), in the event that the deliberation
procedure should be repeated. The deliberation process
is detailed in Fig. 2. The total number of reflections
required is tqcheck ∈R ½0; ~Oð1= ffiffiffiffi

ϵs
p Þ� (this choice is uniform

at random, as for the randomized Grover algorithm [43]),
and the approximate reflection operator is applied with
parameters RðPsÞ½tqmix; ~Oð1Þ�, where tqmix ∈ ~Oð1= ffiffiffiffi

δs
p Þ [44].

Therefore, the total number of calls to the diffusion
operators UPs

and VPs
is in ~Oð1=ð ffiffiffiffiffiffiffiffi

ϵsδs
p Þ [and the total

number of reflections over flagged actions—equivalents of
checks in the classical agent—is in ~Oð1= ffiffiffiffi

ϵs
p Þ], which is a

quadratic improvement over the classical agent. As we have
previously mentioned, the remaining key ingredient to our
result is the fact that the proposed quantum agent produces
actions (approximately) according to the tailed distribution
in Eq. (1) and that the approximations for both agents can

FIG. 2. Both the classical and the quantum RPS are charac-
terized by their internal Markov chains over the clip space. The
procedures the quantum agent performs in order to choose the
desired actions are listed. The values tqmix and tqcheck are chosen
in ~Oð1= ffiffiffiffi

δs
p Þ and uniformly at random in ½0; ~Oð1= ffiffiffiffi

ϵs
p Þ�,

respectively; see the text for details.
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be made arbitrarily good within, at most, logarithmic
overhead. We leave the proof of this claim for
Appendix D. We note that in this paper, we have presented
constructions for reversible MCs for simplicity, but the
constructions can be extended to general irreducible chains
using approaches analogous to those in Ref. [24].
We have thus presented a method for the generic

quantization of reflecting PS agents that maintains the
behavior of the agents and provably yields a quadratic
speedup in internal times that is vital in real environment
settings.

IV. DISCUSSION

We have presented a class of quantum learning agents
that use quantum memory for their internal processing of
previous experience. These agents are situated in a classical
task environment that rewards a certain behavior but is
otherwise unknown to the agent, which corresponds to the
situation of conventional learning agents.
The agent’s internal “program” is realized by physical

processes that correspond to quantum walks. These quan-
tum walks are derived from classical random walks over
directed weighted graphs that represent the structure of its
episodic memory. We have shown, using quantum coher-
ence and known results from the study of quantum walks,
how the agent can explore its episodic memory in super-
position in a way that guarantees a provable quadratic
speedup in its active learning time over its classical analog.
Regarding potential realizations for such quantum learn-

ing agents, modern quantum physics laboratories are
exploring varieties of systems that can serve as suitable
candidates. Quantum random walks and related processes
can naturally be implemented in linear optics setups by, for
instance, arrays of polarizing beam splitters [45], and
highly versatile setups can also be realized using internal
states of trapped ions [46]. Such advancements, all of
which belong to the field of quantum simulation [47], could
be used as ingredients toward the implementation of
quantum reflecting agents, without the need to develop a
full-blown universal quantum computer.
An entirely different route toward realizing the proposed

quantum (and classical) learning agents might employ
condensed-matter systems in which the proposed
Markov chains could, e.g., be realized through cooling
or relaxation processes toward target distributions that then
encode the state of belief of the agent. Here, we envision
rather nontrivial cooling or relaxation schemes in complex
many-body systems, the study of which is also a prominent
topic in the field of quantum simulation.
In conclusion, it seems to us that the embodied approach

to artificial intelligence acquires a further fundamental
perspective by combining it with concepts from the field
of quantum physics. The implications of embodiment are,
in the first place, described by the laws of physics, which
tell us not only about the constraints but also the ultimate

possibilities of physical agents. In this paper, we have
shown an example of how the laws of quantum physics can
be fruitfully employed in the design of future intelligent
agents that will outperform their classical relatives in
complex task environments.
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APPENDIX A: FORMAL DEFINITIONS
AND BEHAVIOR OF

REINFORCEMENT-LEARNING AGENTS

Here, we formally define the model of reinforcement-
learning agents as employed in this work.
Definition 1 (Reinforcement-learning agent).—A

reinforcement-learning agent is an ordered sextuplet
ðS;A;Λ; C;D;UÞ, where (i) S ¼ fs1;…; smg and A ¼
fa1;…; ang are the sets of percepts and actions, respec-
tively; (ii) Λ ¼ f0; 1g is the set of rewards, offered by the
environment; (iii) C ¼ fC1;…; Cpg is the set of possible
internal states of the agent; (iv) D∶S × C → A is the
decision function that outputs some action, given a percept
and the internal state; and (v) U∶S ×A × Λ × C → C is the
update function that updates the internal state based on the
success or failure of the last percept-action sequence.
A few comments are in order. In this work, the sets of

percepts, actions, and internal states are defined to be finite,
but, in general, this need not be the case. The set of rewards
is binary, and this choice can again be generalized. The
update function may take additional information into
account, based on additional outputs of the decision
function, which are only processed internally, but this does
not occur in the models we consider.
The decision function is not necessarily deterministic. In

the nondeterministic case, it can be formally defined as

D∶S × C → distrðAÞ; ðA1Þ

that is, a function that takes values in the set of distributions
overA. In this case, we also assume that this distribution is
sampled before actual output is produced and that the
sampled action is the input to the update function.
Next, we consider equivalences between agents in so-

called passive settings.
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In the algorithmic tradition of machine learning, the
learning pace is measured by external time (steps) alone
and the typical figure of merit is the percentage of rewarded
actions of the agent, as the function of external time. From
an embodied-agent perspective, this set-up corresponds to a
special passive setting where a static environment always
waits for the responses of the agent. This constraint
imposes a restriction on the universality of statements that
can at all be made about the performance of an agent. In
particular, in that setting, it is well known that no two
agents can be meaningfully compared without reference to
a specific learning task (or a collection of them)—a
collection of results dubbed “no free lunch theorems”
and “almost no free lunch theorems" [48–50]. These results
prove that when one agent outperforms another in a certain
environment, there exists a different environment where the
ranking according to performance is reversed. This fact, for
instance, implies that every choice of environment settings,
for which the results of agent performance are presented,
must first be well justified. More critically for our agenda,
in which we wish to make no assumptions on the
environment, passive settings would imply that no com-
parative statements relating the performances of agents are
possible. In active scenarios, internal time does matter, but,
nonetheless, the passive setting plays a part. It provides a
baseline for defining a passive behavioral equivalence of
agents that will be instrumental in our analysis of active
scenarios.
Let us denote the elapsed sequence of triplets (percept,

action, reward) that had occurred up to the time step k (the
history of the agent) with Hk, for two agents A and A0 who
can perceive and produce the same sets of percepts (S) and
actions (A), respectively. Then, we will say that A and A0
are passively (ϵ−) equal if at every external time step k, the
probabilities PA and PA0 of agents A and A0, respectively,
outputting some action a ∈ A, given every percept s ∈ S,
and given all possible identical historiesHk, are (ϵ−) equal,
in terms of the variational distance on distributions:

1

2

X
a

jPAðajHk; sÞ − PA0 ðajHk; sÞj ≤ ϵ; ðA2Þ

which we abbreviate with

A ≈ ϵA0: ðA3Þ

If the agents considered are equipped with an extra
parameter τ (a precision parameter), which fine-tunes the
behavior of the agent, we can demand more and require that
the approximate equality above converge to an equality
(i.e., ϵ → 0, as τ → ∞). Then, in the limit, the relation
above induces passive behavioral equivalence classes for
fixed sets of possible percepts and actions. In the case of the
classical and quantum agents we consider in the main text,
such precision parameters do exist, and, as we show later in

these Appendixes, the approximate equality converges to
an equality.
In passive settings, by definition, two passively equal

agents perform equally well, and comparison of agents
within a class is pointless. However, in the active scenario,
with the classes in place, we can meaningfully compare
agents within the same class, with no assumptions on the
environment [51]. Indeed, in an active learning setting, two
passively equal agents A and A0 may have vastly different
success chances. To see this difference at work, suppose
that the environment changes its policies on a time scale
that is long compared to the internal time scale of agent A
but short relative to the internally slower agent A0. The best
policy of both agents is to query the environment as
frequently as possible, in order to learn the best possible
actions. However, from the perspective of the slow agent,
the environment will look fully inconsistent—once-
rewarded actions are no longer the right choice, as that
agent simply did not have the time to learn. Thus, in active
scenarios, the internal speed of the agent is vital.

APPENDIX B: CLASSICAL AND
QUANTUM-WALK BASICS

A random walk on a graph is described by a MC,
specified by a transition matrix P that has entries
Pji ¼ probðjjiÞ. For an irreducible MC, there exists a
stationary distribution π such that Pπ ¼ π. For an irreduc-
ible and aperiodic MC, this distribution can be approxi-
mated by Ptπ0, i.e., by applying, to any initial distribution
π0, the MC t number of times, where t ≥ tmix

ϵ0 . This time is
known as the mixing time and is defined as follows.
Definition 2 (Mixing time).—The mixing time is

tmix
ϵ0 ¼ minftj∀s ≥ t; π0∶jjPsπ0 − πjj ≤ ϵ0g:

The latter can be related to the spectral properties of the
MC P, in the case of reversible chains, via the following
theorem [52].
Theorem 1.—The mixing time satisfies the following

inequalities:

1

δ

λ2
log 2ϵ0

≤ tmix
ϵ0 ≤

1

δ
½max log π−1i þ logðϵ0Þ−1�:

Here, we use ϵ0 instead of the standard ϵ for consistency
with the rest of the Appendixes, as ϵ has a reserved
meaning.
For the purpose of clarity, let us introduce some

definitions and theorems, originally provided in
Refs. [23,24], that will be useful to introduce the notation
and to prove the main results for the speedup of quantum
agents.
The quantum analog of the application of the MC P is

given by the following definition.
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Definition 3 (Quantum diffusion operators).—The
quantum diffusion operators, the analogs of the classical
diffusion operators, are given by the following transforma-
tions:

UP∶ jiij0i↦jiijpii; ðB1Þ

VP∶ j0ijji↦jp�
jijji; ðB2Þ

where jpii ¼
P

j

ffiffiffiffiffiffi
Pji

p jji, jp�
ji ¼

P
i

ffiffiffiffiffiffi
P�
ij

p jii, and P� is
the time-reversed MC defined by πiPji ¼ πjP�

ij.
We will consider the application of the MC P (for the

classical agent) and the quantum diffusion operators (for
the quantum agent) as the (equally time-consuming)
primitive processes, as is done in the theory of quantum
random walks [24]. Next, we can define the quantum-walk
operator WðPÞ, for the Markov chain P.
Definition 4 (Walk operator or quantum Markov

chain).—The walk operator or quantum Markov chain is
given by

WðPÞ ¼ ð2Π2 − IÞð2Π1 − IÞ; ðB3Þ

where Π1 is the projection operator onto the space
spanfjiijpiigi and Π2 is the projection operator onto
spanfjp�

jijjigj.
The quantum-walk operator can be easily realized

through four applications of the quantum diffusion
operators; see, e.g., Ref. [24] for details.
Another standard operation that both the classical and

the quantum agents perform is checking whether the clip
found is flagged (corresponding to checking whether an
item is marked). The quantum check operator is defined as
follows.
Definition 5 (Check).—The quantum check operator is

the reflection denoted as ref½fðsÞ� performing

jiijji↦
�−jiijji if i ∈ fðsÞ
jiijji otherwise

; ðB4Þ

where fðsÞ denotes the set of flagged actions corresponding
to the percept s.
In order to prove our main theorems, we will be using the

ideas introduced in the context of quantum searching
[23,24], which we now briefly expose. In the quantum-
walk-over-graphs approach to searching, one defines an
initial state that encodes the stationary distribution of a MC

jπi ¼
X
i

ffiffiffiffiffiffiffiffi
πðiÞ

p
jiijpii ðB5Þ

and performs a rotation onto the state containing the
“marked items”

j ~πi≔ ΠfðsÞjπi
∥ΠfðsÞjπi∥ ; ðB6Þ

where ΠfðsÞ is the projector on the space of marked
items, i.e., ΠfðsÞ ¼ P

i∈fðsÞjiihij ⊗ I. Let us point out that
spanfj ~πi; jπig⊆spanfjiijpiigi þ spanfjp�

jijjigj.
In order to achieve this rotation, one makes use of two

reflections. The first is the reflection over j ~π⊥i [denoted as
refðj ~π⊥iÞ], the state orthogonal to j ~πi in spanfj ~πi; jπig.
This operator can be realized using the primitive of
checking. Indeed, we have the following claim (stated in
Ref. [24]), given by the following lemma.
Lemma 1.—Restricted on the subspace spanfj ~πi; jπig,

the action of refðj ~π⊥iÞ is identical to −ref½fðsÞ�.
Proof.—Let αjπi þ βj ~πi be a vector in spanfj ~πi; jπig.

We have that

−ref½fðsÞ�ðαjπiþβj ~πiÞ¼ αðI−2ΠfðsÞÞjπi−βj ~πi; ðB7Þ

where ΠfðsÞ is the projector on the set fðsÞ. The result
easily follows by noting that

refðj ~π⊥iÞðαjπi þ βj ~πiÞ

¼ α

�
I − 2

ΠfðsÞjπihπjΠfðsÞ

jjΠfðsÞjπijj2
�
jπi − βj ~πi ðB8Þ

and that

ΠfðsÞjπihπjΠfðsÞ

jjΠfðsÞjπijj2 jπi ¼ hπjΠfðsÞjπi
jjΠfðsÞjπijj2Π

fðsÞjπi¼ ΠfðsÞjπi;

since hπjΠfðsÞjπi
jjΠfðsÞjπijj2 ¼ 1. ▪

On the other hand, the reflection over jπi is not
straightforward. One can devise an approximated scheme
to implement this reflection using the phase-estimation
algorithm. Indeed, one can build a unitary operator, using
phase estimation applied to the quantum-walk operators,
which approximates the reflection over jπi. Before we state
the theorem regarding this approximate reflection operator
(constructively proven in Ref. [24]), we will first give
another result regarding the spectrum of the quantum-walk
operator, which will be relevant to us presently.
Theorem 2 (Szegedy [23]).—Let P be an irreducible,

reversible MC with stationary distribution π. Then,
the quantum-walk operator WðPÞ is such that
(i) WðPÞjπi ¼ jπi; (ii) WðPÞjψi ¼ expð�2iθÞjψi, where
cosðθÞ ¼ jλj is the absolute value of an eigenvalue of P and
jψi ∈ spanfjiijpiigi þ spanfjp�

jijjigj; and (iii) WðPÞ has
no other eigenvalue in spanfjiijpiigi þ spanfjp�

jijjigj.
Note that the phase gap Δ, defined as the minimum

nonzero 2θ, is such that cosΔ ¼ jλ2j, where λ2 is the
second-largest eigenvalue of P with respect to the absolute
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value. One can then, with some algebra, conclude
that Δ ≥ 2

ffiffiffi
δ

p
.

Let us note that any unitary able to approximately
detect whether the eigenvalue of WðPÞ of a state in
spanfjiijpiigi þ spanfjp�

jijjigj is different from 1 (or,
equivalently, its eigenphase is different from 0) and condi-
tionally flip the state will do. We will use such a unitary to
approximate refðjπiÞ. Let us use this intuition to build such
a unitary RðPÞ that takes as a parameter the precision s and
refer to it in the following as the approximate reflection
operator RðPÞ [24].
Theorem 3 (Approximate reflection operator [24]).—Let

P be an ergodic, irreducible Markov chain on a space of
size jXj with (unique) stationary distribution π. Let WðPÞ
be the corresponding quantum Markov chain with phase
gap Δ. Then, if s is chosen in O½log2ð1=ΔÞ�, for every
integer k, there exists a unitary RðPÞ that acts on
2⌈ log2 jXj⌉þ ks qubits, such that (i) RðPÞ makes at
most k2sþ1 calls to the (controlled) WðPÞ and WðPÞ†;
(ii) RðPÞjπij0i⊗ks ¼ jπij0i⊗ks; and (iii) if jψi ∈
spanfjiijpiigi þ spanfjp�

jijjigj and is orthogonal to jπi,
then jj½RðPÞ þ I�jψij0i⊗ksjj ≤ 21−k.
By the approximate reflection theorem above, there

exists a subroutine RðPÞðq; kÞ, where s from the statement
of Theorem 3 is taken as log2ðqÞ, and k explicitly controls
the fidelity of the reflection. Note that, in the definition of
the quantum reflecting agent from the main text, the
parameter q is chosen in ~Oð1= ffiffiffi

δ
p Þ, and since, by a theorem

of Szegedy [23], as we have commented, it holds that
1=

ffiffiffi
δ

p
∈ Oð1=ΔÞ, we have that the fidelity of the approxi-

mation reflection approaches unity exponentially quickly in
k. We note that the parameter k should be additionally
increased by a logarithmic factor of Oðlogð1= ffiffiffi

ϵ
p ÞÞ, in

order to compensate for the accumulated error stemming
from the iterations of the ARO operator, which, as clarified,
we omit in this analysis. For the explicit construction of the
approximate reflection operators, we refer the reader
to Ref. [24].

APPENDIX C: THE PS MODEL

The PS model is a reinforcement-learning-agent model;
thus, it formally fits within the specification provided
with Definition 1. Here, we will recap the standard PS
model introduced in Ref. [19] but note that the philoso-
phy of the projective-simulation-based agents is not
firmly confined to the formal setting we provide here,
as it is more general. PS agents are defined on a more
conceptual level as agents whose internal states represent
episodic and compositional memory and whose deliber-
ation comprises association-driven hops between memory
sequences—so-called clips. Nonetheless, the formal def-
initions we give here allow us to precisely state our main
claims. Following the basic definitions, we provide a
formal treatment of a slight generalization of the standard

PS model which subsumes both the standard and the
reflecting-agent models we refer to in the main text and
which we formally treat later in this Appendix.
The PS model comprises the percept and action spaces,

as given in Definition 1. The central component of PS is the
so-called ECM, and it comprises the internal states of the
agent. The ECM is a directed weighted network (formally
represented as a directed weighted graph), the vertices of
which are called clips.
Each clip c represents fragments of episodic experiences,

which are formally tuples

c ¼ ðcð1Þ; cð2Þ;…; cðLÞÞ; ðC1Þ

where each ck is an internal representation of a percept or
an action, so

cðkÞ ¼ μðiÞ; i ∈ S∪A; ðC2Þ
where μ is a mapping from real percepts and actions to the
internal representations. We will assume that each ECM
always contains all the unit-length clips denoting elemen-
tary percepts and actions.
Within the ECM, each edge between two clips ci and cj

is assigned a weight hðci; cjÞ ≥ 1 and the weights are
collected in the so-called h matrix. The elementary process
of the PS agent is a Markov chain, in which the excitations
of the ECM hop from one clip to another, where the
transition probabilities are defined by the h matrix

pðcjjciÞ ¼
hðci; cjÞP
khðci; ckÞ

; ðC3Þ

thus, the h matrix is just the non-normalized transition
matrix. In the standard PS model, the decision function is
realized as follows: Given a percept s, the corresponding
clip in the ECM is excited and hopping according to how
the ECM network is commenced. In the simplest case, the
hopping process is terminated once a unit-length action clip
is encountered, and this action is coupled out and output by
the actuator (see Fig. 1). The moment when an action is
coupled out can be defined in a more involved way, as we
explain presently.
Finally, the update rule in the standard model necessarily

involves the redefinition of the weights in the h matrix. A
prototypical update rule, for a fully classical agent, defining
an update from external time step t to tþ 1 depends on
whether an action has been rewarded. If the previous action
has been rewarded, and the transition between clips ci and
cj has actually occurred in the hopping process, then the
update is as follows:

hðtþ1Þðci; cjÞ ¼ hðtÞðci; cjÞ − γ½hðtÞðci; cjÞ − 1� þ λ; ðC4Þ

where 0 < λ is a positive reward and 0 ≤ γ ≤ 1 is a
dissipation (forgetfulness) parameter. If the action has
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not been rewarded, or the clips ci and cj have not played a
part in the hopping process, then the weights are updated as
follows:

hðtþ1Þðci; cjÞ ¼ hðtÞðci; cjÞ − γ½hðtÞðci; cjÞ − 1�: ðC5Þ

The update rule can also be defined such that the update
only requires the initial and terminal clips of the hopping
process, which is always the case in the simple PS model,
where all the clips are just actions or percepts, and hopping
always involves a transition from a percept to an action.
This example was used in Appendix E. For that particular
example, the update function can be exactly defined by the
rules above. As mentioned, aside from the basic structural
and diffusion rules, the PS model allows for additional
structures, which we repeat here. (i) Emoticons—the
agent’s short-term memory, i.e., flags that notify the agent
whether the currently found action, given a percept, was
previously rewarded or not. For our purposes, we shall use
only the very rudimentary mode of flags that designate that
the particular action (given a particular percept) was not
already unsuccessfully tried before. If it was, the agent can
“reflect on its decision” and reevaluate its strategies by
restarting the diffusion process. This reflection process is
an example of a more complicated outcoupling rule we
have mentioned previously. (ii) Edge and clip glow—
mechanisms that allow for the establishing of additional
temporal correlations. (iii) Clip composition—the PS

model based on episodic and compositional memory allows
the creation of new clips under certain variational and
compositional principles. These principles allow the agent
to develop new behavioral patterns under certain conditions
and allow for a dynamic reconfiguration of the agent itself.
For more details, we refer the reader to Refs. [19,53,54].
As illustrated, the PS model allows for a great flexibility.

A straightforward generalization would allow for the ECM
network to be percept specific, which is the view we adopt
in the definition of reflecting agents. However, the same
notion can be formalized without introducing multiple
networks (one for every percept). In particular, the ECM
network allows for action and percept clips to occur
multiple times. Thus, the ECM network can be represented
as jSj disjoint subnetworks, each of which comprises all
elementary action clips and only one elementary percept
clip. This structure is clearly within the standard PS model,
and it captures all the features of the reflecting PS-agent
model. A simple case of such a network, relative to the
standard picture, is illustrated in Fig. 3(b). Thus, the
reflecting PS-agent model is, structurally, a standard PS
model as well.

APPENDIX D: BEHAVIORAL EQUIVALENCE
OF CLASSICAL AND QUANTUM

REFLECTING AGENTS

In this section, we show that the classical and quantum
reflecting agents (RPS), denoted as Ac

RPS and Aq
RPS, are

approximately equal, that is, Ac
RPS ≈α A

q
RPS, where α can be

made arbitrarily small without incurring a significant
overhead in the internal time of the agents.
We do so by separately showing that the output dis-

tributions of both the classical and the quantum RPS are α
close to the previously mentioned tailed distribution, for an
arbitrarily small α. The main claim will then follow by the
triangle inequality on the behavioral distance (which holds
since the behavioral distance is the variational distance on
the output distributions).
For completeness, we begin by explicitly giving the

deliberation process of the classical RPS, described in the
main text, and proceed with the behavioral theorem for
classical RPS.
The agent’s decision-making process (implementing the

decision function D; see Appendix A for details), given
percept s, is given by the following steps.
Let tcmix ∈ ~Oð1=δsÞ: (i) Sample y from some fixed

distribution π0 and (ii) repeat: (a) diffuse: (re)mix the
Markov chain by

π ¼ P
tcmix
s y

and (b) check: sample y from π. If y is a flagged action,
break and output y.
In the following, when π and π0 are distributions, then

∥π − π0∥ denotes the standard variational distance
(Kolmogorov distance) on distributions, so

FIG. 3. (a) The simple PS model with flags. The transition from
percept to action occurs in one step. Flags are percept dependent.
(b) Intermediary step: The graph of (a) can be broken up into two
graphs, by duplication of actions. (c) The straightforward analog
of the simple PS in the reflecting-agent model. To each percept, a
MC over the actions only is assigned, such that the stationary
distribution recovers the initial output probabilities. The flags are
trivially inherited.
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∥π − π0∥ ¼ 1

2

X
x

jπðxÞ − π0ðxÞj:

Theorem 4 (Behavior of classical reflecting agents).—
Let Ps be the transition matrix of the Markov chain
associated with percept s, and let fðsÞ be the (nonempty)
set of flagged-action clips. Furthermore, let πsðxÞ be the
probability mass function of the stationary distribution πs
of Ps and let ~πs be the renormalized distribution of πs,
where the support is retained only over the flagged
actions, so

~πsðiÞ ¼
� πsðiÞP

j∈fðsÞπsðjÞ
if i ∈ fðsÞ

0 otherwise:
ðD1Þ

Let κ be the probability distribution over the clips as
outputted by the classical reflecting agent, upon receiving
s. Then, the distance ∥κ − ~πs∥ is constant (ignoring
logarithmic factors) and can be efficiently made arbitrarily
small.
Proof.—Note that, since the Markov chain is regular, by

Theorem 1, the distribution P
~Oð1=δsÞ
s π0, for any initial

distribution π0, is arbitrarily close to the stationary dis-
tribution of Ps; more precisely,

∥P½k0þlogð1=ϵ0Þ=δs�
s π0 − π∥ ≤ ϵ0 ðD2Þ

or, equivalently,

∥Pðk0þk1Þ=δs
s π0 − π∥ ≤ e−k1 ; ðD3Þ

where k0 ¼ maxi log½πðiÞ−1�. While πðiÞ−1 can, in princi-
ple, be very large, it only logarithmically contributes to the
overhead, so it can be effectively bounded and omitted from
the analysis. Thus, we can achieve an exponentially good
approximation of the stationary distribution with ~Oð1=δsÞ
iterations. In the remainder, we will denote π0 ¼ P

~Oð1=δsÞ
s π0.

The reflecting agent mixes its Markov chain (achieving
π0) and then samples iteratively from this distribution until a
flagged action is hit. Thus, κ ¼ ~π0, where ~π0 is the tailed π0
distribution in the sense of Eq. (D1) (substituting πs
with π0).
Hence, we have that

∥κ − ~πs∥ ¼ ∥ ~π0 − ~πs∥: ðD4Þ

Next, we only need to bound ∥ ~π0 − ~πs∥. Note that

∥ ~π0 − ~πs∥ ¼ ∥
1

ϵπ0
π0sub − 1

ϵ
ðπsÞsub∥; ðD5Þ

where ϵ and ϵπ0 are the probabilities of sampling a flagged
action from πs and π0, respectively, and π0sub and ðπsÞsub
are the subnormalized distributions π0sub ¼ ϵπ0 ~π

0 and
ðπsÞsub ¼ ϵ ~πs. Note that it holds that ∥π0sub − ðπsÞsub∥ ≤
∥π0 − πs∥. So, we have that

∥
1

ϵπ0
π0sub − 1

ϵ
ðπsÞsub∥ ¼ ∥

1

ϵπ0
π0sub − 1

ϵ
π0sub þ

1

ϵ
π0sub − 1

ϵ
ðπsÞsub∥ ≤

���� 1

ϵπ0
− 1

ϵ

����∥π0sub∥þ 1

ϵ
∥π0sub − ðπsÞsub∥

≤
���� 1

ϵπ0
− 1

ϵ

����ϵπ0 þ 1

ϵ
∥π0 − πs∥ ≤

jϵ − ϵπ0 j
ϵ

þ e−k1
ϵ

: ðD6Þ

Next, note that e−k1 ≥ ∥π0 − πs∥ ≥ jϵπ0 − ϵj, so finally, we
have

∥ ~π0 − ~πs∥ ≤ 2
e−k1
ϵ

¼ 2e−k1þlogð1=ϵÞ: ðD7Þ

Since we are interested in the analysis at the ~O level, we can
omit the logarithmically contributing factor above. This
concludes the proof. ▪
Note that since the ideal stationary distribution π (of the

MC Ps) and the approximation realized by mixing are no
further than e−k1 apart, and since the expected time of
producing an action when sampling from the ideal dis-
tribution is Oð1=ϵsÞ, the expected number of checks the
classical RPS will perform is in ~Oð1=ϵsÞ.
Next, we prove an analogous theorem for the quantum

agents.

Theorem 5 (Quantum reflecting agents).—Let Ps be the
transition matrix of the Markov chain associated with
percept s, and let fðsÞ be the (nonempty) set of flagged-
action clips. Furthermore, let πsðiÞ be the probability mass
function of the stationary distribution πs of Ps and let ~πs be
the renormalized distribution of πs, where the support is
retained only over the flagged actions, so

~πsðiÞ ¼
� πsðiÞP

j∈fðsÞπsðjÞ
if i ∈ fðsÞ

0 otherwise.
ðD8Þ

Let κ be the probability distribution over the clips as output
by the quantum reflecting agent, upon receiving s. Then,
the distance ∥κ − ~π∥ is constant (up to logarithmically
contributing terms) and can be efficiently made arbitrar-
ily small.
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Proof.—The proof consists of two parts. First, we prove
that, if the reflection operators (used in the diffusion step of
the quantum agent) are ideal, then the claim follows. The
remainder of the proof, which considers imperfect reflec-
tion operators that are actually used, follows from the proof
of Theorem 7 in Ref. [55]. In the following, we will, by
abuse of notation, denote with jπsi both the coherent
encoding of the stationary distribution and the state
jπiniti, which is the initial state of the quantum agent
and also the state over which reflections occur, following
the notation of Ref. [55]. Note that the latter state is
obtained by applying the quantum diffusion operator UP
once to jπsij0i, and the statistics of measuring the first
register in jπinitimatch the statistics of measuring jπsi in the
computational basis.
Assuming that the procedure the agent follows starts

from the perfect stationary distribution, and that the
reflections over jπsi are then perfect, by Lemma 1, we
have that the state of the system never leaves the span of
j ~πsi and j ~π⊥s i, where j ~π⊥s i is the state orthogonal to j ~πsi
in spanfj ~πsi; jπsig.
Note that the agent outputs an action only conditional

on the result being a flagged action. This process is
equivalent to first projecting the state of the system onto
the subspace of flagged actions, using the projector
ΠfðsÞ ¼ P

x∈fðsÞ jxihxj, followed by renormalization and
a measurement. The state after this projection is, for any
state in spanfj ~πsi; jπsig, a (sub)normalized state j ~πsi;
hence, after normalization, measurement outcomes always
follow the distribution ~πs.
However, any state in spanfj ~πsi; jπsig that is not exactly

j ~πsi still has a nonzero support on the nonflagged clips.
However, it is the key feature of Grover-like search
algorithms (like the search algorithm in Ref. [55], the
reflections of which make up the decision process of the
quantum agent) that the reflection iterations produce a state
that has a constant overlap with the target state (in our case,
j ~πsi, which has support only over flagged actions). This
property implies that the probability of failing to hit a
flagged action is, at most, some constant β < 1. Now, if the
deliberation process is iterated some constant k3 number of
times, it is straightforward to see that ∥κ − ~πs∥ ≤ βk3 thus
decays exponentially quickly, as desired.
Next, we need to consider the errors induced by the

approximate reflections.
The analysis in Ref. [55] (proof of Theorem 7) directly

shows that the terminal quantum (after t20 ∈ ½0; t2� iter-
ations) state jψi is close to the state jϕi the algorithm would
produce had the reflections been perfect, which is formally

∥jψi − jϕi∥ ≤ 21−c; ðD9Þ

where c is a constant only additively increasing the internal
parameter k of the approximate reflection subroutine.

Thus, the error on the final state produced by the
quantum agent induced by the approximate reflection
algorithm can be made arbitrarily small within the allowed
cost ~Oð1= ffiffiffiffi

δs
p Þ, which also means that all distributions

obtained by measurements of these states will not differ by
more than 4 × 21−c [56].
Returning to the inequality proven for the perfect

reflections, we see that the error of magnitude 4 × 21−c
can only increase the probability of failing to output a
flagged action from β to 4 × 21−c þ β. Thus, by only
linearly tuning the parameters, we can make sure that
the agent produces an action with an exponentially high
probability in terms of the parameter k3 (the number of
iterations of the deliberation process). If an action has been
produced, then, as we have shown above, it holds that it has
been sampled from a distribution within a 4 × 21−c distance
of the tailed distribution ~πs, which again can be efficiently
made exponentially small. Thus, the theorem holds. ▪
A corollary of the two theorems above is that the

classical and quantum agents are passively approximately
equal. But then, from the definitions of these embodied
agents, we can see that the quantum agent exhibits a
consistent quadratic speedup, in terms of the required
number of applications of their elementary operations.
That is, the quantum agent is quadratically faster, as
claimed. This proves the main claim of this paper.
The quantum agent may be required to reiterate the

deliberation procedure if the final measurement finds a
nonaction clip. This procedure is easy if multiple copies of
the initial state are always available. Alternatively, a way of
recreating the desired initial coherent encoding of the
stationary distribution can be achieved by “inverting” the
quantum search algorithm in Ref. [24] by “unsearching”
the found nonaction clip—that is, by inverting the (unitary)
Grover iterations that would be applied to it in order to
search for the found clip from the initial state. This process
will, with high fidelity, again recreate a good approxima-
tion of the initial stationary distribution [57] but may be
costly if the found nonaction clip has a low frequency in the
stationary distribution. A more efficient resolution to the
problem of reiteration of deliberation can be achieved if
the quantum agent can, additionally, perform a generalized
measurement, mathematically described by a positive
operator-valued measure (POVM), that projects the state
produced by the Grover-like iterations to the subspaces
spanned by nonflagged and flagged clips, defined by the
POVM elements

ΠfðsÞ ¼
X
i∈fðsÞ

jiihij; ðD10Þ

Πnon-fðsÞ ¼ 1 − ΠfðsÞ: ðD11Þ

If the first outcome of this measurement is obtained, the
agent will output the required action according to the
desired distribution, by measuring the residual state. If
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the other outcome is obtained, then the resulting state is the
coherent encoding of the stationary distribution, renormal-
ized so that it has support only over nonflagged clips.
Starting from this state (which is in the work space of the
Grover-like iterations), the agent can “unsearch” for all
nonflagged clips to regain the initial distribution. Crucially,
the number of steps here will scale as ~Oð1= ffiffiffiffiffiffiffiffiffiffiffiffi

1 − ϵs
p Þ, which

will, in interesting cases, be effectively constant.

APPENDIX E: COMPARISON
OF PS-AGENT MODELS

In this section, we compare reflecting PS agents with the
standard PS agents, which have been previously studied
[19,53]. The main difference between the standard and the
reflecting models is that the standard agents evolve their
Markov chain until the first instance where an action clip
has been hit, whereas the reflecting agents allow for the
Markov chain to fully mix. In the standard PS model, the
underlying Markov chain should never mix, as indeed, in
that case, the construction will guarantee that the actual
action performed is independent from the received percept
(if the Markov chain is irreducible). This observation
suggests that large clip networks of high conductivity that
could, e.g., appear in agents that have undergone a rich
complex set of episodic experiences (for instance, any type
of clip compositions we mentioned previously) are better
suited for the reflecting, rather than the standard, PS agents.
Conversely, since the reflecting agent must always fully

mix its Markov chain, and the standard does not, it would
seem that the standard model should typically outperform
the reflecting model on simple clip networks (as the hitting
time may be much smaller than the mixing time). This
intuition would suggest that the standard and reflecting PS
models should not be compared on simple structures, as no
quantum advantage can be demonstrated.
In contrast to these intuitive hypotheses, here, we show

that even for the simplest (but nontrivial) standard PS-agent
construction [19,53], there exists a natural reflecting-agent
analog, where the performance of the classical reflecting
agent matches the standard PS construction, and conse-
quently, the quantum reflecting agent yields a quadratic
speedup over both.

1. Simple standard PS agent with flags

Recall that, in the standard PS model, the internal state of
the agent is defined by an h matrix, which defines the
transition probabilities of the directed Markov chain over
the clip space. In the simplest case, the clip space comprises
only percepts and actions, the agent is initialized so that
each percept is connected to each action with unit weight
(implying equiprobable transitions), and no other connec-
tions exist. Furthermore, the update function we assume is
the standard update function, as defined in Ref. [19] and
repeated in Appendix C. In this particular model, the
internal elementary time step is one evolution of the

Markov chain, so the agent always decides in one step,
and there is nothing to improve. However, if we introduce
short-term memory, which significantly improves the
performance of the model [19], then the fact that the agent
may hit an unflagged item implies it may have to walk
again. If ϵs denotes the probability (for the clip s) that the
agent hits a flagged item, then the expected number of
elementary transitions and checks the agent will perform is
Oð1=ϵsÞ. (See Fig. 3 for an illustration.) For this model, we
next introduce a direct reflecting-agent analog.

2. Simple reflecting agent with flags

It is relatively straightforward to construct a reflecting PS
agent that is behaviorally equivalent to the simple standard
agent with flags, given above. To each percept, we assign a
Markov chain over just the action space, such that the
transition matrix is column constant and the column simply
contains the transition probabilities for that particular
percept in the standard model above; see Fig. 3 for an
illustration. The stationary distribution of this Markov
chain then matches the desired transition probabilities.
The update function for this agent is then exactly the same
as in the standard model (that is, internally, the reflecting
agent can also keep and update the same h matrix that
induces the Markov chains), and the flags are also treated in
exactly the same way.
Note that the transition matrix of such a Markov chain is

rank one, meaning it has only one nonzero eigenvalue, and
since the trace of this matrix is unit (and trace is invariant
under diagonalization or basis change), the largest eigen-
value must be 1 and all the others are 0. Thus, we have that
the spectral gap is always 1. This fact immediately implies
that the Markov chain is fully mixed after just a single
transition (as δ ¼ 1). Thus, the classical reflecting agent
will also perform Oð1=ϵsÞ transitions and checks until an
action is performed, given the percept s. However, the
quantum agent only requires Oð1= ffiffiffiffi

ϵs
p Þ calls to the

quantum-walk operator. Thus, even in the very simple
setting, we see that the reflecting agents can be compared to
the standard PS-agent model and maintain a generic
quadratic speedup when quantized.
This simple model also serves as an illustration of a

setting in which the initial state jπsi is easily prepared.
Since the relevant transition matrix Ps is of rank one, it is
straightforward to see that one application of the quantum
diffusion operator UPs

applied on the register initialized to
j1ij0i generates the state j1i ⊗ P

j

ffiffiffiffiffiffiffiffi
Pj;1

p jji ¼ j1ijπsi,
since the Ps is a column-constant matrix containing the
stationary distribution as columns.
While the scenario considered in this section is some-

what restricted, it is not without importance, as, for the
standard PS agents, we already have a body of results in
the classical case [19,53]. We emphasize, however, that the
quadratic speedup proven in this work is not restricted to
this scenario.
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