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We define the anisotropic Rabi model as the generalization of the spin-boson Rabi model: The
Hamiltonian system breaks the parity symmetry; the rotating and counterrotating interactions are governed
by two different coupling constants; a further parameter introduces a phase factor in the counterrotating
terms. The exact energy spectrum and eigenstates of the generalized model are worked out. The solution is
obtained as an elaboration of a recently proposed method for the isotropic limit of the model. In this way,
we provide a long-sought solution of a cascade of models with immediate relevance in different physical
fields, including (i) quantum optics, a two-level atom in single-mode cross-electric and magnetic fields;
(ii) solid-state physics, electrons in semiconductors with Rashba and Dresselhaus spin-orbit coupling; and
(iii) mesoscopic physics, Josephson-junction flux-qubit quantum circuits.
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I. INTRODUCTION

There are very simple settings in physics whose under-
standing has very far reaching implications. This one is the
case of the Rabi-type models that are possibly the simplest
“organisms” describing the interaction between a spin-half
degree of freedom with a single boson. Originally formu-
lated in quantum optics to describe the atom-field inter-
action [1], such a kind of model plays a crucial role in many
other fields, especially with the advent of the quantum
technologies. Here, we introduce an anisotropic generali-
zation of the Rabi model and discuss the exact energies and
eigenstates of it. In this way, we provide a long-sought
solution of a cascade of models with immediate relevance
in various fields.
The Rabi-type models provide the paradigm for key

applications in a variety of different physical contexts,
including quantum optics [2] and solid-state and meso-
scopic physics [3]. Despite its importance, such models
remained intractable with exact means for many years.
Nevertheless, the physical community could thoroughly

analyze the Rabi-model physics, essentially because the
physical settings allowed physicists to easily adjust the
field frequency to resonate with the atomic bandwidth. In
this way, assuming as well that the field intensity is weak,
the Rabi model could be drastically simplified to the
Jaynes-Cummings (JC) model [4], through the celebrated
“rotating-wave” approximation. The situation radically
changed in the last decade, when quantum technology
has been advancing toward more and more realistic
applications [5–7]. In most of the cases, if not all, the
rotating-wave approximation cannot be applied. In the
solid-state applications, for example, the electric field is
an intrinsic quantity that cannot be adjusted. On the other
hand, in the applications in mesoscopic physics (like
superconducting or QED circuits), the most interesting
regimes correspond to a very strong coupling between the
spin variable and the bosonic degree of freedom.
The class of the anisotropic Rabi model we consider

in the present paper is described by the following
Hamiltonian:

H ¼ ωa†aþ ϵσx þ Δσz þ gðHr þ λHcrÞ;
Hr ¼ ða†σ− þ aσþÞ;
Hcr ¼ eiθa†σþ þ e−iθaσ−: ð1Þ

Here, a† and a are the creation and annihilation operators
for a bosonic mode of frequency ω, σ� ¼ ðσx � iσyÞ=2,
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σx;y;z are Pauli matrices for a two-level system, 2Δ is the
energy difference between the two levels, and g denotes
the coupling strength of the rotating-wave interaction
a†σ− þ aσþ between the two-level system and the bosonic
mode. For simplicity, we already take the unit of ℏ ¼ 1. In
the Hamiltonian (1), the relative weight between the
rotating and counterrotating terms, denoted, respectively,
as Hc and Hcr, can be adjusted by tuning the parameter λ.
When ϵ ¼ 0, the Hamiltonian enjoys a discrete Z2 sym-
metry, meaning that the parity of bosonic and spin
excitations is conserved.
Several attempts at solving these types of model were

tried through employing the Bethe-ansatz and quantum
inverse-scattering techniques [8,9]. The isotropic Rabi
model corresponding to θ ¼ 0 and λ ¼ 1 was solved
exactly in a seminal paper by Braak [10]. Such an achieve-
ment has allowed us to explore the physics of the Rabi
model in full generality.
In this article, we present the exact solution of the

anisotropic Rabi models [Eq. (1)]. We discuss how the
models can be applied to important physical settings in
quantum optics and in mesoscopic and solid-state physics.
We also observe that such a model can be realized with cold
atoms with arbitrary spin-orbit couplings.

II. EXACT ANALYSIS OF
THE SPECTRAL PROBLEM

To focus on the main results, we first provide a schematic
of the exact solution of the spectral problem

HjΨi ¼ EjΨi; ð2Þ
while leaving the details in the Appendixes.
Our approach elaborates on the method originally

developed by Braak [10]. In order to find a concise
solution, we perform a unitary transformation on the spin
degree of freedom in the Hamiltonian (1). The eigenvalues
can be found as

En ¼ xn − λg2

ω
; ð3Þ

where xn include regular and exceptional solutions. The
regular solutions are solely 0 s of the transcendental
function, while the exceptional solutions are both the 0 s
and poles leading to a finite transcendental function and
energy degeneracy. The transcendental function is as
follows:

GϵðxÞ ¼ ϕ1ϕ̄2 − ϕ2ϕ̄1; ð4Þ

where ϕ1ðzÞ¼ expð−ð ffiffiffi
λ

p
gξÞ=ðωÞzÞP∞

n¼0L
þ
n ðzþð ffiffiffi

λ
p

gξ�Þ=
ðωÞÞn, ϕ2ðzÞ¼ expð−ð ffiffiffiλp

gξÞ=ðωÞzÞP∞
n¼0K

þ
n ðzþð ffiffiffi

λ
p

gξ�Þ=
ðωÞÞn and ϕ1ð−zÞ ¼ ϕ̄1ðzÞ, ϕ2ð−zÞ ¼ ϕ̄2ðzÞ. Figures 1
and 2 display the actual behavior of GϵðxÞ in different

parameter regimes. For ϵ ¼ 0, the Z2 symmetry is recov-
ered; in this case, the transcendental function can be
discussed through the functions Gþ ¼ −eiθ=2ϕ1 þ

ffiffiffi
λ

p
ϕ2

and G− ¼ e−iθ=2ϕ2 þ
ffiffiffi
λ

p
ϕ1, living separately in the two

parity sectors (see Fig. 2). The explicit form of eigenfunc-
tions ϕ1;2ðzÞ can also be obtained.
For vanishing ϵ or a multiple of ω=2, the system enjoys a

Z2 (parity) symmetry. In this case, the energy spectrum can
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FIG. 1. Transcendental function GϵðxÞ for ϵ ≠ 0. The param-
eters are ω ¼ 1, g ¼ 0.1, λ ¼ 0.5, Δ ¼ 0.4, ϵ ¼ 0.2, and
θ ¼ −π=2; the zero points whose real (solid blue line) and
imaginary parts (dashed red line) of Gϵ both equal 0 correspond
to the eigenvalues of Hamiltonian.
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FIG. 2. Transcendental functions GλþðxÞ (solid green line) and
real part of Gλ−ðxÞ (dashed purple line) for ϵ ¼ 0. The parameters
are ω ¼ 1, g ¼ 0.7, Δ ¼ 0.4, λ ¼ 0.5, and θ ¼ −π=2. The
regular parts of the energy spectrum are determined by the 0 s
of the transcendental functionGλ

�ðxÞ, and the dotted vertical lines
denote the poles x ≈ n − 0.0612, n ¼ 0; 1; 2;…; see Eq. (B13).
Notice that the imaginary part of Gλ−ðxÞ gives the same 0 and
poles as the real part, which is not shown.
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be labeled by the two eigenvalues of the parity operator
[corresponding to green-with-circle and purple-with-square
lines in Fig. 3(b)]. At the points of level crossings, the
energy is doubly degenerate. For the isotropic case, those
solutions were found previously by Braak and Judd
[10,11]. For our anisotropic Rabi model, the crossing
points are found as En ¼ nω − ð1þ λ2Þ2=2ω, correspond-
ing to the exceptional spectrum. This exceptional spectrum
is characterized by the merging of a pole with a 0, resulting
in a finite, nonzero transcendental function in Eq. (4) at
energies corresponding to Juddian solutions [11]; see also
Appendix B.
For nonvanishing generic values of ϵ, the Z2 symmetry is

lost. This symmetry breaking is manifested in the spectrum;
in particular, there are no degeneracies [see Fig. 3(a)]. As
we shall see, the parameter θ is important to capturing
general spin-orbit couplings. We remark that with Z2

symmetry preserved, θ can be deleted by a unitary trans-
formation, and thus it does not change the energy spectrum.
When Z2 symmetry is broken with nonvanishing ϵ, the
parameter θ enters the energy spectrum through ϵσx, and
this unitary transformation will induce the term σx →
cosðθ=2Þσx þ sinðθ=2Þσy.
As it will later be argued to be important for many

applications, we quantify the energy correction due to the
counterrotating term (the Bloch-Siegert shift [12]). Based
on the exact solution, we can give closed expressions in
several interesting limits. For 2Δ ≈ ω, g ≪ ω, the shift is

g2=ω. For ϵ ¼ 0, at the degenerate points, and setting
jΔj ¼ ð1 − λ2Þg2=2ω, the ground-state energy gap between
the JC model and the anisotropic Rabi model can be
found as

ΔE0 ¼
λ2g2

ω
: ð5Þ

For λ ¼ 1, it is just the standard Bloch-Siegert shift [12,13].
Such a gap can also be obtained for the excitations. For the
first and the second excited states at degenerate points, it
reads approximately λ2g4=ω3.

III. APPLICATIONS

In this section, we discuss how our solution can contribute
to approaching important problems in different physical
contexts. Specifically, we will consider applications in
quantum optics, mesoscopic physics, and spintronics.

A. Application to quantum optics: Two-level atom
in a cross-electric and magnetic field

When an atom is a subject of a crossed electric and
magnetic field, the selection rules are not dictated by the
possible values of the atomic angular momentum. Therefore,
both the electric dipole and magnetic dipole transitions are
allowed. The Hamiltonian describing the system is

H ¼ H0 − d ·E − μ · B; ð6Þ

where we have assumed that the quadrupole transitions
can be neglected. Inserting the standard expressions of the
quantized electric and magnetic fields are, respectively,
E ∼ ðaþ a†Þ and B ∼ iða − a†Þ; Eq. (6) can be recast into
our anisotropic Rabi model [Eq. (1)] with

g ¼ hþjdj−i þ hþjμj−i
2

; ð7Þ

λ ¼ hþjdj−i − hþjμj−i
hþjdj−i þ hþjμj−i ; ð8Þ

with H0j�i ¼ E�j�i.

B. Application to superconducting circuits

Superconducting circuits exploit the inherent coherence
of superconductors for a variety of technological applica-
tions, including quantum computation [14]. In this case, the
bosonic fields typically represent the electromagnetic fields
generated by the superconducting currents. The spin degree
of freedom describes the two states of the qubit.
As an immediate application, we consider two induc-

tively coupled dc superconducting quantum interference
devices (SQUIDs) [15,16]: A primary SQUID p (assumed
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FIG. 3. Comparison between the exact solution and the
numerical results. (a) Energy spectrum for ω ¼ 1, Δ ¼ 0.4,
λ ¼ 0.5, ϵ ¼ 0.2, and θ ¼ −π=2. Solid lines are exact results,
and the energy levels are differentiated by colors. Numerical
results are represented by stars. (b) Energy spectrum for ω ¼ 1,
Δ ¼ 0.4, λ ¼ 0.5, ϵ ¼ 0, and θ ¼ 0 in the spaces with positive
(green lines with circles) and negative (purple lines with squares)
parities. Small squares and circles represent numerical results.
The first energy-level-crossing point is at gc ¼ 4=

ffiffiffiffiffi
15

p
≈ 1.0328

and E ¼ −2=3, which has no definite parity.
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to be large enough to produce an electromagnetic field
characterized by a bosonic mode) controls the qubit
realized by the secondary SQUID. In the limit of negligible
capacitive coupling between the two SQUIDs, the circuit
Hamiltonian is

Hcircuit ¼ ωpa†a − 2Es
Jσ

x − 2 ~Lpðaþ a†Þσx
− iMða − a†Þσy; ð9Þ

where ωp is the “frequency” of the primary SQUID and
Es
J ¼ Es

JðϕextÞ provides the level splitting of the secon-
dary SQUID, controlled by the external magnetic field;
~Lp and M are fixed by the inductance of the circuit and
the mutual inductance, respectively; the gate voltage Vg
is tuned to the charge-degeneracy point. Equation (9)
can be recast into the anisotropic Rabi model
[17]: fωp; Es

J; 2 ~Lp;Mg → fω; ϵ; gð1þ λÞ; gð1 − λÞg.
We comment that the implications of the simultaneous

presence of the rotating and counterrotating terms have
been evidenced experimentally [18–20]. The experimental
system is a resonator circuit magnetically coupled to a
superconducting flux qubit in the ultrastrong-coupling
regime. Indeed, the experimental data are interpreted as
a Bloch-Siegert energy correction of the Jaynes-Cummings
dynamics. Here, we point out that the experimental results
canbe fittedverywell in termsofour anisotropicRabimodel;
seeFig. 4. (Further details are provided inAppendixB.)Such
an evidence provides an indication that the inductance of the
circuit is, indeed, very different from the mutual inductance
between the primary and the qubit.

C. Applications to electrons in semiconductors
with spin-orbit coupling

Spin-orbit-coupling effects have been opening up new
perspectives in solid-state physics, both for fundamental
research (including topological insulators and spin-Hall
effects [21,22]) and applications (notably, spintronics [23]).
Electronic spin-orbit (SO) coupling can be induced by the
electric field acting at the two-dimensional interfaces of
semiconducting heterostructure devices [23–27]. The
effective Hamiltonian reads

H ¼ 1

2m
π2 þ 1

2
gμBBσz þHSO;

HSO ¼ HR þHD;

HR ¼ αðπxσy − πyσxÞ;
HD ¼ βðπxσx − πyσyÞ; ð10Þ

where π ¼ fπx; πy; πzg is the electron-canonical momen-
tum π ¼ ðp − ðq=cÞAÞ. HR and HD are the Rashba [24]
and Dresselhaus [25] spin-orbit interactions. The coupling
constant α depends on the electric field across the
well, while the Dresselhaus coupling β is determined by
the geometry of the heterostructure. The perpendicular
magnetic field couples both to the electronic spin and
orbital angular momentum. Applying the standard pro-
cedure that leads to the Landau levels, the Hamiltonian (10)
can be recast into our anisotropic Rabi model:
α ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ ð1þ λÞ2

p
sin θ and β ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ ð1þ λÞ2

p
cos θ.

Incidentally, we observe that the simultaneous presence
of Dresselhaus and Rashba contributions couples all the
Landau levels, making our exact solution immediately
relevant for the physics of the system.
We comment that the Hamiltonian (10) has been realized

with cold fermionic atom systems, opening the avenue to
study the spin-orbit effects with controllable parameters
and in extremely clean environments [28–31].

IV. ENTANGLEMENT ENTROPY

In this section, we elaborate on the phenomenon displayed
in Fig. 3: For the anisotropic Rabi model, level crossings
occur between eigenvalues of different parity sectors.
The crossing between the ground state and the first excited

state occurs for the anisotropic case that corresponds to the
exact solutions obtained by Judd [11]; see also Appendix B
and Fig. 6. This phenomenon does not occur in the isotropic
Rabi model and is possibly due to the competition between
the rotating and counterrotating interaction terms. The
position of this point can be analytically determined by
the relation K1ðxpole0 Þ ¼ 0 as mentioned above, i.e., a0 ¼ 0,
b0 ¼ 0,

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jΔjω
1 − λ2

r
; ð11Þ

FIG. 4. Comparison between the anisotropic Rabi model with
experimental results. The spectra (dot-dashed lines) of the
anisotropic Rabi model with λ ¼ 0.0, 0.5, 0.7, 1.0; the other
parameters are g ¼ 0.74 GHz,Δ ¼ 4.21 GHz, Ip ¼ 500 nA, and
ωr ¼ 8.13 GHz, the same as those previously investigated [18].
The curves with λ ¼ 0.5 (dot-dashed red line) agree perfectly
with the experimental data (circle points).
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E0 ¼ −
ð1þ λ2Þg2

2ω
: ð12Þ

For the crossing of the ground state and the first excited state,
we find that the series terminates at the first term, as K0 ¼ 1
and L0 ¼ 2

ffiffiffi
λ

p
ξ�=ð1 − λÞ, thereby resulting in

ϕ1 ¼
2
ffiffiffi
λ

p
ξ�

1 − λ
exp

�
−

ffiffiffi
λ

p
gξ

ω
z

�
; ð13Þ

ϕ2 ¼ exp
�
−

ffiffiffi
λ

p
gξ

ω
z
�
: ð14Þ

Here, we study the entanglement entropy of the ground
state. It can be obtained by calculating the von Neumann
entropy of the spin state by tracing out the bosonic degree
of freedom from the eigenstates [Eqs. (B17) and (B18)];
see Refs. [32,33] for methods. We observe that the level
crossing and change of symmetry of the ground state are
reflected in a clear discontinuity of the entanglement
entropy (see Fig. 5). We remark that the ground states
are degenerate at the level-crossing point, which is special.

V. DISCUSSION

In this article, we discussed a carefully chosen generali-
zation of the Rabi model: The Hamiltonian system breaks
the parity symmetry; the rotating and counterrotating inter-
actions are governed by two different coupling constants; a
further parameter introduces a phase factor in the counter-
rotating terms. We obtained exact energies and eigenstates of

the system through the analytical properties of a transcen-
dental function. We note that because of the anisotropic
coupling, a peculiar phenomenon occurs in the energy
spectrum of the system: The eigenstates belonging to
different parity sectors swap in couples. We have quantified
the crossing between the ground and the first excited states
through the entanglement entropy of the spin system.
Our Hamiltonian systems capture the physics of noto-

riously important problems in different physical contexts,
including a two-dimensional electron gas with a general
spin-orbit interaction, a two-level atom in an electromag-
netic field, and superconducting circuits in ultrastrong
regimes. We explained how our results are immediately
relevant for the experimental situations.
We believe that superconducting circuits made of two

coupled SQUIDs could provide access to a systematic
experimental study of the physical effects of the anisotropic
Rabi interaction. Specifically, our study indicates that the
circuit inductance, the SQUID-SQUID inductance, and
the external magnetic field are the parameters that should
be varied to study the crossover from the weak- to the
strong-coupling regimes (see Sec. III B).
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APPENDIX A: EXACT SOLUTION OF THE
ANISOTROPIC RABI MODEL

For the Hamiltonian presented in Eq. (1), the parameter λ
controls the anisotropy between the rotating and the
counterrotating terms while θ introduces only a phase into
the counterrotating terms; the term ϵσx breaks the Z2

symmetry, and therefore, the eigenspace of the model
[Eq. (1)] cannot be split into invariant subspaces. Never-
theless, the model [Eq. (1)] can still be solved exactly with
the approach originally developed by Braak [10] for the
isotropic model λ ¼ 1, θ ¼ ϵ ¼ 0.
In solving exactly this model, first, for technical con-

venience (we comment further below), we perform a
unitary transformation Uðλ; θÞ:

Uðλ; θÞ ¼
�
cos ηeiθ=2 − sin η

sin η cos ηe−iθ=2

�

¼ 1ffiffiffiffiffiffiffiffiffiffiffi
1þ λ

p
�

ξ − ffiffiffi
λ

p
ffiffiffi
λ

p
ξ�

�
; ðA1Þ

where tan η ¼ ffiffiffi
λ

p
and ξ ¼ eiθ=2; when θ ¼ 0 and ξ ¼ 1, it is

a orthogonal transformation. The Hamiltonian (1) becomes
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FIG. 5. Energies (upper panel) and entanglement entropies
(lower panel) of the ground state and the first excited state. A
level crossing occurs at gc ¼ 4=

ffiffiffiffiffi
15

p
, marking a change of the

parity of the ground state: for g < gc, the parity is positive (solid
green line), and it is negative (dashed purple line) for g > gc, as
shown in the upper panel. Correspondingly, we find that the
ground-state entropy displays a sharp discontinuity at the
level-crossing point, as shown in the lower panel.
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U†HU ¼
�
ωa†aþ ffiffiffi

λ
p

gðξ�aþ ξa†Þ þ c ξ�2ð1 − λÞga − d�

ξ2ð1 − λÞga† − d ωa†a − ffiffiffi
λ

p
gðξ�aþ ξa†Þ − c

�
; ðA2Þ

where c ¼ ð1 − λÞ=ð1þ λÞΔþ ððξþ ξ�Þ ffiffiffi
λ

p Þ=ð1þ λÞϵ and d ¼ ð2 ffiffiffi
λ

p
ξÞ=ð1þ λÞΔ − ðξ2 − λÞ=ð1þ λÞϵ. We exploit the

Bargmann representation of bosonic operators in terms of analytic functions—a† → z and a → ∂=∂z—and consider the
eigenfunction of the Hamiltonian as ðϕ1;ϕ2ÞT ; we have�

ωz
d
dz

þ
ffiffiffi
λ

p
g

�
ξ�

d
dz

þ ξz

�
þ c

�
ϕ1 þ

�
ξ�2ð1 − λÞg d

dz
− d�

�
ϕ2 ¼ Eϕ1; ðA3Þ

½ξ2ð1 − λÞgz − d�ϕ1 þ
�
ωz

d
dz

− ffiffiffi
λ

p
g

�
ξ�

d
dz

þ ξz

�
− c

�
ϕ2 ¼ Eϕ2: ðA4Þ

For convenience, we introduce the notations ϕ1;2ðzÞ ¼ expð−ð ffiffiffi
λ

p
gξÞ=ðωÞzÞψ1;2ðyÞ, y ¼ zþ ffiffiffi

λ
p

gξ�=ω, x ¼ Eþ λg2=ω,
and f ¼ dþ ð1 − λÞ ffiffiffi

λ
p

g2ξ=ω. Now, we obtain�
ωy

d
dy

− xþ c

�
ψ1 ¼

�
f� − ξ�2ð1 − λÞg d

dy

�
ψ2 ðA5Þ

and �
ðωy − 2

ffiffiffi
λ

p
gξ�Þ d

dy
− 2

ffiffiffi
λ

p
gξyþ 4λg2

ω
− x − c

�
ψ2 ¼ ½f − ð1 − λÞgy�ψ1: ðA6Þ

Assuming that the functions ψ1;2 can be expanded as ψ2 ¼
P∞

n¼0K
þ
n ðxÞyn and ψ1 ¼

P∞
n¼0 L

þ
n ðxÞyn, from Eq. (A5), the

relation between Kþ
n and Lþ

n is found as

Lþ
n ¼ f�Kþ

n − ξ�2ð1 − λÞgKþ
nþ1ðnþ 1Þ

nω − xþ c
: ðA7Þ

Then, from Eq. (A6), the recursive relation of Kþ
n is

obtained:

anðxÞKþ
nþ1 ¼ bnðxÞKþ

n þ cnðxÞKþ
n−1; ðA8Þ

anðxÞ ¼
�
2
ffiffiffi
λ

p − ð1 − λÞfξ�
nω − xþ c

�
ðnþ 1Þgξ�; ðA9Þ

bnðxÞ ¼
4λg2

ω
þ nω − x − c − f�f

nω − xþ c

−
ð1 − λÞ2g2n

ðn − 1Þω − xþ c
; ðA10Þ

cnðxÞ ¼ −2
ffiffiffi
λ

p
gξþ ð1 − λÞgf�ξ2

ðn − 1Þω − xþ c
; ðA11Þ

where Kþ−1 ¼ 0, Kþ
0 ¼ 1, and n ¼ 0; 1; 2;…. Incidentally,

we comment that the unitary transformation (A1) is a key
step that leads to simplifying the recursive relations that
involve only three terms, as it is displayed above.

Consequently, one set of solutions is obtained:

ϕ1ðzÞ ¼ exp

�
−

ffiffiffi
λ

p
gξ

ω
z

�X∞
n¼0

Lþ
n

�
zþ

ffiffiffi
λ

p
gξ�

ω

�n

; ðA12Þ

ϕ2ðzÞ ¼ exp

�
−

ffiffiffi
λ

p
gξ

ω
z

�X∞
n¼0

Kþ
n

�
zþ

ffiffiffi
λ

p
gξ�

ω

�n

: ðA13Þ

Then, substituting z → −z into Eqs. (A3) and (A4),
ϕ1ð−zÞ ¼ ϕ̄1ðzÞ and ϕ2ð−zÞ ¼ ϕ̄2ðzÞ are eigenfunctions of
the spectral problem [Eq. (A4)] as well. Such functions can
be obtained by applying the same procedure that led to
Eqs. (A12) and (A13). The differential equations for ϕ̄1ðzÞ
and ϕ̄2ðzÞ are

�
ωz

d
dz

− ffiffiffi
λ

p
g
�
ξ�

d
dz

þ ξz
�
þ c
�
ϕ̄1

þ
�
−ξ�2ð1 − λÞg d

dz
− d�

�
ϕ̄2 ¼ Eϕ̄1; ðA14Þ

½−ξ2ð1 − λÞgz − d�ϕ̄1

þ
�
ωz

d
dz

þ
ffiffiffi
λ

p
g

�
ξ�

d
dz

þ ξz

�
− c

�
ϕ̄2 ¼ Eϕ̄2: ðA15Þ

XIE et al. PHYS. REV. X 4, 021046 (2014)

021046-6



Using the following notations—ϕ̄1;2ðzÞ ¼ expð−ð ffiffiffi
λ

p
gξÞ=

ðωÞzÞψ̄1;2ðyÞ, y ¼ zþ ffiffiffi
λ

p
gξ�=ω, x ¼ Eþ λg2=ω, and

f̄ ¼ d − ð1 − λÞ ffiffiffi
λ

p
g2ξ=ω—the above equations can be

rewritten as

�
ðωy − 2

ffiffiffi
λ

p
gξ�Þ d

dy
− 2

ffiffiffi
λ

p
gξyþ 4λg2

ω
− xþ c

�
ψ̄1

¼
�
f̄� þ ξ�2ð1 − λÞg d

dy

�
ψ̄2; ðA16Þ

�
ωy

d
dy

− x − c

�
ψ̄2 ¼ ½f̄ þ ξ2ð1 − λÞgy�ψ̄1: ðA17Þ

Expanding the functions ψ̄1;2 as ψ̄1 ¼
P∞

n¼0K
−
n ðxÞyn and

ψ̄2 ¼
P∞

n¼0 L
−
n ðxÞyn, from Eq. (A17), we find the relation

of K−
n and L−

n :

L−
n ¼ f̄K−

n þ ξ2ð1 − λÞgK−
n−1

nω − x − c
: ðA18Þ

Then, from Eq. (A16), we obtain the recursive relation

ānðxÞK−
nþ1 ¼ b̄nðxÞK−

n þ c̄nðxÞK−
n−1; ðA19Þ

ānðxÞ ¼
�
2
ffiffiffi
λ

p
þ ð1 − λÞf̄ξ�
ðnþ 1Þω − x − c

�
ðnþ 1Þgξ�; ðA20Þ

b̄nðxÞ ¼
4λg2

ω
þ nω − xþ c − f̄�f̄

nω − x − c

−
ð1 − λÞ2g2ðnþ 1Þ
ðnþ 1Þω − x − c

; ðA21Þ

c̄nðxÞ ¼ −2
ffiffiffi
λ

p
gξ − ð1 − λÞgf̄�ξ2

nω − x − c
; ðA22Þ

where K−−1 ¼ 0, K−
0 ¼ 1, and n ¼ 0; 1; 2;….

Going back to the original notations, we have

ϕ̄1ðzÞ ¼ exp

�
−

ffiffiffi
λ

p
gξ

ω
z

�X∞
n¼0

K−
n

�
zþ

ffiffiffi
λ

p
gξ�

ω

�n

; ðA23Þ

ϕ̄2ðzÞ ¼ exp

�
−

ffiffiffi
λ

p
gξ

ω
z

�X∞
n¼0

L−
n

�
zþ

ffiffiffi
λ

p
gξ�

ω

�n

: ðA24Þ

Considering the relation of these two sets of eigenstates
mentioned above—ϕ1ð−zÞ ¼ Cϕ̄1ðzÞ and ϕ2ð−zÞ ¼
Cϕ̄2ðzÞ—and then canceling the arbitrary constant C, a
transcendental function can be constructed as

Gϵðx; zÞ ¼ ϕ1ϕ̄2 − ϕ2ϕ̄1: ðA25Þ

Because Gϵðx; zÞ is well defined at z ¼ � ffiffiffi
λ

p
gξ�=ω within

the convergent radius R ¼ 2
ffiffiffi
λ

p
gξ�=ω, we can set z ¼ 0

[10]. The function Gϵðx; 0Þ is analytic in the complex
plane, except in the simple poles

xpolen ¼ nω − ð1 − λÞ2g2
2ω

þ ðξþ λξ�Þϵ
2
ffiffiffi
λ

p ; ðA26Þ

x̄polen ¼ ðnþ 1Þω − ð1 − λÞ2g2
2ω

− ðξþ λξ�Þϵ
2
ffiffiffi
λ

p ; ðA27Þ

which follows from the 0 s of the denominator of K�
n :

anðxÞ ¼ 0 and ānðxÞ ¼ 0 in Eqs. (A8) and (A19), respec-
tively. Then, the eigenvalues and eigenstates can be
obtained by solving GϵðxÞ ¼ 0:

En ¼ xn − λg2

ω
; ðA28Þ

Ψn ¼ Uðλ; θÞ
�
ϕ1ðxnÞ
ϕ2ðxnÞ

�

¼ Uðλ; θÞ
 P∞

n¼0 L
þ
n jniiP∞

n¼0 K
þ
n jnii

!
: ðA29Þ

Using the second solution, the eigenstates of the
Hamiltonian with a → −a and a† → −a† can be obtained:

Ψ̄n ¼ Uðλ; θÞ
�
ϕ̄1ðxnÞ
ϕ̄2ðxnÞ

�

¼ Uðλ; θÞ
 P∞

n¼0K
−
n jniiP∞

n¼0 L
−
n jnii

!
; ðA30Þ

where

jnii≐
�
a† þ

ffiffiffi
λ

p
gξ�

ω

�n���� −
ffiffiffi
λ

p
gξ

ω

�
;

���� −
ffiffiffi
λ

p
gξ

ω

�
¼ e−ðλg2=2ω2Þ−ð ffiffiλp

gξ=ωÞa† j0i: ðA31Þ

In the case of λ ¼ 1 and θ ¼ 0, we can recover the
results given by Braak [10] and some generalized results
[34–36]. Some other detailed calculations can be found in
Appendix B.

APPENDIX B: RESULTS FOR THE Z2
SYMMETRIC CASE

For ϵ ¼ 0, the anisotropic Rabi model enjoys a Z2

symmetry that reflects the conservation of the parity of
the operator

N̂ ¼ a†aþ 1

2
ðσz þ 1Þ: ðB1Þ

ANISOTROPIC RABI MODEL PHYS. REV. X 4, 021046 (2014)

021046-7



In this case, the phase factors e�iθ in the Hamiltonian can
be canceled by a unitary transformation RðθÞ:

RðθÞ ¼ eiðθ=2Þ½N̂−ð1=2Þ� ¼ eiðθ=2Þ½ðσz=2Þþa†a�; ðB2Þ

R†ðθÞHRðθÞ ¼ ωa†aþ Δσz þ g½σþaþ σ−a†

þ λðσþa† þ σ−aÞ�: ðB3Þ

Therefore, the parameter θ gives no contribution to the
energy spectra but enters only the wave functions.
We shall see that the Z2 symmetry effectively simplifies

the procedure of finding the exact spectrum since the
transcendental function GϵðxÞ, ϵ ¼ 0, can be discussed
separately in the different parity sectors.
To simplify the solution of the spectral problem, we

resort to a similar trick we employed above. Namely, we
apply the rotation

V ¼ U†ðλ; θÞW

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ λÞp

 
ξ� þ ffiffiffi

λ
p −ξ� þ ffiffiffi

λ
p

ξ − ffiffiffi
λ

p
ξþ ffiffiffi

λ
p

!
; ðB4Þ

with

W ¼ 1ffiffiffi
2

p
�
1 −1
1 1

�
ðB5Þ

to the Hamiltonian (B3). Now, we have the Hamiltonian

W†HW ¼
 
ωa†aþ 1þλ

2
ðaþ a†Þ 1−λ

2
ða− a†Þ þΔ

− 1−λ
2
ða− a†Þ þΔ ωa†a− 1þλ

2
ðaþ a†Þ

!
:

ðB6Þ

The eigenfunctions ϕ1 and ϕ2 (and similarly ϕ̄1

and ϕ̄2) in the main text transform according to
ðφ1;φ2ÞT ¼ V†ðϕ1;ϕ2ÞT :

φ1 ¼
ðξþ ffiffiffi

λ
p Þϕ1 þ ðξ� − ffiffiffi

λ
p Þϕ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1þ λÞp ; ðB7Þ

φ2 ¼
ð−ξþ ffiffiffi

λ
p Þϕ1 þ ðξ� þ ffiffiffi

λ
p Þϕ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1þ λÞp : ðB8Þ

We know that ϕ1 and ϕ2 read as

ϕ1ðzÞ ¼ exp

�
−

ffiffiffi
λ

p
gξ

ω
z

�X∞
n¼0

LnðxÞ
�
zþ

ffiffiffi
λ

p
gξ�

ω

�n

;

ϕ2ðzÞ ¼ exp

�
−

ffiffiffi
λ

p
gξ

ω
z

�X∞
n¼0

KnðxÞ
�
zþ

ffiffiffi
λ

p
gξ�

ω

�n

; ðB9Þ

where

Ln ¼
f�Kn − ξ�2ð1 − λÞgKnþ1ðnþ 1Þ

nω − xþ c
: ðB10Þ

Here, the þ superindices are omitted.
The Z2 symmetry reflects into a symmetry in the

eigenfunction φ2ð−zÞ ¼ Cφ1ðzÞ, where C is an arbitrary
constant. Without loss of generality, we take φ1;2 as
normalized and real. In this case, C ¼ �1, and the
transcendental function G is

Gλ
�ðx; zÞ ¼ φ2ð−zÞ∓φ1ðzÞ ¼ 0; ∀ z ∈ C: ðB11Þ

Setting z ¼ 0 as the above section, and substituting φ1;2 by
ϕ1;2,

GλþðxÞ ¼ −ξϕ1 þ
ffiffiffi
λ

p
ϕ2;

Gλ−ðxÞ ¼
ffiffiffi
λ

p
ϕ1 þ ξ�ϕ2: ðB12Þ

The energy spectrum can be divided into two cases. One
case is the regular solution, which is solely determined by
0 s of the transcendental function. Another case corre-
sponds to the exceptional solutions. For this case, we can
consider first the the poles of the transcendental function
determined by setting anðxÞ ¼ 0:

xpolen ¼ nω − ð1 − λÞ2g2
2ω

: ðB13Þ

−1 0 1 2
−4

−3

−2

−1

0

1

2

3

4

x/ω x/ω x/ω

G
±λ (x

)

0 1 2 0 1 2

(a) (b) (c)

FIG. 6. Comparison of transcendental functions near the
ground-state degenerate point. From left to right, the parameters
are (a) g ¼ gc − 0.01, (b) g ¼ gc, and (c) g ¼ gc þ 0.01, where
gc ¼ 4=

ffiffiffiffiffi
15

p
, which is the degenerate point. GλþðxÞ (solid green

line) and Gλ−ðxÞ (dashed purple line) are presented as functions of
x, where ω ¼ 1, Δ ¼ 0.4, λ ¼ 0.5, and θ ¼ 0. The differences
between (a)–(c) can be observed, for example, at the points
marked by arrows in the figures. For (a), at the point marked by
an arrow, the energy of positive parity is slightly less than the
energy of negative parity; it is reversed in (c), while in (b), the
pole is lifted since K1 ¼ 0.
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At the same time, if Knþ1ðxpolen Þ ¼ 0 for special values of
the parameters g and Δ, the poles can be lifted because the
numerator of Gλ

� is also vanishing. Figure 6 shows the
transition between regular solutions to exceptional solu-
tions. These special solutions are Judd-type solutions for
the anisotropic Rabi model, corresponding to the so-called
isolated integrability [11]. Owing to Gλ

� ≠ 0, these eigen-
values have no definite parity, and a double degeneracy
of the eigenvalues occurs [see Fig. 3(b) in the main text].
In this case, the infinite series solutions Kn and Ln can be
terminated as finite series solutions. We note that, in
particular, there is no crossing with the same parity.
Incidentally, a crossing between the ground state and the
first excited state occurs for the anisotropic case that
corresponds to the exact solutions obtained by Judd
[11], as already shown in Sec. IV.
Figure 7 shows that the parity of the ground state changes

sign when passing through the level-crossing point. When
g=ω is small, the ground state is positive parity and the first
excited state is negative parity; after passing through the
crossing point where the parity changes sign, the ground
state is negative parity and the first excited state is positive
parity. This parity changing can be demonstrated by the
intrinsic symmetries of the ground state.
The ground state of Hamiltonian (1) with vanishing ϵ can

be written as

ΨðzÞ ¼
�
φ1ðzÞ
φ2ðzÞ

�
; ðB14Þ

or φ1ðzÞ → φ2ð−zÞ and φ2ðzÞ → φ1ð−zÞ because of the Z2

symmetry. Additionally, when g=ω is small, which is less
than the crossing-point value, the ground state is parity
positive and can be simplified as

ΨþðzÞ ¼
�

φ1ðzÞ
φ1ð−zÞ

�
: ðB15Þ

In comparison, when g=ω is larger than the crossing-point
value, the ground state is parity negative and takes the form

Ψ−ðzÞ ¼
�

φ1ðzÞ
−φ1ð−zÞ

�
: ðB16Þ

However, we find that bothΨ�ðzÞ are not the eigenstates of
the Hamiltonian at the ground-state level-crossing point.
We may reformulate the ground state with different

parities as

ΨþðzÞ ¼
�
φ1ðzÞ þ φ2ð−zÞ
φ2ðzÞ þ φ1ð−zÞ

�
; ðB17Þ

Ψ−ðzÞ ¼
�
φ1ðzÞ − φ2ð−zÞ
φ2ðzÞ − φ1ð−zÞ

�
: ðB18Þ

Those two states are the ground state and the first excited
state. They are the correct eigenstates that correspond to
different parities in the whole region, including the level-
crossing point. Explicitly, one may confirm that Ψ�ðzÞ in
Eqs. (B17) and (B18) are similar to the results in Eqs. (B15)
and (B16) when g=ω is not at the crossing point, respec-
tively. The ground energy degeneracy at the crossing point
also implies that arbitrary linear combinations of states
ΨþðzÞ and Ψ−ðzÞ in Eqs. (B17) and (B18) are also the
ground-state eigenstates.
With the help of the solutions [Eqs. (13) and (14)] and

also considering the transformation (B5), the eigenstates at
the level-crossing point can be written as follows, up to a
whole factor

WΨþðzÞ ¼

0
B@

ffiffiffi
λ

p h
exp
�
−
ffiffi
λ

p
gξ

ω z
	
− exp

� ffiffi
λ

p
gξ

ω z
	i

ξ†
h
exp
�
−
ffiffi
λ

p
gξ

ω z
	
þ exp

� ffiffi
λ

p
gξ

ω z
	i
1
CA;

ðB19Þ

WΨþðzÞ ¼

0
B@

ffiffiffi
λ

p h
exp
�
−
ffiffi
λ

p
gξ

ω z
	
þ exp

� ffiffi
λ

p
gξ

ω z
	i

ξ†
h
exp
�
−
ffiffi
λ

p
gξ

ω z
	
− exp

� ffiffi
λ

p
gξ

ω z
	i
1
CA:

ðB20Þ

We remark that because of the ground-state energy degen-
eracy, the linear combinations of the ground states may lead
to simpler solutions

0 0.5 1 1.5 2
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

E
n

/ ω

g/ω

FIG. 7. Ground-state level crossing. The ground-state energy
and the first-excited-state energy are crossed for the anisotropic
Rabi model with Z2 symmetry. The parity of the ground state
changes when passing through the crossing point. Here, ϵ ¼ 0 for
keeping Z2 symmetry; we choose Δ ¼ 0.4 and λ ¼ 0.5, so g ¼
4=

ffiffiffiffiffi
15

p
and Ee

0 ¼ −ð2=3Þ due to Eqs. (11) and (12). The solid
green lines are for positive parity, and the dashed purple lines are
for negative parity. The circles and blocks are numerical data;
they agree well with the analytical results shown in the lines. Part
of this figure is shown in the upper panel of Fig. 5.
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ΨðzÞ ¼

0
B@

ffiffiffi
λ

p
exp
�
−
ffiffi
λ

p
g

ω z
	

exp
�
−
ffiffi
λ

p
g

ω z
	
1
CA;

0
B@

ffiffiffi
λ

p
exp
� ffiffi

λ
p

g
ω z
	

− exp
� ffiffi

λ
p

g
ω z
	
1
CA:

ðB21Þ
It can be checked that these the above expression for ΨðzÞ
provides the eigenstates of the Hamiltonian (1) for vanish-
ing ϵ ¼ 0 and θ ¼ 0, with degeneracy conditions [Eqs. (11)
and (12)].
Finally, we remark that the Bargmann representation of

the bosonic operator used in our model can also be used in
the JC model, which has Uð1Þ symmetry. The eigenvalues
and eigenstates can be obtained in the familiar steps but are
simpler because the total number N̂ ¼ a†aþ 1=2ðσz þ 1Þ
is conserved.

1. Fitting with experimental data for the
superconducting circuits in the

strongly coupled regime

We consider the energy gaps between the anisotropic
Rabi model and the JC model. Such energy differences,
generalizing the Bloch-Siegert effect of the isotropic Rabi
model, play important roles in many physical applications
where the strong-coupling regime is the actual one, like in
the superconducting circuits and some similar physical
systems [37–43].
Ordinarily, there is no general form for the gap, but we

can analyze it at the degenerate points. The ground-state
energy of the JC model is EJC

0 ¼ −Δ, so the ground-state
gap at jΔj ¼ ð1 − λ2Þg2=2ω is

ΔE0 ¼ −Δ − Ee
0 ¼

λ2g2

ω
; ðB22Þ

when λ ¼ 0 (the JC limit), the gap vanishes; for λ ¼ 1, the
gap is just the standard Bloch-Siegert shift in the Rabi
model ΔE0 ¼ g2=ω. For λ ≠ 1, the first-excited-state
energy gap with the JC is

ΔE1 ¼
ω

2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Δ − ω

2

�
2

þ g2

s
þ ð1þ λ2Þg2

2ω
: ðB23Þ

For small g=ω, ΔE1 ≈ λ2g4=ω3, remarkably different from
the standard Bloch-Siegert shift g2=ω.
In the Rabi model, there is a crossing between the second

and the third energy levels at jΔj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − 4g2

p
, E ¼ ω −

g2=ω [10]; the second energy level of the JC model in small
g=ω can be written as

EJC
2 ¼ ω

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Δ − ω

2

�
2

þ g2

s

≈ ω − g2

ω
þ g4

ω3
: ðB24Þ

Obviously, the second excited energy difference between
the JC model and the Rabi model is in the g4=ω3 scale, too.
However, we compare the third excited energy difference at
this point as

EJC
3 − Ee;Rabi

1 ¼ 3ω

2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Δ − ω

2

�
2

þ 2g2

s
−
�
ω − g2

ω

�

≈
g2

ω
− 2g4

ω3
; ðB25Þ

where the condition g=ω ≪ 1 is used; the difference is still
in the g2=ω scale. Maybe, the energy differences of the
second and third excited states are strange at the degenerate
point. Those differences may be verified by the recent
experiments with ultrastrong coupling.
In the ultrastrong-coupling regime, the deviation from

the JC model known as the Bloch-Siegert shift was
experimentally observed [18], which is a resonator circuit
resonator magnetically coupled to a superconducting flux
qubit in the ultrastrong-coupling regime, and the system
can be modeled by the Hamiltonian

H0 ¼ ωq

2
ðσz þ 1Þ þ ωra†a

þ gðcosϑσz − sinϑσxÞðaþ a†Þ; ðB26Þ

withωq≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2þΔ2

p
, ϵ¼2πIpðΦ−Φ0=2Þ, and tan ϑ ¼ Δ=ϵ,

where ℏ is conventionally set to 1.
Following the results shown in Ref. [18], if we neglect

the term g cos ϑσzðaþ a†Þ, which only contributes a
constant −g2 cos2 ϑ=ωr to the second order under the
transformation U ¼ exp½−g cosϑ=ωrσzða − a†Þ�, and by
omitting the counterrotating term, the corresponding JC
model is given by

HJC ¼ ωq

2
ðσz þ 1Þ þ ωra†a − g sinϑðσ−a† þ σþaÞ:

ðB27Þ

In the ultrastrong-coupling regime, the rotating-wave
approximation is thus inappropriate; the experimental
results of this system will not agree with the JC model.
The Bloch-Siegert shift caused by the counterrotating term
is evidently observed.
Then, we directly use our proposed anisotropic model to

fit this system:

Ha−Rabi ¼
ωq

2
ðσz þ 1Þ þωra†a

− g sinϑ½σ−a† þ σþaþ λðσ−aþ σþa†Þ�; ðB28Þ

where the anisotropic parameter λ is decided by fitting, and
g ¼ 0.74 GHz, Δ ¼ 4.21 GHz, Ip ¼ 500 nA, and ωr ¼
8.13 GHz are the same as those previously obtained [18].
As shown in Fig. 4, we can find that the experimental data
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agree perfectly with the case λ ¼ 0.5 (dot-dashed red line),
which is neither the Rabi model nor the JC model, and we
remark that the result of the λ ¼ 0.7 case seems similar to
the Hamiltonian (B26) (solid black line), and the λ ¼ 0 case
is the same as the JC Hamiltonian (B27) (dashed black
line). Here, we try to comment that by this experimental
setup, the anisotropic Rabi model may be tested in a full
regime by using qubit devices with strength of coupling
ranging from weak to ultrastrong up to g ≈ 2 GHz within
current technologies.
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