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We present two strategies for performing two-qubit operations on the electron spins of an exchange-
coupled pair of donors in silicon, using the ability to set the donor nuclear spins in arbitrary states. The
effective magnetic detuning of the two electron qubits is provided by the hyperfine interaction when the
two nuclei are prepared in opposite spin states. This can be exploited to switch SWAP operations on and off
with modest tuning of the electron exchange interaction. Furthermore, the hyperfine detuning enables high-
fidelity conditional rotation gates based on selective resonant excitation. The latter requires no dynamic
tuning of the exchange interaction at all and offers a very attractive scheme to implement two-qubit logic
gates under realistic experimental conditions.
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I. INTRODUCTION

The electron spin of a donor atom in silicon represents a
natural, highly coherent quantum bit. It is bound to a well-
defined confining potential and is hosted by the most
important material in modern technology. The recent
demonstrations of high-fidelity single-shot readout [1]
and control of both the electron [2] and the nuclear [3]
spins of a 31P donor in a silicon nanostructure have added
tremendous momentum to this quantum computer archi-
tecture [4,5]. The next step towards constructing a universal
set of quantum gates is to demonstrate two-qubit logic
operations [6]. This has been accomplished in several
architectures, including those of photonic qubits [7], super-
conducting circuits [8], qubits defined in quantum dots
[9,10], atoms in electromagnetic traps [11], and nitrogen-
vacancy centers in diamond [12]. While several proposals
for the implementation of a two-qubit gate with donor
electrons exist [13–15], they pose very challenging
demands on the tunability of the spin exchange interaction
J, which is assumed to be switchable from around 0
to > 1 GHz. It is also predicted that J can vary strongly
upon displacing a donor by even a single lattice site
[16,17], thus requiring true atomic precision in the place-
ment of the donors. These considerations have contributed

to creating some skepticism on the viability of donor-spin
qubits for large quantum computer architectures.
Here, we propose two implementations of two-qubit

gates that overcome these challenges. Both of these gates,
when combined with previously demonstrated single-qubit
operations [2], are universal for quantum computing. Our
proposals are based on exploiting the hyperfine interaction
Awith the donor nuclear spins, and the ability to control the
nuclear spin state. High-fidelity control and readout of a
single 31P nuclear spin has been established experimentally
[3], validating our main assumption. It was also found that a
nuclear spin prepared in an eigenstate maintains its state for
several minutes [3]. The core of the idea is to prepare the
nuclei in opposite spin states so that the hyperfine coupling
provides a substantial difference in the local magnetic field
experienced by the electrons. In a many-qubit quantum
processor, it will be possible to prepare the state of
individual nuclear spins by selectively ionizing the donors
whose nucleus we wish to control, since an ionized donor
has a resonance frequency that differs from the two nuclear
resonances of a neutral donor by several MHz [3]. Mag-
netically detuning the energies of electron-spin qubits has
been proposed [18] and implemented in several ways,
including the fabrication of a micromagnet adjacent to the
qubits [19], introducing an inequivalence in g factors [20],
or dynamically polarizing the background nuclear spin bath
[21]. In comparison, the initialization of the two nuclei in
the two-donor system presents an extremely compact,
consistent, and easily switchable source of magnetic
detuning. It also avoids additional decoherence channels
that can arise from the transverse component of an external
magnetic-field gradient [22]. Importantly, both our
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proposals rely upon weak exchange coupling J, compa-
rable to or smaller than the hyperfine coupling
A ¼ 117 MHz. This has the crucial advantage of sup-
pressing a deleterious channel for triplet-singlet relaxation,
predicted by Borhani and Hu [23] and observed by
Dehollain et al. [24] when J ≫ A.
In the first proposal, we focus on using the hyperfine

interaction to switch the amplitude of exchange oscillations
to perform a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SWAP

p
gate, a rotation of angle π=2 around

the J-axis of the S − T 0 Bloch sphere. This requires a
reasonable 2-orders-of-magnitude control of J, which
could be achieved with an easily fabricable device design.
The second two-donor gate is a prototypical implementa-
tion of a conditional rotation (CROT), as demonstrated for
superconducting qubits [8] and spin qubits in diamond
[25]. This is the resonant rotation of one qubit conditional
upon the state of the other. We show that high-fidelity
entangling two-qubit gates can be performed between
donor pairs. Dynamic control of the exchange coupling
is not required at all in this case, and high-fidelity gates can
be achieved for a wide range of coupling strengths. Under
suitable conditions, CROT gates are also expected to be
well protected from charge and gate noise [26]. These gates
can tolerate over 2 orders of magnitude of variability in J,
which means that atomically precise donor placement is
not required. The two-qubit gates described here can be
applied locally, in separate interaction regions. Spin
transport, possibly via coherent tunnelling by adiabatic
passage (CTAP) rails [27] or spin buses [28], as in the
framework proposed by Hollenberg et al. [14], could be
utilized to implement a scalable quantum computing
architecture.

II. PROPOSED SYSTEM AND THEORETICAL
REPRESENTATION

We consider a system of two donors in which each
electron spin represents a single qubit, with basis states j↓i
and j↑i. We assume the donors are placed in a large
external magnetic field B0 ¼ 1 T, causing an energy
splitting of the single-electron qubit states γeB0≈
28 GHz, where γe is the electron-spin gyromagnetic ratio.
For the coupled two-qubit system, the computational basis
is j↑↑i, j↑↓i, j↓↑i and j↓↓i. Including the nuclear spins,
the Hamiltonian becomes (in units of frequency)

H ¼ γeB0ðS1z þ S2zÞ þ γnB0ðI1z þ I2zÞ þ A1ðS1 · I1Þ
þ A2ðS2 · I2Þ þ JðS1 · S2Þ;

ð1Þ

where the subscript 1 (or 2) refers to donor 1 (or 2), γn is the
nuclear gyromagnetic ratio, S (or I) is the electron (or
nuclear) spin operator with the z component Sz (or Iz), and
A is the hyperfine interaction. In the following, we will
focus on a pair of 31P donors in silicon, but our conclusions
are also valid for other donor species in silicon. We allow
for different values of A in the two donors since the

different local electric fields can Stark shift the hyperfine
coupling [29]. We define ΔA ¼ ðA2 − A1Þ=2 and Ā ¼
ðA1 þ A2Þ=2. The bulk value for A for 31P donors is
117 MHz, and we assume jΔAj=Ā to be in the range of
1%–4%, i.e., ΔA∼ a few MHz, as expected for 31P donors
spaced by about 20 nm in a similar nanostructure [30]. The
parameters J, A1, A2 depend on local electric fields and the
exact positions of the two donors, and they can be extracted
from an experiment that we describe in Sec. V.
The coupled donor-pair spin Hamiltonian has been

studied by Refs. [31–35] in a high magnetic field where
γeB0 ≫ J and Ā. At high fields, where ðγe − γnÞB0 ≫ Ā,
the electrons and nuclei are sufficiently detuned from
hyperfine mixing such that their eigenstates can mostly be
treated separately. The effect of the relative strengths of J
and Ā on the dynamics of the electrons is the foundation of
the proposals in this paper.

III. HYPERFINE-REGULATED SWAP GATES

The
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SWAP

p
operation between two qubits is one of the

simplest entangling quantum logic gates that, combined
with single-qubit rotations, can be used for universal
quantum computation. Its physical implementation with
single-spin qubits requires a tunable exchange interaction
J. Previous donor-based qubit proposals suggested tuning J
via direct modification of the tunnel barrier [4,14,36],
requiring precise placement of a J gate between the coupled
donors. Instead, we suggest tuning J by detuning the donor
potentials by an amount ε ¼ E0

1 − E0
2, where E0 is the

electrochemical potential of each donor in the neutral D0

state [see Figs. 1(a) and 1(b)]. This method is widely used
in double quantum dot systems in the singlet-triplet
configuration [37]; however, there the “detuning” is defined
as the energy difference between the (1,1) and (0,2) charge
configurations. Since in our scheme each donor spin
represents a qubit, we do not advocate coming too close
to the (0,2) charge configuration—this would correspond to
moving the donor pair from a (D0, D0) to a (Dþ, D−) state.
Nevertheless, JðεÞ can be significantly tuned [38] from its
minimum value at ε ≈ 0 to a higher value at ε < Ec, where
Ec ∼ 35 meV is the donor charging energy [39]. This
significantly relaxes the requirements on the nanofabrica-
tion since the control gates only need to be adjacent to the
donor pair.
In the first proposal of this paper, we show how SWAP

operations can be switched on and off with modest control
of JðεÞ. A perfect SWAPα operation is a rotation of
angle απ exactly about the J axis in the S − T 0 Bloch
sphere [see Fig. 1(c)], where S ¼ ðj↑↓i − j↓↑iÞ= ffiffiffi

2
p

and
T 0 ¼ ðj↑↓i þ j↓↑iÞ= ffiffiffi

2
p

. The j↑↑i, j↓↓i states are unaf-
fected by the exchange interaction and, since we always
assume J ≪ γeB0, they do not enter into the problem at
any stage.
Existing proposals rely on gate control of J to vary the

frequency of the exchange oscillations from (ideally) zero
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to a maximum value Jon. Any residual interaction Joff after
the SWAPα operation would result in further—unwanted—
evolution of the qubits. For example, the qubit readout
method based on spin-dependent tunneling requires a
wait time of order 10 μs − 1 ms between the end of the
operation and the readout event [1]. Performing a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SWAP

p
operation in 10 ns requires Jon ¼ 25 MHz, but ensuring
that the resulting states have not changed by more than 1%
after 1 ms requires Joff < 32 Hz: a 6 order of magnitude
dynamic range that is extremely challenging to achieve.
Our proposal focuses on controlling the amplitude of the

exchange oscillations instead. We first note that the nuclear
spins are also subject to a mutual coupling Jn mediated by
A and J [4]. However, this coupling is very small—a few
kHz even for J ≫ 1 GHz, so we can assume Jn to be
negligible relative to the other energy terms of the nuclear

states. Recalling that the nuclear states have negligible
mixing with the electronic states in a high magnetic field,
we can say that the nuclear eigenstates are, to a very good
approximation, the separable j⇑⇑i, j⇑⇓i, j⇓⇑i, and j⇓⇓i
states. The nuclei can be initialized in any of their
eigenstates by adopting the single-shot readout and control
techniques recently demonstrated in Ref. [3]. The initial-
ization fidelity thus corresponds to the readout fidelity,
which was > 99.8% in Ref. [3], and has been further
improved in more recent experiments [40]. Once initial-
ized, the individual nuclei can be treated as static, such that
nucleus i contributes an additional local magnetic field
Ai=2 or −Ai=2 to its respective electron when in the j⇑i or
j⇓i state, respectively. This results in a magnetic-field
difference for the two electrons, ΔBz ¼ jh↑↓jHj↑↓i−
h↓↑jHj↓↑ij. When the nuclei are parallel (j⇑⇑i or
j⇓⇓i), ΔBz ¼ ΔA, and when they are antiparallel (j⇑⇓i
or j⇓⇑i), ΔBz ¼ Ā. We can, therefore, switch the strength
of ΔBz by 1–2 orders of magnitude—in a “digital” fashion
—through preparation of the nuclear states. However,
dynamically switching the nuclear states requires rather
long time scales (around 10 μs for a π pulse and around
100 ms for high-fidelity projective readout [3]). Once the
nuclei have been prepared in an antiparallel state, a SWAPα

operation can be implemented very rapidly by gate tuning
J until it becomes larger than ΔBz. After a time τ ¼
α=ð2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 þ ΔB2

z

p
Þ ≈ α=ð2JÞ, the system is pulsed back to

the regime J ≪ ΔBz, where the exchange oscillations are
frozen [see Fig. 1(d)], completing the SWAPα operation.
For ΔBz ¼ Ā ≈ 120 MHz, pulsing J to 10 × ΔBz would
yield a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SWAP

p
operation in 340 ps.

Figure 1(f) shows calculations and simulations of the
fidelity in the “on” and “off” regimes. The fidelity of spin
exchange is plotted on the vertical axis and J=ΔBz on the
horizontal axis, where ΔBz is ΔA for parallel nuclei and Ā
for antiparallel nuclei. The insets of Fig. 1(f) show the
evolution of the expectation value of the two electrons,
where hSzi is plotted for electron 1 (blue line) and 2 (red
line) initialized in the j↓↑i state, calculated using the full
Hamiltonian (1). The blue circles in Fig. 1(f) correspond to
the fidelity of the oscillations in these time-evolution
simulations and are calculated as maxðjhψ j↑↓ij2Þ. They
represent the process fidelity for a full SWAP operation. Affiffiffiffiffiffiffiffiffiffiffiffiffiffi
SWAP

p
operation, which is the two-qubit entangling

operation, can be obtained for any J=ΔBz > 1 by pulsing
J for the appropriate length of time. Therefore, its fidelity
depends on the accuracy of the pulse calibration and the
stability of the value of J during the operation. The Rabi
formula for the S − T 0 Bloch sphere, J2=ðJ2 þ ΔB2

zÞ,
follows the time-evolution calculations very closely, vali-
dating the simplified picture of the system limited to the
S − T 0 Bloch sphere. The results in Fig. 1(f) show that
SWAP operations can be switched on and off with a
fidelity of 99% by pulsing J between ΔBz=10 and
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FIG. 1. (a),(b) Schematic of the conduction band profile of the
coupled donor pair with qubit-1 and qubit-2 (a) in resonance
and (b) detuned by ε. (c)-(e) Precession on the S − T 0 Bloch
spheres with initial state j↓↑i for exchange-coupled electrons
(c) in the absence of coupling to nuclei, (d) where J < ΔBz and
(e) where J > ΔBz. (f) Maximum fidelity of spin-state exchange
between the two donor electrons as a function of J normalized
to ΔBz. The insets show the time evolution of the expectation
value of the electrons initialized as j↓↑i for two values of J,
illustrating the ability to control the amplitude of exchange
oscillations.

ROBUST TWO-QUBIT GATES FOR DONORS IN SILICON … PHYS. REV. X 4, 021044 (2014)

021044-3



10ΔBz—2-orders-of-magnitude control of J is sufficient.
An alternative method to perform SWAPα operations
would be to use Euler angle construction [41], allowing
for exact rotations about the J axis and further reducing the
tuning capabilities required.

IV. CROT GATES

The CROT operation is another two-qubit gate that can
be achieved with the exchange-coupled two-donor system.
Importantly, our proposed realization of the operation does
not require any tuning of J, further simplifying its practical
implementation. In demonstrating how the system can be
used to implement a CROT gate, we make some necessary
approximations and quantify the associated errors.
Fidelity is most often calculated as average gate fidelity

over all input states [42]. Perhaps a more meaningful
quantity is the minimum fidelity considering all possible
input states, though this is more difficult to calculate. We
choose to provide an intuitive measure of the operator
fidelity that approximates the minimum fidelity. Our
method is to calculate the total fidelity F by adding, as
independent events, the worst-case errors associated with
each approximation we make to the Hamiltonian of the
system. The worst-case fidelity for each approximation is
defined as minψ i

ðjhψ actualjψ idealij2Þ, where ψ ideal and ψ actual

are the output states of the operator with and without the
approximation, given an input state ψ i. The input state
that yields the minimum fidelity is easy to identify for
each individual approximation. The total fidelity F is then
plotted in Figs. 2(c) and 2(d) as a function of J and TCROT,
the gate operation time. The two panels show the fidelities
for two concentrations of 29Si, as will be explained later.
We propose to operate the CROT gate under the

condition J < Ā ≪ γeB0. We prepare the nuclei in either
the j⇑⇓i or j⇓⇑i eigenstate, where they are static and do
not participate in the dynamics of the electrons. The ΔBz
experienced by the two electrons for this nuclear configu-
ration is Ā. We thus define an electron-only Hamiltonian in
the computational basis with the nuclei initialized in the
j⇓⇑i state,

H1 ¼

2
666664
E↑↑ 0 0 0

0 E↑↓ J=2 0

0 J=2 E↓↑ 0

0 0 0 E↓↓

3
777775; ð2Þ

where E↑↑ ¼ γeB0þ J
4
þ ΔA

2
, E↑↓ ¼ −J

4
þ −Ā

2
, E↓↑ ¼ −J

4
þ Ā

2
,

and E↓↓ ¼ −γeB0 þ J
4
þ −ΔA

2
. We rotate away the J terms,

leaving the Hamiltonian diagonalized using the change
of basis matrix with the eigenstates of the Hamiltonian:
j↑↑i, j↓↓i and

jf↑↓i ¼ cos θj↑↓i − sin θj↓↑i; ð3Þ

jf↓↑i ¼ cos θj↓↑i þ sin θj↑↓i; ð4Þ

where tan 2θ ¼ J=Ā. The corresponding eigenenergies are
Ee↑↓¼−J=4− ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ā2þJ2
p

=2 and Ee↓↑¼−J=4þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ā2þJ2

p
=2.

Figure 2(a) shows a level diagram of the four eigenstates
of the system including the allowed electron-spin resonance
(ESR) transitions, and Fig. 2(b) shows a schematic of the
corresponding ESR spectrum. We define the notation, e.g.,
ν↑↕ to be the transition frequency corresponding to rotating
the second electron when the first electron is j↑i. We see
that

ν↑↕ ¼ γeB0 þ
ΔA
2

þ J
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ā2 þ J2

p

2
; ð5Þ

ν↓↕ ¼ γeB0 þ
ΔA
2

− J
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ā2 þ J2

p

2
; ð6Þ

ν↕↑ ¼ γeB0 þ
ΔA
2

þ J
2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ā2 þ J2

p

2
; ð7Þ

ν↕↓ ¼ γeB0 þ
ΔA
2

− J
2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ā2 þ J2

p

2
: ð8Þ
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FIG. 2. (a) Schematic of the level diagram for the two-donor
system with the nuclei prepared in the j⇓⇑i state. (b) Schematic
of the corresponding ESR spectrum. (c),(d) Contour plots of the
fidelity of the proposed CROT gate as a function of J and TCROT,
calculated on the basis of the experimental values of the ESR line
widths in (c) natural silicon and (d) isotopically purified silicon.
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We define our CROToperation to be a π rotation at ν↓↕. An
ideal CROT, however, would be a π rotation between j↓↓i
and j↓↑i, not between j↓↓i and jf↓↑i. Using the protocol
outlined earlier for calculating the associated error, clearly
ψ actual and ψ ideal are jf↓↑i and j↓↑i. The inherent error
introduced in the operation is sin2 θ. This error increases
with J and is independent of TCROT and the material, thus
appearing as a vertical boundary in the high-J region of the
fidelity plots, Figs. 2(c) and 2(d).
The CROToperation is obtained by applying a magnetic

field, rotating at frequency ν in the plane perpendicular to
the external magnetic field, with time-dependent amplitude
B1ðtÞ. Transforming this perturbation into thedressedbasis,
the Hamiltonian in the rotating frame is

H2 ¼

2
666664

E↑↑ − ν γeB1ðtÞμS γeB1ðtÞμT 0

γeB1ðtÞμS Ee↑↓ 0 γeB1ðtÞμS
γeB1ðtÞμT 0 Ee↓↑ γeB1ðtÞμT

0 γeB1ðtÞμS γeB1ðtÞμT E↓↓ þ ν

3
777775;

ð9Þ

where μS ¼ ðcos θ − sin θÞ=2 and μT ¼ ðcos θ þ sin θÞ=2.
We now have γeB1ðtÞ coupling the four transitions ν↑↕,
ν↓↕, ν↕↑, and ν↕↓, with different apparent amplitudes
½γeB1ðtÞðcos θ � sin θÞ=2� depending on the states
involved. Our next approximations will be to remove these
coupling terms in the Hamiltonian for all off-resonant
transitions. To quantify the error associated with these
approximations, we treat each transition as an independent
qubit system with relevant coupling and detuning and
determine the transition probability due to γeB1ðtÞ.
Nonzero probabilities at ν↑↕, ν↕↑, and ν↕↓ are considered
errors. In addition to this, a nonunity probability at ν↓↕ (the
chosen CROT frequency) is also an error event.
We assume that the CROT gate at frequency ν↓↕ is

obtained by applying a resonant microwave pulse with a
Gaussian envelope. Its excitation profile fV [43] is many
orders of magnitude more selective than that of a square
pulse, especially at large detunings. Other shapes with
similar selectivity, such as the Hermite pulse, are also
possible candidates [42] for the CROT gate. The excitation
amplitude we choose is defined as

B1ðtÞ ¼ Bmax
1 exp

�ðt − TCROT=2Þ2
2ðTCROT=6Þ2

�
; t ∈ ½0; TCROT�;

ð10Þ

where the pulse length TCROT is 6 times the standard
deviation of the Gaussian to sufficiently approximate the
function. The time TCROT necessary for a π rotation is
inversely related to Bmax

1 —the complete relationship is
given in Ref. [43]. For example, to perform a π rotation in

100 ns, Bmax
1 would need to be 0.43 mT for a Gaussian

pulse and 0.18 mT for a square pulse. We also take into
account the modification of the apparent amplitude of B1

depending on the states involved, μðθÞ. We define the
probability that a π rotation occurs for a certain transition,
with frequency νi and corresponding μðθÞ, as

pπ ¼
Z

∞

−∞
fVðν↓↕; TCROT; μðθÞ; νÞPðνi; σ; νÞdν: ð11Þ

Here, Pðνi; σ; νÞ describes the broadening of the resonance,
a normalized Gaussian distribution with standard deviation
σ, centered at νi [2]. The first source of broadening is the
fluctuation in the surrounding bath of 29Si spins [44]. As
the contribution to the broadening depends on the 29Si
concentration, we calculate F for qubits in natural silicon
(natSi), which contains 4.7% spin-carrying 29Si nuclei [see
Fig. 2(c)], and in isotopically purified 28Si with 800 ppm
residual 29Si atoms (isoSi) [see Fig. 2(d)]. The other
possible source of broadening is the modulation of A,
γe, or J due to coupling to electric-field noise. We use the
line widths obtained from ESR data on single 31P donors in
gated silicon nanostructures, σ ¼ 3.2 MHz for natSi [2] and
σ ¼ 2 kHz for isoSi [40]. These experimental values inher-
ently include broadening due to the spin bath, and the
modulation of A and γe via electric-field noise, but not of J.
The effect on J is difficult to predict, and we neglect it here.
Looking at the fidelity plots, we can see the error

associated with the partial excitation (nonzero pπ) of
off-resonant transitions. The diagonal fidelity boundary
at the top left is due to the proximity of ν↑↕ to ν↓↕. Faster
gates, corresponding to shorter TCROT and broader excita-
tion profiles, require a higher J to separate the two
resonances. The diagonal fidelity boundary at the top right
is due to the ν↕↑ coming closer to ν↓↕ as J increases. These
two boundaries appear at the same positions for both natSi
and isoSi since they mainly depend on the spectral sepa-
ration of the lines given by J and Ā which, in both cases, is
larger than the quoted line widths for the inhomogeneous
broadening.
The final type of error is the incomplete excitation

(nonunity pπ) of the CROT transition. The excitation
profile must be sufficiently wide (short TCROT) as compared
to the inhomogeneous broadening to successfully drive the
π rotation at ν↓↕. This results in the horizontal fidelity
boundary at the bottom of Figs. 2(c) and 2(d). We see that
this boundary allows for longer TCROT in isoSi [Fig. 2(d)] as
compared to natSi [Fig. 2(c)], effectively “unveiling” a large
region of high fidelities. In natural silicon, fidelities of
about 95% are achievable for a range of J values over
almost an order of magnitude, with gate times around 30 ns.
In the isotopically purified material, the peak fidelity
achievable exceeds 99.99%, with a gate time of 400 ns.
Fidelities greater than 99.9% are achievable for a range of J
values over around 1.5 orders of magnitude, with gate times
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as short as 80 ns. From a practical perspective, the
important result is that fidelities greater than 99% are
achievable for a range of J values varying over about 2.6
orders of magnitude. This means that even fabrication
methods such as ion implantation [45–47], which inher-
ently suffer from imprecisions in the donor placement,
become realistically suitable for multiqubit donor struc-
tures. Also, a recent proposal shows that donor pairs can be
exchange coupled via an intermediate multielectron quan-
tum dot [48]. The typical coupling strengths J ∼ 100 kHz
in that proposal would yield about 99.9% fidelity for the
CROT gates in isoSi described here. Given the demonstrated
ability to fabricate top-gated few-electron quantum dots in
silicon [49] that can be tunnel coupled to donors [1], donor-
dot hybrids could constitute an appealing new strategy for
fabrication and scaleup.
Having quantified the errors associated with applying the

excitation, we can make the secular approximation to the
Hamiltonian with ν ¼ ν↓↕ ¼ Ee↓↑ − E↓↓,

H3 ¼

2
6666664

E↑↑− ðEe↓↑−E↓↓Þ 0 0 0

0 Ee↓↑ 0 0

0 0 Ee↓↑ γeB1ðtÞμT
0 0 γeB1ðtÞμT Ee↓↑

3
7777775:

ð12Þ

The Hamiltonian above is suitable to perform a condi-
tional rotation, where the errors arising from the three
approximations have been summed to provide a conservative
estimate of the overall fidelity. The resulting gate rotates the
spin by an angle 2ϕ ¼ R

2πγeB1ðtÞðcos θ þ sin θÞdt within
time t, described by the time-evolution operator

UðtÞ ¼

2
666664
eðiγ1Þ 0 0 0

0 eðiγ2Þ 0 0

0 0 eðiγ3Þ cosϕ −ieðiγ3Þ sinϕ
0 0 −ieðiγ3Þ sinϕ eðiγ3Þ cosϕ

3
777775;

ð13Þ

where we have made the substitutions γ1 ¼ −tðE↑↑−
ðEe↓↑ − E↓↓ÞÞ, γ2 ¼ −tðEe↑↓Þ, and γ3 ¼ −tðEe↓↑Þ for com-

pactness. A single pulse of the above operator with
Uðt∶ 2ϕ ¼ πÞ yields an operation that closely resembles
the CROT,

U2 ¼

2
6664
eðiγ1Þ 0 0 0

0 eðiγ2Þ 0 0

0 0 0 −ieðiγ3Þ
0 0 −ieðiγ3Þ 0

3
7775: ð14Þ

The above operation successfully rotates the spin of the
second electron conditional upon the state of the first. In
order to complete the CROT (or CNOT) operation, however,
the resulting phases must be accounted for. The operator
causes a phase shift for each of the four basis states
ðθ↑↓; θ↓↑; θ↑↑; θ↓↓Þ, which can be easily extracted by taking
the phase of the nonzero element in the associated column
for each basis state. It is useful to analyze, instead, the phases
associated with electron 1 (θ1) and electron 2 (θ2), the phase
due to the interaction (θ12), and the global phase (θg). Only
θ1, θ2, and θg can be corrected for with single-qubit rota-
tions, requiring that our CROT have θ12 ¼ 0. For the above
operator, θ12 ¼ 1

4
ðθ↑↓ þ θ↓↑ − θ↑↑ − θ↓↓Þ ¼ 1

4
ðγ2 − γ1Þ.

One possible solution is to use a refocusing pulse to correct
for this phase as follows:

U3 ¼ X2U ffiffiffiffiffiffiffiffiffi
CROT

p X2U ffiffiffiffiffiffiffiffiffi
CROT

p ; ð15Þ

where U ffiffiffiffiffiffiffiffiffi
CROT

p is Uðt∶ 2ϕ ¼ π=2Þ and X2 unconditionally
flips the spin of the second (target) electron. For the phase to
be refocused, X2 must have θ12 ¼ 0. The two transitions ν↑↕
and ν↓↕ must both undergo a π rotation in the same amount
of time. This is satisfied by the operator

X2 ¼

2
666664

0 −ieðiγ2Þ 0 0

−ieðiγ2Þ 0 0 0

0 0 0 −ieðiγ3Þ
0 0 −ieðiγ3Þ 0

3
777775; ð16Þ

where θ12 ¼ 0. This may be implemented as a two-tone
pulse with amplitude adjusted for the ðcos θ þ sin θÞ differ-
ence in the transition matrix elements between the two pairs
of states. The result of Eq. (15) yields the full operator for the
CROT, which successfully completes a conditional rotation
and cancels out the phase due to the interaction.
In the analysis above, we have made a realistic estimate of

the CROT gate errors that could arise from fluctuations of
the qubits’ resonance frequencies due to random hyperfine
couplings to the surrounding 29Si bath. Once an exchange
interaction J acts in the two-qubit Hamiltonian, electrical
noise from switching charges and gate voltage fluctuations
[26] can introduce further shifts of the instantaneous
operation frequencies and therefore constitute an additional
source of error. Here, we do not attempt to estimate the
magnitude of such errors, but we note that our CROT
scheme can be implemented while the two donors are at the
same electrochemical potential, ε ¼ 0. A thorough noise
analysis of exchange-coupled singlet-triplet qubits has
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unambiguously shown that the dephasing time T�
2 is

inversely proportional to dJ=dε, whereas no effects of
charge or gate noise on the tunnel barrier height could be
observed [50]. Since J is at a minimum when ε ¼ 0 [38] and
dJ=dε ¼ 0 under that circumstance [51–53], CROT oper-
ations can be performed while the coupled two-qubit system
is, to first order, immune to fluctuations in ε. In this context,
the lateral gates could be used to tune the system to the
dJ=dε ¼ 0 condition, even in the presence of static local
disorder [54].

V. ESR SPECTRUM

The exchange coupling J between the two donors in each
interaction region needs to be calibrated in order to perform
either of the proposed two-qubit logic gates. Given a
Hamiltonian HðJÞ, J can be extracted from the ESR
spectrum obtained by performing an experiment similar
to that of Ref. [2]. This “ESR fingerprint” (see Fig. 3) is
calculated by considering all transitions between the
eigenstates of HðJÞ in the regime J < γeB0. Their respec-
tive intensities are weighted with (i) the electronic transition
dipole matrix elements, hψ ijðσxS1 þ σxS2Þjψfi, where σxSn is
the Pauli operator for electron n, and (ii) the readout
contrast, i.e., the change in expectation value of the spin-z
projection of each electron upon excitation of the
ESR transition, ΔhSnzi ¼ hψfjSnz jψfi − hψ ijSnz jψ ii. The

transitions in Fig. 3 are color-coded such that the blue and
red intensities are proportional to ΔhS1zi and ΔhS2zi,
respectively. In the example of an allowed electronic
transition, j↓↓i → jT0i, the line is drawn in purple since
it has equal, nonzero contributions from both ΔhS1zi and
ΔhS2zi. We plot in Fig. 3 an example where A2 > A1 and
ΔA=Ā ¼ 2.5%. The line width is taken to be smaller than
ΔA such that this splitting can be resolved.
In the J ≪ ΔA region, where the eigenstates are simply

the combinations of logical electronic and nuclear states,
we see a pair of blue and red lines that correspond to
rotations of electron 1 and 2, respectively. The transitions at
γeB0 − Ai=2 and γeB0 þ Ai=2 rotate electron i when its
binding nucleus is in the j⇓i or j⇑i state, respectively.
Thus, the red line at γeB0 − A2=2 includes the following
four transitions: j↓↓⇓⇓i → j↓↑⇓⇓i (branch 1),
j↑↓⇓⇓i → j↑↑⇓⇓i (branch 4), j↓↓⇑⇓i → j↓↑⇑⇓i
(branch 2), and j↑↓⇑⇓i → j↑↑⇑⇓i (branch 6). In the
following, we will focus our description of the transitions to
the red branches on the left-hand side of the spectrum,
noting that the same reasoning can directly be transferred to
the other branches.
As J becomes larger than the line width (region J < Ā),

we observe the exchange splitting between transitions
j↓↓⇓⇓i → j↓↑⇓⇓i (branch 1) and j↑↓⇓⇓i → j↑↑⇓⇓i
(branch 4) and between transitions j↓↓⇑⇓i → j↓↑⇑⇓i
(branch 2) and j↑↓⇑⇓i → j↑↑⇑⇓i (branch 6). The
electronic j↑↓i and j↓↑i states tend towards either the
jT0i or jSi state as J=ΔBz increases for each particular
nuclear configuration. Branches 1 and 2 fade away for
J ∼ ΔA and J ∼ Ā, respectively, as they involve the state
approaching a magnetically inaccessible singlet state. Their
J-split counterparts, branches 4 and 6, involving states ap-
proaching jT0i, tend towards γeB0−Ā=2 and γeB0 − ΔA=2
(region J > Ā), respectively.
A transition involving a fully entangled state would have

ΔhS1zi ¼ ΔhS2zi ¼ 0.5. Accordingly, the region where the
branches become purple indicate where a participating state
tends towards the jT0i or jSi.
With the ability to independently prepare and read the

electron state of each donor, it would be possible to observe
every transition for a given HðJÞ. The protocol would
involve preparing or, at least, randomizing the nuclear spins
using appropriate nuclear magnetic resonance (NMR)
pulses and then extracting the ESR spectrum for both
electrons as in Ref. [2]. For a proof-of-principle device, we
make the conservative assumption that only donor 2 is
tunnel coupled to a charge reservoir so that its electron spin
can be read out in single shot and initialized electrically in
the ground state [1]. In this case, performing ESR experi-
ments would only reveal those transitions involving j↓↓i
with ΔhS2zi > 0. In the J ≲ ΔA regime, branches 1, 2, 11,
and 13 could be observed. In the ΔA≲ J ≲ Ā regime,
branch 1 fades away and branch 5 emerges as its ΔhS2zi
increases. Finally, in the J ≳ Ā, branch 2 fades away while

FIG. 3. The ESR fingerprint ofHðJÞ plotted as a function of the
exchange-hyperfine interaction ratio. Branches are labeled from
left to right (1 to 16) on the J ¼ 10−1Ā line, with 1 to 8 shown.
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branch 10 emerges. The relative spacing between the lines
should make it easy to extract the value of J. To be certain,
slightly modifying J by shifting the electrostatic environ-
ment will allow comparison to the fingerprint in Fig. 3,
ensuring a correct interpretation of the observed resonan-
ces. Operating in the γeB0 ≫ Ā regime, the resonant
frequencies of these transitions are determined by four
parameters (γeB0, Ā, ΔA, and J) so that the determination
of four resonant frequencies is sufficient to extract these
parameters.

VI. SUMMARY AND OUTLOOK

We have analyzed the system of two exchange-coupled
donor-spin qubits and shown how we can harness the
hyperfine interaction with the 31P donor nuclei to imple-
ment two different types of two-qubit logic gates that form
a universal set of operations when combined with single-
qubit rotations. In the first method, we show that the
amplitude of exchange oscillations can be controlled by
exploiting the presence of the magnetic detuning, ΔBz,
provided by the hyperfine interaction with the donor nuclei.
These oscillations can be switched on and off to form affiffiffiffiffiffiffiffiffiffiffiffiffiffi
SWAP

p
gate of 99% fidelity upon tuning J by just 2 orders

of magnitude. In the second method, a two-qubit gate is
implemented as the resonant rotation of one electron
conditional upon the spin state of the other. This method
has the significant advantage that J does not need to be
tuned and a wide range of coupling strengths yields high-
fidelity CROT gates in natural silicon (> 95%) and in
isotopically purified silicon (> 99.99%). The CROT gate
can be operated at zero electrostatic detuning, which
renders the system minimally susceptible to charge noise.
Additionally, the gate does not trigger the fast triplet-singlet
relaxation predicted [23] and observed [24] in the presence
of the interplay between strong J and a hyperfine coupling
A. When J ∼ A, the long single-spin lifetimes (T1 ≫ 1 s)
[1] can be recovered. Compared to previous proposals, our
methods greatly relax the requirements on the accuracy of
donor positioning and alignment of nanofabricated gates.
We expect that this will facilitate the construction of donor-
based quantum-information processors using ion implan-
tation [46,47], scanning-probe lithography [55], or hybrid
donor-dot devices [48]. Quantum-dot-only implementa-
tions of both the gates we described are also possible,
provided the electrons in the coupled dots have individual
Zeeman splittings that differ by more than the ESR line
width. Large ΔBz values can be obtained using field
gradients produced by micromagnets [18,19]. Another
promising route is the use of gate-defined quantum dots
on isotopically purified 28Si, where the g factor can be
controlled by electric fields and the ESR frequency shifted
by 3 orders of magnitude more than the line width [56]. We
expect that the robust two-qubit logic gates described here
will provide further momentum to the quest for scaling up
spin-based quantum computers in semiconductors.
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