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Lévy flights are random walks in which the probability distribution of the step sizes is fat-tailed. Lévy
spatial diffusion has been observed for a collection of ultracold 87Rb atoms and single 24Mgþ ions in an
optical lattice, a system which allows for a unique degree of control of the dynamics. Using the
semiclassical theory of Sisyphus cooling, we formulate the problem as a coupled Lévy walk, with strong
correlations between the length χ and duration τ of the excursions. Interestingly, the problem is related to
the area under the Bessel and Brownian excursions. These are overdamped Langevin motions that start and
end at the origin, constrained to remain positive, in the presence or absence of an external logarithmic
potential, respectively. In the limit of a weak potential, i.e., shallow optical lattices, the celebrated Airy
distribution describing the areal distribution of the Brownian excursion is found as a limiting case. Three
distinct phases of the dynamics are investigated: normal diffusion, Lévy diffusion and, below a certain
critical depth of the optical potential, x ∼ t3=2 scaling, which is related to Richardson’s diffusion from the
field of turbulence. The main focus of the paper is the analytical calculation of the joint probability density
function ψðχ; τÞ from a newly developed theory of the area under the Bessel excursion. The latter describes
the spatiotemporal correlations in the problem and is the microscopic input needed to characterize the
spatial diffusion of the atomic cloud. A modified Montroll-Weiss equation for the Fourier-Laplace
transform of the density Pðx; tÞ is obtained, which depends on the statistics of velocity excursions and
meanders. The meander, a random walk in velocity space, which starts at the origin and does not cross it,
describes the last jump event χ in the sequence. In the anomalous phases, the statistics of meanders and
excursions are essential for the calculation of the mean-square displacement, indicating that our correction
to the Montroll-Weiss equation is crucial and pointing to the sensitivity of the transport on a single jump
event. Our work provides general relations between the statistics of velocity excursions and meanders on
the one hand and the diffusivity on the other, both for normal and anomalous processes.
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I. INTRODUCTION

The velocity vðtÞ of a particle interacting with a heat bath
exhibits stochastic behavior, which in many cases is
difficult to evaluate. The position of the particle, assumed
to start at the origin at time t ¼ 0, is the time integral over
the fluctuating velocity xðtÞ ¼ R

t
0 vðt0Þdt0 and demands a

probabilistic approach to determine its statistical properties.
Luckily, the central-limit theorem makes it possible, for
many processes, to predict a Gaussian shape for the
diffusing packet. Then, the diffusion constant K2 character-
izes the normal motion through its mean-square displace-
ment hx2i ¼ 2K2t. The remaining goal, for a given process
or model, is to compute K2 and other transport coefficients.
In normal cases, this can be done, at least in principle, via

the Green-Kubo formalism, namely, by the calculation of
the stationary velocity correlation function, which gives the
diffusivity K2 ¼

R
∞
0 hvðtÞvð0Þidt.

An alternative approach is investigated in this work and
is based on the concept of excursions. We assume that the
random process vðtÞ is recurrent, and thus the velocity
crosses the zero point, v ¼ 0, many times in the observation
window ð0; tÞ. We divide the path xðtÞ into a sum of
increments,

xðtÞ¼
Z

t1

0

vðt0Þdt0 þ
Z

t2

t1

vðt0Þdt0 þ���þ
Z

tiþ1

ti

vðt0Þdt0 þ���:

(1)

Here, ft1; t2…g are the points in time of the velocity zero
crossings, vðtiÞ ¼ 0. In the interval (ti, tiþ1), the velocity is
either strictly positive or negative. The velocity in each
interval is thus a stochastic process that starts and ends on
the origin without crossing it in between. Such a random
curve is called an excursion. The random spatial increment
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χi ¼
R tiþ1
ti vðt0Þdt0 is the area under the excursion. The

position of the particle, according to Eq. (1), is the sum
of the random increments, namely, the sum of the signed
areas under the velocity excursions, each having a random
duration. The goal of this paper is to relate the statistics
of the areas under these velocity excursions, and the
corresponding random time intervals between zero cross-
ings, to the problem of spatial diffusion. This connection is
easy to find in the case in which the increments χi and
the duration of the excursions τi ¼ tiþ1 − ti are mutually
uncorrelated, independent, and identically distributed ran-
dom variables. Over a long measurement time, the number
of excursions is t=hτi, where hτi is the average time for
an excursion. Then, according to Eq. (1), the mean-square
displacement is hx2i ¼ hχ2it=hτi, and hence we have

K2 ¼
hχ2i
2hτi : (2)

This equation is reminiscent of the famous Einstein formula
and shows that diffusion is related to the statistics of
excursions. The original work of Einstein, discussed in
many textbooks, is explicitly based on an underlying
random-walk picture, and so it does not involve the area
under random velocity excursions, nor zero crossings in
velocity space. We will arrive at the simple equation (2)
only at the end of our work, in Sec. XI, while here it merely
serves as an appetizer to motivate the consideration of
velocity excursions in some detail and to suggest the
usefulness of developing tools for the calculation of hχ2i
and hτi (here, hχi ¼ 0, by symmetry). Obviously, Eq. (2) is
based on the assumption that the variance hχ2i is finite
and, as mentioned, that correlations are not important. The
major effort of this paper is directed at considering a more
challenging case, namely, a physically relevant stochastic
process where the variance hχ2i diverges, and more
importantly, the process exhibits correlations between χ
and τ. The particular system we investigate is a model for
diffusion of atoms in optical lattices, following the experi-
ments in Refs. [1–3] and the semiclassical theory of
Sisyphus cooling [4–6].
One type of excursion that has been thoroughly inves-

tigated is the Brownian excursion [7–9]. A Brownian
excursion is a conditioned one-dimensional Brownian
motion vðtÞ over the time interval 0 < t < τ. The motion
starts at vð0Þ ¼ ϵ (eventually, the ϵ → 0 limit is taken) and
ends at vðτÞ ¼ ϵ and is constrained not to cross the origin
v ¼ 0 in the observation time ð0; τÞ. The area under this
curve is a random quantity whose statistical properties
have been investigated by mathematicians [10–13]. More
recently, this problem was treated with a path-integral
approach and applied to the statistics of fluctuating inter-
faces [7,8,14,15], and related areas until the first passage
time have been used to describe universality of sandpile
models [16]. Here, we generalize the Brownian excursion

to a process vðtÞ described by a Langevin equation, with an
asymptotically logarithmic potential. We show how the
random area under this Langevin excursion determines the
dynamics of cold atoms. We believe that Langevin excur-
sions, or more generally, random excursions, are useful
tools in many areas of statistical physics; hence, their
investigation beyond the well-studied Brownian excursion
is worthwhile.
If vðtÞ is a Brownian motion or, as we will proceed to

show, the velocity of cold atoms in shallow lattices, the set
of points where vðtÞ ¼ 0 has nontrivial properties, as it
contains no isolated points and no interval. This is the case
since we are dealing with a continuous path with power-law
statistics of the crossing times (see details below).
Mathematicians have investigated the statistics of level-
crossings, e.g., zero-crossings, of continuous paths in great
detail. The concept of local time, introduced by P. Lévy in
the context of Brownian motion and Ito’s excursion theory
for continuous paths, is a pillar in this field (see
Refs. [17,18] and references within). Here, we use a
heuristic approach, with a modification of the original
process vðtÞ, by introducing a cutoff �ϵ: the starting point
of the particle after each zero hitting, which is taken to zero
at the end. This expediency makes it possible to use
renewal theory and continuous-time random walks
(CTRW), which are tools well studied in the physics
literature of discrete processes. In this sense, we differ
from rigorous mathematical approaches. Thus, we avoid
the problem of continuous paths, for example, the infinite
number of zero crossings, by replacing the original path
with an ϵ modified path for which the number of zero
crossings is finite (when ϵ is finite). We show that physical
quantities characterizing the entire process have a finite
ϵ → 0 limit. For example, in Eq. (2), for Langevin
dynamics of vðtÞ, both hτi and hχ2i approach zero as
ϵ → 0; their ratio K2 approaches a finite limit.
One might wonder why we wish to use excursions and

their peculiar properties to evaluate the spreading of atoms
or, more generally, other transport systems. The answer is
that it turns into a useful strategy when the friction forces
are nonlinear. In particular, we will investigate laser cool-
ing, where within the semiclassical theory, the dimension-
less friction force is [5] (see details below)

FðvÞ ¼ − v
1þ v2

: (3)

This friction force, induced by the laser fields, is linear for
small velocities FðvÞ ∼ −v, similar to the Stokes friction
law for a massive Brownian particle in water at room
temperature. However, unlike such friction, which
increases in magnitude with velocity, here, for large v,
FðvÞ ∼ −1=v → 0. Asymptotically, then, the system is
frictionless. This implies that fast particles tend to remain
fast for a long time, which in turn induces heavy-tailed
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populations of fast particles [19]. In this case, as we show
later, the standard picture of diffusion breaks down.
More specifically, the problem of diffusion of cold

atoms under Sisyphus cooling was partially treated by
Marksteiner et al. [6]. While clearly indicating the anoma-
lous nature of the diffusion process, the main tool used was
the evaluation of the stationary velocity correlation function
of the process, followed by the use of the Green-Kubo
formalism for the evaluation of K2. They showed that for a
certain critical value of the depth of the optical lattice, the
value of K2 diverges (see also Ref. [20]). Katori et al. [1]
measured the mean-square displacement hx2i ∼ t2ξ and
recorded the onset of super-diffusion ξ > 1=2 below a
critical depth of the optical lattice [1]. Wickenbrock et al.
[2], in the context of driven optical lattice experiments,
demonstrated with Monte Carlo simulations an upper limit
on the spreading of the atoms hx2i ≤ const × t3. Sagi et al.
[3] showed that a packet of spreading Rb atoms can be
fitted with a Lévy distribution instead of the Gaussian
distribution found for normal diffusion. These findings
clearly indicate the breakdown of the usual strategy of
treating normal diffusion and hence invite further theoreti-
cal investigations. The velocity correlation function is not
stationary, and hence the Green-Kubo formalism must be
replaced [21]. The moments exhibit multifractal behavior
[22]; there is an enhanced sensitivity to the initial prepa-
ration of the system [23,24]; momentum fluctuations are
described by an infinite covariant density [25]; and in
certain parameter regimes, the Lévy central-limit theorem
applies instead of the standard Gaussian version [6,26]. In
this regime of shallow optical lattices, the power of the
analysis of the area under Langevin excursions becomes
essential, as we will show here. We note that the relation
of laser cooling with Lévy statistics is not limited to the
case of Sisyphus cooling considered in this manuscript.
Subrecoil laser cooling, a setup different from ours, also
leads to fundamental relations between statistical physics of
rare events and laser-atom physics [27,28]. For a recent
mini-review on the departure from Boltzmann-Gibbs stat-
istical mechanics for cold atoms in optical lattices,
see Ref. [29].

A. Scope and organization of paper

The current work significantly extends the investigation
of the properties of the spatial distribution of atoms
undergoing Sisyphus cooling that began in Ref. [26].
There we uncovered three phases of the motion which
are controlled by the depth U0 of the optical lattice: a
Gaussian phase x ∼ t1=2, a Lévy phase x ∼ tξ and
1=2 < ξ < 3=2, and a Richardson phase x ∼ t3=2 (see
Eq. (80) below). Within the intermediate phase, the density
of particles, in the central region of the packet, is described
by a symmetric Lévy distribution, similar to the fitting
function used to analyze a recent Weizmann Institute
experiment [3]. However, this cannot be the whole story.

As is well known, the variance of the Lévy distribution
diverges, which implies that hx2i ¼ ∞, which is unphys-
ical. Indeed, as mentioned, Katori et al. experimentally
determined a finite mean-square displacement exhibiting
super-diffusion (see also Ref. [2]). We showed related
numerical evidence that the Lévy distribution is cut off at
distances of the order x ∼ t3=2. This breakdown of Lévy
statistics arises because of the importance of correlations
between jump lengths χ and jump duration τ, which are
neglected in the derivation of the Lévy distribution. Our
purpose here is to investigate these correlations in detail. As
we proceed to show, the correlations are given by the
statistical properties of the Langevin excursions discussed
above, for all except the last interval. Because the velocity
is not constrained to be zero at the measurement time t, this
last interval is not described by an excursion but rather by a
Langevin meander, where the random walk vðtÞ begins at
the origin and does not return for the entire duration of the
walk. The properties of the excursions and meanders enter
in a modified Montroll-Weiss [30] equation for the Fourier-
Laplace transform of the density Pðx; tÞ that we derive. We
then use this equation to calculate a quantity that is
sensitive to the correlations, namely, the mean-square
displacement. The mean-square displacement exhibits
anomalous diffusion and is sensitive to the last jump event,
i.e., to the statistics of the meander. Thus, our treatment
modifies both the celebrated Montroll-Weiss equation, to
include the last jump in the sequence (i.e., the meander),
and the existing theory of areas under Brownian meanders
and excursions, to include the dissipative friction force
which is responsible for the cooling of the atoms. Our
analysis illuminates the rich physical behavior and provides
the needed set of mathematical tools beyond the decoupling
approximation used to obtain the Lévy distribution in our
previous work. For completeness, we present detailed
decoupled and coupled analyses, the latter being the main
focus of the current work.
The paper is organized as follows. We start with a brief

survey of the semiclassical theory of Sisyphus cooling [5,6]
and show the connection of the dynamics to Lévy walks
following Marksteiner et al. [6]. The importance of the
correlations between τ and χ is emphasized, a theme which,
as mentioned, has not received its deserved attention. In
Sec. IV, a simple scaling theory is presented, which yields
the exponents describing the dynamics of the atomic
packet. The main calculation of the distribution of the
area under the Bessel excursion is found in Sec. V; the
calculation of the area under the Bessel meander is given in
Appendix E. A new coupled continuous-time random-walk
theory in Sec. VI provides the connection between the
statistics of excursions and meanders, and the evolution of
the density profile. Asymptotic behaviors of the Fourier-
Laplace transform of the joint probability density function
(PDF) of jump lengths and waiting times is investigated in
Sec. VII. These, in turn, give us the asymptotic behaviors of
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the atomic density packet, the mean-square displacement,
and the different phases of the dynamics that are inves-
tigated in Secs. VIII–XI. Derivation of the distribution of
the time interval straddling time t for the Bessel process is
carried out in Appendix F, which allows us to connect
between our heuristic renewal approach and more rigorous
treatments [17,31] and further discuss the nontrivial fractal
set of zero crossings.

II. SEMICLASSICAL DESCRIPTION OF COLD
ATOMS—LANGEVIN DYNAMICS

We briefly present the semiclassical picture for the
dynamics of the atoms. The trajectory of a single particle
with mass m is xðtÞ ¼ R

t
0 pðtÞdt=m, where pðtÞ is its

momentum. Within the standard picture [5,6,33] of
Sisyphus cooling, two competing mechanisms describe
the dynamics. The cooling force FðpÞ¼−ᾱp=½1þ
ðp=pcÞ2� acts to restore the momentum to the minimum
energy state p ¼ 0. Momentum diffusion is governed by a
diffusion coefficient, which is momentum dependent,
DðpÞ ¼ D1 þD2=½1þ ðp=pcÞ2�. The latter describes
momentum fluctuations that lead to heating due to random
emission events that stochastically jolt the atom. We use
dimensionless units, time t → tᾱ, momentum p → p=pc,
and distance x → xmᾱ=pc, and introduce the dimension-
less momentum diffusion constant D ¼ D1=ðpcÞ2ᾱ. For
simplicity, we set D2 ¼ 0 since it does not modify the
asymptotic jpj → ∞ behavior of the diffusive heating term,
nor that of the force, and therefore does not modify our
main conclusions.
The Langevin equations

dp
dt

¼ FðpÞ þ
ffiffiffiffiffiffiffi
2D

p
ξðtÞ; dx

dt
¼ p (4)

describe the dynamics in phase space. Here, the noise term
is Gaussian, has zero mean, and is white, hξðtÞξðt0Þi ¼
δðt − t0Þ. The now dimensionless cooling force is

FðpÞ ¼ − p
1þ p2

: (5)

The force FðpÞ is a very peculiar nonlinear friction force.
We note that friction forces that decrease with increasing
velocity or momentum like 1=p are found also for some
nanoscale devices, e.g., an atomic tip on a surface [32].
One goal of the paper is to find the spatial distribution of

particles governed by Eq. (4). The stochastic equation (4)
gives the trajectories of the standard semiclassical model
for the dynamics in an optical lattice, which in turn was
derived from microscopic considerations [5,6]. Denoting
the joint PDF of ðx; pÞ byWðx; p; tÞ, the Kramers equation
reads

∂W
∂t þ p

∂W
∂x ¼

�
D

∂2

∂p2
− ∂
∂pFðpÞ

�
W: (6)

From the semiclassical treatment of the interaction of the
atoms with the counterpropagating laser beams, we have

D ¼ cER=U0; (7)

where U0 is the depth of the optical potential, ER is the
recoil energy, and the dimensionless parameter c [34]
depends on the atomic transition involved [5,6,35]. U0 is
a control parameter; hence, different values of D are
attainable in experiment, and exploration of different
phases of the dynamics are within reach [1–3,19].
Equation (7) is rather intuitive since deep optical lattices,
i.e., large U0, imply small D, while large recoil energy
leads to a correspondingly large value of D.
The behavior of the distribution for momentum only

(when x is integrated out from the Kramers equation,
yielding the Fokker-Planck equation) is much simpler and
has been presented in previous work [25]. The equilibrium
properties are governed by the effective potential in
momentum space,

VðpÞ ¼ −
Z

p

0

FðpÞdp ¼ ð1=2Þ lnð1þ p2Þ; (8)

which for large p is logarithmic, VðpÞ ∼ lnðpÞ. This large
p behavior of VðpÞ is responsible for several unusual
equilibrium and nonequilibrium properties of the momen-
tum distribution [1,19,23,25,36]. The equilibrium momen-
tum distribution function is given by [19]

WeqðpÞ ¼
1

Z
e−VðpÞ=D ¼ 1

Z
ð1þ p2Þ−1=2D: (9)

Here,

Z¼
Z

∞

−∞
exp

�−VðpÞ
D

�
dp¼ ffiffiffi

π
p

Γ
�
1−D
2D

�
=Γ

�
1

2D

�
(10)

is the normalizing partition function. Equation (9) is
Student’s t distribution, also sometimes called a Tsallis
distribution [19]. Actually, the problem is, coincidentally,
related to Tsallis statistics since, as mentioned, the equi-
librium PDF is proportional to a Boltzmann-like factor,
WeqðpÞ ∝ exp½−VðpÞ=D�, so D acts like a temperature.
More importantly, the power-law tail of the equilibrium
PDF, for sufficiently large D, implies a large population of
fast particles, which in turn will spread in space faster than
what one would expect using naive Gaussian central-
limit theorem arguments. For example, if 1=D < 3, the
ensemble-averaged kinetic energy in equilibrium diverges
since hp2ieq ¼ ∞, while when 1=D < 1, the partition
function diverges and a steady-state equilibrium is never
reached. A dramatic increase of the energy of atoms when
the optical lattice parameter U0 approaches a critical value
was found experimentally in Ref. [1], and a power-law
momentum distribution was measured in Ref. [19]. Of
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course, the kinetic energy of a physical system cannot be
infinite, and the momentum distribution must be treated as
a time-dependent object within the infinite covariant
density approach [25]. While much is known about the
momentum distribution, both experimentally and theoreti-
cally, the experiments [1–3] demand a theory for the spatial
spreading. We note that diffusion in logarithmic potentials
has a vast number of applications (see Refs. [23–25,37–41]
and references therein), e.g., Manning condensation [42],
and unusual mathematical properties, including ergodicity
breaking [36]. In general, logarithmic potentials play a
special role in statistical physics [43–45].

III. MAPPING THE PROBLEM TO A
LéVY WALK PROCESS

In principle, one may attempt to directly solve the
Kramers equation (6) to find the joint PDF of the random
variables ðx; pÞ at a given time t. In Fig. 1, we plot a
histogram of the phase space obtained numerically. We see
a complicated structure: Roughly along the diagonal, clear
correlations between x and p are visible; on the other hand,
along the x and p axes, decoupling between momentum
and position is evident, together with broad (i.e., non-
Gaussian) distributions of x and p. At least to the naked
eye, no simple scaling structure is found in x − p space,
and hence, we shall turn to different, microscopic, variables
that do exhibit simple scaling. This leads to an analysis
centered on the mapping of the Langevin dynamics to a
Lévy walk scheme [6,46] and the statistics of areas under
random excursions.
Starting at the origin, p ¼ 0, the particle along its

stochastic path in momentum space crosses p ¼ 0 many
times (see Fig. 2). In other words, the random walk in
momentum space is recurrent; this is the case even when

D → ∞ since then the process in momentum space is one
of pure diffusion (i.e., the force is negligible), and from
Polya’s theorem, we know that such one-dimensional walks
are recurrent. The cooling force, being attractive, clearly
maintains this property.
Let τ > 0 be the random time between one crossing

event and the next, and let −∞ < χ < ∞ be the random
displacement for the corresponding τ. As shown schemati-
cally in Fig. 2, the process starting with zero momentum is
defined by a sequence of jump durations fτ1; τ2;…g,
with corresponding displacements fχ1; χ2;…g. These ran-
dom waiting times and displacements generate a Lévy
walk [6], as we explain presently. Here, χ1 ¼

R τ1
0 pðt0Þdt0,

χ2 ¼
R
τ1þτ2
τ1

pðt0Þdt0, etc. Let the points on the time axis
ft1; t2;…g denote times tn > 0 where the particle crosses
the origin of momentum p ¼ 0 (see Fig. 2). These times
are related to the waiting times: tk ¼

P
k
i¼1 τi. We see that

χk ¼
R tk
tk−1 pðt0Þdt0 is the area under the random momentum

curve constrained in such a way that pðt0Þ in the time
interval (tk−1, tk) does not cross the origin, while it started
and ended there. The total displacement, namely, the
position of the particle at time t, is a sum of the individual
displacements x ¼ P

n
i¼1 χi þ χ�. Here, n is the random

number of crossings of zero momentum in the time interval
ð0; tÞ, and χ� is the displacement made in the last interval
ðtn; tÞ. By definition, in the time interval ðtn; tÞ, no zero
crossing was recorded. The time τ� ¼ t − tn is sometimes
called the backward recurrence time [47]. The measure-
ment time is clearly t ¼ P

n
i¼1 τi þ τ�. In standard transport

problems, the effect of the last displacement χ� on the
position of particle x is negligible, and similarly, one
usually assumes t≃ tn when t is large. However, for
anomalous diffusion of cold atoms, where the distributions

max

m
ax

FIG. 1. The joint density of x and p for D ¼ 2=3, 106 particles
and t ¼ 106. This scatter plot of phase space shows correlation
between x and p and rare events with large fluctuations both for x
and p.
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FIG. 2. Schematic presentation of the momentum of the particle
versus time. The times between consecutive zero crossings are
called the waiting times τ, and the shaded area under each
excursion are the random flight displacements χ. The τ’s and the
χ’s are correlated since a long waiting time typically implies a
large displacement.
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of displacements and jump durations are wide, these last
events cannot be ignored.
One goal is to find the long-time behavior of Pðx; tÞ, the

normalized PDF of the spatial position of a particle that
started at the origin x ¼ 0, p ¼ 0 at t ¼ 0. It is physically
clear that, in the long-time limit, our results will not be
changed if instead we consider narrow initial conditions,
for example, Gaussian PDFs of initial position and momen-
tum. Initial conditions with power-law tails will likely lead
to very different behaviors [23,24]. Once we find Pðx; tÞ,
we have the semiclassical approximation for the spatial
density of particles. The latter can be compared with the
Weizmann Sisyphus cooling experiments [3], provided that
collisions among the atoms are negligible.
The Lévy walk process under investigation is a renewal

process [47] in the sense that once the particle crosses
the momentum origin, the process is renewed (since the
Langevin dynamics is Markovian). This is crucial in our
treatment, and it implies that the waiting times τi are
statistically independent, identically distributed random
variables, as are the χi. However, as we will soon discuss,
the pairs fτi; χig are correlated.
Since the underlying Langevin dynamics is continuous,

we need a refined definition of the Lévy walk process. Both
the τi’s and the χi’s are infinitesimal; however, the number
of renewal events, n, diverges for any finite measurement
time t, in such a way that the total displacement x is finite.
In this sense, the Lévy walk process under investigation is
different from previous works where the number of renew-
als, for finite measurement time, is finite. One way to treat
the problem is to discretize the dynamics, as is necessary in
any event to perform a computer simulation, and then χi
and τi are, of course, finite. In our analytical treatment,
following Marksteiner et al. [6], we consider the first
passage time problem for a particle starting with momen-
tum pi and reaching pf < pi for the first time at τ. We take
pf ¼ 0 and eventually pi ¼ ϵ → 0. The Lévy walk scheme
is hence summarized with the following steps:
1. Choose, with probability 1=2, either þpi or −pi.
2. Follow the Langevin dynamics until the particle

reaches pf ¼ 0.
3. Record the random displacement χ and random

duration τ during this excursion.
4. Go to step 1.
This loop is terminated at time t, the final displacement

χ� calculated, and as mentioned, the total displacement is
x ¼ P

n
i¼1 χi þ χ. In the first step, we have a probability of

1=2 to start with eitherþpi or−pi since the cooling force is
antisymmetric and thus vanishes at p ¼ 0. The advantage
of presenting the problem as a set of recurrent random
walks through the χ’s and τ’s instead of the direct Langevin
picture stems from the fact that we can treat, analytically,
the former Lévy walk picture.
We denote the joint PDF of the pair fχ; τg of a single

excursion by ψðχ; τÞ. The theoretical development starts

from the analysis of ψðχ; τÞ, and then from this, we use the
Lévy walk scheme to relate the single-excursion informa-
tion to the properties of the entire walk and, in particular,
Pðx; tÞ for large t.
There exists a strong correlation between the excursion

duration τ and the displacement length χ, which is encoded
in ψðχ; τÞ. Let the PDFs of χ and τ be denoted qðχÞ and
gðτÞ, respectively. Weak correlations would imply the
decoupled scheme ψðχ; τÞ≃ qðχÞgðτÞ, which is far easier
to analyze; however, as we shall see, this decoupling is
generally not true, and it leads to wrong results for at least
some observables of interest. Properties of qðχÞ and gðτÞ
were investigated in Refs. [6,35] and are also studied below.
The problem becomes more interesting and challenging
because of these correlations. As we show, they are
responsible for the finiteness of the moments of Pðx; tÞ,
in particular, the mean-square displacement hx2i, and for
the existence of a rapidly decaying tail of Pðx; tÞ. This, in
turn, is related to the Lévy flight versus Lévy walk dilemma
[46], to multifractality [22], and to the physical meaning
of the fractional diffusion equation [48] used as a fitting
tool for the Weizmann experiment [3] [see Eq. (105) and
discussion therein]. As we show below, above the critical
value D ¼ 1, the correlations can never be ignored, and
they govern the behavior of the entire packet, not only the
large x tails of Pðx; tÞ. Physically, the correlations are
obvious since long durations of flight τ involve large
momenta p, which in turn induce large displacements χ.
As an example of these correlations, we plot in Fig. 3 the
displacement jχj versus the corresponding τ obtained from
computer simulation. The figure clearly demonstrates the
correlations, and it also shows a jχj ∝ τ3=2 scaling, which
we now investigate. Note how much simpler the χ − τ
distribution is, compared to the x − p distribution in Fig. 1.
Simulations presented in Fig. 3 were performed on a
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FIG. 3. We plot the flight distance jχj versus the jump duration τ
to demonstrate the strong correlations between these two random
variables. Here, D ¼ 2=3, and the red line has a slope 3=2
reflecting the χ ∼ τ3=2 scaling discussed in the text.
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discrete lattice in momentum space, starting on the first
lattice point (see Appendix D for details).

IV. SCALING THEORY—RELATION
BETWEEN EXPONENTS

As shown by Marksteiner et al. [6] and Lutz [35], the
PDFs of the excursion durations and displacements satisfy
the asymptotic laws

gðτÞ ∼ g�τ−ð3=2þγÞ; qðχÞ ∼ q�jχj−ð4=3þβÞ; (11)

with

γ ¼ 1

2D
; β ¼ 1

3D
: (12)

In Appendixes A and B, we study these PDFs using
backward Fokker-Planck equations. In particular, we find
the amplitudes g� and q�, and the relevant moments. The
exponents β and γ are the most crucial aspects of these
PDFs. WhenD → ∞, we get γ ¼ β ¼ 0, and Eq. (11) gives
familiar limits. In the “high-temperature” limit of large D,
the cooling force is negligible, and the Langevin equation
reduces to Brownian motion in momentum space. Then,
gðτÞ ∝ τ−3=2, which is the well-known asymptotic behavior
of the PDF of first passage times for unbounded one-
dimensional Brownian motion [49,50]. Less well known is
limD→∞qðχÞ ∝ jχj−4=3, which describes the distribution of
the area under a Brownian motion until its first passage
time (see Refs. [51,52], in which this PDF is given
explicitly). Notice that the power-law behavior Eq. (11)
yields a diverging second moment of the displacement χ for
D > 1=5, which in turn gives rise to anomalous statistics
for x.
The correlations between χ and τ are now related to

the asymptotic behaviors of their PDFs, Eq. (11). We
rewrite the joint PDF

ψðχ; τÞ ¼ gðτÞpðχjτÞ; (13)

where pðχjτÞ is the conditional PDF to find the jump
length χ for a given jump duration τ. We introduce a
scaling ansatz, which is expected to be valid at large τ:

pðχjτÞ ∼ τ−ηB
�
χ

τη

�
: (14)

Since gðτÞ ¼ R
∞−∞ ψðχ; τÞdχ, we have the normalization

condition
R
∞−∞ BðzÞdz ¼ 1. By definition,

qðχÞ ¼
Z

∞

0

ψðχ; τÞdτ ∝
Z

∞

0

dττ−3=2−γ−ηB
�
χ

τη

�
: (15)

Changing variables to z ¼ χ=τη, we get

qðχÞ ∼ constχ−ð1þ 1
2ηþγ

ηÞ: (16)

Comparing with Eq. (11), we get a simple equation for
the unknown exponent η, which is 1þ 1=ð2ηÞ þ γ=η ¼
4=3þ β, so using Eq. (12), we find η ¼ 3=2. This is
precisely the scaling behavior χ ∼ τ3=2 that we observe
in our simulation, Fig. 3. Hence, the natural scaling
solution of the problem is

pðχjτÞ ∼ 1ffiffiffiffi
D

p
τ3=2

B

�
χffiffiffiffi
D

p
τ3=2

�
: (17)

In hindsight, this result is related to Brownian scaling.
For a particle free of the cooling force, its momentum
will exhibit Brownian scaling, p ∼ ðDτÞ1=2, and hence
the excursions that are integrals of the velocity scale
as χ ∼

ffiffiffiffi
D

p
τ3=2. The crucial point is that this simple

Brownian scaling is maintained even in the presence of
the cooling force for all D. This is because of the
marginal nature of the weak 1=p friction force for large
p, which leaves the Brownian scaling intact but changes
the scaling function. While the 3=2 scaling is simple and
D independent, the shape of Bð·Þ is sensitive to this
control parameter. In the next section, we investigate
Bð·Þ, and for this, we must go beyond simple scaling
arguments.

V. AREA UNDER THE BESSEL EXCURSION

A natural generalization of the Brownian excursion is a
Langevin excursion. Such a stochastic curve is the path
pðt0Þ, given by the Langevin equation, in the time interval
0 ≤ t0 ≤ τ, such that it starts and ends at pi ¼ pf ¼ ϵ but is
constrained to remain positive in between. Here, pi ¼ pð0Þ
is the initial, and pf ¼ pðτÞ is the final location in
momentum space. For our application, the path is consid-
ered in the limit ϵ → 0. Since the path never crosses the
origin, the area under such a curve is χ ¼ R

τ
0 pðt0Þdt0, and

hence the PDF of χ for fixed τ yields the sought-after
conditional PDF pðχjτÞ. Obviously, χ is the integral over
the constrained path pðt0Þ; hence, by definition, it is the
area under the excursion. The meander will describe the
last jump χ� since at the measurement time the particle’s
velocity is generally nonzero. For now, we will discuss only
excursions, find pðχjτÞ, and return to the meander later.
Here, we focus our attention on a specific excursion

we call the Bessel excursion, corresponding to the case
FðpÞ ¼ −1=p:

dp
dt

¼ −1=pþ
ffiffiffiffiffiffiffi
2D

p
ξðtÞ; (18)

so that the effective potential is the nonregularized loga-
rithm, VðpÞ ¼ lnðpÞ and p > 0. Since the scaling approach
is valid for long times, where excursions are long, the
typical momentum p is large, and the details of the force
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field close to the origin are negligible for the purpose of the
calculation of the scaling function Bð·Þ. We will check this
assumption with numerical simulations, which of course
use a regularized form of the force law. Some sample paths
of Bessel excursion are presented in Fig. 4. The name
Bessel excursion stems from the fact that Langevin
dynamics in the nonregularized friction force field 1=p
corresponds to a well-known stochastic process called
the Bessel process [41,53]. More information on the
regularized and nonregularized processes is given in
Appendixes A and B.
From symmetry, pðχjτÞ ¼ pð−χjτÞ, and so we may

restrict our discussion to pi ¼ ϵ > 0 and χ > 0. Later,
we will use this symmetry, which implies that for −∞ <
χ < ∞ we have pðχjτÞ ¼ pðjχj; τÞ=2, where pðjχj; τÞ is
the PDF of positive excursions, normalized according
to

R
∞
0 pðjχj; τÞdjχj ¼ 1.

Let Gτðχ; pjpiÞ be the joint PDF of the random variables
χ and p. Since χ ¼ R

τ
0 pðt0Þdt0, we have χ ¼ 0 at time

τ ¼ 0, so initially Gτ¼0ðχ; pjpiÞ ¼ δðp − piÞδðχÞ. Later,
we will take p to be the final momentum pf, which
similarly to pi, will be set to the value ϵ → 0 (for the sake
of notational brevity, we omit the subscript in pf). The
calculation of pðχjτÞ follows three steps. For the Brownian
case FðpÞ ¼ 0, this method was successfully applied by
Majumdar and Comtet [8].
(i) We find the Laplace χ → sD transform of

Gτðχ; pjpiÞ,
Z

∞

0

e−sDχGτðχ; pjpiÞdχ ≡ Ĝτðs; pjpiÞ: (19)

The reason why we multiply s by D in the Laplace
transform will become clear soon. Since χ is a functional
of the path pðt0Þ, we will use the Feynman-Kac (FK)

formalism to find Ĝτðs; pjpiÞ (see details below). The
constraint that the path pðt0Þ is always positive enters as an
absorbing boundary condition at p ¼ 0 [41].
(ii) The second step is to consider pi ¼ p ¼ ϵ → 0 and

obtain the Laplace transform

p̂ðsjτÞ ¼
Z

∞

0

pðχjτÞe−sDχdχ ¼ lim
ϵ→0

Ĝτðs; ϵjϵÞ
Ĝτðs; ϵjϵÞjs¼0

: (20)

The denominator in the above equation ensures the
normalization since we must have p̂ðsjτÞjs¼0 ¼ 1.
(iii) Finally, we invert Eq. (20) back to χ space using the

inverse Laplace transform, sD → χ, which yields pðχjτÞ.
From there, we can also immediately find the scaling
function Bð·Þ, Eq. (14).
We now implement these steps to solve the problem.
The FK formalism [52] treats functionals of Brownian

motion. Here, we use a modified version of the FK equation
to treat overdamped Langevin paths [54]. Let A ¼R
τ
0 U½pðt0Þ�dt0 be a functional of the Langevin path and
assume Uð·Þ > 0 so that we are treating positive func-
tionals. Here, GτðA; pjpiÞ is the joint PDF of A and p, and
Ĝτðs; pjpiÞ is the corresponding Laplace A → sD trans-
form. The generalized FK equation reads

∂Ĝτðs; pjpiÞ
∂τ ¼ ½L̂fp − sDUðpÞ�Ĝτðs; pjpiÞ: (21)

Here, L̂fp ¼ Dð∂pÞ2 − ∂pFðpÞ is the Fokker-Planck oper-
ator. When FðpÞ ¼ 0, Eq. (21) is the celebrated FK
equation, which is an imaginary-time Schrödinger
equation, and −sDUðpÞ is the potential of the correspond-
ing quantum problem. The constraint on positive excur-
sions, namely, p > 0, gives the boundary condition
Ĝτðs; 0jpiÞ ¼ 0. In the quantum language, this is an infinite
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FIG. 4. We show three typical Bessel excursions for D ¼ ∞, 2=3, 2=5 (left to right panel) and the mean (red curve). The random
excursions are constrained Langevin paths, with a−1=p force, that do not cross the origin in the observation time t and that start and end
on ϵ → 0. For simulations, we use the regularized force field, which only alters the dynamics when p≃ 1 and is negligible in the long-
time limit (see Appendix D). When D → ∞, we get a Brownian excursion. We see that as D is decreased, the excursions are further
pushed from the origin p ¼ 0 since small D effectively implies large attractive forces; hence, to avoid the zero crossing, the particles
must drift further away from the origin. Thus, the attractive force repels particles, which at first might sound counterintuitive and might
seem to be an unexplored property of excursions.
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potential barrier for p < 0. This formalism can be used, in
principle, to obtain the area under Langevin excursions for
all forms of FðpÞ.
For the Bessel excursion under investigation here, the

functional U½pðtÞ� ¼ pðtÞ is linear since χ ¼ R
τ
0 pðt0Þdt0.

Quantum mechanically, this gives a linear potential
and hence the connection to the Airy function found
for FðpÞ ¼ 0 in Refs. [7,8]. With the force field
FðpÞ ¼ −1=p, we have L̂fp ¼ Dð∂pÞ2 þ ∂pp−1, and
hence we find, using Eqs. (18), (19), and (21) (the former
gives the sD term),

∂Ĝτðs; pjpiÞ
∂τ ¼

�
D

∂2

∂p2
þ ∂
∂p

1

p
− sDp

�
Ĝτðs; pjpiÞ:

(22)

The solution of this equation is found using the separation
ansatz

Ĝτðs; pjpiÞ ¼
X∞
k¼0

akψkðpÞe−DEkτ; (23)

which yields the time-independent equation

∂2

∂p2
ψk þ

1

D
∂
∂p

ψk

p
− spψk ¼ −Ekψk: (24)

We now switch to the more familiar one-dimensional
Schrödinger equation via the similarity transformation
ϕk ¼ p1=ð2DÞψk, which gives

− ∂2

∂p2
ϕk þ

�
1

2D

�
1

2D
þ 1

�
p−2 þ sp

�
ϕk ¼ Ekϕk: (25)

This Schrödinger equation has a binding potential, which
yields discrete eigenvalues, with an effective repulsive
potential with a p−2 divergence for p → 0 and a binding
linear potential for large p provided s ≠ 0. Equation (25)
describes a three-dimensional nonrelativistic quantum par-
ticle in a linear potential [55,56], the p−2 part correspond-
ing to an angular-momentum term.
As usual, ϕkðpÞ yields a complete orthonormal basisR∞

0 ϕkðpÞϕmðpÞdp ¼ δkm, and the formal solution of the
problem is

Ĝτðs; pjpiÞ ¼
X
k

�
pi

p

�
1=ð2DÞ

ϕkðpiÞϕkðpÞe−DEkτ: (26)

We can scale out the Laplace variable s from the time-
independent problem, defining ϕkðpÞ ¼ s1=6fkðs1=3pÞ and
Ek ¼ s2=3λk. Using Eq. (25), we find

− ∂2

∂ ~p2
fk þ

�
1

2D

�
1

2D
þ 1

�
~p−2 þ ~p

�
fk ¼ λkfk; (27)

where ~p ¼ s1=3p. Notice that when D → ∞, the second
term vanishes and we get the Airy equation. For this
technical reason, we have chosen in Eq. (19) the Laplace
variable as sD not s. Also, it should be noted that the fk are
orthonormal in the variable ~p.
It follows from Eq. (27) and the absorbing boundary

condition that

fkð ~pÞ ∼ ~dk ~p1þ1=ð2DÞ; ~p → 0; (28)

with ~dk a k-dependent coefficient. The ~dk are evaluated
from solutions of Eq. (27) with the normalization conditionR∞
0 ½fkð ~pÞ�2d ~p ¼ 1. For the initial and final conditions
under investigation, pi ¼ p ¼ ϵ, we have

Ĝτðs; ϵjϵÞ ∼ sνþ2=3ϵ1þ2α
X
k

ð ~dkÞ2e−Dλks2=3τ; (29)

where the exponents ν and α will turn out to be useful,

ν ¼ 1þD
3D

; α ¼ 1þD
2D

: (30)

Note that classification of boundaries for a nonregularized
Bessel process was carried out in Ref. [41] and is discussed
here in Sec. XII. For an absorbing boundary condition, both
the sign of the probability current and the usual condition of
the vanishing of the probability on the absorbing point must
be taken into consideration [41].
According to Eq. (20), we need Ĝτðs ¼ 0; ϵjϵÞ, in order

to normalize the solution. This s ¼ 0 propagator can be
found exactly. The eigenvalue problem now reads

− ∂2

∂p2
ϕ0
k þ

�
1

2D

��
1

2D
þ 1

�
ϕ0
k

p2
¼ E0

kϕ
0
k: (31)

The superscript 0 indicates the s ¼ 0 case. Since s ¼ 0, the
linear field in Eq. (25) is now absent, so the “particle” is not
bounded; hence, one finds a continuous spectrum E0

k ¼ k2.
The wave functions consistent with the boundary condition
are

ϕ0
kðpÞ ¼ Bk

ffiffiffiffi
p

p
JαðkpÞ; (32)

where Jαð·Þ is the Bessel function of the first kind. The
second solution with J−αðkpÞ is unphysical because of the
boundary condition [41]. The normalization condition is

1 ¼ ðBkÞ2
Z

L

0

p½JαðkpÞ�2dp; (33)

where L → ∞ is the “box” size that will eventually drop
out of the calculation. Solving the integral in Eq. (33) gives
Bk ¼

ffiffiffiffiffiffiffiffiffiffiffi
πk=L

p
. For initial and final conditions pf ¼ pi ¼ ϵ,

the s ¼ 0 propagator then reads
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Ĝτðs ¼ 0; ϵjϵÞ ¼ πϵ

L

X∞
k¼0

k½JαðkϵÞ�2e−Dk2τ: (34)

Using the small z expansion of the Bessel function
JαðzÞ ∼ ðz=2Þα=Γð1þ αÞ, one finds

Ĝτðs ¼ 0; ϵjϵÞ ∼ πϵ1þ2α

L4αΓ2ð1þ αÞ
X
k

k2αþ1e−Dk2τ: (35)

Notice that replacing Jαð·Þ with J−αð·Þ leads to
Gτðs ¼ 0; ϵjϵÞ ∼ ϵ1−2α, which diverges since α > 1=2; as
mentioned, this unphysical solution is rejected because of
the absorbing boundary conditions [41]. The usual density
of states calculation follows the quantization rule of a
particle in a box extending between 0 and L, which gives
kL ¼ nπ with integer n. Hence,

P
k � � � →

R∞
0 dk L

π � � �, and
one finds, after a change of variable to x ¼ k2,

Ĝτðs ¼ 0; ϵjϵÞ ¼ ϵ2αþ1

22α½Γð1þ αÞ�2
Z

∞

0

dx
2
xαe−Dxτ

¼ ϵ2αþ1

22αΓð1þ αÞ ðDτÞ−ð1þαÞ: (36)

Inserting Eqs. (29) and (36) into Eq. (20), we find our first
main result:

p̂ðsjτÞ ¼ 22αþ1Γð1þ αÞ½sðDτÞ3=2�νþ2=3
X∞
k¼0

ð ~dkÞ2e−Dλks2=3τ:

(37)

In the limit D → ∞, we find j ~dkj → 1, and the λk’s are
the energy eigenvalues of the Airy equation, related to the
zeros of the Airy function; up to a rescaling of s, we get the
result obtained by Darling [10] and Louchard [11] for
the area under the Brownian excursion, namely, the Laplace
transform of the Airy distribution [8]. We can show that
p̂ðs ¼ 0jτÞ ¼ 1, as is expected.

It is easy to tabulate the eigenvalues λk and the
coefficients ~dk using Eq. (27) and standard, numerically
exact techniques. In Table I, we tabulate the first few slopes
~dk and eigenvalues for D ¼ 2=5. For large k, i.e., large
energy, the 1=p2 part of the potential is irrelevant, and the
eigenvalues λk converge to the eigenvalues of the Airy
problem considered previously. Similarly, we expect
limk→∞jdkj ¼ 1 for any finite D, since in the Airy problem
limit, i.e., the D → ∞ case [7,8], j ~dkj is unity for all k.
To complete the calculation, we need to perform an

inverse Laplace transform, namely, invert from sD back to
χ > 0 (and multiply the PDF by 1=2 if interested in both
positive and negative excursions). In Eq. (37), we have
terms with the structure

sνþ2=3 expð−cks2=3Þ ¼
X∞
n¼0

ð−ckÞnsνþ2ðnþ1Þ=3

n!
: (38)

Each term on the right-hand side can be inverse trans-
formed separately since the inverse Laplace transform of
ðDsÞγ is χ−γ−1=Γð−γÞ. After term-by-term transformation,
we sum the infinite series (summation over n) using Maple.
Thus, we arrive at our first destination; the conditional PDF
for χ > 0 is found in terms of generalized hypergeometric
functions

pðχjτÞ ¼ −Γð1þ αÞ
2πχ

�
4D1=3τ

ðχÞ2=3
�

αþ1X
k

½ ~dk�2
�
Γ
�
5

3
þ ν

�
sin

�
π
2þ 3ν

3

�
2F2

�
4

3
þ ν

2
;
5

6
þ ν

2
;
1

3
;
2

3
;− 4Dλ3kτ

3

27χ2

�

−D1=3λkτ

ðχÞ2=3 Γ
�
7

3
þ ν

�
sin

�
π
4þ 3ν

3

�
2F2

�
7

6
þ ν

2
;
5

3
þ ν

2
;
2

3
;
4

3
;− 4Dλ3kτ

3

27χ2

�

þ 1

2

�
D1=3λkτ

χ2=3

�
2

Γð3þ νÞ sin ðπνÞ2F2

�
2þ ν

2
;
3

2
þ ν

2
;
4

3
;
5

3
;− 4Dλ3kτ

3

27χ2

��
; (39)

where the summation is over the eigenvalues. In Fig. 5, we
plot the solution forD ¼ 2=5 andD → ∞ corresponding to
the Brownian case. Notice the χ ∼

ffiffiffiffi
D

p
τ3=2 scaling, which

proves the scaling hypothesis Eq. (17). The sum in Eq. (39)
converges quickly as long as χ is not too large, and so we
can use it to construct a plot of pðχjτÞ. For example, for
Fig. 5, only k ¼ 0;…; 4 is needed to obtain excellent
convergence. We stress that Eq. (39) gives an explicit

representation of the scaling function for 0 < χ < ∞ and
hence, by symmetry, for all χ. The scaling variable is

v3=2 ¼
χffiffiffiffi
D

p
τ3=2

; (40)

and the scaling function Bðv3=2Þ in Eq. (17) can be read
directly from Eq. (39).

TABLE I. Table of the first five eigenvalues and coefficients ~dk,
for D ¼ 2=5.

k ~dk λk

0 0.41584 3.5930
1 −0.56973 5.0753
2 0.68170 6.3754
3 −0.77287 7.5582
4 0.85117 8.6567
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A. The Bessel meander

As noted, the last zero crossing of the momentum
process pðtÞ takes place at a random time tn, and hence
at time t, the particle is unlikely to be on the origin of
momentum. Since the particle, by definition, does not cross
the origin in ðtn; tÞ, its momentum remains either positive
or negative in the backward recurrence time interval
τ� ¼ t − tn (with equal probability). This means that, in
this time interval, the motion is described by a meander
not an excursion. The area under the Brownian meander
was investigated previously [8,9,57]. For our purposes, we
need to investigate the Bessel meander. This is a Langevin
path described by Eq. (18) constrained to remain positive,
which starts at the origin but is free to end with p > 0.
More specifically, the diffusive scaling of χ� ∼ ðτ�Þ3=2 still
holds. Then, as for the pairs ðχ; τÞ, we have the conditional
PDF

pMðχ�jτ�Þ ∼D−1=2ðτ�Þ−3=2BM

�
χ�ffiffiffiffi

D
p ðτ�Þ3=2

�
: (41)

Here, the subscript M stands for a meander. The scaling
function BMð:Þ is different from Bð:Þ, though clearly both
are symmetric, with mean equal to 0 (since positive and
negative meanders and excursions are equally probable).
The calculation of BMð:Þ runs parallel to that for the
excursion and is presented in Appendix E. Soon we will
demonstrate the importance of the meander for specific
observables of interest. Having explicit information on Bð:Þ
and gðτÞ, Eq. (11) (see Appendix A for details), and the
scaling form of BMð:Þ (see Appendix E), we can now
investigate the packet Pðx; tÞ.

VI. MONTROLL-WEISS EQUATION FOR
FOURIER-LAPLACE TRANSFORM OF Pðx;tÞ
We now use tools developed in the random-walk

community [58–61] to relate the joint PDF of a single
excursion, Eqs. (13) and (14),

ψðχ; τÞ ¼ gðτÞD−1=2τ−3=2Bðχ=ðD1=2τ3=2ÞÞ; (42)

to the probability density Pðx; tÞ for the entire walk. We
find a modified Montroll-Weiss [30,48,62] type of equation
for the Fourier-Laplace transform of Pðx; tÞ,

P̂ðk; uÞ ¼
Z

∞

−∞
dxeikx

Z
∞

0

dτe−utPðx; tÞ; (43)

in terms of the Fourier-Laplace transform of ψðχ; τÞ, which
will be denoted ψ̂ðk; uÞ. One modification is that we
include here the correct treatment of the last jump.
Usually, the CTRW model [48] has as an input a single
joint PDF of jump lengths and times, while in our case, we
have essentially two such functions describing the excur-
sions [i.e. Bð:Þ] and the meander [i.e., BMð:Þ]. Generally,
Montroll-Weiss equations are the starting point for deri-
vation of fractional diffusion equations and the asymptotic
behaviors of the underlying random walks [48]. The
original work of Montroll and Weiss [30] assumed that
there were no correlations between step size χ and the
waiting time τ, corresponding to a situation called a
decoupled CTRW. The diffusion of atoms in optical lattices
corresponds to a coupled spatial-temporal random-walk
theory first considered by Scher and Lax [63] (see
Refs. [64–66] for recent developments).
We define ηsðx; tÞdtdx as the probability that the particle

crossed the momentum state p ¼ 0 for the sth time in the
time interval (t, tþ dt) and that the particle’s position was
in the interval (x, xþ dx). This probability is related to the
probability of the previous crossing according to

ηsðx; tÞ ¼
Z

∞

−∞
dχ

Z
t

0

dτ ηs−1ðx − χ; t − τÞ

×
1ffiffiffiffi
D

p
τ3=2

B

�
χffiffiffiffi
D

p
τ3=2

�
gðτÞ; (44)

where we have used Eq. (42). We change variables
according to χ ¼ v3=2D1=2τ3=2 and obtain

ηsðx; tÞ ¼
Z

∞

−∞
dv3=2

Z
∞

0

dτ ηs−1ðx − v3=2
ffiffiffiffiffiffiffiffi
Dτ3

p
; t − τÞ

× Bðv3=2ÞgðτÞ: (45)

The process is now described by a sequence of waiting
times τ1; τ2;… and the corresponding generalized velo-
cities v3=2ð1Þ; v3=2ð2Þ;…. The displacement in the sth
interval is

-2 -1 0 1 2

χ / (2Dτ3)1/2

0

0.5

1

1.5

2

(2
D

τ3 )1/
2

p(
 χ

 | 
τ 

)
Brownian Excursion
Simulation: D = ∞
Bessel Excursion
Simulation: D = 0.4

FIG. 5. The conditional probabilitypðχjτÞ is describedby theAiry
distribution whenD → ∞ and otherwise by the distribution derived
here based on the area under the Bessel process theory, Eq. (39). The
distributions describe areas under constrained Brownian (or Bessel)
excursions when the cooling force FðpÞ ¼ 0 [or FðpÞ ≠ 0].
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χs ¼ v3=2ðsÞ
ffiffiffiffi
D

p
ðτsÞ3=2: (46)

The advantage of this representation of the problem in
terms of the pair of microscopic stochastic variables τ, v3=2
(instead of the correlated pair τ; χ) is clear from Eq. (45):
We may treat v3=2 and τ as independent random variables
whose corresponding PDFs are gðτÞ and Bðv3=2Þ,
respectively. Here, τ > 0 and −∞ < v3=2 < ∞. The initial
condition x ¼ 0 at time t ¼ 0 implies η0ðx; tÞ ¼ δðxÞδðtÞ.
Then, Pðx; tÞ, the probability of finding the particle in (x,
xþ dx) at time t, is found according to

Pðx; tÞ ¼
X∞
s¼0

Z
∞

−∞
dv3=2

Z
t

0

dτ�ηs
�
x−v3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dðτ�Þ3

q
; t− τ�

�

×BMðv3=2ÞWðτ�Þ: (47)

Here, the survival probability Wðτ�Þ≡ 1 − R
τ
0 gðτ�Þdτ�

enters since the last jump event took place at t − τ� and
in the time period (t − τ�, t) the particle did not cross the
momentum origin. For the same reason, we have in Eq. (47)
BMð:Þ, not Bð:Þ, since the last time interval in the sequence
is a meander and not an excursion. The summation in
Eq. (47) is a sum over the number s of returns to the
momentum origin p ¼ 0. We note that, in this analysis, the
particle is always moving, unlike the “wait and then jump”
approach used in the original CTRW model.
As usual [48,59], we consider the problem in Laplace-

Fourier space where t → u and x → k. Using the con-
volution theorem and Eq. (45), we find

η̂sðk; uÞ ¼ η̂s−1ðk; uÞL̂½B̂ðkD1=2τ3=2ÞgðτÞ�: (48)

Here, η̂sðk; uÞ is the Fourier-Laplace transform of ηsðx; tÞ,
B̂ the Fourier transform of Bðv3=2Þ,

B̂
�
k

ffiffiffiffiffiffiffiffi
Dτ3

p �
¼

Z
∞

−∞
exp

�
ikv3=2

ffiffiffiffiffiffiffiffi
Dτ3

p �
Bðv3=2Þdv3=2;

(49)

and L̂ is the Laplace transform operator L̂½hðτÞ� ¼R∞
0 expð−uτÞhðτÞdτ. By definition, the Fourier-Laplace
transform of ψðχ; τÞ is ψ̂ðk; uÞ ¼ L̂½B̂ðk

ffiffiffiffiffiffiffiffi
Dτ3

p
ÞgðτÞ�, and

hence

η̂sðk; uÞ ¼ ψ̂ðk; uÞη̂s−1ðk; uÞ: (50)

This implies that

η̂sðk; uÞ ¼ ½ψ̂ðk; uÞ�s; (51)

reflecting the renewal property of the underlying random
walk. Summing the Fourier-Laplace transform of Eq. (47),
applying again the convolution theorem for Fourier and
Laplace transforms and using Eq. (51), we find a Montroll-
Weiss type of equation for the Fourier-Laplace transform
of Pðx; tÞ:

P̂ðk; uÞ ¼ Ψ̂Mðk; uÞ
1 − ψ̂ðk; uÞ : (52)

Here, Ψ̂Mðk; uÞ is the Fourier-Laplace transform of
D−1=2τ−3=2BMðχ=

ffiffiffiffi
D

p
τ3=2ÞWðτÞ. Equation (52) relates sta-

tistics of velocity excursions and meanders to the Fourier-
Laplace transform of the particle density. The approach is
not limited to the specific problem under investigation;
namely, the χ ∼ τ3=2 scaling is not a necessary condition for
the validity of Eq. (52). In the general case, one must revert
to ψðχ; τÞ ¼ gðτÞpðχjτÞ instead of the scaling form cap-
tured by Bð:Þ. Such an approach might be useful for other
systems where the friction is nonlinear.
At this stage, Eq. (52) still depends on ϵ since the first

passage times for going from p ¼ ϵ to the momentum
origin, p ¼ 0, distributed according to gðτÞ, are ϵ depen-
dent (see Appendix A and next section for details). In fact,
as ϵ → 0, the number of renewals (i.e., zero crossings)
tends to infinity, while in usual CTRWs, the number of
renewals (or jumps) is finite for finite observation time t. In
the next sections, we will show how the long-time results
become independent of ϵ in the limit of ϵ → 0.

VII. ASYMPTOTIC BEHAVIOR OF ψ̂ðk;uÞ
The Fourier-Laplace transform of the joint distribution of

jump times and lengths ψðχ; τÞ is

ψ̂ðk; uÞ ¼
Z

∞

−∞
dχ

Z
∞

0

dτe−uτþikχgðτÞ 1ffiffiffiffiffiffiffiffi
Dτ3

p B

�
χffiffiffiffiffiffiffiffi
Dτ3

p
�
:

(53)

In this section, we investigate the small k and small u
behaviors of ψ̂ðk; uÞ, which in the next sections will turn
out to be important in the determination of the long-time
behavior of Pðx; tÞ. The small k (u) limit corresponds to
large distance (time), as is well known [48].

A. k ¼ 0 and small u

Using thenormalizationcondition
R
∞−∞ Bðv3=2Þdv3=2 ¼ 1,

it is easy to verify that

ψðk; uÞjk¼0 ¼ ĝðuÞ; (54)

theLaplace transformof thewaiting-timePDF.Thiswaiting-
time PDF is investigated analytically in Appendix A. The
small u behavior of ĝðuÞ differs depending on thevalue ofD.
According to Eq. (11), ifD < 1, the averagewaiting time hτi
is finite and so

ĝðuÞ ∼ 1 − hτiu when D < 1: (55)

Here, hτi ¼ R
∞
0 τgðτÞdτ is given by a well-known formula

for the mean first passage time [50]:
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hτi ¼ 1

D

Z
ϵ

0

dyeVðyÞ=D
Z

∞

y
e−VðzÞ=Ddz; (56)

where VðpÞ is the effective momentum potential, Eq. (8).
Equation (56) reflects the absorbing boundary condition at
the origin and a reflecting boundary at infinity. Notice that
limϵ→0hτi ¼ 0, as is expected, and the leading-order Taylor
expansion yields

hτi ∼ Z
2D

ϵ: (57)

Here,Z is the normalizing partition function, Eq. (10). Since
Z diverges whenD → 1 from below, we see that the average
waiting time diverges in that limit.
For D > 1, the mean waiting time is infinite, and so

Eq. (55) does not hold and instead, as we show in
Appendix A,

ĝðuÞ ∼ 1 − g�jΓð−αÞjuα; 1=2 < α < 1; (58)

with

g� ¼ 2α

ð2 ffiffiffiffi
D

p Þ2αΓðαÞ ϵ: (59)

For large τ, this yields the power-law behavior in Eq. (11),
gðτÞ ∼ g�τ−ð1þαÞ, which in fact also describes the tail for
α > 1. The prefactor g� vanishes as ϵ → 0 and, importantly,
does not depend on the full shape of the effective potential
VðpÞ but rather only on the value of the dimensionless
parameter D. The case D ¼ 1 contains logarithmic correc-
tions and will not be discussed here. Using Eqs. (58) and
(59), we find nontrivial distributions of the time-interval
straddling time t, and the backward and forward recurrence
times, which were previously treated by mathematicians
without the ϵ trick. This connection between renewal
theory and the statistics of zero-crossings of the Bessel
process is discussed in Appendix F.

B. The u ¼ 0, small k limit

Similarly to Eq. (54), by definition,

ψ̂ðk; uÞju¼0 ¼ ~qðkÞ; (60)

where ~qðkÞ is the Fourier transform of the symmetric jump
length distribution qðχÞ. Alternatively, we can use Eq. (53)
with u ¼ 0, and then, upon changing variables according to
χ=ð ffiffiffiffi

D
p

τ3=2Þ ¼ v3=2 and using the normalization of the
scaling function Bðv3=2Þ, we find

ψ̂ðk; uÞju¼0 ¼ 1 −
Z

∞

0

dτ
Z

∞

−∞
dv3=2ð1 − eikv3=2

ffiffiffiffiffiffi
Dτ3

p
ÞgðτÞ

× Bðv3=2Þ: (61)

Using B̂ðkÞ, the Fourier transform of Bðv3=2Þ, Eq. (49), we
can rewrite Eq. (61) as

ψ̂ðk; uÞju¼0 ¼ 1 −
Z

∞

0

dτ½1 − B̂ðk
ffiffiffiffi
D

p
τ3=2Þ�gðτÞ: (62)

This expression is the starting point for the small k
expansion carried out in Appendix C, which gives for
ν < 2, (D > 1=5),

ψ̂ðk; uÞju¼0 ∼ 1 − g�
2

3
hjv3=2jνið−Γð−νÞÞ cos

�
νπ

2

�
j

ffiffiffiffi
D

p
kjν:

(63)

The nonanalytical character of this expansion is responsible
for the anomalous diffusion of the atom’s position. The first
term on the right-hand side is the normalization condition,
and the second, proportional to j ffiffiffiffi

D
p

kjν, is consistent with
the fat-tailed PDF of jump lengths qðχÞ ∝ jχj−ð1þνÞ,
Eq. (11), namely, an excursion length whose variance
diverges since ν < 2. As expected, this behavior is in full
agreement with Eq. (11) since 4=3þ β ¼ 1þ ν. In
Eq. (63), we see the noninteger moment of the scaling
function Bð:Þ,

hjv3=2jνi ¼
Z

∞

−∞
jv3=2jνBðv3=2Þdv3=2: (64)

Given the formidable structure of the scaling function
Bðv3=2Þ, we do not describe here [67] the direct method
to obtain noninteger moments like Eq. (64). Instead, we
present a method that gives hjv3=2jνi indirectly. In a future
publication [67], we will discuss this and other moments
of Bðv3=2Þ.
We can use Eq. (60) together with qðχÞ ∼ q�jχj−ð1þνÞ to

find, in Fourier space,

~qðkÞ ∼ 1 − πq�jkjν
sinðπν

2
ÞΓð1þ νÞ (65)

for ν < 2. In Appendix B, we investigate the area under a
Bessel excursion regularized at the origin using a backward
Fokker-Planck equation [6], which gives the amplitude of
jump lengths

q� ∼ ϵ
ν

32ν−1
ð3ν − 1Þν
2ΓðνÞ : (66)

Comparing with Eq. (63), we arrive at the following simple
relation:

hjv3=2jνi ¼ lim
ϵ→0

3q�
Dν=2g�

: (67)

Thus, we may use Eqs. (59) and (66) to find the desired νth
moment of the scaling function Bð:Þ,
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hjv3=2jνi ¼
22α−1
32ν−1

ΓðαÞ
ΓðνÞ : (68)

In the limit D → ∞, we have ν ¼ 1=3, and then

lim
D→∞

hjv3=2jνi ¼
ffiffiffi
π

p
34=3

2Γð1=3Þ≃ 1.431: (69)

We see that while the amplitudes g� and q� vanish as the
convenient theoretical tool ϵ → 0, hjv3=2jνi is independent
of it in the limit, indicating the usefulness of this variable.

C. The second moment hðv3=2Þ2i
As we show below, the second moment hðv3=2Þ2i

determines the mean-square displacement of the particles.
The mean vanishes since, in the underlying random walk,
positive and negative excursions are equally likely. As
for the νth moment, hjv3=2jνi, the extraction of integer
moments from the exact solution is not straightforward. In
the regime 1=5 < D < ∞, an excellent approximation is

hðv3=2Þ2i≃ 5

6
þ 83

270D
: (70)

Similarly, for the meander, we find

hðv3=2Þ2iM ≃ 1

3D
þ 59

30
: (71)

This and Eq. (70) agree with known results in the Brownian
limit D → ∞ [8] (units and notations used in Ref. [8] are
not used by us). In Fig. 6, we show that hðv3=2Þ2i and
hðv3=2Þ2iM nicely match their linear approximations [67].

VIII. THE LÉVY PHASE

We now explain why Lévy statistics, and hence the
generalized central-limit theorem, describes the central
part of the diffusion profile Pðx; tÞ at long times for
1=5 < D < 1. The Lévy profile is cut off in the tails of
the distribution because of the correlations between jump
length and time investigated here. We focus on the Lévy
phase first because it has been reported experimentally [3].
The key idea is that in the regime D < 1, hτi is finite,

and hence the number of jumps n scales with t=hτi when t
is large [47]. At the same time, the jump length PDF still
does not have a variance (since 1=5 < D), which means
that the usual Gaussian central-limit theorem does not
hold. Instead, because of the power-law distribution
qðχÞ ∝ jχj−ð1þνÞ, the process belongs to the domain of
attraction of a Lévy stable law. As long as x is not too large,
the correlations are not important. However, when x ∝ t3=2,
the simple Lévy picture breaks down since clearly we
cannot perform a jump larger than the order of t3=2. Thus,
for 1=5 < D < 1 and t−3=2 ≪ k ≪ 1, we can approximate

ψ̂ðk; uÞ≃ 1 − uhτi þ c0q�jkjν…; (72)

where we have used Eqs. (55) and (65). Here, from Eq. (65)
c0 ¼ π=½sinðπν=2ÞΓð1þ νÞ�. Equation (72) corresponds to
a decoupling scheme, ψ̂ðk; uÞ≃ ĝðuÞ ~qðkÞ, which, accord-
ing to arguments in Ref. [60], is exact in the long-time limit
in the regime under investigation. Notice that 1=5 < D < 1
gives 2=3 < ν < 2.
Using the Montroll-Weiss-type equation (52) and

~ΨMðk; uÞ ∼ hτi, which is easy to prove, we find the
Fourier-Laplace representation of the solution,

P̂ðk; uÞ ∼ hτi
uhτi þ c0q�jkjν

: (73)

As mentioned, both hτi and q� vanish as ϵ approaches zero.
Rearranging, we have

P̂ðk; uÞ ∼ 1

uþ Kνjkjν
; (74)

where

Kν ¼ lim
ϵ→0

c0q�
hτi ; (75)

and from Eqs. (57) and (66) [26],

Kν ¼ lim
ϵ→0

c0q�
hτi ¼ 1

Z
π

sinðπν
2
Þ
ð3ν − 1Þν−1
32ν−1jΓðνÞj2 : (76)

Kν is called the anomalous diffusion coefficient. When
returning to physical units, we get
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FIG. 6. The variance of the area under the Bessel excursion
and meander, hðv3=2Þ2i and hðv3=2Þ2iM, versus 1=D. The exact
solution for the excursion [67] is well approximated by Eq. (70)
and the simulation for the meander with Eq. (71) (averages over
2 × 105 particles and τ ¼ 105).
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~Kν ¼
pν
c

mνᾱν−1
Kν; (77)

which has units cmν= sec. An equivalent expression is
Kν ¼ c0hjv3=2jνiDν=2limϵ→0g�=3hτi. P̂ðk; uÞ as given in
Eq. (74) is, in fact, precisely the symmetric Lévy PDF
in Laplace-Fourier space, whose ðx; tÞ presentation [see
Eq. (B17) of [62]] is

Pðx; tÞ ∼ 1

ðKνtÞ1=ν
Lν;0

�
x

ðKνtÞ1=ν
�

(78)

for 2=3 < ν < 2. The properties of the Lévy function
Lν;0ð:Þ are well known. The Fourier transform of this
solution is expð−KνtjkjνÞ for 2=3 < ν < 2, which can
serve as the working definition of the solution via the
inverse Fourier transform.
Figure 7 shows excellent agreement between simulations

and the theory. It also illustrates the cutoff on Lévy
statistics, which is found at distances x ∝ t3=2. Beyond
this length scale, the density falls off rapidly. This, as noted
above, is the result of the correlation between χ and τ, as
there is essentially no weight associated with paths whose
displacement is greater than the order of t3=2.
This cutoff ensures the finiteness of the mean-square

displacement (see Fig. 8). Using the power-law tail of the
Lévy PDF LνðxÞ ∝ x−ð1þνÞ and the time scaling of the
cutoff, we get

hx2i≃
Z

t3=2

t−ð1=νÞðx=t1=νÞ−ð1þνÞx2dx ∝ t4−3ν=2 (79)

for 2=3 < ν < 2 (1=5 < D < 1). If we were to rely only on
the Lévy PDF, Eq. (78), we would get hx2i ¼ ∞. Thus, the
Lévy PDF solution must be treated with care, realizing its
limitations in the statistical description of the moments of

the distribution and its tails. As we soon show, if ν > 2, we
get normal diffusion hx2i ∝ t, while for ν < 2=3, we have
hx2i ∝ t3. This last behavior is due to the correlations,
which restrict jumps longer than t3=2. So, we have three
phases of motion [26]:

hx2i ∝
8<
:

t 2 < ν Normal

t4−3ν=2 2=3 < ν < 2 Lévy

t3 1=3 < ν < 2=3 Obukhov-Richardson.

(80)

These simple scaling arguments for the mean-square
displacement can be derived from a more rigorous first-
principle approach, to which we will turn in Sec. IX.

A. The diffusion exponent

Wickenbrock et al. [2] investigated the additional
effect of a high-frequency (HF) oscillating force FHF ¼
AHF sin ðωHFtþ ϕ0Þ on the dynamics of the atoms, where
the frequency ωHF is much larger than other frequencies in
the system. According to Ref. [2], in the limit of a strong
drive, the depth of the optical lattice potential is renormal-
ized, U0 → U0jJ0ð2krÞj, where J0ð:Þ is the Bessel function
of the first kind, r ¼ AHF=ðmω2

HFÞ, and k is the laser-field
wave vector. This elegant setup allows the control of the
transport via the renormalization of the optical depth U0

and, according to Eq. (7), the control of the dimensionless
parameterD. For example, in the vicinity of the zeros of the
Bessel function J0, we clearly find an effective shallow
lattice, which, according to the theory, corresponds to the
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FIG. 7. ðKνtÞ1=νPðx; tÞ versus x=ðKνtÞ1=ν for ν ¼ 7=6
(D ¼ 2=5). The Lévy PDF, Eq. (78), with Kν, Eq. (76), perfectly
matches simulations without fitting. Notice the cutoff for large x,
which is due to the coupling between jump lengths and waiting
times, making x > t3=2 unphysical.
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FIG. 8. Simulations and theory for the mean-square displace-
ment versus time nicely match without fitting. The D > 1
Obukhov phase yields hx2i ∝ t3 scaling; hence, for D ¼ 15, 5,
3 the curves are parallel. In the Lévy phase 1=5 < D < 1,
diffusion is anomalous with an exponent that is D and hence
U0 dependent. For D ¼ 0.3, we see relatively large fluctuations,
possibly due to the nearby transition to the Gaussian phase. Here,
we use a Langevin simulation, with a time step dt ¼ 0.1, and
average over 105 particles. Theoretical lines are based on
Eqs. (89) and (93) and the excursion and meander areal variance,
Eqs. (70) and (71).
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Richardson phase. In the experiment [2], resonances in the
transport are observed close to the zeros of the Bessel
functions, namely, an enhanced spreading of the atoms.
However, as pointed out in Ref. [2], many superdiffusing
atoms are lost, which leads to an underestimate of the
diffusion exponent. In Ref. [2], the diffusion exponent was
found using Monte Carlo simulation (see Fig. 1 of that
reference). To demonstrate the predictive power of our
theory, at least for exponents, we compare between theory
and the numerics [2]. As mentioned in our summary, we
postpone a comparison of experiments to theory until the
losses become insignificant.
From Eq. (80) and within the Lévy phase, we find

superdiffusion and hx2i ∝ t2ξ with 2ξ ¼ 4 − 3ν=2 ¼
7=2 − 1=ð2DÞ for 1=5 < D < 1 so 1 < 2ξ < 3. ForD > 1,
we find hx2i ∝ t3, so 2ξ ¼ 3 and normal diffusion with
2ξ ¼ 1 when D < 1=5. With a renormalized Eq. (7),
D ¼ cER=½U0jJ0ð2krÞj�, we present in Fig. 9 the mean-
square displacement exponent versus the control parameter
kr, with nice agreement between theory and simulations.

IX. THE MEAN-SQUARE DISPLACEMENT

Here, we present the calculation of the mean-square
displacement of the atoms using the Montroll-Weiss
equation. Our aim, as declared in the Introduction, is to
unravel the quantitative connections between the transport
and the statistics of excursions, for example, the relation
between the mean-square displacement and moments of the
area under the Bessel excursion and meander. Such
relations are expected to be general beyond the model
under investigation. A different strategy for the calculation

can be based on a super-aging velocity-velocity correlation
function approach [21,36].
To derive Eq. (78), we assumed in Eq. (74) that u and

Kνjkjν are of the same order of magnitude. We now
consider a different small k, u limit of P̂ðk; uÞ. We first
expand the numerator and denominator of P̂ðk; uÞ in the
small parameter k to second order. We leave u fixed and
find

P̂ðk; uÞ ∼ 1

u

1 − 1
2
Dhðv3=2Þ2iMf̂1ðuÞk2

1þ 1
2
Dhðv3=2Þ2if̂2ðuÞk2

: (81)

This second-order expansion contains the second-order
moment of the scaling function hðv3=2Þ2i ¼

R∞−∞ðv3=2Þ2
Bðv3=2Þdv3=2 and similarly for hðv3=2Þ2iM. Thus, the
numerator (denominator) in Eq. (81) contains a term
describing the meander (excursions) contribution. Hence,
from symmetry hv3=2i ¼ 0, the expansion does not contain
linear terms. Here,

f̂1ðuÞ ¼ − 1

ŴðuÞ
d3

du3
ŴðuÞ; (82)

where ŴðuÞ ¼ ½1 − ĝðuÞ�=u is the Laplace transform of
the survival probability WðτÞ and

f̂2ðuÞ ¼ −
d3

du3 ĝðuÞ
1 − ĝðuÞ : (83)

The third-order derivative with respect to u is clearly
related to the χ ∝ τ3=2 scaling we have found and to the
second-order expansion. While the k2 expansion in
Eq. (81) works fine for small k and finite u, when
u → 0 we get divergences. For example, when α < 1
we have ĝðuÞ ∼ 1 −Guα þ � � �, and hence the third-order
derivative of ĝðuÞ diverges as u−3 as u → 0. For
1 < α < 3, f̂2ðuÞ diverges as uα−4 and for α > 3, f̂2ðuÞ
diverges as u−1. This change in scaling behavior at α ¼ 3,
as we shall presently see, marks the transition from
anomalous diffusion to normal, consistent with what
we found in the previous section since α ¼ 3 gives D ¼
1=5 and hence ν ¼ 2. Of course, the k2 behavior in
Eq. (81) is very different from the nonanalytical jkjν
found in Eq. (63). This indicates that the order of taking
the limits k → 0 and u → 0 is noncommuting [59].
The Laplace transform of the mean-square displacement

of the atoms is given by

hx̂2ðuÞi ¼ − d2P̂ðk; uÞ
dk2

����
k¼0

: (84)

Hence, for particles starting on the origin, one can easily
see that
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FIG. 9. The anomalous diffusion exponent hx2i ∼ t2ξ versus the
high-frequency control parameter kr defined in the text. The
triangles and diamonds are simulation results from Fig. 1 in
Ref. [2] with U0 ¼ 200Er (with varying photon scattering rate;
see details in Ref. [2]). The curve is the theory, Eqs. (7) and (80),
with a renormalized U0 as explained in the text with c ¼ 34.7.
The transition between normal 2ξ ¼ 1, Lévy 1 < 2ξ < 3, and
Richardson 2ξ ¼ 3 behaviors is clearly visible, and as shown by
Wickenbrock et al., it is controlled by the high-frequency field.
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hx̂2ðuÞi ¼ lim
ϵ→0

D
u
½hðv3=2Þ2iMf̂1ðuÞ þ hðv3=2Þ2if̂2ðuÞ�:

(85)

The second moment is finite because of the observed fast
decay of the scaling function Bðv3=2Þ for v3=2 ≫ 1, ensur-
ing that hðv3=2Þ2i and hðv3=2Þ2iM are both finite.

A. Obukhov-Richardson diffusion

When α < 1 (D > 1), we have ĝðuÞ ∼ 1 −Guα þ � � �,
where G ¼ g�jΓð−αÞj. Using Eqs. (82) and (83), f̂1ðuÞ ∼
c1u−3 and f̂2 ∼ c2u−3 for small u with

c1 ¼ ð1 − αÞð2 − αÞð3 − αÞ;
c2 ¼ αð1 − αÞð2 − αÞ: (86)

The small k, u expansion of P̂ðk; uÞ, Eq. (81), is

P̂ðk; uÞ ∼ 1

u

1 − 1
2
Dhðv3=2Þ2iMc1u−3k2

1þ 1
2
Dhðv3=2Þ2ic2u−3k2

; (87)

which is g� and ϵ independent. The mean-square displace-
ment in the small u limit is

hx̂2ðuÞi ∼D½c1hðv3=2Þ2iM þ c2hðv3=2Þ2i�u−4: (88)

Converting to the time domain,

hx2ðtÞi ∼ ½c1hðv3=2Þ2iM þ c2hðv3=2Þ2i�
Dt3

6
: (89)

The scaling x2 ∝ t3 in this α < 1 regime is similar to
Richardson’s observations concerning the relative diffusion
of a pair of particles in turbulence (see discussion below).
We see that in this regime, both the meander and the
excursion contribute to the computation of the mean-square
displacement. The theory agrees with the finite time
simulations presented in Fig. 10, where we see that
hx2i=t3 approaches zero as D → 1 in the long-time limit.
We can verify Eq. (89) in the limit of large D, where

the friction force is negligible. In that case, Eq. (4) with
FðpÞ ¼ 0 easily gives hx2i ¼ 2Dt3=3. On the other
hand, we have, for Brownian excursions and meanders,
hðv3=2Þ2i ¼ 5=6 and hðv3=2Þ2iM ¼ 59=30, Eqs. (70) and
(71) [8]. Using limD→∞α ¼ 1=2, we have, in this limit,
c1 ¼ 15=8 and c2 ¼ 3=8. Plugging these numbers into
Eq. (89), we get hx2i ¼ 2Dt3=3, as is expected. This simple
demonstration implies that it is essential to treat the last
jump event properly (as a meander), and previous CTRW
approaches relying on a unique jump length distribution
lead to wrong conclusions [i.e., replacing hðv3=2Þ2iM with
hðv3=2Þ2i is wrong]. Furthermore, in this limit, the con-
tribution of the meander is numerically larger than the
contribution of the excursions, even though the number of

excursions is large. Notice, however, that for the calculation
of the Lévy density Pðx; tÞ, Eq. (78), the statistics of the
meander do not enter. Hence, depending on the observable
of interest, and the value of D, the meander may be either a
relevant part of the theory or not.

B. Superdiffusion

For 1 < α < 2 (1=3 < D < 1), we use the expansion

ĝðuÞ ¼ 1 − uhτi þ Guα þ � � � : (90)

Here, the first moment of the waiting time is finite,
while the second moment diverges. Crucially, both hτi and
G ¼ jg�Γð−αÞj vanish as ϵ → 0. For this parameter regime,
we have found Lévy behavior for the central part of
Pðx; tÞ. Using Eq. (85), we find

hx̂2ðuÞi ∼Dlim
ϵ→0

½jc1jhðv3=2Þ2iM þ jc2jhðv3=2Þ2i�
G
hτi u

α−5:

(91)

Using Eqs. (57) and (59),

lim
ϵ→0

G
hτi ¼

2D
Z

2α

ð2 ffiffiffiffi
D

p Þ2α
jΓð−αÞj
ΓðαÞ : (92)

Inverting Eq. (91) to the time domain and inserting
D ¼ ð2α − 1Þ−1 gives

hx2ðtÞi∼α41−αjΓð−αÞj½jc1jhðv3=2Þ2iM þjc2jhðv3=2Þ2i�
Zð2α− 1Þ2−αΓð5−αÞΓðαÞ t4−α:

(93)
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FIG. 10. Scaled mean-square displacement (filled circles) for
the Richardson-Obukhov phase. Simulations and theory (solid
line) nicely match without fitting. Close to the transition to the
Lévy phase, i.e., D → 1, the finite time simulations slowly
converge to the asymptotic limit, as might be expected. In the
simulations, we used t ¼ 105 and averaged over 105 particles.
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The same result is valid for 2 < α < 3. This behavior
depends on the normalizing partition function Z;
namely, the shape of the potential VðpÞ in the vicinity
of the momentum origin becomes important, unlike the
Richardson-Obukhov phase, where only the large p behav-
ior of VðpÞ is important in the long-time limit [i.e., the case
α < 1, Eq. (89)]. Notice that jc1j in Eq. (93) tends to zero
when α → 3 from below. This means that the meander
becomes irrelevant when we approach the normal diffusion
phase x2 ∼ t. Figure 11 compares simulation and theory
and demonstrates that hx2i=t4−α diverges as the transition to
the Gaussian phase D < 1=5 is approached.

C. Breakdown of scaling
assumption—normal diffusion

Our starting point was the scaling hypothesis χ2 ∼ τ3,
Eq. (14) and Fig. 3. Indeed, we have shown that for large χ
and τ, the scaling function Bð:Þ describes the conditional
probability density pðχjτÞ for all values ofD. However, this
does not imply that the scaling solution Bð:Þ is always
relevant for the calculation of the particle density Pðx; tÞ.
Roughly speaking, so far we have assumed that large jumps
χ and long waiting times τ dominate the underlying
process. No one guarantees, however, that this large χ
limit (long jumps) is important while small χ (small jumps)
can be neglected. Indeed, when we switch over to the
normal diffusion phaseD < 1=5, the small-scale aspects of
the process become important [meaning that the regulari-
zation of the potential VðpÞ when p → 0 becomes crucial].
This is similar to the Lévy versus Gaussian central-limit
theorem arguments, where the former is controlled by the
tails of the distribution while the latter is controlled by the
variance. Let us see this breakdown of scaling in more
detail.

When α > 3, we have the expansion ĝðuÞ ∼ 1 − uhτiþ
u2hτ2i=2 − u3hτ3i=6þ � � �, where the first three integer
moments of the waiting-time PDF are finite (see
Appendix A). Then, the function f̂1ðuÞ is negligible when
u → 0, while f̂2ðuÞ ∼ hτ3i=uhτi. We find

hx2i ∼Dhðv3=2Þ2ilim
ϵ→0

hτ3i
hτi t: (94)

Thus, as stated above, α ¼ 3 (or D ¼ 1=5) marks the
transition between the anomalous superdiffusive phase and
the normal diffusion phase. Furthermore, in this case, the
meander is of no importance.
However, Eq. (94) is correct only if our assumptions

about scaling are valid. By definition,

hχ2i ¼
Z

∞

0

Z
∞

−∞
ψðχ; τÞχ2dχdτ; (95)

and if the scaling hypothesis holds,

hχ2i ¼
Z

∞

0

Z
∞

−∞
gðτÞBðχ=

ffiffiffiffi
D

p
τ3=2Þffiffiffiffi

D
p

τ3=2
χ2dχdτ; (96)

which gives

hχ2i ¼ Dhðv3=2Þ2ihτ3i: (97)

Inserting Eq. (97) into (94), we get the expected result
discussed in the Introduction,

hx2i ∼ lim
ϵ→0

hχ2i
hτi t: (98)

This simple result is the correct one, even though the
scaling assumption is not valid in this regime. Sometimes
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FIG. 11. Scaled mean-square displacement in the Lévy phase.
In the simulations (filled circles), we used t ¼ 105 and averaged
over 105 particles; to reduce fluctuations in the vicinity of the
transition to the Gaussian phase, we averaged over trajectory
times in the range 103–105 (last two points). The solid line is the
prediction of Eq. (93).

FIG. 12. We show 2Dlimϵ→0hðv3=2Þ2i=hτ3i − 1 versus 1=D,
which is zero if scaling holds, and D < 1=5. We see that scaling
holds only when D → 1=5, which marks the transition from
normal to the Lévy type of diffusion. For D > 1=5, scaling holds
since then hχ2i and hτ3i diverge.
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we reach truthful conclusions, even though the assumptions
along the way are invalid. To see the breakdown of scaling,
we plot, in Fig. 12, Ydev¼ limϵ→0hχ2i=½Dhðv3=2Þ2ihτ3i�−1
versus 1=D, which should be zero in the normal phase if
the scaling hypothesis holds (where hχ2i and hτ3i are
finite). The calculations of hχ2i and hτ3i are given in
Appendixes A and B. We see that at the transition point,
D ¼ 1=5, Ydev ¼ 0, but otherwise Ydev ≠ 0. Hence, the
scaling hypothesis does not work in the normal phase
D < 1=5. This means we need another approach for normal
diffusion, which, luckily, is easy to handle. For D > 1=5,
long jumps dominate since hχ2i diverges, and then our
scaling theory works fine.

X. THE RICHARDSON-OBUKHOV PHASE

In Sec. VIII, we discussed the Lévy phase that is found
for 1=5 < D < 1. When the average jump duration hτi
diverges, i.e., for D > 1, the dynamics of Pðx; tÞ enters a
new phase. Since the index of the Lévy PDF ν approaches
2=3 as D approaches 1, x scales like t3=2 in the limit.
Because of the correlations between χ and τ, x cannot grow
faster than this, so in this regime, Pðx; tÞ ∼ t−3=2hðx=t3=2Þ.
An example for this behavior is presented in Fig. 13.
This scaling is that of free diffusion; namely, momentum
scales like p ∼ t1=2, and hence the time integral over the
momentum scales like x ∼ t3=2. Indeed, in the absence of
the logarithmic potential, namely, in the limit D ≫ 1, the
Langevin equations (4) give

Pðx; tÞ ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

3

4πDt3

r
exp

�
− 3x2

4Dt3

�
: (99)

This limit describes the Obukhov model for a tracer particle
in turbulent flow, where the velocity follows simple
Brownian motion [68,69]. These scalings are related to

Kolmogorov’s theory of 1941 [see Eq. (3) in Ref. [69]] and
to Richardson’s diffusion, hx2i ∼ t3 [70]. Equation (99) is
valid when the optical potential depth is small since
D → ∞ when U0 → 0. This limit should be taken with
care, as the observation time must be made large before
considering the limit of weak potential. In the opposite
scenario,U0 → 0 before t → ∞, we expect ballistic motion
jxj ∼ t since in this case the optical lattice has not had time
to make itself felt [3]. Physically, the atoms in this phase
perform a random walk in momentum space due to random
emission events, which in turn give the x ∼ t3=2 scaling. For
shallow lattices, the Sisyphus cooling mechanism breaks
down, in the sense that transitions from maximum to
minimum of the potential field created by the laser fields
are not preferred over the inverse transitions. Thus,
the deterministic dissipation is not effective, and
we are left with Brownian scaling in momentum
space, p ∼ t1=2.

XI. THE NORMAL PHASE

When the variance of the jump length is finite, namely,
ν > 2 ðD < 1=5Þ, we get normal diffusion. Here, the
variance of jump lengths is finite, and hence the scale-free
dynamics breaks down. The breakdown of scaling means
that instead of using the scaling function Bð:Þ, e.g., in
Eq. (42) for ψðχ; τÞ, we must use the joint PDF ψðχ; τÞ ¼
gðτÞpðχjτÞ, Eq. (13), and, in principle, not limit ourselves
to large τ. However, luckily there is no need for a new
calculation.
We focus on the central part of the density Pðx; tÞ, where

central-limit theorem arguments hold. In this normal case,
the spatiotemporal distribution of jump times and jump
lengths effectively decouples, similar to the Lévy phase.
Since the variance of jump size and the averaged time for
jumps are finite, many small jumps contribute to the total
displacement, and hence in the long-time limit, we expect
Gaussian behavior with no correlations between jump
lengths and waiting times; i.e., the decoupling approxima-
tion is expected to work. More precisely, the average
waiting time is finite, so ĝðuÞ ∼ 1 − hτiuþ � � �; the vari-
ance of jump lengths is also finite, so the Fourier transform
of qðχÞ has the following small k expansion: ~qðkÞ ¼
1 − hχ2ik2=2þ � � �, where hχ2i ¼ R

∞−∞ χ2qðχÞdχ is the
variance of the jump lengths. This variance is investigated
in Appendix B using a backward Fokker-Planck
equation. In the small k, u limit, ψ̂ðk; uÞ ∼ 1 − uhτiþ
k2hχ2i=2þ � � �, and the Montroll-Weiss equation (52) is

P̂ðk; uÞ ∼ 1

uþ K2k2
: (100)

This is the expected Gaussian behavior for the position
probability density
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FIG. 13. Pðx; tÞ versus x=t3=2 obtained from numerical simu-
lation for D ¼ 20=3. Increasing time, the solution converges to a
scaling function. Such a x ∼ t3=2 Richardson-Obukhov scaling is
found for D > 1.
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Pðx; tÞ ∼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
4πK2t

p exp

�
− x2

4K2t

�
; (101)

and

K2 ¼ lim
ϵ→0

hχ2i
2hτi (102)

is the diffusion constant, namely,

hx2ðtÞi ∼ 2K2t: (103)

Equation (102) relates the statistics of the excursions,
i.e., the variance of the area under the excursion hχ2i
and its average duration hτi to the diffusion constant (here,
hχi ¼ 0). As noted in the Introduction, the equation has
the structure of the famous Einstein relation, relating the
variance of jump size and the time between jumps to the
diffusion.
While hτi [Eq. (57)] and hχ2i [Eq. (B22)] approach zero

when ϵ → 0, their ratio remains finite and gives

K2 ¼
1

DZ

Z
∞

−∞
dpeVðpÞ=D

�Z
∞

p
dp0e−Vðp0Þ=Dp0

�
2

: (104)

This equation was derived previously using different
approaches [20,36]. The diffusion constant K2 diverges as
D → 1=5 from below, indicating the transition to the super-
diffusive phase.A sharp increase in the diffusion constantK2

as the intensity of the laser reaches a critical value was
demonstrated experimentally [20]. Equation (104) can be
derived using the Green-Kubo formalism [6], so in the
normal phase, the analysis of the statistics of excursions
is an alternative to the usual methods. It seems that in the
Lévy phase, the analysis of statistics of excursions is vital.
Specifically, the usual Green-Kubo formalism breaks down
since K2 is infinite, and the calculation of the anomalous
diffusion coefficientKν cannot be based on the computation
of a stationary velocity correlation function.

XII. DISCUSSION

Starting with the Langevin description of the semi-
classical motion of atoms undergoing a Sisyphus cooling
process, we mapped the problem onto a random-walk
scheme using excursions as a tool. Thus, our work
combines ideas from the theory of stochastic processes
with cold atom physics. We now summarize the key
ingredients of our results and their predictions from the
point of view of these two communities.

A. Fractional diffusion equation
and CTRW theory revisited

The first ingredient of the theory was the calculation of
the coupled joint distribution ψðχ; τÞ. Rather generally, the

coupled joint distribution of waiting-time and jump length
is the microscopic ingredient for a coupled continuous-time
random walk [48,58–63]. These distributions, however, are
difficult to obtain from first-principle calculations and are
usually treated in a simplified manner. For example,
postulating ψðχ; τÞ ¼ gðτÞδðjχj − τÞ=2 is common in sto-
chastic theories. Hence, we provide an important pillar for
the foundation of this widely applied approach.
Our work gives the relation between velocity excursions

and random-walk theory and hence diffusion phenomena.
Since zero crossing in velocity space is obviously a very
general feature of physical paths of random processes, we
expect that the areal distributions of excursions and
meanders will play an important role in other systems,
at least as a tool for the calculation of transport and
diffusion (e.g., in principle, our approach can also treat
the case of a constant applied force, where a mean net flow
is induced). The celebrated Montroll-Weiss equation needs
two important modifications. First, since the underlying
process is continuous, we regularized the process, such that
the excursions and meander start at ϵ → 0. Second, the
statistics of the last jump event, i.e., the meander, must be
treated with care. In contrast, usually it is assumed that only
ψðχ; τÞ is needed for a microscopical description of a
continuous-time random-walk model. This and the corre-
lations between χ and τ make the problem challenging, and
usual approaches to diffusion fail. With our approach, the
behavior of the packet is mapped onto a problem of the
calculation of areas under Bessel excursions and meanders.
For example, we derived the relation between the mean-
square displacement of the atoms and the areas under both
the Bessel excursion and meander, Eqs. (85), (89), and (93).
A decoupled scheme that neglects the correlations
ψðχ; τÞ≃ gðτÞqðχÞ gives a diverging result for ν < 2,
which is unphysical.
In the regime 1=5 < D < 1, which we have called the

Lévy regime, the correlations between jump lengths and
waiting times point to the limitations of the fractional
diffusion equation, a popular framework based on frac-
tional calculus [48]. The fractional diffusion equation was
previously investigated in the context of random-walk
theory, and it describes a Lévy flight process [48]. Here,
we have provided a microscopic justification for it. The
fractional diffusion equation [48,71,72]

∂β

∂tβ Pðx; tÞ ¼ Kν∇νPðx; tÞ (105)

was the phenomenological starting point for the description
of the experiments in the work of Sagi et al. [3]. Our work
(see also Ref. [26]) provides the exponent ν, Eqs. (7) and
(30), in terms of the recoil energy and lattice depth, β ¼ 1,
and the anomalous diffusion coefficient Kν from Eq. (76).
Indeed, the experiment [3] found the value β ¼ 1, so the
time derivative on the left-hand side is a first-order time
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derivative. The fractional space derivative ∇ν is a Weyl-
Reitz fractional derivative [48]. To see the connection
between our results and the fractional equation, we reex-
press Eq. (74) as

uP̂ðk; uÞ − 1 ¼ −KνjkjνP̂ðk; uÞ; (106)

which is the Fourier-Laplace transform of Eq. (105). Here,
we recall [48] that the Fourier-space representation of ∇ν is
−jkjν and that uP̂ðk; uÞ − 1 is the representation of the time
derivative in Laplace-Fourier space of a δ-function initial
condition centered on the origin. We see that Pðx; tÞ for
2=3 < ν < 2 satisfies the fractional diffusion equation. In
other words, for initial conditions starting on the origin, the
solution of Eq. (105) is the Lévy PDF, Eq. (78).
However, the use of the fractional diffusion equation

must be performed with care. It predicts a seemingly
unphysical behavior: The mean-square displacement is
apparently infinite. Although, as mentioned in the
Introduction, the mean-square displacement was shown
to exhibit superdiffusion, experimentally by Katori et al. [1]
and in simulations in [2], it is nevertheless finite at all finite
times. In fact, the coupling between excursion duration τ
and extent χ analyzed herein implies that the fractional
equation is valid only in a scaling region, jxj < t3=2, and
thus the Lévy distributions obtained analytically here and
used phenomenologically in the Weizmann experiment [3]
describe the center part of the spreading distribution of the
particles, but the tails exhibit a cutoff for x > t3=2. In other
words, the Lévy distribution describing the center part of
the packet for 1=5 < D < 1 does not contain information
on the correlations, and to experimentally investigate
correlations in this regime, one must probe the tails of
the packet.
The renewal approach is the basis of the coupled CTRW

theory developed here. Renewal theory turned out to be
predictive in the sense that, while the set of zero crossings is
nontrivial in the continuum limit, we could avoid this
mathematical obstacle by introducing modified paths with a
�ϵ starting point after each zero hitting. Physical observ-
ables, like ν, Pðx; tÞ,Kν, and hx2i, do not depend on ϵ in the
limit, as expected. Technically, this is due to a cancellation
of ϵ. For example, both hτi [Eq. (57)] and q� [Eq. (66)]
depend linearly on ϵ; hence, their ratio is ϵ independent,
and the anomalous diffusion coefficient Kν [Eq. (76)]
becomes insensitive to ϵ. The same is true for the normal
diffusion constant K2 [Eq. (102)] and other physical
observables [Eqs. (69), (89), (92), and (93)]. A close
reading of Appendixes A and B will reveal that this
cancellation is not exactly trivial. In our work, we use
the regularized Bessel process for the calculation of the
PDFs of the first passage time gðτÞ and jump lengths qðχÞ.
Hence, for the calculations, the details of the potential VðpÞ
for small p are important [but not for Bðv3=2Þ]. If we use
instead the PDFs gBðτÞ and qBðχÞ (see Appendixes A

and B) of the nonregularized process, i.e., a logarithmic
potential for any p, some (but not all) of the ϵ cancellation
will not take place [see Eq. (67) where both q� ∝ ϵ and
g� ∝ ϵ for the regularized process, which allows for the
cancellation]. For example, both for the regularized and the
nonregularized processes, gðτÞ ∼ g�τ−ð1þαÞ (so the expo-
nent α is identical in both cases); however, g� ∝ ϵ for the
regularized process, while g� ∝ ϵ2α for the nonregularized
case, Eq. (A7). The cancellation of ϵ is further discussed
in Appendix F for three types of random durations. That
appendix shows that, while the first passage time PDF gðτÞ
depends on ϵ (see Appendix A), the time interval straddling
time t and the backward and forward recurrence times
are insensitive to this parameter. Thus, one upshot of
Appendix F is a further demonstration that this intuitive
ϵ renewal trick actually works. A rigorous mathematical
treatment of the problem will lead to a stronger foundation
of our results.
Regularization of the process is crucially important in the

Lévy and Gaussian phaseD < 1where observables depend
on the details of the potential VðpÞ. This is related to work
of Martin et al. [41] on the classification of boundaries for
the nonregularized Bessel process. They showed that, using
our notation, for D < 1, p ¼ 0 is an exit boundary while
for D > 1, it is a regular boundary (D < 0 corresponds to
an entrance boundary condition, which is not relevant to
our work). For an exit boundary starting on p≃ 0, it is
impossible to reach a finite-momentum state p, so clearly
we cannot allow such a boundary in our physical problem.
For that reason, we need to consider the regularized first
passage time problem, at least when D < 1, and then the
boundary is regular. A regular boundary on p ¼ 0 means
the diffusion process can enter and leave from the boun-
dary. Therefore, for D > 1, our final results do not depend
on the shape of VðpÞ, besides its asymptotic limit; namely,
one may replace the regularized Bessel process with the
nonregularized one. To see this, notice that hx2i for D > 1

depends on α < 1 but not on small-scale properties of
VðpÞ, and since α is the first passage exponent for both the
regularized and nonregularized processes, it does not really
matter which process is the starting point of the calculation.
Further evidence for such a behavior is in Appendix F,
where statistics of durations forD > 1 are shown to depend
on α < 1 but not on the shape of VðpÞ. Thus, D ¼ 1 marks
the transition from Richardson to Lévy behavior, the
diverging of the partition function Z, namely, the equilib-
rium velocity distribution, turns nonnormalizable, and
according to Martin et al., the boundary of the Bessel
process switches from regular to exit.
Additional theoretical work is needed on the leakage of

particles and, more generally, evaporation (see more details
below). Assuming that energetic particles are those which
get evaporated, and assuming that this takes place through
the boundary of the system, one would be interested in the
first passage time properties of particles, from the center of
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the system to one of its boundaries. Previous theoretical
work on first passage times for Lévy walks and flights
might give a useful first insight [73–77]; however, it is left
for future work to compare these simplified models with
the microscopic semiclassical picture of the underlying
dynamics. Evaporation is an important ingredient of cool-
ing (beyond the Sisyphus cooling) since it gets rid of the
very energetic particles; hence, this line of research has
practical applications. Theoretically, understanding the
boundary conditions for fractional diffusion equations,
needed for the calculation of statistics of first passage
times, is still an open challenge. Yet another challenge is to
characterize the joint PDF Wðx; p; tÞ and, in particular, the
correlations between position and momentum, which are
expected to be nontrivial. Again, some elegant ideas and
tools were recently developed [78] within the Lévy walk
framework; however, more work is needed for direct
comparison with the physical picture under consideration.

B. Cold-atom experiments

Experiments on ultracold diffusing particles in optical
lattices have been performed on a single 24Mgþ ion [1] and
an ensemble of Rb atoms [2,3,20]. Experiments on the
spreading of the density of atoms yield ensemble averages
like the mean-square displacement and the density Pðx; tÞ.
Analysis of individual trajectories yields, in principle,
deep insight on paths, for example, information on the
first passage time in velocity space, i.e., gðτÞ, zero crossing
times, statistics of excursions, meanders, etc. For a com-
prehensive understanding of the dynamics of the particles,
both types of experiments are needed. The theory presented
herein provides statistical information on the stochastic
trajectories, e.g., zero crossing events, which in turn are
related to the spreading of the packet of particles. Thus,
from single trajectories, one may estimate gðτÞ, Bðv3=2Þ,
and ψðχ; τÞ. From gðτÞ, one may then obtain the exponent
α, which can be used to predict the qualitative features of
the spreading of the ensemble of particles. For example,
with an estimate of α, we can determine the phase of
motion, be it Richardson, Lévy, or Gauss. Of course, a
more quantitative investigation is now possible since we
have analytically related α, the mean-square displacement,
and Kν with microscopical parameters like the optical
potential depth U0. In principle, statistics of Bessel excur-
sions, so far of great interest mainly in the mathematical
literature, could be detected in single-particle experiments.
These single-ion experiments are also ideal in the sense
that collisions/interparticle interactions do not play a role,
and they also provide insights on ergodicity. Three specific
unsolved issues are as follows:
(i) Can the Richardson phase be experimentally dem-

onstrated? So far, this phase was obtained in our theory and
Monte Carlo simulations [2], while experiments exhibit
ballistic diffusion as the upper limit [1–3]. This might be
related to the subtle limit of taking time to infinity before

the depth of the optical lattice approaches zero, since
clearly in the absence of an optical lattice, the fastest
particles are ballistic.
(ii) While our theory correctly predicts a Lévy phase in

agreement with experiments, in Ref. [3] two exponents
were used to fit the data. In contrast, the theory we
developed suggests a single Lévy exponent ν. This could
be due to the leakage of particles and also to the t3=2 cutoff
of the Lévy density, which are due to the correlations
between χ and τ investigated in this manuscript. Avoiding
the leakage of particles is an experimental challenge, and
once this is accomplished, a more informed comparison of
our theoretical prediction on the Lévy phase with a single
characteristic exponent ν could be made. Success on this
front would provide an elegant demonstration of Lévy’s
central-limit theorem, with the characteristic exponent
controlled by the depth of the optical potential.
(iii) As pointed out in Ref. [2], losses of atoms lead to an

underestimate of the diffusion exponent, as many super-
diffusing atoms are lost. Characterization of these losses both
theoretically and experimentally could advance the field,
since this yields insight on the underlying processes and
leads us towards better control of the particles. Specifically,
we do not know how many particles are kept in the system,
versus time, for varying strength of the optical potential.
(iv) In the Lévy phase, measurements of noninteger

moments hjxjqi with q < ν < 2 will, according to theory,
exhibit Lévy scaling hjxjqi ∼ tq=ν. In contrast, the main
focus of experiments so far was the second moment q ¼ 2,
which is difficult to determine statistically since, as we have
shown here, it depends on the tails of Pðx; tÞ and very fast
particles. Thus, ideally, a wide spectrum of moments hjxjqi
should be recorded in experiment, with the low-order
moments q < ν giving information on the center part of
the density and the higher-order moments giving informa-
tion on the correlations and tails.
In the case where experiment and theory do not reconcile,

wewill have a strong indication that the current semiclassical
theory is not sufficient; then, we will be forced to investigate
at least four other aspects of the problem:
(a) Effects of collisions on anomalous diffusion of

the atoms.
(b) Effect of higher dimensions.
(c) Quantum effects beyond the semiclassical approach

used here. In particular, it would be very interesting to
simulate this system with full quantum Monte Carlo
simulations [6], to compare the semiclassical theory with
quantum dynamics. We note that the Richardson phase,
which, as mentioned, was not observed in experiments, is
actually a heating phase, and quantum simulations become
difficult because the numerical lattice introduces a cutoff on
velocities which induces artificial ballistic motion.
(d) Other cutoff effects that modify the anomalous

diffusion. For example. at high enough velocities,
Doppler cooling is expected to diminish the fast particles.
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In Ref. [79], we simulated the effect of Doppler friction
and showed that the anomalous character of the diffusion is
kept unchanged, at least for a certain reasonable set of
parameters. However, a general rule on the influence of
Doppler cooling has not yet been established, and an
experimentalist with a specific set of parameters in mind
might wish to numerically test the magnitude of this effect
on the anomalous spreading.
An interesting approach was recently suggested by

Dechant and Lutz [22]. They investigated the multifractal
nature of the moments hjxjjqji of the process and considered
initial conditions different than ours. They assumed that in
the first stage, of duration tc, the particles are cooled in a
confining field (which inhibits the spreading). Then, the
momentum of particles relaxes to a state described by
the infinite covariant density [25], which depends on tc.
The particles are then released, and their spreading is
recorded for a duration t. We consider the case t ≫ tc,
while Ref. [22] considered the opposite case. The experi-
ment in Ref. [3] is conducted under the conditions inves-
tigated here, namely, that the spreading time is much longer
than the preparation time. As shown by Hirschberg et al.,
starting with power-law distributions will dramatically
influence the spreading, both in momentum space [24]
and in space. Indeed, large tc implies power-law initial
conditions, Eq. (9), with a tc-dependent cutoff [25]. In that
sense, diffusivity is sensitive to the initial preparation of the
system, and an experimental verification of these effects
would indicate the fundamental difference between trans-
port in these systems and normal transport, which does
not depend on initial conditions. This is clearly related to
the strong sensitivity we have found of the mean-square
displacement on a single jump event, described by the
Bessel meander.
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APPENDIX A: THE WAITING-TIME PDF

The waiting time is the time it takes the particle starting
with momentum pi > 0 to reach pf < pi for the first time.
Here, we investigate its PDF, gðτÞ.

1. First passage time for the Bessel process

We first briefly investigate the first passage time problem
for the Bessel process following Ref. [35]. The Bessel
process corresponds to the case FðpÞ ¼ −1=p, so the
force diverges at the origin. In the next subsection, we
will consider the regularized force FðpÞ ¼ −p=ð1þ p2Þ.
According to Ref. [50], the survival probability SðτÞ,

namely, the probability that a particle initially at pi does
not cross the boundary pf < pi in the time interval whose
length is τ, satisfies

∂τS ¼ FðpiÞ∂pi
SþDð∂pi

Þ2S: (A1)

Here, S ¼ 1 for τ ¼ 0 since the particle’s escape time
cannot be zero. Furthermore, S → 0 when pi → pf, since
in that case, the particle starts out at the boundary, and
S ¼ 1 if one starts at pi ¼ ∞. The random time it takes a
particle starting on pi to reach pf for the first time is τ, and
its PDF is gBðτÞ ¼ −∂τSðτÞ. Here, the subscript B denotes
the Bessel process. Since SðτÞjτ¼0 ¼ 1, we have, in Laplace
τ → u space, the following simple relation:

ĝBðuÞ ¼ −uŜðuÞ þ 1: (A2)

Using Eq. (A2) and the Laplace transform of Eq. (A1),
we find

Dð∂pi
Þ2ĝBðuÞ − ð1=piÞ∂pi

ĝBðuÞ − uĝBðuÞ ¼ 0: (A3)

Note that ĝBðuÞjpi¼pf
¼ 1 since gBðτÞjpi→pf

¼ δðτÞ. The
solution of Eq. (A3) is [80]

ĝBðuÞ ¼
Kαðpi

ffiffiffi
u
D

p Þ
Kαðpf

ffiffiffi
u
D

p Þ
�
pi

pf

�
α

: (A4)

Here, Kαð:Þ is the modified Bessel function of the second
kind, and as before, α ¼ 1=2þ 1=ð2DÞ.
If α > 1, the small u expansion of Eq. (A4) yields

ĝBðuÞ ∼ 1 − uhτBi þ � � �, where hτBi is the average first
passage time. Expanding Eq. (A4), we find

hτBi ¼
1

4

ðpiÞ2 − ðpfÞ2
α − 1

1

D
: (A5)

Notice that hτBi diverges when α → 1, corresponding to
D → 1. Not surprisingly, the average time in Eq. (A5) is
generally different from the expression for the average
waiting time for the regularized process, Eqs. (56) and (57).
Expanding Eq. (A4) for small u for the case 0 < α < 1,

we get

ĝBðuÞ∼ 1− Γð1−αÞ
Γð1þαÞ

�
1

2

�
2α

ððpiÞ2α− ðpfÞ2αÞ
�
u
D

�
α

þ �� � :
(A6)

Inverting to the time domain, we find, using a Tauberian
theorem, the long-time behavior of the PDF,

gBðτÞ ∼
�

1

2
ffiffiffiffi
D

p
�

2α ðpiÞ2α − ðpfÞ2α
ΓðαÞ τ−1−α: (A7)
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One can show that this fat-tail behavior is also valid for
the regime α > 1. The procedure involves expansion of
Eq. (A4) beyond the first two leading terms; for example,
for 1 < α < 2, one finds ĝBðuÞ ¼ 1 − uhτBi þ Cuα…:, and
the third term gives the tail of the PDF. Note that the
PDF gBðτÞ yields the same exponent as in Eq. (11).
However, to calculate the amplitude g�, we must consider
the regularized process.

2. First passage time for the regularized process

For the optical lattice problem, we need to treat the
regularized force FðpÞ ¼ −p=ð1þ p2Þ. Our aim is to find
the asymptotic behavior in Eq. (11), while the average
waiting time is given already in Eqs. (56) and (57). From
these, we know that for α < 1 the average first passage
time from pi to pf is infinite (the derivation can be
easily generalized for arbitrary initial and final states).
Furthermore, for long times, the large-momentum behavior
of FðpÞ plays the crucial role, and hence we expect, for
small u,

ĝðuÞ ≈ 1 −Guα; 0 < α < 1; (A8)

where we must determine G, which then gives the ampli-
tude g� introduced in Eq. (11). The equation for ĝðuÞ is the
same as Eq. (A3) but with the regularized force

Dð∂pi
Þ2ĝðuÞ − pi

1þ ðpiÞ2
∂pi

ĝðuÞ − uĝðuÞ ¼ 0: (A9)

We need to solve for ĝðuÞ for small u, so to leading order,
we drop the last term and find

Dð∂pi
Þ2ĝðuÞ þ FðpiÞ∂pi

ĝðuÞ ¼ 0: (A10)

Hence,

ĝðuÞ ¼ C1ðuÞ
Z

pi

pf

eVðp0Þ=Ddp0 þ C2ðuÞ; (A11)

where VðpÞ¼ lnð1þp2Þ1=2. Since ĝðuÞ ¼ 1 when pi¼pf,
C2ðuÞ ¼ 1. This approximation breaks down, however,
when pi is too large since then ĝðuÞ ∝ p1þ1=D

i , and the last
term in Eq. (A9) is comparable in size to the first two when
pi ∼ u−1=2. In the large pi regime, however, pi ≫ 1, so we
can approximate FðpiÞ by its Bessel form, FðpiÞ ≈ −1=pi,
and the solution is, as above,

ĝðuÞ ≈ C3ðuÞKα

�
pi

ffiffiffiffi
u
D

r �
pα
i ; (A12)

where we cannot use the pf → pi limit to normalize ĝðuÞ
since pf is not necessarily large. Nevertheless, ĝðu¼0Þ¼1
and KαðzÞ ∼ ðΓðαÞ=2Þðz=2Þ−α for z → 0, implying that

C3ðuÞ ≈
2

ΓðαÞ
�
1

2

ffiffiffiffi
u
D

r �α

(A13)

to leading order in u. For 1 ≪ pi ≪ u−1=2, our two
approximations must agree, and so we find, using the
second-order expansion of KαðzÞ,

1−Γð1−αÞ
Γð1þαÞ

�
pi

ffiffiffiffi
u
D

r �
2α

≈1þC1ðuÞ
p1=Dþ1
i

1=Dþ1
; (A14)

and recognizing that ð1=Dþ 1Þ ¼ 2α,

C1ðuÞ ≈ − 2αΓð1 − αÞ
Γð1þ αÞ

�
u
4D

�
α

: (A15)

Thus, using Eq. (A11),

ĝðuÞ ≈ 1 −
�
2
Γð1 − αÞ
ΓðαÞ

�
1

4D

�
α
Z

pi

pf

eVðp0Þ=Ddp0
�
uα:

(A16)

Using the Tauberian theorem, which implies
uα → τ−ð1þαÞ=Γð−αÞ, we find the large τ behavior

gðτÞ ∼ 2α

ΓðαÞ

R
pi
pf

eVðp0Þ=Ddp0

ð4DÞα τ−ð1þαÞ: (A17)

It can be shown, with additional work, that this result is also
valid for α > 1. To conclude, we find pf ¼ 0 for the final
state and pi ¼ ϵ ≪ 1 for the initial state,

g� ¼ 2α

ð4DÞαΓðαÞ
Z

ϵ

0

eVðp0Þ=Ddp0 ≈
2αϵ

ð4DÞαΓðαÞ : (A18)

This, of course, vanishes as ϵ → 0, in this case linearly, as
opposed to the pi → ϵ, pf ¼ 0 limit of Eq. (A7), where the
dependence is of higher order. As shown in this paper, for
the purpose of calculation of the asymptotic behavior of
Pðx; tÞ, all we need is ∂ϵg� when ϵ → 0, which is a finite
constant that depends on D only. The full shape of VðpÞ is
unimportant for the calculation of g�, indicating a degree
of universality. In contrast, hτi depends on Z and so is
nonuniversal. Since g� is a measure of the long-time
behavior, the detailed shape of the potential is not impor-
tant, provided it is regularized.

3. Moments of gðτÞ
In the text, we show that hτi and hτ3i are relevant when

D < 1=5, so these averages do not diverge. The moments
hτi and hτ3i are found using

ĝðuÞ ¼ 1 − uhτi þ u2hτ2i=2 − u3hτ3i=6þ � � � ; (A19)

E. BARKAI, E. AGHION, AND D. A. KESSLER PHYS. REV. X 4, 021036 (2014)

021036-24



where ĝðuÞ is the Laplace transform of the waiting-time
PDF gðτÞ. From

�
Dð∂pÞ2 − p

1þ p2
∂p − u

�
ĝðuÞ ¼ 0; (A20)

we get

�
Dð∂pÞ2 − p

1þ p2
∂p

�
hτi ¼ −1; (A21)

�
Dð∂pÞ2 − p

1þ p2
∂p

�
hτ2i ¼ −2hτi; (A22)

�
Dð∂pÞ2 − p

1þ p2
∂p

�
hτ3i ¼ −3hτ2i: (A23)

Solving Eq. (A21),

hτi ¼ 1

D

Z
p

0

dyeVðyÞ=D
Z

∞

y
e−VðxÞ=Ddx; (A24)

so hτi ¼ 0 when p ¼ 0, as expected for the first passage
from p to the origin. For the second and third moments,

hτ2i ¼ 2

D

Z
p

0

dyeVðyÞ=D
Z

∞

y
e−VðxÞ=DhτðxÞidx (A25)

and

hτ3i ¼ 3

D

Z
p

0

dyeVðyÞ=D
Z

∞

y
e−VðxÞ=Dhτ2ðxÞidx: (A26)

Thus, in the p ¼ ϵ → 0 limit,

hτ3i ∼ 3ϵ

D

Z
∞

0

e−VðzÞ=Dhτ2ðzÞidz: (A27)

APPENDIX B: THE JUMP LENGTH PDF qðχ Þ
The excursion length χ is the distance the particle travels

from its beginning with momentum pi > 0 until it reaches
the momentum origin pf ¼ 0 for the first time. Here, we
investigate its PDF qðχÞ, which in the limit of pi → 0 and
for the regularized force field, gives the jump length PDF.
Previously, this PDF was investigated for the −1=p force
field in Ref. [6]. Note that, in what follows, pi > 0 so
χ > 0. As elsewhere in this paper, from symmetry, positive
and negative χ are equally probable, so we may restrict our
attention to χ > 0.

1. PDF of jump lengths for the Bessel process

As mentioned, for the Bessel process, FðpÞ ¼ −1=p.
The PDF qBðχÞ, which depends of course on the start and
end points pi and pf, satisfies the following backward
equation [50]:

Dð∂pi
Þ2qB − ð1=piÞ∂pi

qB − pi∂χqB ¼ 0; (B1)

where the subscript B again stands for Bessel. Since χ > 0,
we define the Laplace transform

q̂BðsÞ ¼
Z

∞

0

expð−χsÞqBðχÞdχ: (B2)

When pf → pi, we have qBðχÞ → δðχÞ and qBðχÞχ¼0 ¼ 0
if pi ≠ pf since it takes time for the particle to reach the
boundary, and hence we cannot get an excursion whose
size is zero. Of course, in the opposite limit of large χ,
limχ→∞qBðχÞ ¼ 0. In Laplace space, Eq. (B1) yields

ð∂pi
Þ2q̂BðsÞ − ð1=DpiÞ∂pi

q̂BðsÞ − ðpis=DÞq̂BðsÞ ¼ 0:

(B3)

It is easy to verify that the appropriate solution is

q̂BðsÞ ¼
ðpiÞ3ν=2Kνð23

ffiffiffi
s
D

p ðpiÞ3=2Þ
ðpfÞ3ν=2Kνð23

ffiffiffi
s
D

p ðpfÞ3=2Þ
; (B4)

with ν ¼ ð1þDÞ=3D, and as in the previous appendix,
Kνð·Þ is the modified Bessel function of the second kind.
Our goal is to find the large χ behavior of qBðχÞ, so we

expand Eq. (B4) in the small s limit, finding, for 0 < ν < 1,

q̂BðsÞ∼1−
�
1

3

�
2ν

½ðpiÞ3ν−ðpfÞ3ν�
Γð1−νÞ
Γð1þνÞð3ν−1Þνsν � �� :

(B5)

The first term on the left-hand side is simply the normali-
zation, and the sν term indicates that the average excursion
length diverges since ν < 1. Passing from s to χ, we get for
large χ,

qBðχÞ ∼
�
1

3

�
2ν ðpiÞ3ν − ðpfÞ3ν

ΓðνÞ ð3ν − 1Þνχ−1−ν: (B6)

With a similar method, one can show that Eq. (B6) also
holds for 1 < ν < 2. There, the expansion, Eq. (B5),
contains three terms; the additional term yields the average
of χ, which is now finite. In Ref. [6], a more complicated
method was used to investigate the same problem, and a
similar result was found, although with a typographical
error. That reference reports ð3νþ 1Þν in the prefactor,
whereas we find ð3ν − 1Þν, a difference with some impor-
tance since the prefactor found here goes to zero when
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D → ∞, which is necessary to obtain reasonable physical
results.

2. PDF of χ for the regularized process

To obtain the large χ behavior of qðχÞ for the regularized
force FðpÞ ¼ −p=ð1þ p2Þ, we follow the same steps
carried out in Appendix A 2. The equation to solve is

Dð∂pi
Þ2qþ FðpiÞ∂pi

q − pi∂χq ¼ 0: (B7)

For ν < 1, we switch to Laplace space χ → s, i.e.,
Dð∂pi

Þ2q̂þ FðpiÞ∂pi
q̂ − pisq̂ ¼ 0, and drop the last term

for small s, yielding

q̂ðsÞ ≈ C1ðsÞ
Z

pi

pf

eVðp0Þ=Ddp0 (B8)

after applying the boundary condition q̂jpf→pi
¼ 1. Again,

for pi ≫ 1, we can approximate FðpiÞ by its large pi
approximation, yielding

q̂ðsÞ ≈ C3ðsÞp3ν=2
i Kν

�
2

3

ffiffiffiffiffiffiffiffi
sp3

i

D

r �
: (B9)

In the small s limit, qðs → 0Þ ¼ 1 implies

C3ðsÞ ≈
2

ΓðνÞ
�
1

3

ffiffiffiffi
s
D

r �ν

(B10)

to leading order. These two approximations must agree for
1 ≪ pi ≪ s−1=3, yielding

C1ðsÞ ≈ 31−2νð3ν − 1Þν Γð1 − νÞ
ΓðνÞ sν: (B11)

This implies that

qðχÞ ≈
�

1

32ν−1
ð3ν − 1Þν
ΓðνÞ ν

Z
pi

pf

eVðp0Þ=Ddp0
�
χ−1−ν: (B12)

This calculation was done assuming pi, pf are positive.
Allowing also for negative momenta, and so negative χ, we
get an additional prefactor of 1=2:

qðχÞ ≈
�

1

32ν−1
ð3ν − 1Þν
2ΓðνÞ ν

Z
pi

pf

eVðp0Þ=Ddp0
�
jχj−1−ν:

(B13)

One can show that this result is valid in the whole domain
of interest 1=3 < ν < 2, i.e., the domain where the variance
of χ is infinite.

3. The variance of χ

Here, we obtain the finite hχ2i for the case ν > 2 for the
regularized force FðpÞ ¼ −p=ð1þ p2Þ. Using the Laplace
χ → s transform of Eq. (B7), we find the following back-
ward equation for q̂ðsÞ:

D
∂2

∂ðpiÞ2
q̂ðsÞ þ FðpiÞ

∂
∂pi

q̂ðsÞ − pisq̂ðsÞ ¼ 0: (B14)

Here, we used qðχÞjχ¼0 ¼ 0 since the particle starting with
pi > 0 cannot reach zero momentum without traveling
some finite distance. The Laplace transform q̂ðsÞ is
expanded in s:

q̂ðsÞ ¼
Z

∞

0

e−sχqðχÞdχ ¼ 1 − shχi þ s2hχ2i=2þ � � � :
(B15)

Here, hχi is the average jump size, for positive excursions,
i.e., those that start with pi > 0, and hχ2i is the second
moment. Note that in the original model, we have both
positive and negative excursions, and so we have pi ¼ þϵ
or pi ¼ −ϵ with probability 1=2; hence, for that case
−∞ < χ < ∞ and from symmetry hχi ¼ 0. The variance
of the original process is hχ2i because of symmetry. As we
restrict ourselves to pi > 0, χ > 0 and hχi in Eq. (B15) is
finite.
Inserting Eq. (B15) into Eq. (B14), we find

D
∂2

∂ðpiÞ2
�
−shχi þ s2

hχ2i
2

þ � � �
�

− pi

1þ ðpiÞ2
∂
∂pi

�
−shχi þ s2

hχ2i
2

þ � � �
�

− pis

�
1 − shχi þ s2

hχ2i
2

þ � � �
�
¼ 0: (B16)

The s1 terms give

−D ∂2

∂ðpiÞ2
hχi þ pi

1þ ðpiÞ2
∂
∂pi

hχi − pi ¼ 0; (B17)

while the s2 terms are

D
2

∂2

∂ðpiÞ2
hχ2i−1

2

pi

1þðpiÞ2
∂
∂pi

hχ2iþpihχi¼0: (B18)

This means that the first and then the second moment can
be found by repeated integration. The boundary conditions
are that both the first and second moments are zero if
pi ¼ 0, while they diverge if pi ¼ ∞. Using a reflecting
boundary at pi ¼ ∞, we find (see, e.g., Ref. [50],
Chapter 5)
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hχðpiÞi ¼
1

D

Z
pi

0

dyeVðyÞ=D
Z

∞

y
dze−VðzÞ=Dz; (B19)

where the lower bound is the momentum origin and the
potential is given in Eq. (8). Integrating Eq. (B18), we find

hχ2i ¼ 2

D

Z
pi

0

dyeVðyÞ=D
Z

∞

y
dze−VðzÞ=DzhχðzÞi: (B20)

As explained in the text, we consider only the limit when
pi ¼ ϵ is small, so we have

hχ2i ∼ 2ϵ

D

Z
∞

0

dze−VðzÞ=DzhχðzÞi; (B21)

since Vð0Þ ¼ 0. Using Eq. (B19) and integrating by parts,
we get

hχ2i ∼ 2ϵ

D2

Z
∞

0

dzeVðzÞ=D
�Z

∞

z
dzze−VðzÞ=D

�
2

: (B22)

Note that from symmetry, VðpÞ ¼ Vð−pÞ, so we haveR
∞
z dzz exp½−VðzÞ=D� ¼ − R−z−∞ dzz exp½−VðzÞ=D�.

APPENDIX C: EXPANSION OF EQ. (62)

Since gðτÞ ∼ g�τ−3=2−γ for large τ, with γ ¼ 1=ð2DÞ, we
assume that there exists some t0 such that gðτÞ ¼
g�τ−ð3=2þγÞ for τ > t0. Then, using Eq. (59) and
ν ¼ 1=3þ 2γ=3,

ψ̂ðk;uÞju¼0¼1−
Z

t0

0

dτ½1− B̂ðk
ffiffiffiffiffiffiffiffi
Dτ3

p
Þ�gðτÞ

þ
Z

∞

t0

dτ½1− ~Bðk
ffiffiffiffiffiffiffiffi
Dτ3

p
Þ�g�τ−3=2−γ: (C1)

The first term on the right-hand side yields the normali-
zation condition ψ̂ðk; uÞjk¼u¼0 ¼ 1; the second term is zero
for k ¼ 0, and because of the symmetry of the jumps,
Bðv3=2Þ ¼ Bð−v3=2Þ, this term, when expanded in k, gives
a k2 term. As we will show, the last term gives a jkjν term,
so as long as ν < 2, we can neglect the second term. Then,
changing variables to ~k ¼ k

ffiffiffiffiffiffiffiffi
Dτ3

p
, we find

ψ̂ðk; uÞju¼0 ¼ 1 − 2

3
g�ðDk2Þν=2

Z
∞

0

1 − ~Bð~kÞ
ð~kÞ1þν

d~k: (C2)

Here, we have taken the small k limit in such a way that
kðt0Þ3=2, which appears in the lower limit of an integral, is
negligible.
From Eq. (C2), we must investigate the integral

Iν ¼
Z

∞

0

1 − ~BðkÞ
ð~kÞ1þν

d~k: (C3)

From symmetry, Bðv3=2Þ ¼ Bð−v3=2Þ, and hence the
Fourier transform ~BðkÞ is a real function. Thus,

Iν ¼ Re

�Z
∞

kc

1 − ~BðkÞ
ð~kÞ1þν

d~k

�
; (C4)

and kc will eventually be taken to zero. Using the definition
of the Fourier transform,

Iν ¼
kc−ν
ν

− 2Re

�Z
∞

0

dv3=2Bðv3=2Þ
Z

∞

kc

eikv3=2

k1þν dk

�
:

(C5)

Let iv3=2 ¼ −x, and then using integration by parts,

Re

�Z
∞

kc

eikv3=2

k1þν

�
¼ Re

�
e−kcx ðkcÞ

−ν
ν

− xνΓð1 − νÞ=ν
�
:

(C6)

Inserting the last expression in Eq. (C5), the diverging
ðkcÞ−ν terms cancel each other, and we find

Iν ¼
2Γð1 − νÞ

ν
Re

�Z
∞

0

dv3=2Bðv3=2Þxν
�
: (C7)

Using x ¼ −iv3=2, we get

Iν ¼ −hjv3=2jνi sin
�
πð1þ νÞ

2

�
Γð−νÞ; (C8)

where hjv3=2jνi ¼
R
∞−∞ jv3=2jνBðv3=2Þdv3=2. Inserting

Eq. (C8) into (C2) and using (C3), we get Eq. (63).

APPENDIX D: ON THE SIMULATIONS

1. The simulation

In this appendix, we briefly discuss the simulations
presented in the paper to test our predictions. We have two
classes of simulations: One generates Bessel excursions,
and the other solves the Langevin equations. The first is
based on a discrete random-walk treatment of the excur-
sion, wherein the particle takes a biased walk to the right
or left in momentum space every time step. The degree of
bias varies with p in accordance with the force FðpÞ. Our
dimensionless control parameter D is the ratio of the
coefficient of the diffusion term to the coefficient of the
1=p large-p behavior of the force. Since for our simple
random walk the diffusion constant is 1=2, the parameterD
enters via the strength of the bias. The probability to move
right or left is then given by

P�ðpÞ ¼
1

2

�
1� 1

2D
FðpÞΔp

�
: (D1)
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The continuum limit is approached, as usual, when
Δp → 0. Given that, in our units, FðpÞ varies on the scale
of unity, it is sufficient to take Δp ≪ 1. In practice, we take
Δp ¼ 0.1. We also monitor the position, adding p to the
position every time the particle takes a step, starting at
momentum p.
To simulate paths of the Langevin dynamics, we used

both a straightforward Euler-Maruyama integration of the
Langevin equation and one based on the random-walk
picture above. Both methods give equivalent results.

2. The Bessel excursion

An efficient way to generate the set of Bessel excursions
is to generate all discrete Brownian excursions with equal
probability and then to weight each excursion by its
appropriate weight. The task of generating the ensemble
of Brownian excursions is, at first sight, a nontrivial
problem since the constraint that the random walk not
cross the origin is nonlocal in the individual left/right steps
constituting the walk. However, it is easily accomplished
using Callan’s proof [81] of the famed Chung-Feller
theorem [82]. Callan gives an explicit mapping of any N
left-step, N right-step random walks to a unique walk that
does not cross the origin. This mapping maps exactly
N þ 1 of the ð2NN Þ N left, N right walks to each of the
nonzero crossing walks [of which there are ð2NN Þ=ðN þ 1Þ].
Since every Brownian excursion of N þ 2 steps consists
of an initial right step, a non-zero-crossing N left-step, N
right-step walk and a final left step back to the origin,
Callan’s mapping allows us to generate an N þ 2-step
Brownian excursion by generating a random N left-step, N
right-step walk, applying the map, and prepending and
postpending the appropriate steps. In this way, every
excursion is generated with exactly the same probability.
Callan’s mapping is as follows. For a givenN left-step,N

right-step walk, one accepts it as is if it does not cross the
origin. Otherwise, one finds the leftmost point reached by
the walk (i.e., the minimal x of the path), which we denote
xn, where n is the number of steps to reach this point. If this
point is visited more than once, then one takes the first visit.
One then constructs a new walk based on the original walk.
We divide the original walk into two segments, the first
n − 1 steps and the remaining part. The first part of the new
walk consists of the second segment, shifted by −xn such
that the new walk starts on the origin. In the original walk,
the step before reaching xn is obviously a left step. One
appends this left step at the end of the walk under
construction and then attaches the first segment (of the
original walk). This new walk clearly does not cross the
origin, while preserving the number of left and right steps;
hence, it starts and ends on the origin.
To account for the bias, i.e., to switch from Brownian to

Bessel excursions, it is sufficient to weight each excursion
by the weight factor F:

F ¼
YN
i¼1

fi;

fi ¼
	
1þ FðpiÞΔp

2D Step i is a right step:

1 − FðpiÞΔp

2D Step i is a left step:
(D2)

This works well as long as D is not too small. For very
small D, the convergence is quite slow since small areas
have anomalously large weight unless N is very large. As
long as one is interested in the large-N behavior, better
convergence is achieved by taking FðpÞ ¼ θðp − 1Þ=p.

APPENDIX E: AREAL DISTRIBUTION
OF THE BESSEL MEANDER

Our goal is to find the conditional PDF pMðχ�jτ�Þ, where
χ� ¼ R

τ�
0 pðt0Þdt0 is the area under the Bessel meander. The

starting point for the calculation of pMðχ�jτ�Þ is a modi-
fication of Eq. (20). As for the area under the Bessel
excursion, we consider only the positive meander where
0 < χ� < ∞, and later we use the symmetry of the process
to find the areas under both positive and negative meanders.
Since, contrary to the condition on the excursion, the
meander is not bound to return to the origin, we now keep
the end point free and integrate the propagator Ĝτ�ðs; pjpiÞ
over all possible values of p. Hence,

p̂Mðsjτ�Þ ¼ lim
ϵ→0

R∞
0 Ĝτ� ðs; pjϵÞdpR

∞
0 Ĝτ� ðs ¼ 0; pjϵÞdp ; (E1)

with p̂Mðsjτ�Þ ¼
R
∞
0 pMðχ�jτ�Þ expð−sDχ�Þdχ�.

We expand the propagator Ĝτ� ðs; pjpiÞ in a complete
orthonormal basis, using the same approach as in the main
text, while accounting for the boundary conditions of the
meander. We thus rewrite Eq. (20) for the case of the
meander and integrate over p,

Z
∞

0

Ĝτ� ðs; pjϵÞdp ¼ ϵ1=2Ds1=3
Z

∞

0

dpp−1=2DX
k

fkðs1=3ϵÞ

× fkðs1=3pÞe−DEkτ
�
; (E2)

where the functions fkð:Þ, as before, are the solutions of the
time-independent equation (27) and Ek ¼ s2=3λk. Changing
variables to ~p ¼ s1=3p, and using the small p behavior,
Eq. (28), which gives fkðs1=3ϵÞ ∼ ~dks1=3þ1=6Dϵ1þ1=2D, we
find

Z
∞

0

Ĝτ�ðs; pjϵÞdp ¼ ϵ2αsν
X
k

~dk e−Ds2=3λkτ�
Z

∞

0

fkð ~pÞ
~p1=2D d ~p;

(E3)

for the numerator in Eq. (E1). We now define a new
k-dependent coefficient
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ak ≡
Z

∞

0

fkð ~pÞ
~p1=2D d ~p: (E4)

The ak’s, similar to the ~dk’s, are evaluated from a numeri-
cally exact solution of Eq. (27). Rewriting in terms of the
new coefficients,

Z
∞

0

Ĝτ� ðs; pjϵÞdp ¼ ϵ2αsν
X
k

~dk ake−Ds2=3λkτ� : (E5)

For the denominator in Eq. (E1), we expand the propagator
in the orthonormal basis for the s ¼ 0 case,

Ĝτ� ðs ¼ 0; pjϵÞ ¼
X
k

�
ϵ

p

�
1=2D

ϕ0
kðϵÞϕ0

kðpÞe−DEkτ
�
: (E6)

Integrating over p, as required for the meander, we get

Z
∞

0

dpĜτ� ðs ¼ 0; pjϵÞ

¼
Z

∞

0

dp
X
k

�
ϵ

p

�
1=2D

ϕ0
kðϵÞϕ0

kðpÞe−DEkτ
�
: (E7)

Plugging in ϕ0
kðϵÞ and ϕ0

kðpÞ using Eq. (32), with
Bk ¼

ffiffiffiffiffiffiffiffiffiffiffi
πk=L

p
, we find

Z
∞

0

dpĜτ� ðs¼0;pjϵÞ

¼ϵ1=2þ1=2D π

L

Z
∞

0

dp
X
k

p−1=2DkJαðkϵÞ
ffiffiffiffi
p

p
JαðkpÞe−DEkτ

�
:

(E8)

Transforming the sum into an integral over k :P
k →

L
π

R∞
0 dk, and using the small p behavior of the

Bessel function for JαðkϵÞ ∼ ðkϵÞα
2αΓð1þαÞ, we get

Z
∞

0

dpĜτ� ðs ¼ 0; pjϵÞ

¼ ϵ2α

2αΓð1þ αÞ
Z

∞

0

dpp
1
2
− 1

2D

Z
∞

0

dkk1þαJαðkpÞe−DEkτ
�
;

(E9)

with Ek ¼ k2 in this continuum limit. To solve Eq. (E9),
define q ¼ kp, and so

Z
∞

0

dpĜτ� ðs¼ 0;pjϵÞ

¼ ϵ2α

2αΓð1þαÞ
Z

∞

0

dq
Z

∞

0

dkk1=Dq1=2−1=2DJαðqÞe−Dk2τ� :

(E10)

Then, inserting x ¼ k2, we get

Z
∞

0

Ĝτ� ðs¼0;pjϵÞdp

¼ ϵ2α

2αþ1Γð1þαÞ
Z

∞

0

dxxα−1e−Dxτ�
Z

∞

0

dqq1=2−1=2DJαðqÞ:
(E11)

The two integrals on the right-hand side of Eq. (E11) can be
evaluated analytically, and the final result for the denom-
inator of Eq. (E1) is

Z
∞

0

Ĝτ� ðs ¼ 0; pjϵÞdp ¼ ϵ2α

22αΓð1þ αÞ ðDτ�Þ−α: (E12)

Plugging Eqs. (E3), (E4), and (E12) into Eq. (E1), we reach
our first main result for the area under the Bessel meander,

p̂Mðsjτ�Þ ¼ 22αΓð1þ αÞ½sðDτ�Þ3=2�ν
X
k

~dk ake−Ds2=3λkτ� :

(E13)

The inverse of p̂Mðsjτ�Þ, i.e., sD → χ�, is

pMðχ�jτ�Þ ¼ 22αΓð1þ αÞDν=2½ðτ�Þ3=2�ν
X
k

~dk ak

×
X∞
n¼0

ð−ckÞnðχ�Þ−ðνþ2n=3þ1Þ

Γð−ν − 2n=3Þn! ; (E14)

with ck ¼ D1=3λkτ
�. And finally, summing over n

using Maple,

pMðχ�jτ�Þ ¼ Γð1þ αÞ
�
43=2D1=2ðτ�Þ3=2

χ�

�
ν
�
− 1

πχ�

�X
k

~dk ak × ½Γð1þ νÞ sinðπνÞ2F2

�
ν

2
þ 1;

ν

2
þ 1

2
;
1

3
;
2

3
;
−4ðD1=3λkτ

�Þ3
27ðχ�Þ2

�

−
�
D1=3λkτ

�

ðχ�Þ2=3
�
Γ
�
5

3
þ ν

�
sin

�
π
2þ 3ν

3

�
2F2

�
ν

2
þ 4

3
;
ν

2
þ 5

6
;
2

3
;
4

3
;
−4ðD1=3λkτ

�Þ3
27ðχ�Þ2

�

þ 1

2

�
D1=3λkτ

�

ðχ�Þ2=3
�

2

Γ
�
7

3
þ ν

�
sin

�
π
4þ ν

3

�
2F2

�
ν

2
þ 7

6
;
ν

2
þ 5

3
;
4

3
;
5

3
;
−4ðD1=3λkτ

�Þ3
27ðχ�Þ2

��
: (E15)
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This is the main result of this appendix. In Fig. 14, we
plot this areal distribution, comparing it with a histogram
obtained from finite time simulations.

APPENDIX F: THE TIME INTERVAL
STRADDLING t

The velocity process vðt0Þ restricted to the zero-free
interval containing a fixed observation time t is called
the excursion process straddling t, and the portion of it up
to t is the meandering process ending at t. For Brownian
and Bessel processes, these random paths were the subject
of intense mathematical investigation; see, e.g.,
Refs. [17,31,83] and references therein. The investigation
of the duration of the excursion straddling t, the time
interval for the meander ending at t, and statistical proper-
ties of the path, e.g., its maximal height, have attracted
mathematical attention since they reveal deep and beautiful
properties of Brownian motion in dimension d (as is well
known, the Bessel process is constructed from the radius
of a d-dimensional Brownian motion). One aspect of the
problem is the quantification of the properties of the set of
points on the time axis on which the zero crossings take
place. Clearly, the number of zero crossings for a Brownian
path starting at the origin within the time interval ð0; tÞ is
infinite because of the continuous nature of the path (see
more details below). One might naively expect that the time
between points of zero crossing approaches zero since a
finite measurement time divided by infinity is zero. That, in
the context of our paper, might be true when hτi is finite.
Then, we can expect to find a zero crossing in the close
vicinity of the measurement time t (i.e., at a distance of
the order of hτi from t). However, when 0 < α < 1, the
situation is more subtle. In this case, the points on the time

axis will be clustered, and while their number is infinite,
visualizing these dots with a simulation, we will observe a
fractal dust.
In this appendix, we investigate the statistics of duration

of the excursion straddling time t, deriving some known
results along the way. Our approach is based on renewal
theory, using methods given by Godreche and Luck [47].
The previous mathematical approaches are based on direct
analysis of Brownian and Bessel motion, while we use the ϵ
trick introduced in the main text. As mentioned, we replace
the continuous regularized Bessel process or Brownian path
with a noncontinuous one, with jumps of size ϵ after zero
crossing, and at the end, ϵ is taken to zero.
Consider the PDF of waiting times gðτÞwith 0 < τ < ∞,

with the long-time limiting behavior

gðτÞ ∼ g�τ−ð1þαÞ: (F1)

While α ¼ ð1þDÞ=2D for the problem in the main
manuscript (hence, α ≥ 1=2), here we will assume that
0 < α < 1. The case α ¼ 1=2 is the Brownian case since a
particle starting on ϵ will return for the first time to the
origin according to the well-known law gðτÞ ∝ τ−3=2. In our
physical problem, the ϵ trick means that g� is ϵ dependent,
Eq. (59). As in the main text, we denote ft1; t2;…; tk;…g
as times of the renewal events (i.e., in our problem, zero
crossing events). This is a finite set of times if ϵ is finite.
The waiting times fτ1; τ2;…g are independent, identically
distributed random variables because of the Markovian
property of the underlying paths, and t1 ¼ τ1, tk ¼

P
k
i¼1 τi.

We call t the observation time, and the number of renewals
in ð0; tÞ is denoted by n; thus, by definition, tn < t < tnþ1

(this is obviously true as long as ϵ is finite). The time
B ¼ t − tn is called the backward recurrence time [47],
the time F ¼ tnþ1 − t is the forward recurrence time, and
Δ ¼ tnþ1 − tn is the time interval straddling t. In our
problem, the backward recurrence time is the duration of
the meandering process, which starts at tn and ends at t. For
Brownian motion and Bessel processes, where tn and tnþ1

are the zero hitting times straddling t, the statistics of F, B,
and Δ are nontrivial.
We now obtain the PDF of Δ, denoted dtðΔÞ, using the

methods in Ref. [47]. From the constraint tn < t < tnþ1, we
have

dtðΔÞ ¼
X∞
n¼0

hδ½Δ − ðtnþ1 − tnÞ�Iðtn < t < tnþ1Þi; (F2)

where δ½� � �� is the Dirac δ function; Iðtn < t < tnþ1Þ ¼ 1 if
the condition in the parentheses is true, and otherwise, it is
zero. We use the double Laplace transform

dsðuÞ ¼
Z

∞

0

Z
∞

0

e−ste−uΔdtðΔÞdtdΔ (F3)
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 D
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FIG. 14. The conditional PDF of the area under the Bessel
(D ¼ 2=5) and Brownian (D → ∞) meanders, Eq. (E15). For
D ¼ 2=5, we used five-term summation in Eq. (E15), with
a1¼0.849, a2¼−0.314, a3¼0.535, a4¼−0.3072, a5¼0.441
and the values of ~dk in Table I. The simulation method is outlined
in Appendix D, and we averaged over 2 × 105 samples with
τ ¼ 105. The theoretical curve was plotted with Maple.
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and compute


Z
∞

0

Z
∞

0

e−ste−uΔδ½Δ−ðtnþ1− tnÞ�Iðtn < t<tnþ1ÞdtdΔ
�

¼1

s
hðe−stn −e−stnþ1Þe−uðtnþ1−tnÞi: (F4)

Since the waiting times fτig are mutually independent,
identically distributed random variables, we find, using
tn ¼

P
n
i¼1 τi,

he−stni ¼ ĝnðsÞ; (F5)

where ĝðsÞ ¼ R
∞
0 e−sτgðτÞdτ is the Laplace transform of

gðτÞ. A similar result holds for the other expressions in
Eq. (F4). It is then easy to find

dsðuÞ ¼
X∞
n¼0

ĝnðsÞ ĝðuÞ − ĝðuþ sÞ
s

; (F6)

and summing the geometric series, we get

dsðuÞ ¼
ĝðsÞ − ĝðsþ uÞ
s½1 − ĝðsÞ� : (F7)

When gðτÞ ¼ expð−τÞ, we find, in the limit of large t,
dtðΔÞ → Δ expð−ΔÞ, so the minimum of this PDF is at
Δ ¼ 0 and Δ ¼ ∞, which is expected. For our more
interesting case, ĝðuÞ ∼ 1 − g�jΓð−αÞjuα for small u;
hence, we get, in the small u and s limits, with an arbitrary
ratio between them,

dsðuÞ ∼
ðuþ sÞα − uα

s1þα : (F8)

This is a satisfying result, implying that the solution does
not depend on g�, and hence it does not depend on ϵ. Thus,
the artificial cutoff ϵ, which was introduced merely as a
mathematical tool, does not alter our final formulas. Let
~Δ ¼ Δ=t and denote by ~dð ~ΔÞ its PDF in the long-time
limit. With a useful inversion formula, given in the
Appendix of Ref. [47], we invert Eq. (F8) to the time
domain and find

~dð ~ΔÞ ¼ sin πα

πð ~ΔÞ1þα
½1 − ð1 − ~ΔÞαIð0 < ~Δ < 1Þ�; (F9)

which exhibits a discontinuity of its derivative at ~Δ ¼ 1.
Thus, the PDF of 0 < Δ < ∞ has a cusp at t, which allows
for the identification of the measurement time t from a
histogram of Δ. For Brownian motion, α ¼ 1=2,

~dð ~ΔÞ ¼
8<
:

1
π
1−ð1− ~ΔÞ1=2

ð ~ΔÞ3=2
~Δ < 1

1

ð ~ΔÞ3=2
~Δ > 1.

(F10)

Instead of fixing t, we may draw te > 0 from an
exponential PDF, R expð−RteÞ, in such a way that the
mean of te, htei ¼ 1=R, is very large; thus, the number of
renewals in the time interval ð0; 1=RÞ is large. Similar to the
previous case, we define Δe ¼ tnþ1 − tn, which is called
the duration of the interval straddling an independent
exponential time, and tn < te < tnþ1. This case was treated
rigorously by Bertoin et al. [31] for the Bessel process.
Using the renewal theory approach, we now obtain their
main result on the statistics of Δe, with a few hand-waving
arguments. From the definition of the Laplace transform,
f̂ðsÞ ¼ R

∞
0 fðteÞ expð−steÞdte, we see that, for a function

fðteÞ depending on a random variable te, the latter being
exponentially distributed with mean equal to 1=R, the
averaged function is the Laplace transform of fðteÞ
evaluated at s ¼ 1=R followed by multiplication with R,
namely, hfðteÞi ¼ Rf̂ðRÞ. Inserting s ¼ R in Eq. (F7)
followed by multiplication with R, we get the Laplace
transform of the PDF of Δe,

hexpð−uΔeÞi ¼ ½ðuþ RÞα − uα�=Rα; (F11)

where we used the small R and u limit and, as usual,
hexpð−uΔeÞi ¼

R∞
0 e−uΔedeðΔeÞdΔe, where deðΔeÞ is the

PDF of Δe. This is the known result for the Bessel process
when scaled properly, i.e., R ¼ 1 in Ref. [31], where the
inverse Laplace transform of Eq. (F11) is also given, thus
providing an explicit formula for the PDF deðΔeÞ.
To see the connection between renewal theory and

statistics of the duration of Bessel excursion straddling
an exponential time, notice that in Ref. [31] a Bessel
process in dimension 0 < d < 2 is considered with the
relation d ¼ 2ð1 − αÞ. In our work, we consider motion in a
logarithmic potential in one dimension, which is easily
mapped onto a Bessel process in dimension d ¼ 1 − 1=D.
Thus, the exponent α in Ref. [31] is the same as ours since,
as we have shown, α ¼ ð1þDÞ=ð2DÞ, Eq. (30). Notice
that for optical lattices D > 0; hence, this system is a
physical example for a regularized Bessel process in
dimension −∞ < d < 1. Finally, note that the original
Bessel process considers the distance jrj from the origin
of a Brownian motion in d dimensions, this being non-
negative, jrj ≥ 0. Hence, the Bessel process does not
exhibit zero crossings, so the points on the time axis are
zero hitting points, not zero crossing points. This is a minor
technical issue because of the symmetry of the binding
effective potential discussed in this paper (i.e., negative
and positive excursions in the logarithmic potential are
statistically identical).
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Similarly, we can obtain the limiting distributions of B
and F using renewal theory [47]. The PDF of ~B ¼ B=t
(here, t is fixed) is

PDFð ~BÞ ∼ sin πα
π

ð ~BÞ−αð1 − ~BÞα−1 0 < ~B < 1; (F12)

and the PDF of ~F ¼ F=t, originally derived by Dynkin
[84], is

PDFð ~FÞ ∼ sin πα
π

1

ð ~FÞαð1þ ~FÞ 0 < ~F < ∞: (F13)

Inserting α ¼ 1=2, we get the result for ~B, for zero crossing
of Brownian motion, obtained by Chung [see Eq. (2.22)
there]. One can also quantify other aspects of zero cross-
ings. For example, it is well known that the average number
of renewals follows hni ∼ tα=g�jΓð−αÞj, and hence, using
Eq. (59), hni ∝ tα=ϵ, which diverges in the continuum
limit ϵ → 0, as it should. The distribution of n=hni is the
well-known Mittag-Leffler distribution, with index α and
unit mean.
To conclude, we see that the backward and forward

recurrence times scale linearly with t, and they exhibit
nontrivial behavior, which can be obtained either from
analysis of Brownian or Bessel processes or by using
renewal theory with the ϵ trick. The latter is a very simple
approach, which requires some basic results in renewal
theory. Importantly, given the tools of renewal theory, the
exponent α of the first passage time PDF, gðτÞ ∼ τ−1−α,
which is investigated in Appendix A, uniquely determines
the statistics of F, B, and Δ, in the long measurement time
limit and when α < 1. The fact that the backward recur-
rence time is long, in the sense that it scales with the
observation time t, explains why the mean-square displace-
ment hx2i, which we have found in the main text, depends
on the properties of the meander.
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