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Networks of model neurons with balanced recurrent excitation and inhibition capture the irregular and
asynchronous spiking activity reported in cortex. While mean-field theories of spatially homogeneous
balanced networks are well understood, a mean-field analysis of spatially heterogeneous balanced networks
has not been fully developed. We extend the analysis of balanced networks to include a connection
probability that depends on the spatial separation between neurons. In the continuum limit, we derive that
stable, balanced firing rate solutions require that the spatial spread of external inputs be broader than that of
recurrent excitation, which in turn must be broader than or equal to that of recurrent inhibition. Notably, this
implies that network models with broad recurrent inhibition are inconsistent with the balanced state. For
finite size networks, we investigate the pattern-forming dynamics arising when balanced conditions are not
satisfied. Our study highlights the new challenges that balanced networks pose for the spatiotemporal
dynamics of complex systems.
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I. INTRODUCTION

The study of spatiotemporal dynamics and variability in
complex systems is at the interface of the physical, chemical,
biological, and social sciences [1,2]. A central question in
many disciplines is, how does high-dimensional, micro-
scopic behavior scale to define the macroscopic dynamics?
The answer necessarily depends on the architecture of
interactions. In many cases of interest, the complexity of
this architecture makes elucidating system-wide dynamics a
challenge.
In the neurosciences, a long-standing topic of interest is

the significant variability in neuron spike train responses
[3–5]. Models of cortical networks capture this high
variability when recurrent excitatory and inhibitory inputs
are balanced. Such “balanced networks” show irregular and
asynchronous spiking dynamics through a complex, some-
times chaotic, network state [6]. Nevertheless, the statistics
of balanced networks are amenable to mean-field analysis
[7–11], using techniques developed for spin-glass systems
[12]. This analysis has given important insights into the
circuit requirements that networks must satisfy to capture
cortical-like dynamics. Subsequent experiments in cortex
lend support to balanced network states with measurements
of large and opposing excitatory and inhibitory synaptic
currents [13,14], asynchronous cortical activity [15], as
well as the sensitivity of network dynamics to small
perturbations [16]. Further, balanced network models

have made recent advances in theories of working
memory [17], predictive neural coding [18], and stimulus
representation [19].
Past work in balanced networks has assumed a spatially

homogeneous [6,9,11] or discretely clustered topology
[20]. However, it is well established that the probability
that two cortical neurons are connected depends on their
separation in physical space or, for some sensory systems,
feature space [21–24]. There has been substantial theoreti-
cal work on the spatiotemporal dynamics of phenomeno-
logical “neural-field-type” macroscale models of cortex
[25]. However, treatments of neural variability in these
frameworks have either assumed an external source of
fluctuations [26–28] or that neurons are intrinsically
Markovian [29,30]. In both cases, the stochastic aspects
of the microscale system are imposed, in contrast to the
internally generated variability in balanced networks. The
capacity for pattern formation and spatial filtering in
balanced networks with spatially dependent connection
probabilities has not been addressed.
In this paper, we derive experimentally testable con-

ditions on the strength and spatial profile of connection
probabilities that must be satisfied for a recurrent network
of excitatory and inhibitory neuron models to maintain a
stable balanced state in the continuum limit. Specifically,
we find that external inputs must be broader than recurrent
excitation, which in turn must be broader than or equal to
recurrent inhibition. Consequently, network models that
rely on broad lateral inhibition to achieve sharpened tuning
curves [31] or spatiotemporal dynamics [25,32] are incon-
sistent with the balanced state. Finally, we numerically
investigate spatiotemporal spiking dynamics when stable
balanced solutions do not exist.
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II. NETWORK MODEL

We consider a network of N integrate-and-fire neurons,
Ne ¼ qN of which are excitatory and Ni ¼ ð1 − qÞN
inhibitory, spaced evenly on the state space Γ ¼ ð0; 1�,
so that the kth excitatory neuron is at location x ¼ k=Ne
and similarly for the kth inhibitory neuron. The input
current to the kth excitatory (α ¼ e) and inhibitory (α ¼ i)
neuron is given by

Iαðx; tÞ ¼
XNe

j¼1

Jk;jαe se;jðtÞ −
XNi

j¼1

Jk;jαi si;jðtÞ þ JαðxÞ; (1)

respectively, where x ¼ k=Nα and se;jðtÞ ¼
P

iδðt − tie;jÞ is
the spike train of the jth excitatory neuron and similarly for
si;jðtÞ. Static external input is provided by the terms JαðxÞ.
The synaptic weight Jkjαβ is equal to the constant Jαβ with
probability kΓαβðx − yÞ, else it is zero. Here, x ¼ k=Nα,
y ¼ j=Nβ, and

kΓαβðxÞ ¼
X∞
n¼−∞

kαβðxþ nÞ (2)

is the periodic summation of kαβðxÞ for α, β ∈ fe; ig. Thus,
Γ has periodic boundaries and kαβ is the spatial profile of β
to α connectivity. See Fig. 1 for a diagram of the network.
As in Refs. [6,7], we fix kαβðxÞ ≪ 1 to assure weak

correlations and we then consider the behavior of the
network as N → ∞.
Cortical neurons receive a large number of high-

amplitude excitatory inputs, implying that a postsynaptic
cell requires only a fraction of excitatory presynaptic cells
to drive spike responses [33]. Following past studies in
balanced networks [6,7,11], we model this with an Oð1Þ
distance between rest and spike threshold and consider
Jαβ ∼Oð1= ffiffiffiffi

N
p Þ, q ∼Oð1Þ, kαβ ∼Oð1Þ, and JαðxÞ ∼

Oð ffiffiffiffi
N

p Þ as N → ∞. To simplify calculations, we define
jαβ ¼ Jαβ

ffiffiffiffi
N

p
, jαðxÞ ¼ JαðxÞ=

ffiffiffiffi
N

p
, which do not depend

on N. Note that scaling parameters in terms of the network
size N are equivalent to the common practice of scaling
parameters in terms of the average number of inputs to each
cell (often denoted asK) since the number of inputs to a cell
scales linearly with N.
Under these scaling assumptions, a neuron receives

recurrent input from OðNÞ excitatory neurons but requires
onlyOð ffiffiffiffi

N
p Þ excitatory inputs to be active in an integration

window to produce a spike. Finite, unsaturated firing rates
can, therefore, be maintained only in the continuum limit
through a dynamically stable balance between excitation
and inhibition [6,7,11]. We next derive conditions under
which such a stable balanced network state exists.

III. CONDITIONS ON THE EXISTENCE OF A
BALANCED STATE IN THE CONTINUUM LIMIT

The mean firing rates of neurons in the network are
denoted by ναðxÞ ¼ hE½sα;kðtÞ�i, where x ¼ k=Nα, E½·�
represents expectation over realizations of network con-
nectivity and h·i the average over time. In the continuum
limit, the mean input currents are related to the firing
rates by

μαðxÞ≔hE½Iαðx; tÞ�i
¼ ffiffiffiffi

N
p ½wαe � νeðxÞ − wαi � νiðxÞ þ jαðxÞ�; (3)

for α ¼ e, i, where wαeðxÞ ¼ qjαekΓαeðxÞ, wαiðxÞ ¼
ð1 − qÞjαikΓαiðxÞ, and � denotes circular convolution on
Γ. We aim to derive conditions under which ναðxÞ and
μαðxÞ each converge to a finite limit as N → ∞ and ναðxÞ
does not become identically zero. For these conditions to be
realized, we must have that

wαe � νeðxÞ − wαi � νiðxÞ þ jαðxÞ ¼ Oð1=
ffiffiffiffi
N

p
Þ: (4)

Taking N → ∞ gives a Fredholm equation of the first kind,
which can be written in the Fourier domain as

~wee ~νe − ~wei ~νi þ ~je ¼ 0; ~wie ~νe − ~wii ~νi þ ~ji ¼ 0;

with the solution given in the Fourier domain by

FIG. 1. Network diagram. Excitatory and inhibitory cells are
arranged on the one-dimensional state space Γ ¼ ð0; 1� with
periodic boundary conditions. An excitatory cell at location x
receives input from an inhibitory cell at location x0 with
probability kΓeiðx − x0Þ, and similarly for kΓee, kΓie, and kΓii, where
kΓαβðxÞ is the periodic summation of kαβðxÞ on Γ; see Eq. (2). An
excitatory cell at location x receives temporally constant external
input with intensity JeðxÞ, and similarly for JiðxÞ.
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~νe ¼
~je ~wii − ~ji ~wei

~wei ~wie − ~wee ~wii
; ~νi ¼

~je ~wie − ~ji ~wee

~wei ~wie − ~wee ~wii
; (5)

where ~fðnÞ ¼ R
Γ e

−2πxnifΓðxÞdx. Equation (5) must hold at
every Fourier mode n for which

~weiðnÞ ~wieðnÞ − ~weeðnÞ ~wiiðnÞ ≠ 0:

If ~weiðnÞ ~wieðnÞ − ~weeðnÞ ~wiiðnÞ ¼ 0 at some Fourier mode,
then for a solution to exist, it must also be true that

~jeðnÞ ~wiiðnÞ− ~jiðnÞ ~weiðnÞ¼ ~jeðnÞ ~wieðnÞ− ~jiðnÞ ~weeðnÞ¼ 0

at that Fourier mode.
Requiring firing rates from Eq. (5) to be non-negative

and not identically zero implies that

j̄e
j̄i

>
w̄ei

w̄ii
>

w̄ee

w̄ie
(6)

or

j̄e
j̄i

<
w̄ei

w̄ii
<

w̄ee

w̄ie
; (7)

where f̄ ¼ ~fð0Þ ¼ R
Γ f

ΓðxÞdx is the average value of f on
[0, 1]. Note that Eq. (6) is equivalent to a balance condition
derived in Ref. [7] for spatially homogeneous networks. We
show below that Eq. (6) leads to a stable balanced state for
large N but Eq. (7) does not.
The solutions in Eq. (5) are viable only if ~να has a well-

defined inverse Fourier transform, which requires at least
that

lim
n→∞

~jeðnÞ ~wiαðnÞ − ~jiðnÞ ~weαðnÞ
~weiðnÞ ~wieðnÞ − ~weeðnÞ ~wiiðnÞ

¼ 0; (8)

for α ¼ e, i. This condition effectively states that external
inputs must be broader than recurrent connections, since
their Fourier coefficients must decay more slowly. To
understand why this must be true, consider Eq. (4) when,
for example, all wαβðxÞ terms are broader than all jαðxÞ
terms. Since convolution can only broaden functions, all
wαβ � νβðxÞ terms are necessarily broader than all jαðxÞ for
any choice of ναðxÞ and, therefore, a solution to Eq. (4)
cannot be obtained. We investigate this condition for
Gaussian-shaped inputs and connectivity kernels next.

IV. EXAMPLE WITH GAUSSIAN-SHAPED
CONNECTIVITY

For ease of exposition, we consider connectivity kernels
and inputs that have Gaussian shape, and we assume that
the probability (but not the strength) of a connection
depends only on presynaptic cell type. Specifically, we take

wαβðxÞ ¼ w̄αβgðx; 0; σβÞ

and

jαðxÞ ¼ pj̄αgðx; xo; σoÞ þ ð1 − pÞj̄α:

Here, w̄αβ and j̄α are constants and

gðx; μ; σÞ ¼ 1ffiffiffiffiffiffi
2π

p
σ

X∞
n¼−∞

e−ðxþn−μÞ2=2σ2

is a wrapped Gaussian for x ∈ ½0; 1�. In the Fourier domain,
the wrapped Gaussian is given by

~gðn; μ; σÞ ¼ e−2n
2π2σ2−2nπμi:

In this case, the balance condition in Eq. (8) is satisfied only
if σo > σe, σi. Hence, external inputs must be spatially
broader than recurrent connections for a balanced solution
to exist. Under this condition, taking the inverse transform
in Eq. (5) gives the balanced solution

ναðxÞ ¼ pν̄αgðx; xo;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2o − σ2α

q
Þ þ ð1 − pÞν̄α; (9)

where ν̄α ¼ ~ναð0Þ from Eq. (5). Note that the peaked shape
of the firing rate profile in Eq. (9) is inherited by the peaked
shape of the inputs, while the width of the firing rate
profiles depends on the difference of the input width (σ2o)
and the recurrent spatial filtering (σ2α). Flat inputs (p ¼ 0)
lead to a flat firing rate profile [ναðxÞ ¼ ν̄α].
The analysis of the balanced state above is valid in the

N → ∞ limit for a large class of neuron models [9]. To
numerically validate our theoretical results, we use a leaky
integrate-and-fire (LIF) model in which the membrane
potential of a cell in population α at location x satisfies

V 0ðtÞ ¼ −
1

τm
VðtÞ þ Iαðx; tÞ; (10)

with a reflecting barrier at V ¼ −1, where τm ¼ 20 ms.
Spikes occur whenever V ¼ 1, at which point VðtÞ is reset
to zero. Steady-state firing rates can be approximated
numerically using Monte Carlo simulations of the full
LIF network or semianalytically by locating fixed points of
a diffusion approximation. The diffusion approximation is
given by replacing Iαðx; tÞ in Eq. (10) by μαðxÞþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DαðxÞ

p
ηαðx; tÞ, where each ηαðx; tÞ is an independent

realization of Gaussian white noise and [8]

DαðxÞ ≈
1

2
lim
δ→0

δ−1
�
E

�Z
tþδ

t
Iαðx; sÞ − μαðxÞds

�
2
�

¼ jαe
2

wαe � νeðxÞ þ
jαi
2
wαi � νiðxÞ (11)
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is the temporal diffusion coefficient. The spatial independ-
ence of η is reasonable because the sparse coupling in the
network ensures that common input to neuron pairs is
negligible.
Under the diffusion approximation, steady-state firing

rates are obtained by numerically searching for a fixed
point ½ν0eðxÞ; ν0i ðxÞ� that satisfies

ν0αðxÞ ¼ ϕðμ0αðxÞ; D0
αðxÞÞ: (12)

Here, ϕðμ; DÞ relates input mean and variance to firing rate
of the LIF model for the diffusion approximation and where
μ0αðxÞ and D0

αðxÞ are given in terms of ν0eðxÞ and ν0i ðxÞ by
Eqs. (3) and (11). The function ϕðμ; DÞ is known in closed
form [34], but is more efficiently calculated by solving a
boundary value problem [35]. Numerical solutions to the
fixed point problem in Eq. (12) were used for the curves
labeled “FP” in Figs. 3 and 4. The default parameter values
for all simulations are σe ¼ σi ¼ 0.1, σo ¼ 0.2, jee ¼ 0.5,

jei ¼ 1, jie ¼ 0.7, jii ¼ 1, j̄e ¼ 4 × 10−4ðmsÞ−1,
j̄i ¼ 3 × 10−4ðmsÞ−1, q ¼ 0.5, p ¼ 0.25, and k̄αβ ¼ 0.02
for α, β ∈ fe; ig. Any deviations from these parameters are
explicitly denoted in the figure captions and legends.
When the balanced state exists, simulations of the LIF

network show asynchronous and irregular spiking dynam-
ics [Fig. 2(a)]. The microscopic state of the network is
highly sensitive to the deletion of a single spike [Figs. 2(a)
and 2(b)], but sufficiently small perturbations of the
membrane potentials do not cause a divergence of trajec-
tories (not pictured). These findings are consistent with
previous studies showing that balanced networks can
exhibit “stable chaos” characterized by exponentially long
transients, sensitivity to small but finite perturbations and
insensitivity to sufficiently small perturbations [10,36–39].
The distribution of Pearson correlation coefficients
between the spike counts of neighboring neurons is
approximately Gaussian shaped with a mean near zero
despite the fact that neighboring neurons share more than
5% of their inputs on average [Fig. 2(c)], consistent with
the network having reached a stable asynchronous
state [11].
Despite the sensitivity of the microscopic dynamics, the

macroscopic dynamics, measured by the network firing
rates, are stable to the deletion of spikes. The neuron firing
rates are given by the fixed point of Eq. (12), which
converges to the balanced fixed point given by Eq. (9) as
the network size increases (Fig. 3). Thus, our mean-field
analysis gives an accurate description of the spatial
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distribution of population activity for sufficiently large
networks.

V. SPATIALLY IMBALANCED NETWORKS

An OðcÞ deviation of the firing rates away from balance
yields an Oðc ffiffiffiffi

N
p Þ deviation of the mean input currents,

but only an OðcÞ perturbation of the input variance,
cf. Eqs. (3–11). When mean input is large in magnitude,
the firing rate transfer of a LIF neuron can be approximated
as threshold linear, motivating the following mean-field
approximation to firing rate dynamics:

τ
∂να
∂t ¼ −να þ γμαΘðμαÞ: (13)

Here, Θð·Þ is the Heaviside function, τ is the characteristic
time scale of the network, γ > 0 is the gain of the neuron,
and μα is related to νβ through Eq. (3) for α, β ∈ fe; ig. For
all figures, we use γ ¼ 1, which is valid for the LIF model
described above when mean input is large. Equation (13)
can be solved for finite N and will provide intuition for
network solutions when the condition in Eq. (8) is violated.
If Eq. (13) admits a fixed point with strictly positive

firing rates, it is given in the Fourier domain by

~ν0e ¼
ϵ~je þ ~je ~wii − ~ji ~wei

ϵ2 − ϵ ~wee þ ϵ ~wii þ ~wei ~wie − ~wee ~wii
;

~ν0i ¼
ϵ~ji þ ~je ~wie − ~ji ~wee

ϵ2 − ϵ ~wee þ ϵ ~wii þ ~wei ~wie − ~wee ~wii
; (14)

where ϵ ¼ 1=ðγ ffiffiffiffi
N

p Þ. If Eq. (8) is satisfied (σo > σe, σi),
then the fixed point in Eq. (14) converges to the balanced
solution in Eq. (5) as N → ∞. If Eq. (8) is violated
(σo ≤ σe, σi), then the higher spatial Fourier modes, and
therefore peak firing rates, from Eq. (14) diverge asN → ∞
(Fig. 4). Eventually, this growth of higher Fourier modes
causes ναðxÞ < 0 for some x [Fig. 4(c)], at which point
Eq. (14) no longer reflects a fixed-point solution to
Eq. (13). Regardless, peak firing rates continue to grow
as N increases when σo < σe, σi [Fig. 4(d)].

VI. STABILITY OF THE BALANCED STATE

The balanced fixed point from Eq. (14) is stable for the
mean-field model in Eq. (13) whenever

AðnÞ ¼
�
−ϵþ ~weeðnÞ − ~weiðnÞ

~wieðnÞ −ϵ − ~wiiðnÞ
�

(15)

has eigenvalues with negative real part or, equivalently,
when

~wei ~wie − ~wee ~wii > ϵð ~wee − ~wiiÞ − ϵ2 and ~wee − ~wii < 2ϵ

(16)

at each Fourier mode n. For the Gaussian-shaped kernels
described above, stability of the balanced state as N → ∞
(ϵ → 0) under this approximation requires that w̄ee < w̄ii
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and σe ≥ σi are satisfied in addition to Eq. (6), but networks
satisfying Eq. (7) do not satisfy Eq. (16) for large N. The
mean-field model predicts instabilities of the balanced state
for full network simulations reasonably well (Fig. 5). In
particular, when σe is sufficiently smaller than σi, AðnÞ has
eigenvalues with positive real part, the balanced fixed point
loses stability, and different spatial patterns are produced
[Figs. 5(a), 5(c), and 5(e)].
For σe=σi near the stability transition, the network

exhibits waves of activity, but the time-averaged firing
rates remain close to the balanced fixed point
[Figs. 5(b), 5(d), and 5(e)]. The direction that these waves
travel depends on initial conditions even when the network
architecture remains fixed (data not shown), suggesting a
symmetry-breaking multistability. This spatiotemporally
coherent activity is not captured by the mean-field model
in Eq. (13), even when the threshold-linear rate function is
replaced by the actual nonlinear function ϕðμ; DÞ. A
theoretical description of these patterns is outside the scope
of this study. A complete stability analysis could potentially
be achieved using methods from Ref. [40]. Regardless, our
analysis of the mean-field approximation provides a useful
explanation for why the balanced state becomes unstable
when excitatory projections are too much narrower than
inhibitory projections.

VII. OTHER SPATIAL TOPOLOGIES

Thus far, we have considered a one-dimensional model
with periodic boundary conditions for simplicity, but our
analysis can be adapted to different spatial topologies.

A. Two-dimensional networks

The one-dimensional network is easily extended to a two-
dimensions state space Γ ¼ ð0; 1� × ð0; 1�, where neurons
are arranged uniformly on a lattice. In this network, a neuron
in population α at location ðx1; y1Þ receives input from a
neuron in population β at location ðx2; y2Þ with probability
kΓαβðx2 − x1; y2 − y1Þ, where kΓðx; yÞ ¼ P∞

m;n¼−∞ kðxþ
m; yþ nÞ creates periodic boundaries and α, β ∈ fe; ig.
Given two-dimensional inputsJαðx; yÞanddefining jαðx; yÞ,
jαβ, and wαβðx; yÞ analogously to the one-dimensional case,
the balanced firing rate solutions are given by Eq. (5),
where ~fðm; nÞ ¼ R

1
0

R
1
0 e

−2πiðxnþymÞfðx; yÞdxdy is a two-
dimensional Fourier series. The existence conditions in
Eqs. (6) and (7) are identical in two dimensions with
f̄ ¼ ~fð0; 0Þ. The existence condition in Eq. (8) is identical
except the limitmust be taken inm andn simultaneously.The
stability conditions in Eq. (16) are also identical in two
dimensions, but need to be satisfied at each Fourier mode
pair ðm; nÞ.
The example with Gaussian-shaped inputs and connec-

tivity kernels can be extended to two dimensions by
defining

wαβðx; yÞ ¼ w̄αβGðx; y; 0; 0;ΣβÞ

and

jαðx; yÞ ¼ pj̄αGðx; y; xo; yo;ΣoÞ þ ð1 − pÞj̄α;
where

Gðx; y; μx; μy;ΣÞ

¼ 1

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðΣÞp X∞

m;n¼−∞
e−ð1=2Þ½ð~x−~μþ~nÞΣ−1ð~x−~μþ~nÞT �

is a two-dimensional wrapped Gaussian, ~x ¼ ½xy�,
~μ ¼ ½μxμy�, ~n ¼ ½mn�, and Σ is a 2 × 2 positive-definite
matrix. The existence condition in Eq. (8) is satisfied
whenever Σo − Σα is a positive-definite matrix for α ¼ e, i,
generalizing the σo > σα condition from the one-dimen-
sional case. Under this condition, the balanced solutions are
given by

ναðx; yÞ ¼ pν̄αGðx; y; xo; yo;Σo − ΣαÞ þ ð1 − pÞν̄α; (17)

for α ¼ e, i, where ν̄α ¼ ~ναð0; 0Þ is given by Eq. (5). These
solutions are stable asN → ∞whenever Eq. (6) is satisfied,
w̄ee > w̄ii and Σe − Σi is positive definite. If we assume that
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VIDEO 1. Two-dimensional network simulations. (a) Raster
plot of excitatory neuron spikes from a two-dimensional network
simulation with σo ¼ 0.2 and σe ¼ σi ¼ 0.1, so that a stable
balanced state exists. Excitatory and inhibitory neurons are each
arranged on a uniform 250 × 250 lattice, for a total of N ¼
1.25 × 105 neurons. (b) The relative mean-square difference
between the firing rates calculated from the simulation in
(a) and from the balanced fixed point in Eq. (17) (log-log scale).
(c) Same as (a) except σo ¼ 0.1 and σe ¼ σi ¼ 0.2, so that a
balanced fixed point does not exist. (d) Same as (a) except
σe ¼ 0.02. Open video file in a web browser to view animation.
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the network structure is isotropic so that Σe ¼ σ2eI,
Σi ¼ σ2i I, and Σo ¼ σ2oI, where I is the 2 × 2 identity
matrix, then existence and stability of the balanced state
requires that σo > σe ≥ σi, in analogy to the one-
dimensional network.
We simulated a two-dimensional isotropic network with

the same parameters used for the one-dimensional simu-
lations (σo ¼ 0.2, σe ¼ σi ¼ 0.1). Spiking dynamics were
qualitatively similar to the one-dimensional network
[Video 1(a)] and firing rates converged toward the balance
fixed point given in Eq. (17) as N increased [Video 1(b)].
Changing parameters so that the external input is narrower
than the recurrent projections (σo ¼ 0.1, σe ¼ σi ¼ 0.2)
prevents the existence of a balanced fixed point and induces
a surround-suppression pattern with extremely high peak
firing rates [Video 1(c), peak excitatory rate over 500 Hz] in
analogy to one-dimensional simulations (compare to
Fig. 4). Sharpening the profile of recurrent excitation
(σo ¼ 0.2, σe ¼ 0.02, σi ¼ 0.1) destabilizes the balanced
state and induces spatial patterns [Video 1(d)] analogous to
those observed in one-dimensional simulations [compare to
Fig. 5(c)].

B. Absorbing boundaries

Our analysis of one- and two-dimensional networks
relies on the assumption that connection probability obeys
periodic boundary conditions, since this allows us to write
Eq. (4) in terms of circular convolutions, which in turn
allows Fourier modes to decouple. To test the sensitivity of
network dynamics to the assumption of periodic boundary
conditions, we simulate the one-dimensional network
without periodic boundary conditions. Specifically, the

probability that Jk;jαβ ≠ 0 was set to kαβðx − yÞ instead of
kΓαβðx − yÞ. Hence, neurons near the boundaries receive less
recurrent input.
Although this framework is more difficult to analyze,

network simulations are qualitatively similar to simulations
with periodic boundaries. When σo > σe ¼ σi, spiking
dynamics are similar to those with periodic boundaries
[see Fig. 6(a) and compare to Fig. 2(a)] and firing rates
differ only near the boundary [Fig. 6(b)]. When
σo < σe ¼ σi, a surround-suppression dynamic appears,
with large peak firing rates [Fig. 6(c), peak excitatory rate
120 Hz], similar to simulations with periodic boundaries
(compare to Fig. 4). When σe is sufficiently smaller than σi,
a stable spatial pattern emerges [Fig. 6(d)], similar to those
observed in one-dimensional simulations [compare to
Fig. 5(c)].

VIII. DISCUSSION

By taking into account the spatial dependence of con-
nection probabilities, we derive new conditions for the
existence and stability of balanced solutions. With
Gaussian connectivity, the conditions reduce to the inequal-
ity chain σo > σe ≥ σi.
Consistent with this conclusion, several studies have

found that thalamocortical projections are generally
broader than intracortical projections [41–43] (σo > σe)
and circuit measurements in cortical layer 4 show that
excitation projects more broadly than inhibition [24]
(σe ≥ σi). In contrast, many previous models rely on broad
inhibition to sharpen tuning curves [44,45] and promote
pattern formation [25,32]. Our results refute the notion that
dynamical mechanisms relying on such broad inhibition
can coexist with a balanced state. Nevertheless, Eq. (9)
reveals that recurrent connections in our model sharpen
tuning curves even when σe ≥ σi since the width of the
firing rate profiles is the width of the external inputs minus
the width of recurrent projections.
Our analysis relies on the assumption that connection

probability depends only on distance and that boundaries
are periodic. Similar analysis can be performed in an
unbounded state space (i.e., all of R or R2). In this case,
the analysis of the balanced state is identical to that for
periodic boundaries except that a continuous Fourier
spectrum is used in place of a discrete spectrum. The
Gaussian examples and the conditions derived for them are
also identical, except that the wrapped Gaussian is replaced
by a full Gaussian.
A general treatment of spatially heterogeneous balanced

networks would allow the probability that a cell at location
x receives input from a cell at location y to depend on x and
y independently, instead of just their distance. In this case,
Eq. (4) is replaced by

Z
Γ
wαeðx; yÞνeðyÞ − wαiðx; yÞνiðyÞdyþ jαðxÞ ¼ 0 (18)
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FIG. 6. Network simulations without periodic boundaries.
(a) Raster plot of excitatory spike trains from a simulation
identical to the simulation in Fig. 2(a) except that connection
probability is computed without periodic boundaries (so that cells
near the boundaries receive fewer recurrent inputs). (b) Firing rate
profile of excitatory cells from (a) (solid blue curve) is similar to
the firing rate profile from Fig. 2(a) (dashed red curve) except
near the boundaries. (c) Same as (a) except σo ¼ 0.1 and
σe ¼ σi ¼ 0.2. (d) Same as (a) except σe ¼ 0.02.
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in the N → ∞ limit, but this equation cannot generally be
written in terms of convolutions and, therefore, cannot be
solved using the Fourier methods used to solve Eq. (4).
Several techniques have been developed for Fredholm
equations like Eq. (18), so analytical solutions are poten-
tially tractable for certain choices of the functions wαβðx; yÞ
and inputs jαðxÞ [46,47]. Moreover, numerical techniques
can be used even when analytical approaches fail [48].
We observe extremely weak average correlations

between the spiking activity of neighboring neurons even
when they share over 5% of their recurrent inputs [see
Fig. 2(c) and related discussion], suggesting that the
network is in the asynchronous state. The existence of
the asynchronous state in balanced networks has been
analyzed only for homogeneous networks of binary neu-
rons [11]. We hope to extend this analysis to spatially
heterogeneous networks of integrate-and-fire neurons in
future work.
The majority of balanced network studies assume a

homogeneous topology in which connection probability
and external drive depend solely on cell type (excitatory or
inhibitory). In previous studies of heterogeneous balanced
networks, the relative difference between the total synaptic
drive to differently tuned or spatially separated neurons
scales likeOð1= ffiffiffiffi

N
p Þ even though the absolute difference is

Oð1Þ [20,49–51]. As a result, these models do not need to
satisfy the spatial balance conditions derived here since all
heterogeneity is absorbed into the Oð1= ffiffiffiffi

N
p Þ term in

Eq. (4). These models predict that the relative difference
between the excitatory (or inhibitory) drive to differently
tuned or spatially separated neurons is small compared to
the relative difference between their firing rates. Our model
predicts that the relative difference between two neurons’
excitatory or inhibitory drive is of the same order as the
relative difference between their firing rates. This distinc-
tion could be used to distinguish between the models based
on experimental recordings.
Spatially extended stochastic neural field models are

typically constructed by appending additive noise to a
deterministic model [30,32], similar to the practice of
augmenting reaction diffusion systems with additive or
multiplicative noise [1]. Analysis of neural-field models
driven by external stochastic forcing shows that the
spatiotemporal structure of noise is a critical determinant
of the ensuing stochastic dynamics [26–28]. However, in all
cases these spatially distributed systems with external
stochastic forcing show how pattern-forming systems filter
noise. By contrast, in balanced networks the variability
arises naturally through internal mechanisms [6,7,9,20], so
that assumptions about the structure of external stochastic
forcing are not required. Indeed, the network simulations in
this study are completely deterministic, so that all temporal
variability is generated through chaotic network dynamics.
Thus, balanced networks with spatial interactions offer an
alternative framework to stochastically forced neural-field

models, where complex internal dynamics is the source, as
opposed to filter, of spatiotemporal variability. Our work
lays a theoretical foundation for studying such networks
and shows that they can exhibit rich dynamics, suggesting
several directions for future study.
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