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Topological insulators, in contrast to ordinary semiconductors, accompany protected metallic surfaces
described by Dirac-type fermions. Here, we theoretically show that another emergent two-dimensional
metal embedded in the bulk insulator is realized at a magnetic domain wall. The domain wall has long been
studied as an ingredient of both old-fashioned and leading-edge spintronics. The domain wall here, as an
interface of seemingly trivial antiferromagnetic insulators, emergently realizes a functional interface
preserved by zero modes with robust two-dimensional Fermi surfaces, where pyrochlore iridium oxides
proposed to host the condensed-matter realization of Weyl fermions offer such examples at low
temperatures. The existence of in-gap states that are pinned at domain walls, theoretically resembling
spin or charge solitons in polyacetylene, and protected as the edges of hidden one-dimensional weak Chern
insulators characterized by a zero-dimensional class-A topological invariant, solves experimental puzzles
observed in R2Ir2O7 with rare-earth elements R. The domain wall realizes a novel quantum confinement of
electrons and embosses a net uniform magnetization that enables magnetic control of electronic interface
transports beyond the semiconductor paradigm.
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I. INTRODUCTION

Interfaces in semiconductor heterojunctions, field-effect
transistors, and between vacuum and newly characterized
topologically nontrivial semiconductors host various two-
dimensional electron systems tightly confined around these
interfaces, which offer major playgrounds of electronics
and spintronics. Especially, topologically nontrivial semi-
conductors classified as topological insulators or Chern
insulators [1,2], in contrast to the usual band insulators,
accompany protected metallic surfaces described by
Dirac-type fermions [3–5]. Another peculiar metallic state
with a truncated Fermi surface called an “arc” is predicted
[6] on the interfaces between vacuum and a newly
recognized class of zero-gap semiconductor [7,8]: It
hosts a condensed-matter realization of Weyl fermions,
initially proposed in iridium pyrochlore oxides R2Ir2O7

(R ¼ rare-earth elements) under a magnetic order [9–14].
In this article, we unveil that magnetic domain walls

offer qualitatively novel interfaces in magnetically ordered
zero-gap semiconductors such as R2Ir2O7, which are

expected to host Weyl fermions in the bulk. Magnetic
domain walls have historically been of interest in both
fundamental physics [15] and technology [16] as an
archetypical and fundamental model for inhomogeneity
originating from spontaneous symmetry breaking and, for
example, as an essential ingredient for antique magnetic-
bubble memory. Recently, applications of spintronics, such
as magnetic random-access memories, have received
renewed interest in electric controls of magnetic domain
walls. We theoretically show, differently from these aspects
and applications of magnetic domain walls, that a class of
magnetic domain walls induces unexpected interface met-
als accompanied by a net uniform magnetization, brought
about by the insertion of the domain wall, in the back-
ground of a seemingly trivial bulk antiferromagnetic
insulator, where uniform magnetization is canceled out
in the bulk. The metallicity of the domain wall is triggered
by the formation of Fermi arcs at the domain walls, which
originate from the condensed-matter Weyl fermions, or the
Weyl electrons, while the Fermi arc evolves into the Fermi
surface when the Weyl fermions are eliminated as detailed
in this article.
Robustness against perturbations and the anomalous

electromagnetic responses of Weyl fermions arising from
the chiral anomaly are the reasons why the condensed-
matter realization of Weyl fermions has been interesting
experimentally and theoretically [17]. The Weyl electrons
are, however, easily annihilated in a pair with Weyl
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electrons of the opposite chirality. Consequently, the Fermi
arc on the surface of the pyrochlore zero-gap semiconduc-
tor survives only near the all-in–all-out–type antiferromag-
netic transition temperature [12,18].
In contrast to fragile Fermi arcs at surfaces, here, we

show that magnetic domain walls realize metallic interfaces
preserved by zero modes or in-gap states with a robust
Fermi arc or Fermi surface even after the pair annihilation
of Weyl electrons and even in the seemingly trivial
antiferromagnetic insulators, as summarized in Fig. 1.
The zero modes follow a one-dimensional Dirac equation
that protects in-gap states. The existence of a gapless mode
at the domain wall is protected because the bulk state is
projected to a one-dimensional weak Chern insulator,
provided that certain symmetries are satisfied. The domain
wall can indeed satisfy these symmetries. Namely, persist-
ing metallicity pinned at domain walls is assumed. The
domain walls also maintain a ferromagnetic moment,
similarly to spin solitons in polyacetylene. It may solve
experimental puzzles of the iridium oxides, such as bad
insulating behaviors [9,10] with clear optical gaps [12],
anomalous weak ferromagnetism [10,13], and anomalous
magnetotransports [14,19] widely observed in the pyro-
chlore iridium oxides, regardless of their detailed chemical

compositions. Furthermore, it offers a novel quantum
confinement of electrons, enabling magnetic control of
interface electronic transports. For quantum wells or crystal
grain boundaries, the location, orientation, and number of
these interfaces cannot be controlled after their fabrications.
In contrast, our magnetic domain walls are tunable through
applied magnetic fields and further host protected in-gap
metallic domain-wall states.
Dirac- or Weyl-type fermions [20,21] realized in crys-

talline solids with both strong spin-orbit couplings and
Coulomb repulsion are a subject of intensive studies
[7,18,22–24]. We elucidate another prominent effect aris-
ing from the combined interaction and topology by study-
ing a single-band Hubbard-type model on the pyrochlore
lattice [Fig. 2(a)], with the Jeff ¼ 1=2 manifold of the
iridium pyrochlore oxides in mind, where Jeff is an
effective total angular momentum of the 5d orbitals of
an iridium atom with five electrons: We show that the Weyl
electrons leave behind their indelible trace with a Fermi
surface at the magnetic domain walls even after the pair
annihilations of them, namely, even when the Weyl
electrons completely disappear and the bulk and surface
turn into an insulator. This conclusion is supported by
fully unrestricted Hartree-Fock calculations, where the

FIG. 1. Two-dimensional Brillouin zones illustrated for two different kinds of interfaces, namely, surfaces of bulk crystals with
magnetic orders (red or blue transparent cubes) against vacua and domain walls between two magnetic domains. Evolution of Fermi arcs
is shown for the surfaces between the bulk and vacua and for the magnetic domain walls between two magnetic domains upon changes
in temperatures T (indicated by the horizontal axis). The evolution occurs in a zero-gap semiconductor hosting Weyl electrons below its
critical temperatures for the magnetic order Tc. The domains with two inequivalent magnetic orders that are mapped onto each other
through the time-reversal operation are illustrated as the red and blue transparent cubes (called “all-out” and “all-in” domains in the later
discussion). These surfaces and domain walls are illustrated to be perpendicular to the X axis. The spectral functions at the Fermi level
are shown in the momentum frame ðκY; κZÞ with a finite broadening factor for the sake of illustration. Here, stronger colors indicates
higher spectral intensities. In contrast to the naive expectation that the magnetic domain walls simply consist of two surfaces between the
bulk and vacua (shown in the right end), the magnetic domain wall offers a novel two-dimensional interface distinct from the surfaces:
Even after pair annihilation of the Weyl electrons, the domain-wall metallic states remain and form a Fermi surface (shown in the left end
panel). All of the Fermi arcs (and the Fermi surface at lowest temperatures) are calculated by using the tight-binding Hamiltonian (1)
with the ð011̄Þ surfaces and domain walls introduced later, with the parameter set used for Figs. 3 and 6. For detailed notations, see the
captions of Figs. 3 and 6.
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self-consistent mean fields at every atom for charge density
and three spin components are fully relaxed, as well as
by analyses on the Dirac equations for the effective low-
energy model. Electronic states bound around the domain
walls are formed, whose origins are traced back to the
bulk Weyl electrons and their quantum chiral anomaly.
The present domain-wall theory offers insights into a
number of peculiar properties of R2Ir2O7, including
weak ferromagnetism with strong field dependence [13]
bad but stubborn electronic conduction [12] and negative
magnetoresistance [14].
The outline of the present paper is as follows: A

theoretical model for pyrochlore iridium oxides is defined
in Sec. II. In Sec. III, Weyl electrons and their pair
annihilation in the present model are described. We employ
the standard ~k · ~p perturbation theory around the Fermi
level, which generates the Luttinger Hamiltonian, as is
derived in Appendixes A and B. In Sec. IV, together with
Appendix D, the Luttinger Hamiltonian is reduced to one-
dimensional Dirac or three-dimensional Weyl Hamiltonians
characterizing low-energy electronic states aroundmagnetic
domain walls (defined in Appendix C) that describe the bulk
Weyl electrons and Fermi arcs or surfaces appearing at the
domain walls. Topological properties of the domain-wall
states are elucidated in Sec. V and Appendix E as well as
in a simplified model in Sec. VI. The similarity of the
domain wall to the solitons in polyacetylene is discussed.
Unrestricted Hartree-Fock results on the model are given in
Sec. VII. It is shown that the one-dimensional Dirac
equation captures the essence of the full effective tight-
binding model for the pyrochlore iridium oxides.
Symmetric properties and the symmetry-protected topo-
logical nature of the domain-wall states are detailed in
Sec. VIII. The relevance of our theoretical predictions to
experimental observations on pyrochlore iridium oxides is
discussed in Sec. IX. Bad insulating properties in the
electronic conduction and weak ferromagnetism, as well
as large magnetoresistance in Nd and Gd compounds
observed experimentally, are naturally understood from
the present theory.

II. MODEL OF PYROCHLORE IRIDIUM OXIDES
WITH SPIN-ORBIT INTERACTION

In this article, we employ a simple model describing the
essential physics of iridium pyrochlore oxides, which is
also one of the minimal models hosting bulk Weyl
fermions: The Hubbard Hamiltonian with the on-site
interaction U, transfer t, and spin-orbit coupling ζ decoded
as spin-dependent imaginary hopping at the filling of one
electron per site is introduced as

Ĥ ¼ −t
XNN
i;j

X
σ

½ĉ†iσ ĉjσ þ H:c:� þ U
X
i

n̂i↑n̂i↓

þ iζ
XNN
i;j

X
α;β¼↑;↓

ĉ†iα

�
~̂σ ·

~bij × ~dij

j~bij × ~dijj

�
αβ

ĉjβ; (1)

where a fermionic operator ĉ†iσ (ĉiσ) creates (annihilates) an
electron with σ spin at the ith site. Here, the effective spin-
orbit coupling described by the ζ term is given by
pseudovectors ~bij × ~dij illustrated in Fig. 2(b). This ζ term
is the unique form of the spin-orbit interaction as the
nearest-neighbor (NN) hopping matrices allowed by the
time-reversal symmetry and the point-group symmetry of
the pyrochlore lattice, except for rotations of the global
spin-quantization axis.
The sign of ζ determines the electronic structure of the

model [25,26] and its ground-state magnetism: The zero-
gap semiconductors are realized for ζ < 0, while, for ζ > 0,
the system becomes a topological insulator in the absence
of interaction. The magnetic ground state for ζ < 0 and
U > 0 is the all-in–all-out order [Fig. 2(c)], where the
magnetic moment at each site points away from or toward
the center of the tetrahedron and feels like Ising-type
anisotropy [27]. Thus, there remains twofold degeneracy
of the order.

III. WEYL ELECTRONS AND THEIR
ANNIHILATION IN PAIRS

Once the all-in—all-out orders are formed, the physics of
Weyl electrons [the low-energy physics of the Hamiltonian
(1) with ζ < 0] is essentially captured by mean-field
decouplings of the short-ranged Coulomb repulsion U,
except for quantitative corrections arising from gapped
quantum and/or thermal spin fluctuations and irrelevant
quasiparticle renormalizations.
If the Coulomb repulsion U is neglected, the low-energy

electronic energy-momentum dispersion is described by a
variation of the Luttinger Hamiltonian [22,28,29], which is
a prototypical four-component effective Hamiltonian for
semiconductors with the cubic symmetry. The explicit form
of the effective Hamiltonian directly derived from Eq. (1) is
given as

(a)
dij

bij

rj
ri

o

x
y

z

(a,0,a)

(0,0,0)
(a,a,0)Pyrochlore

(b) (c)

(0,a,a)

All-out

All-in

Unit cell

FIG. 2. Magnetic structure and notations for spin-orbit inter-
action on pyrochlore lattice. (a) Pyrochlore lattice structure,
(b) definition of effective spin-orbit couplings on pyrochlore
lattices, and (c) all-in–all-out magnetic-moment configuration.
In (b), the vectors ~dij and ~bij are illustrated for a specific bond.
The vector ~dij points from the jth site ~rj to the ith site ~ri, and the
vector bij points from the center of the unit tetrahedron O to the
midpoint between ~ri and ~rj.
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ĥ4×4ð~kÞ ¼
�
þ2t

�
1 −

k2

3

�
− 2

ffiffiffi
2

p
jζj
�
14 − 2t~dð~kÞ · ~̂Γ; (2)

where

~dð~kÞT ¼ −
�
kykzffiffiffi

3
p ;

kzkxffiffiffi
3

p ;
kxkyffiffiffi

3
p ;

k2x − k2y
2
ffiffiffi
3

p ;
3k2z − k2

6

�
; (3)

and a vector of 4 × 4 Dirac matrices ~̂Γ
T ¼ ðΓ̂1; Γ̂2;

Γ̂3; Γ̂4; Γ̂5Þ is defined as

Γ̂1 ¼
�

0 −iσ̂0
þiσ̂0 0

�
;

Γ̂2 ¼
�

0 þσ̂z

þσ̂z 0

�
;

Γ̂3 ¼
�

0 þσ̂y

þσ̂y 0

�
;

Γ̂4 ¼
�

0 þσ̂x

þσ̂x 0

�
;

Γ̂5 ¼
�þσ̂0 0

0 −σ̂0

�
:

(See Appendix A for the derivation.) The low-energy bands
are degenerate quadruply at the crystallographic Γ point,
the center of the Brillouin zone in the momentum
space ~k ¼ ð0; 0; 0Þ, and form a so-called quadratic band
crossing.
By adding a small but finite mean-field term representing

the all-in–all-out orders mΓ̂54 with another Dirac matrix
Γ̂54 ¼ ½Γ̂5; Γ̂4�=2i (see Appendix A for the microscopic
derivation) and m ¼ Umall=2, eight Weyl points at the

momenta ~k ¼ ~kWeyl ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffijmj=2tp ð�1;�1;�1Þ, up to the

order of jmj, are induced instead, while the fourfold
degeneracy at the Γ point is lifted. Here, mall represents
the amplitude of the magnetic moment at each site in the
all-in–all-out phase. The energy spectrum is given through
the poles of the Green’s function

Ĝ4×4ð~k;ωÞ ¼ ½ðωþ μÞ14 − ĥ4×4ð~kÞ�−1; (4)

as

Eð~kÞ ¼ −μ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4t2j~dð~kÞj2 þm2 � 4jmjt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d1ð~kÞ2 þ d2ð~kÞ2 þ d3ð~kÞ2

qr
; (5)

where μ is the chemical potential. The momenta of the

Weyl points are given by the equations d4ð~kÞ ¼ d5ð~kÞ ¼ 0

and 2tj~dð~kÞj ¼ jmj. (See Appendix B for more details.)
When the order parameter m increases and becomes
comparable to t, these eight Weyl points come closer
and are annihilated in pairs at the crystallographic L points
~k ¼ ~kL ¼ ð�π=4a;�π=4a;�π=4aÞ at the boundary of the
Brillouin zone. We note that there are only four inequiva-
lent L points.
To understand the nature of bulkWeyl electrons, their pair

annihilation, Fermi arcs on surfaces, and ones on domain
walls, it is sufficient to employ a ~k · ~p perturbation theory,
which is a traditional technique for a semiconductor and its
interface physics [30] around the Weyl points, starting from
the four-component effective Hamiltonian ĥ4×4ð~kÞ þmΓ̂54.
Especially, near the Γ point and the L points, the ~k · ~p
perturbation theory gives us simple expressions suitable for
the exploration of the physics of interfaces, as shown in
Sec. IV. As unperturbed wave functions for the ~k · ~p
perturbation theory, we choose the wave functions at these
symmetric points classified by irreducible representations of
the point groups Td andD3d for the Γ point and theL points,
respectively. Around the Γ point, the ~k · ~p Hamiltonian
expanded from the quartet labeled by G3=2 in the

terminology of the point group Td is nothing but the
Luttinger Hamiltonian discussed above. The four-compo-
nent Hilbert space labeled by irreducible representations
E3=2u⊕E1=2g at the L point gives the basis for the ~k · ~p
Hamiltonian around theLpoints.Once the ~k · ~pperturbation
theory around theWeyl points near theΓpoint andLpoints is
obtained, it leads to the entire description of the Weyl
electrons through the interpolation of these low-energy
theories around the Γ point and the L points.
Here, we elucidate the relevance of our model hosting

the eight Weyl points to the pyrochlore iridium oxides
R2Ir2O7. First of all, the quadratic band crossing and
fourfold degeneracy at the Γ point are symmetry-protected
properties of the Jeff ¼ 1=2 manifold on the pyrochlore
lattice. When the time-reversal symmetry is broken with
keeping the Td symmetry, the eight Weyl points immedi-
ately stem from the Γ point. When the system becomes
insulating, the pair annihilation of the eight Weyl points
necessarily occurs through the level crossing at the L points
between the Zeeman-split states from the E1=2g and E3=2u
doublets discussed in the paragraph above.
On the other hand, 24 Weyl points are found by the

calculation based on the local spin density approximation
(LSDA) supplemented by taking account of the spin orbit
(SO) interaction and the electron correlation effect on the
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Hartree-Fock level, namely, so-called LSDAþ SOþ U
calculation in Ref. [6]. The 24 Weyl points are created
as three pairs at each of four L points when the split states
from the E1=2g and E1=2u doublets at the L points show level
crossings, instead of states from the E1=2g and E3=2u
doublets. These 24 Weyl points are nothing to do with
the eight Weyl points discussed in this paper. As detailed in
the following section, what we find is that the eight Weyl
points leave gapless domain-wall states as a topological
nature of pyrochlore iridium oxides even after their pair
annihilation, while the 24 Weyl points leave nothing.
Furthermore, whether the crossing of the E1=2g and E1=2u
doublets occurs depends on the details of the material
parameters and does not always happen. The eight Weyl
points are not focused on in Ref. [6], although signs of the
eight Weyl points are found inside the semimetal phase
with Fermi surfaces in the band dispersion.

IV. EFFECTIVE ONE-DIMENSIONAL
DIRAC HAMILTONIAN

Under the influence of a small but finite order parameter

m, the four-component effective Hamiltonian ĥ4×4ð~kÞ þ
mΓ̂54 exhibits Weyl points consisting of two of the four
components, while the other two components are gapped.
[See Eq. (5) and Appendix D.] Around the Weyl points, the
Hamiltonian therefore breaks up into a pair of two-
component Hamiltonians, up to the linear order in the
~k · ~p perturbation, one of which is nothing but a Weyl
Hamiltonian describing three-dimensional massless fer-
mions. For m > 0, we note the Weyl Hamiltonian as

ĥðþÞ
Γ~kWeyl

(ĥðþÞ
L~k

) and describe the other two-component gapped

part as ĥð−Þ
Γ~kWeyl

(ĥð−Þ
L~k

), around the Γ point (the L points). For

instance, the four-component effective Hamiltonian is
expanded with respect to the momentum measured from

the Weyl points δ~k as

ĥ4×4ð~kWeyl þ δ~kÞ þmΓ̂54 →2
64 ĥðþÞ

Γ~kWeyl
ðδ~kÞ Oðtjδ~kjÞ

Oðtjδ~kjÞ ĥð−Þ
Γ~kWeyl

ðδ~kÞ

3
75þOðt2jδ~kj2Þ; (6)

around the Γ point, after an appropriate unitary trans-
formation independent of m. Since the gapped part

ĥð−Þ
Γ~kWeyl

ðδ~kÞ at δ~k ¼ ~0 has two eigenvalues �2m [see

Eq. (5)] with m > 0, the low-energy excitations up to

tjδ~kj are described by the Weyl Hamiltonian ĥðþÞ
Γ~kWeyl

at a

small δ~k ≠ ~0. Surprisingly, when we change the sign of m
while keeping its amplitude, or simply apply the time-
reversal operator to the Hamiltonian, the role interchanges

and the two-component Hamiltonian ĥð−Þ
Γ~kWeyl

(ĥð−Þ
L~k

)

describes Weyl electrons, while ĥðþÞ
Γ~kWeyl

(ĥðþÞ
L~k

) describes

gapped components.
As elucidated in the literature [6,31,32], bulk Weyl

electrons result in Fermi arcs on surfaces and/or domain
walls of the bulk crystals. By using the ~k · ~p Hamiltonians

ĥð�Þ
Γ~kWeyl

or ĥð�Þ
L~k

around the Weyl points, we can sketch the

Fermi arcs not only on the surfaces but also on the magnetic
domain walls in the following.
For clarification, we concentrate on a pair of Weyl points

~kWeyl ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffijmj=2tp ð1; 1; 1Þ, with jmj=t ≪ 1, and on a
surface or domain wall perpendicular to ð0;þ1;−1Þ,
namely, a ð011̄Þ surface or domain wall. In the following
discussion, we call a coordination axis along ð0;þ1;−1Þ
the X axis and introduce an oblique coordinate ðX; Y; ZÞ
together with the corresponding reciprocal momentum
coordinate ðκX; κY; κZÞ defined through

~r ¼ X

2
64

0

þ2a

−2a

3
75þ Y

2
64

0

−2a
−2a

3
75þ Z

2
64
−4a
þ2a

þ2a

3
75 (7)

and

~k ¼ κX

2
64

0

þ1=4a

−1=4a

3
75þ κY

2
64
−1=4a
−1=4a
−1=4a

3
75þ κZ

2
64
−1=4a

0

0

3
75: (8)

[See also Fig. 3(a) and Appendix C.] As detailed above,
around the Weyl points, the Luttinger Hamiltonian breaks
up into a pair of the following two-component Dirac

Hamiltonians ĥðþÞ
Γ~kWeyl

and ĥð−Þ
Γ~kWeyl

that describe low-energy

physics in the all-out and all-in domains, with m > 0 and

m < 0, respectively. (See Appendix D.) For ~kWeyl ¼
κ0ð1=

ffiffiffi
3

p
; 1=

ffiffiffi
3

p
; 1=

ffiffiffi
3

p Þ, with κ0 ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3jmj=2tp

, the two-
component Dirac Hamiltonian up to the linear order in
−i∂X, δκY , and κZ is given as

ĥð�Þ
Γ~kWeyl

ð−i∂X; δκY; κZ;XÞ ¼ h0ðδκY; κZÞσ̂0
þ hxðδκY; κZÞσ̂x þ hyð−i∂XÞσ̂y
þ hð�Þ

z ðδκY; κZ; XÞσ̂z; (9)

where we introduce a new variable δκY defined through
ðκX; κY ¼ κ0=

ffiffiffi
3

p þ δκY; κZÞ and replace κX with −i∂X.
(See Appendix D for the derivation.) The Weyl points
are projected to ðδκY; κZÞ ¼ ð0; 0Þ. Here, coefficients
of the identity matrix and Pauli matrices in the Dirac
Hamiltonian (9) are derived from the original Hamiltonian
(1), via the low-energy Luttinger Hamiltonian, as
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h0¼−4
ffiffiffi
3

p
tκ0ðδκYþκZ=3Þ, hx¼4

ffiffiffi
3

p
tκ0κZ=3, hy¼4tκ0i∂X,

and hð�Þ
z ¼ ∓4tκ0ðδκY þ κZ=3Þ=

ffiffiffi
3

p þmðXÞ∓jmj.
Then, the two-component one-dimensional Dirac equa-

tion ĥðþÞ
Γ~kWeyl

~ψðXÞ ¼ E~ψðXÞ gives a description of bound

states on the surface or domain walls by introducing
suitable X-dependent “mass” terms mðXÞ [33,34]. Here,
the all-out (all-in) domain is described by mðXÞ ¼ þjmj
[mðXÞ ¼ −jmj]. We also note that, if jmj is large enough,
the Weyl points are annihilated in pairs and the bulk system
becomes a trivial magnetic insulator. Therefore, the mass
term mðXÞ ¼ jmjθð−XÞ − jmjθðXÞ gives a description of
the magnetic domain wall at X ¼ 0 for long-wavelength
behaviors.
The X-dependent mass term for the magnetic domain

walls introduced above indeed reproduces the numerical
solution of the tight-binding Hamiltonian (1) for the Fermi
arcs (solid curves) around the Weyl points (white circles)
projected onto the domain-wall Brillouin zone, at least up
to linear order, as shown in Fig. 3(b). It shows the validity
of the effective one-dimensional Dirac equation for the
domain-wall Fermi arcs.

Then, we explain how a description for a surface
between a vacuum (X < 0) and the bulk (X > 0) can be
mimicked by mðXÞ ¼ M × sgnðmÞθð−XÞ þmθðXÞ, with
M ≫ jmj. The introduction of the large amplitude of the
mass M without the sign change in mðXÞ mimics a zero-
Fermi-velocity limit and indeed offers an effective descrip-
tion of vacuum. In the 1D Chern insulator, topologically
trivial phases with the zero Chern number are realized by
setting the Fermi velocity equal to 0. By taking into account
the fact that the relevant length scale governing the wave
functions of the edge states is the ratio of the amplitude of
the mass and the Fermi velocity, the small Fermi-velocity
limit corresponds to the large mass-amplitude limit inde-
pendently of the sign of the mass M. The comparison with
the numerical solution of the tight-binding Hamiltonian (1)
at the surface between the bulk and the real vacuum indeed
supports the validity of the mass term mðXÞ, as shown in
Fig. 3(b): The Fermi arcs (dashed curves) obtained with the
mass term mðXÞ around the projected Weyl points (white
circles) are consistent with the numerical solution of
Eq. (1), up to linear order.
When we treat three successive boundaries, such as ones

between a vacuum and an all-out domain, between an

FIG. 3. Summary of solutions for effective one-dimensional Dirac equations ĥð�Þ
Γ~kWeyl

~ψðXÞ ¼ E~ψðXÞ. (a) Newly introduced coordinate

axes X, Y, and Z are illustrated for the ð011̄Þ domain wall. (b) Zero modes of the chiral Dirac equations with low-energy ~k · ~p

Hamiltonians including ĥð�Þ
Γκ0=

ffiffi
3

p ð1;1;1Þ [Eq. (9)] and ĥ
ð�Þ
Γκ0=

ffiffi
3

p ð−1;1;1Þ (see Appendix D). Open circles indicate the four Weyl points projected

to the ðκY ; κZÞ plane at ~kWeyl ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffijmj=2tp ð1; 1; 1Þ and ~kWeyl ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffijmj=2tp ð−1; 1; 1Þ. Crosses indicate the other four bulk Weyl points.
Solid (dashed) lines represent the initial slopes of the loci of the domain-wall (surface) states starting from the Weyl points obtained from
Eq. (2), where the full solution of Eq. (1) is illustrated by a color contour plot. Small deviations of the solid (dashed) black lines from the
expectation from the contour plot may be ascribed to the small error arising from the reduction from the four-component Luttinger
Hamiltonian to the two-component Hamiltonian (9), where off-diagonal elements in the order of k2 are ignored. Form → 0, solid curves
shrink and disappear at (0,0). Arrows indicate the directions along which the projected Weyl points move when jmj increases.
(c) Qualitative description for pair annihilation of bulk Weyl electrons on the ðκY ; κZÞ plane. Solid (dashed) curves illustrate the loci of
the domain-wall (surface) zero modes. When the projected Weyl points move along the direction indicated by the arrows originally
starting from (0,0), the pair annihilation occurs at ðκY ; κZÞ ¼ ðπ; 0Þ. Then, the closed loop of the Fermi surface on the domain walls
appears, which is represented by the solid red curves. Note that the Brillouin zone is shifted ð0; πÞ from (b). The shaded regions in (b)
and (c) represent the same area.
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all-out domain and an all-in domain, and between an all-in
domain and a vacuum, we encounter a superficial problem
with the choice of the mass term mðXÞσ̂z introduced above
for a boundary between a vacuum and bulk: The vacua at
both ends of the system have a different sign of M and,
therefore, are not seemingly connected to each other. In
other words, there seem to exist two different vacua, which
seems to be unphysical. However, if we take an atomic limit
only inside the vacua described by the mass term, we can
rotate the mass term and can connect these two vacua by
applying unitary transformations such as eiπσ̂x=2 and chang-
ing the sign ofM. We also remind the readers that the edge-
state wave functions change smoothly when the atomic
limits are taken [see concrete examples of the wave
functions such as Eq. (D28)], while the vacua described
by the mass term do not show the chiral anomaly [35] at the
atomic limit.
As the order parameter m develops, the two Weyl points

at ~k ¼ þjκ0jð1=
ffiffiffi
3

p
; 1=

ffiffiffi
3

p
; 1=

ffiffiffi
3

p Þ and ~k ¼ −jκ0jð1=
ffiffiffi
3

p
;

1=
ffiffiffi
3

p
; 1=

ffiffiffi
3

p Þ come closer and, finally, are annihilated in

pairs at an L point ~kL ¼ ðπ=4a; π=4a; π=4aÞ. Around the L
point, the pair of the two-component Dirac Hamiltonian is
given as

ĥð�Þ
L~kL

¼ hxðκZÞσ̂x þ hyð−i∂X; κZÞσ̂y þ hð�Þ
z ðXÞσ̂z; (10)

where the coefficients of the Pauli matrices hx and hy are

linear functions of their arguments, and hð�Þ
z ¼ −mðXÞ�

jmj. The above Dirac Hamiltonians (10) do not contain
linear terms of δκY , where ðκY; κZÞ ¼ ðπ þ δκY; κZÞ, and,
thus, the pair-annihilation point is given by ðδκY; κZÞ ¼
ð0; 0Þ. Therefore, with a condition κZ ¼ 0 or hx ¼ 0, the
Dirac Hamiltonian (10) possesses chiral symmetry with a
chiral operator σ̂x. (See Appendix E for the derivation and
topological properties of the Dirac equation.)
Figure 3(b) illustrates an example of how the domain-

wall (solid curves) and surface (dashed curves) states
extend around the Weyl points (white circles) before the
pair annihilation at ðκY; κZÞ ¼ ðπ; 0Þ, shown in Fig. 3(c).

V. CHIRAL ANOMALY

In addition to the two-component 1D Dirac equations
described above, the quantum chiral anomaly originating
from the bulk Weyl nodes [35] also confirms the emergence
of the domain-wall states. Below, we explain that the chiral
anomaly due to bulk Weyl nodes leaves its trace even after
the pair annihilation of the Weyl nodes, which inevitably
induces domain-wall states.
Following Nielsen and Ninomiya [35], we start with

Weyl fermions coupled to an external magnetic filed.
Pairwise annihilation of two Weyl nodes with opposite
chiralities coupled to an external magnetic field ð0; 0; BÞ [or
a vector potential ð0; Br1; 0Þ] is modeled by the following
three-dimensional Weyl equation:

½−i∂r1 σ̂x þ ðp2 − eBr1Þσ̂y þ fðp3Þσ̂z�ψ ¼ Eψ ; (11)

where we introduce a real-space Cartesian coordinate
ðr1; r2; r3Þ and a corresponding momentum coordinate
ðp1; p2; p3Þ, which are connected through pa↔ − i∂ra
(a ¼ 1, 2, 3). The microscopic origin of the above 3D
Weyl equation is explained in Appendix E [see Eq. (E4)
and the following paragraphs], although the 3D Weyl
equation is a general one that describes the pairwise
annihilation of Weyl nodes. The function depending on
the third momentum coordinate fðp3Þ determines the
chirality of the Weyl nodes and includes a mass term
controlling the pairwise annihilation. For example, if we
concentrate on the pair annihilation at an L point
ðπ=4a; π=4a; π=4aÞ in the all-out domain with m > 0,
we can choose the function as fðp3Þ ¼ þp2

3 − jmcj þm,
where jmcj is a critical amplitude of the all-in–all-out
magnetic moment for the pair annihilation. Here, the pair-
annihilation point, namely, the L point, is represented by
p3 ¼ 0 in the newly introduced momentum coordinate. The
above Weyl equation leads to the following set of eigen-
values describing the Landau levels E0 ¼ sgnðBÞfðp3Þ and
En ¼ sgnðnÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðp3Þ2 þ 2ejBjjnj

p
, where n is a nonzero

integer as n ¼ �1;�2;�3;…. The emergence of the
Landau level E0 is nothing but a manifestation of the
chiral anomaly.
Then, let us go into a detailed description of the domain

wall based on the bulk Weyl equation introduced above. As
already discussed, the low-energy physics of the all-in–all-
out phases is described by a pair of two-component Dirac
equations: For a description on domain walls, we have

introduced the 1D Dirac Hamiltonians ĥð�Þ
L~kL

. Inside an all-

out domain with 0 < mð< jmcjÞ, ĥðþÞ
L~kL

describes gapless

excitations, while ĥð−Þ
L~kL

describes gapped excitations. On the

other hand, inside an all-in domain with 0 > mð> −jmcjÞ,
ĥð−Þ
L~kL

corresponds to gapless ones, while ĥðþÞ
L~kL

corresponds

to gapped ones. (For its illustration, see a later discussion in
Fig. 10.) For replacing the 1 D Dirac equations by a bulk
3 D Weyl equation, we introduce a set of fðp3Þ’s as

fðþÞðp3Þ ¼ θðmÞ½þp2
3 − jmcj þm�

þ θð−mÞ½−jmcj þm� (12)

and

fð−Þðp3Þ ¼ θðmÞ½þjmcj þm�
þ θð−mÞ½−p2

3 þ jmcj þm�: (13)

Then, we obtain Landau levels illustrated in Fig. 4 with
typical parameter sets. Here, we note that, even after the
pair annihilation with jmj > jmcj, the zeroth Landau level
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E0 remains asymmetric, while other Landau levels En are
symmetric around the zero energy.
The structure of the Landau levels given by using

Eqs. (11–13), illustrated in Fig. 4, directly leads to the
emergence of the gapless domain-wall states. From the
Landau-level spectrum in Fig. 4, the zeroth Landau levels
for both fðþÞðp3Þ and fð−Þðp3Þ appear above E ¼ 0 and at
the bottom of the conduction bands in the all-out domain
with m > 0. On the other hand, these zeroth Landau levels
appear below E ¼ 0 and on top of the valence bands in the
all-in domain with m < 0. As a result, if the all-in and all-
out domains are smoothly connected to each other, these
zeroth Landau levels are also smoothly connected and
result in two gapless domain-wall states. Here, we remind
the readers important facts that the two-dimensional Hilbert
subspaces described by the 3D Weyl equations with
fð�Þðp3Þ are orthogonal to each other, and the eigenvectors
of the eigenvalues E ¼ E0 are orthogonal to those of the
other Landau levels independently of the choices for p3,m,
and eB. We further detail in Sec. VIII the symmetry
protection of the orthogonality by using the explicit
symmetry satisfied by the domain walls.
Therefore, in addition to the topological nature of the 1D

Dirac equations, the chiral anomaly as a bulk property
protects the emergence of the gapless domain-wall states

even after the pair annihilation of the bulk Weyl nodes. In
both descriptions of the emergence of the domain-wall
states, the domain-wall states are proven to appear in pairs.
In contrast to the surface states of strong topological
insulators, the degenerated or pairwise domain-wall states
allow the occurrence of the Anderson localizations by the
impurities that break the translational symmetry and
degeneracy liftings due to additional spontaneous sym-
metry breakings. We note that similar domain-wall states
are proposed in graphene with a broken inversion sym-
metry, characterized by asymptotic valley-resolved Chern
numbers [36], and thus, by the parity anomaly.

VI. TOPOLOGICAL PROPERTIES OF DOMAIN-
WALL STATES IN A SIMPLIFIED MODEL

If the translational invariance along the domain walls is
preserved, the in-gap states at these domain walls are
protected by the chiral symmetry [2,37] of the Dirac
Hamiltonian, particularly at a pair-annihilation point
ðκY; κZÞ ¼ ðπ; 0Þ (see Appendix E and also Sec. VIII for
the protection by the symmetries) and by a generalized
chiral symmetry [38] at other k points. After the pair
annihilation, only the loci of the domain walls survive.
The essential physics of these bound states is captured

by the following toy model with higher symmetry, namely,

(a) (b) (c)

(d) (e) (f)
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FIG. 4. Landau-level spectra for the 3DWeyl equation (11). Throughout this figure, we choose jmcj ¼ 1 and 2eB ¼ 0.1. The Landau
levels with fðþÞðp3Þ are shown for (a) m ¼ −0.5, (b) m ¼ þ0.5 < jmcj, and (c) m ¼ 1.25 > jmcj. The Landau levels with fð−Þðp3Þ are
also illustrated for (d) m ¼ −1.25 < −jmcj, (e) m ¼ −0.5 > −jmcj, and (f) m ¼ þ0.5. The Landau levels En with n > 0 (n < 0) are
represented by solid red (blue) lines. The zeroth Landau levels E0 are shown by solid black lines. For m ¼ �0.5, there are remnants of
the Weyl nodes around E ¼ 0: The zeroth Landau levels traverse E ¼ 0 from the valence bands to the conduction bands. The
asymmetric nature of the zeroth Landau levels around E ¼ 0 is a manifestation of the chiral anomaly.
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a pair of chiral Dirac equations that describes 1D Chern
insulators [2,37] defined by

f½α�ð1−cosκÞ−mðXÞ�σ̂zþviσ̂y∂Xg~ψð~XÞ¼E~ψð~XÞ; (14)

where α� ¼ �α (α > 0) and κ represents the degrees of
freedom of κY and κZ. The two “Weyl” points appear at a κ
that satisfies αð1 − cos κÞ −mðXÞ ¼ 0 (see Fig. 5).
When we approach the pair annihilation of the Weyl

points, the Fermi arcs are expected to shrink on the surface.
On the contrary, as confirmed later numerically, the Fermi
arcs on the domain walls become elongated by eating a part
of the former arc on the surface. Furthermore, after the pair
annihilation, they form a closed loop (an open Fermi line
connected through equivalent Brillouin-zone boundaries).
As is clear in the high-symmetry model [Eq. (14)], after
the pair annihilation of the Weyl points, the surface
between a vacuum and the domain is no longer a topo-
logical boundary: For a given κ, boundaries where the mass
changes are classified in the terminology of the 1D Chern
insulators. The topological invariant changes its sign at the
domain walls as the 1D weak Chern insulators. (See also
Sec. VIII for a detailed symmetry analysis.)
Here, we note that, although there exists a substantial

similarity of the present Dirac Hamiltonian to the well-
studied Su-Schrieffer-Heeger Hamiltonian [39], namely,
the chiral symmetry shared by both Hamiltonians, the latter
effective Hamiltonian for polyacetylene and other con-
ducting polymers additionally possesses the time-reversal
and particle-hole symmetries. In addition to the difference

in the symmetric properties, our 1D chiral Dirac equations
describe the domain-wall states at a specified κ. By a
variation of κ, they constitute 2D Fermi surfaces on the
domain walls, while the edges of the Su-Schrieffer-Heeger
model are genuinely zero-dimensional ones.

VII. UNRESTRICTED HARTREE-FOCK
ANALYSIS

The prediction based on the simple Dirac equations is
confirmed by using fully unrestricted Hartree-Fock analysis
(see Appendix F) of the original Hamiltonian (1) on the
large supercell calculations with three different and typical
domain walls, namely, (011̄), (100), and (111) domain
walls, with a typical parameter set U=t ¼ 4 and
ζ=t ¼ −0.2. (See Appendix G for a definition of the
supercells.) The self-consistent solution with optimized
magnetic moment and charge distribution retains gapless
domain-wall states, in general, and indeed on these three
examples (see Fig. 6).
Moreover, these domain walls bring about uniform

magnetizations perpendicular to themselves, which are
defined as the sum of magnetic moments within the
supercells. Surprisingly, the amplitude of these magnetiza-
tions per unit area of the domain wall does not depend on
the direction of the domain wall and only depends on m
within numerical errors [Fig. 7(a)]. As a result, although the
insertion of a single domain wall brings about a uniform
nonzero magnetization, the total magnetization of a closed
domain wall surrounding a domain may vanish. We note
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FIG. 5. Solutions for effective one-dimensional chiral Dirac equations (4). (a),(b) Simplified degrees of freedom κ corresponding to
one parameter representation of loci of zero modes on ðκY ; κZÞ. The solid (dashed) curve illustrates the loci of the domain-wall (surface)
zero modes. White circles indicate the Weyl points. (a) The case before the pair annihilation of the Weyl points, corresponding to (c) and
(d). On the other hand, (b) after the pair annihilation corresponds to (e), where the surface loci are eaten up by the domain-wall loci, and
the domain-wall loci form a closed Fermi surface in the Brillouin zone. (c) Wave-function amplitude for a domain-wall state for the
chiral Dirac equation (4) with αþ in the plane of the real-space coordinate X and momentum coordinate κ, with v ¼ αþ ¼ 1 and
mðxÞ ¼ −θðþXÞ þ θð−XÞ. The “arc” state at the domain wall penetrates into one side of the bulk at the Weyl points. Another
degenerate “arc" state localized in the other nearby side of the domain wall, obtained with v ¼ 1 and α− ¼ −1, penetrates to the other
side of the bulk (not shown). (d) Wave-function amplitude for a surface state for the chiral Dirac equation (4), with v ¼ α ¼ 1 and
mðxÞ ¼ θðþXÞ þ 10θð−XÞ. The “arc” is formed in the missing part of the domain-wall arc. (e) Wave-function amplitude for a domain-
wall state for the chiral Dirac equation (4), with v ¼ α ¼ 1 and mðxÞ ¼ −3θðþXÞ þ 3θð−XÞ. The domain-wall state now forms the
closed loop of the Fermi surface without penetration into the bulk. For jmðXÞj > 2, there are no zero modes for surfaces.
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that the net magnetization of the whole system depends on
termination of the system, as net magnetizations and/or
electric polarizations of the usual antiferromagnets and/or
ferroelectrics indeed depend on the termination of the
systems. In this article, we only use the supercells tiled
by tetrahedrons that are not sharing sites with each other
(defined in Appendix C), for a clear-cut argument.
Here, we note that our tight-binding model is introduced

as the simplest model for the holes in the Jeff ¼ 1=2
manifold of R2Ir2O7. Therefore, we need to distinguish
total angular momenta from magnetic moments of the
physical spins. In this article, we use the Jeff ¼ 1=2 basis
throughout and show total angular momenta as magnetic
moments. The magnetic moments of the physical spins,
therefore, align in the same direction with calculated total
angular momenta and have an amplitude with 1=3 of that of
the total angular momenta.
The cancellation of the domain magnetizations is similar

to that of a pair consisting of a spin soliton and an
antisoliton sandwiching a domain of polyacetylene [39].

It becomes, however, incomplete, when external electric
fields, lattice strain, defects, charged impurities, and/or
doped carriers [as we see in Fig. 7(b)] exist. These
incomplete cancellations are essentially the inverse effects
of magnetostrain and/or magnetocharge responses [40].

VIII. SYMMETRIC AND TOPOLOGICAL
PROPERTIES

The low-energy effective theory of the domain-wall
states and the mean-field solutions for the domain walls
in the tight-binding model have been discussed so far. Here,
we show general properties of the domain-wall states that
do not depend on the details of these theories: Symmetric
properties and topological characterizations of these
domain-wall states are given below. First, we show the
symmetric properties both in the low-energy Dirac or Weyl
equations and the mean-field solutions of the tight-binding
model, which protect the degeneracy of the domain-wall
states. Then, in an example of the (111) domain walls, we

FIG. 6. Magnetic domain walls and domain-wall states. (a)–(c) Optimized magnetic structures for (011̄), (111), and (100) domain
walls, obtained from initial configurations shown in the insets, for U=t ¼ 4, ζ=t ¼ −0.2, and kBT=t ¼ 0.1. The length and direction of
the arrows are determined by optimized unrestricted Hartree-Fock solutions. We note that only a part of the supercells nearby the domain
walls is illustrated. Uniform magnetizationm0 induced by the insertion of the domain walls and the intersection of the domain walls with
the supercells are also illustrated as bold green arrows and shaded planes, respectively. (d)–(f) Spectral functions projected to the domain
walls for (d) the (011̄) domain wall, (e) the (111) domain wall, and (f) the (100) domain wall, for kBT=t ¼ 0.1, with a finite Lorentzian
width δ ¼ 0.01t. At this temperature, bulk Weyl points do not exist any more. Every domain wall contributes to in-gap states at the
chemical potential or the Fermi level, forming open two-dimensional Fermi surfaces. As a consequence of the pair annihilation of the
Weyl points shown in Fig. 3(c), the Fermi arcs for the domain walls are now closed at this temperature. The complexity of the domain-
wall Fermi surfaces originates from the following fact: Depending on the orientation of the domain walls, there are many choices of how
to connect the Weyl points with the loci of the domain-wall zero modes.
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explicitly demonstrate the existence of a weak topological
number based on the translational and threefold-rotational
symmetries of the (111) domain walls.

A. Degeneracy protected by symmetries

Both the low-energy effective description and the micro-
scopic mean-field solution of the domain walls are invariant
under certain symmetry operations. For the domain walls in
the low-energy effective theories, the domain walls are
trivially invariant under the inversion around the center of
the domain walls Î accompanied by the time-reversal
operation Θ̂.
The domain walls in the microscopic mean-field sol-

utions have more symmetric properties, which are detailed
below. The (011̄) domain walls in the mean-field solution
are invariant under the inversion Î around a site on the
domain boundaries with the time-reversal operation Θ̂. The
simultaneous twofold rotation of the lattice and the spins

around the (011̄) axis Ĉð011̄Þ
2 with Θ̂ also leaves the (011̄)

domain walls invariant. The combination of a twofold

rotation around the (001) axis Ĉð001Þ
2 and Θ̂ leaves the (100)

domain walls invariant. The twofold rotation around the

(100) axis Ĉð100Þ
2 also keeps the (100) domain walls

unchanged. The (111) domain walls are invariant under
the operations of the threefold rotation around the (111)

axis Ĉð111Þ
3 and the inversion with the time reversal Î Θ̂.

The invariance under the operation of the inversion with
time reversal Î Θ̂ guarantees doubly degenerated Fermi

surfaces at the (011̄) and (111) domain walls, while the

invariance under the operation of Ĉð001Þ
2 Θ̂ guarantees

the degeneracy for the (100) domain walls. In addition,

the invariance under Ĉð011̄Þ
2 Θ̂ (Ĉð100Þ

2 ) guarantees the degen-
eracy between the two L points projected at the same
momentum in the domain-wall Brillouin zones for the
(011̄) domain walls [the (100) domain walls].

B. Hidden weak topological invariant

In addition to the symmetric properties shown above, the
topological nature of the (111) domain-wall states is
characterized by the topological invariant of the zero-
dimensional class-A Chern insulators [2,41,42]. In other
words, as detailed below, the domain-wall states are edge
states of weak 1D Chern insulators embedded in the bulk.
First, we take an example of the (1,1,1) domain walls.

Here, we introduce the momentum frame ðk1; k2; k3Þ
through

~kT ¼
�
π

4a
;
π

4a
;
π

4a

�
þ k1

�
1ffiffiffi
6

p ;
1ffiffiffi
6

p ;−
2ffiffiffi
6

p
�

þ k2

�
−

1ffiffiffi
2

p ;
1ffiffiffi
2

p ; 0

�
þ k3

�
1ffiffiffi
3

p ;
1ffiffiffi
3

p ;
1ffiffiffi
3

p
�
: (15)

We set ðk1; k2Þ ¼ ð0; 0Þ and drop the k1 and k2 dependence
from Ĥ0ð~kÞ to concentrate on the projection of the L point
ðπ=4a; π=4a; π=4aÞ on the k1k2 plane. The k3 dependence
is only noted as Ĥ0ðk3Þ for simplicity below. Then, we
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FIG. 7. Uniform magnetizationm0 induced around the domain walls. (a) Uniform magnetization m0 induced around the domain walls
per supercell shown as the top three symbols at each temperature for three different domain-wall planes, in comparison with the bulk all-
in– all-out magnetic ordered momentmall (solid black curve). The uniform magnetization per unit area (a2) of the domain wallsm0=ADW
is also shown as the three lowest symbols at each temperature. Here, the area of the intersection of a supercell with the domain walls ADW
for the (011̄), (111), and (100) domain walls are 8

ffiffiffi
2

p
, 4

ffiffiffi
3

p
, and 16 in units of a2, respectively. These three data points are almost on top

of each other. (b) Doping dependence of the uniform magnetization of the (111) domain wall for kBT=t ¼ 0.1. The doping δDW is
defined as an increase or decrease of the electron number per present supercell around the domain walls due to changes in the chemical
potential. It shows that the uniform magnetization is insensitive to the charge doping around the domain wall, within jδDWj < 1. When
more than one electron is doped in the supercell around the domain wall, the reduction of the uniform magnetization becomes
significant, with an asymmetry between electron and hole dopings.
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define the Hamiltonian that describes the sub-Hilbert space
at the projection of the L point or along the ΓL line of the
bulk Brillouin zone as

ĤðΓLÞ
0 ¼

X
k3

~̂c†k3Ĥ0ðk3Þ~̂ck3 ¼
X
x3;x03

~̂c†x3Ĥ
0
0ðx3; x03Þ~̂cx03 ; (16)

where one-dimensional partial Fourier transformations are

employed as ~̂c†x3 ¼ L−1=2P
k3e

ik3x3 ~̂c†k3 for the number of the
unit cell along the (111) direction, and the real-space 1D
Hamiltonian matrix Ĥ0

0ðx3; x03Þ is introduced. The 1D

Hamiltonian ĤðΓLÞ
0 embedded in the bulk Hamiltonian

Ĥ0 describes a hidden 1D weak Chern insulator, as detailed
below.
We prove that the one-dimensional Hamiltonian ĤðΓLÞ

0

describes a hidden 1D weak topological insulator character-
ized by a zero-dimensional class-A topological invariant.
The 1D weak topological insulator is protected by the trans-
lational symmetry along the (111) planes, the threefold-

rotation symmetry (C3 rotation) around the (111) axis Ĉ
ð111Þ
3 .

The translational symmetry prohibits scatterings
among the eigenstates at the projection of the L point
ðπ=4a; π=4a; π=4aÞ and eigenstates at other k points in the
k1k2 plane. Then, if a perturbation V̂ðx3; x03Þ keeps
the threefold-rotation symmetry around the (111) axis
and the mirror symmetry of the (111) plane, the deformed
Hamiltonian

ĤðΓLÞ ¼
X
x3;x03

~̂c†x3 ½Ĥ0
0ðx3; x03Þ þ V̂ðx3; x03Þ�~̂cx03 (17)

is characterized by a class-A topological invariant at d ¼ 0.
Even after the introduction of the perturbation V̂ðx3; x03Þ,
the symmetric properties of the eigenstates under the C3

rotation remain unchanged from those of the unperturbed
Hamiltonian. Therefore, we classify the eigenstates of the
perturbed Hamiltonian ĤðΓLÞ by the symmetric properties

of the eigenstates of the unperturbed Hamiltonian ĤðΓLÞ
0 as

follows. The eigenstates of Ĥ0
0ðx3; x03Þ are categorized into

eight bands, which is evident in the spectrum of the Fourier-
transformed Hamiltonian Ĥ0ðk3Þ. By taking into account
the fact that the C3 rotation is a discrete symmetric
operation, the symmetric property of each eigenstate is
characterized by that of the eigenstates of Ĥ0ðk3 ¼ 0Þ. The
eigenstates of Ĥ0ðk3 ¼ 0Þ are classified into the four
Zeemann-split doublets 2E1=2u⊕E1=2g⊕E3=2u.
There are 8L eigenstates of the perturbed Hamiltonian

ĤðΓLÞ. Out of the 8L eigenstates, 2L eigenstates belong to
E3=2u. Under the presence of the all-in–all-out orders, E3=2u
is split into two groups: L states belonging to E3=2u are
located above the Fermi level, and the other L states remain
under the Fermi level in the bulk insulators. If the
perturbation V̂ðx3; x03Þ keeps the C3 rotation intact, there
are no scatterings among the 2L states labeled by the E3=2u

states and the other 6L states, due to differences in the
(111) component of angular momenta m111, for these
irreducible representations. The wave functions belonging
to 2E1=2u⊕E1=2g are transformed as

Ĉð111Þ
3 jΦ;m111 ¼ �1=2i ¼ e�iπ=3jΦ;m111 ¼ �1=2i; (18)

while the wave functions belonging to E3=2u are trans-
formed under the operation of the Ĉð111Þ

3 as

Ĉð111Þ
3 jΦ;m111 ¼ �3=2i ¼ −jΦ;m111 ¼ �3=2i: (19)

Here, we note the following fact: If the L orbitals with
m111 ¼ þ1=2 are occupied in the all-out phase, the 2L
orbitals with m111 ¼ −1=2 are also occupied. When the
time-reversal operation is applied, the 2L orbitals with
m111 ¼ þ1=2 and the L orbitals with m111 ¼ −1=2 are
necessarily occupied. In addition, the C3-rotational sym-
metry prohibits the scatterings among orbitals with differ-
ent (111) components of the angular momentum m111.
To describe the structure of the spectrum at the projected

L point in detail, matrices are defined as

ðHðΓLÞ
0 Þi;j ¼ h0jĉxνσĤðΓLÞ

0 ĉyμτj0i (20)

and

ðHðΓLÞÞi;j ¼ h0jĉxνσĤðΓLÞĉyμτj0i; (21)

where i ¼ ðx; ν; σÞ and j ¼ ðy; μ; τÞ. Then, the matrix
representation of the unperturbed Hamiltonian is diagon-
alized as

HðΓLÞ
0 ¼U8L×8L

2
664

D2L 02L×3L 02L×3L

03L×2L DðþÞ
3L 03L×3L

03L×2L 03L×3L Dð−Þ
3L

3
775U†

8L×8L; (22)

where D2L and Dð�Þ
3L are 2L × 2L and 3L × 3L diagonal

matrices, respectively. The submatrices Dð�Þ
3L represent the

eigenvalues of the eigenstates that are labeled by the
2E1=2u⊕E1=2g states. The sub-Hilbert space of the orbitals
with m111 ¼ þ1=2 (m111 ¼ −1=2) are represented by the

submatrix DðþÞ
3L (Dð−Þ

3L ). The C3-rotational symmetry that
prohibits the scattering among the three sub-Hilbert spaces

represented by D2L and Dð�Þ
3L leads to an important

consequence: The unitary matrix U8L×8L transforms the
perturbed Hamiltonian matrix HðΓLÞ into the block-
diagonalized form as

HðΓLÞ ¼U8L×8L

2
664

M2L 02L×3L 02L×3L

03L×2L MðþÞ
3L 03L×3L

03L×2L 03L×3L Mð−Þ
3L

3
775U†

8L×8L: (23)
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Here, we call the number of the occupied orbitals that belong

to Mð�Þ
3L in the all-out phase mð�Þ

3L , respectively. Then, if the
systemremainsgapped, thesetof thenumbersof theoccupied

orbitals ðmðþÞ
3L ;mð−Þ

3L Þ is invariant under any perturbation that
keeps the C3-rotational symmetry around the (111) axis.
Therefore, in case of the magnetic domain walls that

keep the C3-rotational symmetry around the (111) axis

intact, the numbers of the occupied orbitals ðmðþÞ
3L ;mð−Þ

3L Þ
give a zero-dimensional topological invariant. If the filling
of the system is kept at half-filling, the conservation of the

electrons leads to mðþÞ
3L þmð−Þ

3L ¼ 3L. Therefore, one of
them gives us a Z topological invariant classified in the
zero-dimensional class A [41,42]. Here, we note that the
all-in–all-out ordered phases of the pyrochlore iridium
oxides do not possess the chiral, particle-hole, and time-
reversal symmetries by themselves.
The robust domain-wall states must exist when the weak

topological invariant changes at the domain walls. The
changes in the invariant indeed occur. If we remind readers
that the eigenstates classified by E1=2g are split into two
groups under the presence of the all-in– all-out orders, the
zero-dimensional topological invariant mðþÞ

3L necessarily
changes from 2L to L, or L to 2L, across the domain walls.
The interchanges in the occupation of m111 ¼ þ1=2

states and m111 ¼ −1=2 states correspond to the switching
of the location of the zeroth Landau levels from the all-out
domains to the all-in domains. Furthermore, as detailed in
Appendix E, the eigenstates belonging to E1=2g with
m111 ¼ −1=2 indeed participate in the wave function of
the zeroth Landau level.

C. Gapless excitations at domain-wall states

The 1D weak Chern insulators embedded in the bulk all-
in–all-out ordered phases guarantee the existence of the in-
gap states. The robust in-gap states, however, do not
necessarily lead to gapless quasiparticle excitations at
the domain walls. Below, we show that the metallic
domain-wall states are guaranteed by the degeneracy of
the domain-wall states protected by the symmetries of the
domain walls introduced in Sec. VIII A.
The appearance of the protected in-gap states due to

interchange of the eigenstates above and below the Fermi
level imposes a constraint on the number of eigenstates
belonging to the conduction, valence, and in-gap states: At
the projected L point, there are 4L − l conduction and
valence states, while there are 2l in-gap states, where l is
some integer. The low-energy effective 1D Dirac and 3D
Weyl equations give us the precise value of l, which is
invariant due to the topological protection under any
perturbations that keep the symmetry of the domain walls.
For the (111) domain walls, the number of the in-gap states
is given as 2l ¼ 2.
The additional symmetry of the domain walls, namely,

the invariance under Î Θ̂ for the (111) domain walls,

protects the twofold degeneracy of the in-gap states.
Even away from the projected L point, the in-gap-state
degeneracy is kept, as illustrated in Fig. 8(b). In addition,
the in-gap states never disappear unless they are merged
into the bulk Bloch states.
Then, if we assume that there are no gapless excitations,

the conduction and valence bands contain 4L3 þ L2

and 4L3 − L2 eigenstates, respectively, or 4L3 − L2 and
4L3 þ L2 eigenstates, respectively, for the system with the
L3 unit cells. Thus, if there are no gapless excitations at the
domain walls, the domain walls require L2 electron or hole
dopings that inevitably induce macroscopic electric polar-
izations. It also prohibits us from keeping the system at
half-filling. Therefore, the domain-wall states inevitably
offer gapless quasiparticle excitations at half-filling and/or
without macroscopic electric polarizations.
In contrast, if the symmetry that protects the degeneracy

of the domain-wall states is broken, the fully gapped states
at half-filling are realized by opening gaps at the domain-
wall states, as schematically illustrated in Fig. 8(c). The
degeneracy lifting and gap opening may indeed occur
at the surface between the bulk and vacuum because at the
surface, the required symmetry [Î Θ̂ for the (111) domain
wall] is broken.
The domain-wall states are not chiral in total, although

each domain-wall band may be characterized by its clock-
wise or counterclockwise chiral spin texture. These chiral
textures cancel each other. As a result, the domain-wall
Fermi surfaces seem to be trivially paramagnetic ones.

D. 24 Weyl nodes

Here, we show that, even if the 24 Weyl nodes appear as
shown in LSDAþ SOþ U [6], the weak topological
invariant is unchanged. As already mentioned in Sec. III,
the 24 Weyl nodes can be induced by certain perturbations
that keep the bulk lattice symmetry and, at least, the
invariance of the system under Ĉð111Þ

3 . For example, the
level scheme at the L point is controlled by introducing
third-neighbor hoppings between two sites connected by
the real-space vectors with amplitudes 2

ffiffiffi
2

p
a, such as

ð2a; 0; 2aÞ and its transformations under the symmetric
operations belonging to the tetrahedron point group Td.
Such perturbations shift the relative energy of 2E1=2u,

E1=2g, and E3=2u at the L point, while the perturbations
introduce a constant energy shift at the Γ point, independ-
ently of the orbital classification. Indeed, the E1=2g state
with m111 ¼ þ1=2 below the Fermi level and the E1=2u
state with m111 ¼ þ1=2 above the Fermi level can be
forced to touch each other at the L point in the all-out
phases (m > 0). As detailed in Ref. [6], the level cross
between these two states induces the 24 Weyl nodes. When
the magnetic ordered moment grows further, the 24 Weyl
nodes become gapped, as also shown in Ref. [6]. Here, we
note that, although the third-neighbor hoppings induce the
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24 Weyl nodes, further-neighbor hoppings are required for
the realization of Weyl semimetals.
Even when the Weyl semimetals with the 24 Weyl nodes

are realized, an important fact is led: After the gap opening
of the 24 Weyl nodes, the number of the unoccupied
orbitals with m111 ¼ þ1=2 is unchanged in comparison
with the original energy spectrum after the pair annihilation
of the eight Weyl nodes [depicted in Fig. 8(a)]. Therefore,
the 24 Weyl nodes do not leave any trace after they are
gapped out, in contrast to the eight Weyl nodes that leave
the edge states of the 1D weak Chern insulators after their

pair annihilations. Irrespective of the existence or the
absence of the 24 Weyl points, after the magnetic ordered
moment grows, the topological invariants defined by such
as the number of E1=2u states with m111 ¼ þ1=2 are
determined from the physics of the eight Weyl points
clarified here and are preserved, even when the eight Weyl
points do not show up near the Fermi level.

IX. DISCUSSION AND COMPARISON
WITH EXPERIMENTS

Here, we discuss implications and comparisons of the
present theory and experimental results observed in
R2Ir2O7. We find consistencies between our domain-wall
theory and the experimental indications: By cooling under
magnetic fields, magnetic domain walls are formed and
pinned at their favorable impurity or disorder sites to
optimize the net magnetization along the external magnetic
fields and thus generate a nonzero magnetization with the
difference between zero- and nonzero-field coolings in the
experiments [10,13]. From Fig. 7(b), we find that nex
excess carriers per unit cell induce uniform magnetization
m0 created by insertion of the magnetic domain walls
roughly up to approximately gμBnex, when the domain-wall
concentration is nex (namely, the averaged domain size is
approximately n−1ex unit cells). A realistic value nex ∼ 10−3

explains the peculiar uniform magnetization (approxi-
mately 10−3μB=unit cell) universally observed experimen-
tally [10]. Self-doping may also spontaneously stabilize
such a stable domain structure. The smaller magnetization
for polycrystals [13] is consistent because magnetic
domains are wiped out more easily than those in single
crystals. Here, we note that, in contrast to the concentration
of magnetic domain walls, the concentration of impurities
or disorders does not necessarily depend on whether the
sample is a polycrystal or a single crystal. The larger
hysteresis for stoichiometric samples [13] is simply
ascribed to stronger all-in–all-out order.
The conduction on the domain wall becomes dominating

at low temperatures after the elimination of the bulk Weyl
electrons: Strong sample dependence [13] and hysteresis in
the magnetization sweep [14] at the lowest temperatures
support this view. Our gapless electronic states are doubly
degenerate and localized at the opposite sides of the domain
wall from each other, which generate mutual scatterings
and cause weak but notable Anderson localization. We note
that the double degeneracy is the consequence of the
gapless solutions obtained from ĥðþÞ and ĥð−Þ. It is an
intriguing future problem how the degeneracy is lifted.
Because of the degeneracy, the domain-wall Fermi surface
seems to be a paramagnetic one. However, once its
degeneracy is lifted by external magnetic fields, two
Zeeman-split Fermi surfaces can be chiral, for example,
for (111) domain walls. Each split Fermi surface has
momentum-dependent spin polarization, as expected in
noncoplanar itinerant magnets, and will show geometric

(a)

(b) (c)

FIG. 8. (a) Classification of the eigenstates at the projected L
point. For illustrative purposes, the eigenstates are shown under
the translational invariance along the (111) axis or the ΓL line.

These eigenstates are invariant under the threefold rotation Ĉð111Þ
3

and, thus, labeled by the eigenvalues of the operator Ĉð111Þ
3 . Here,

the eigenstates are e�iðπ=3Þ and −1. For the all-out domain
(m > 0), the solid red (dotted blue) curves represent the eigen-
states with the eigenvalue eþiðπ=3Þ (e−iðπ=3Þ). After applying the
time-reversal operation, namely, in the all-in domain (m < 0),
these eigenstates are switched as the eigenvalue e−iðπ=3Þ (eþiðπ=3Þ)
corresponds to the solid red (dashed blue) curves. (b) Schematic
energy spectrum of a bulk with a single domain wall along
momentum k∥ that is perpendicular to k3, with the protected
twofold degeneracy of the domain-wall states. These doubly
degenerated domain-wall dispersions can be characterized by
clockwise and counterclockwise chiral spin textures. The
domain-wall states by themselves do not possess the inversion
symmetry around the projected Γ and/or L points. (c) Schematic
possible energy spectrum along k∥ without the degeneracy of the
domain-wall states.
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anomalous Hall conductivities. A tempting explanation of
the large negative magnetoresistance for Nd or Gd com-
pounds [14,19] is the fluctuating ferromagnetic moment of
Nd induced by m0 at zero field, which scatters carriers at
domain walls similarly to the double-exchange mechanism.
It is desired to further understand them more quantitatively
for a better magnetic control of the transport.
We here further discuss the novelty of the present

domain-wall excitation. We note that the analogy of the
present domain wall with the solitons in polyacetylene is
helpful as an intuitive concept but should be understood
with caution: It is impossible to straightforwardly general-
ize solitons in polyacetylene to 3D systems and to create
2D metallic states with these solitons because the basic
equations are not the same. Furthermore, the topological
classification of the polyacetylene, which is actually
labeled as BDI in the Élie Cartan’s classification scheme
[2], is different from the present ones classified as 1D weak
Chern insulators because of the crucial differences in the
symmetry and spatial dimensionality, which generate
different classes of topological phase. As far as we know,
magnetic domain walls have never been clarified in the
light of the one-dimensional (weak) Chern insulators,
possibly embedded in the seemingly trivial insulators.
The possibility of such an insulator has never been pointed
out in theoretical and experimental studies on magnetism of
not only the pyrochlore iridium oxides but also the
magnetic domains, in general. From the viewpoint of the
physics of the magnetic domain and domain wall in
the long history, it has never been anticipated that it can
have a topological character with metallic conduction
distinct from the bulk. Therefore, the present domain wall
is a new type of magnetic excitation.
In addition to the purely scientific advances, our result

shows that the domain-wall states in pyrochlore iridium
oxides open a new way of building conducting 2D electron
systems that are controllable through magnetic fields.
Control of electric transports by external magnetic and/
or electric fields has been a central idea of electronics and
spintronics. The domain-wall Fermi surfaces predicted in
our present work can be not only swept by external fields,
after fabrication of samples, but also offer possible anoma-
lous Hall metals with reduced backscatterings (in other
words, high mobility), due to the background noncollinear
all-in– all-out magnetic orders. Possible interplay between
the domain-wall states and magnetic moments of magnetic
ions may already be observed in Gd or Nd pyrochlore
iridium oxides as a huge negative magnetoresistance.
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APPENDIX A: DERIVATION OF
LOW-ENERGY HAMILTONIAN

We study Weyl electrons by using the Hamiltonian (1),
which describes hole states of the Jeff ¼ 1=2 manifold of
iridium atoms. After the mean-field decoupling given in
Appendix F, and using the unrestricted Hartree-Fock
solution of Eq. (1) given by the all-in—all-out magnetic
order, we replace the U term with the mean-field one with
the order parameter m.
We begin with a Fourier-transformed form of

the Hartree-Fock Hamiltonian given by an 8 × 8
Hamiltonian. By extracting a low-energy Hilbert space
around the Fermi level, it is reduced to a 6 × 6Hamiltonian.
If we use k-group terminology at the Γ point, we extract
a T2g ⊗ E1=2 manifold of a double group Td from
ðT2g⊕A1gÞ ⊗ E1=2.
Next, we further extract a 4 × 4 low-energy part of

the 6 × 6 effective Hamiltonian. This corresponds to
extraction of the G3=2 manifold (or J3=2 manifold) from
T2g ⊗ E1=2 ¼ E5=2⊕G3=2, in the k-group terminology.

1. 8 × 8 Hamiltonian

The Fourier-transformed form of the 8 × 8 Hamiltonian
(1) after the Hartree-Fock approximation is given by

Ĥ0 ¼
X
~k

X
ν¼1;…;4

X
α;β¼↑;↓

ĉ†~kναĤ0ð~kÞĉ~kμβ; (A1)

and Ĥ0 ¼ K̂0 þ Ẑ0 þ M̂0, with K̂0 being the kinetic term
proportional to t as

K̂0ð~kÞ ¼ −2tσ̂0

2
666664

0 cosðkx − kyÞ cosðky − kzÞ cosðkz þ kxÞ
cosðkx − kyÞ 0 cosðkz − kxÞ cosðky þ kzÞ
cosðky − kzÞ cosðkz − kxÞ 0 cosðkx þ kyÞ
cosðkz þ kxÞ cosðky þ kzÞ cosðkx þ kyÞ 0

3
777775; (A2)
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Ẑ0 being the spin-orbit term proportional to ζ as

Ẑ0ð~kÞ ¼ 2iζ

2
6666664

0 þ σ̂xþσ̂yffiffi
2

p cosðkx − kyÞ − σ̂yþσ̂zffiffi
2

p cosðky − kzÞ þ σ̂z−σ̂xffiffi
2

p cosðkz þ kxÞ
− σ̂xþσ̂yffiffi

2
p cosðkx − kyÞ 0 þ σ̂zþσ̂xffiffi

2
p cosðkz − kxÞ þ σ̂y−σ̂zffiffi

2
p cosðky þ kzÞ

þ σ̂yþσ̂zffiffi
2

p cosðky − kzÞ − σ̂zþσ̂xffiffi
2

p cosðkz − kxÞ 0 þ σ̂x−σ̂yffiffi
2

p cosðkx þ kyÞ
− σ̂z−σ̂xffiffi

2
p cosðkx þ kzÞ − σ̂y−σ̂zffiffi

2
p cosðky þ kzÞ − σ̂x−σ̂yffiffi

2
p cosðkx þ kyÞ 0

3
7777775
; (A3)

and M̂0 being the Hartree-Fock term of the all-in–all-out magnetic order proportional to m

M̂0 ¼
mffiffiffi
3

p

2
6664
þσ̂x − σ̂y þ σ̂z 0 0 0

0 −σ̂x þ σ̂y þ σ̂z 0 0

0 0 þσ̂x þ σ̂y − σ̂z 0

0 0 0 −σ̂x − σ̂y − σ̂z

3
7775: (A4)

2. Reduction from 8 × 8 to 6 × 6 Hamiltonian

By assuming jζj=t, m=t, k2 ≪ 1, the leading-order terms of the 6 × 6 low-energy effective Hamiltonian Ĥ1 ¼
K̂1 þ Ẑ1 þ M̂1 are extracted by using a projection

P̂4×3 ¼
1

2

2
6664
þ1 −1 þ1

−1 þ1 þ1

þ1 þ1 −1
−1 −1 −1

3
7775; (A5)

with

K̂1 ¼ P̂T
4×3K̂0P̂4×3 ¼−2tσ̂0

0
B@coskx cosky

2
64
−1 0 0

0 −1 0

0 0 þ1

3
75þ cosky coskz

2
64
þ1 0 0

0 −1 0

0 0 −1

3
75þ coskz coskx

2
64
−1 0 0

0 þ1 0

0 0 −1

3
75
1
CA

− 2tσ̂0

2
64

0 sinkx sinky sinkzsinx
sinkx sinky 0 sinky sinkz
sinkz sinkx sinky sinkz 0

3
75

¼−2tσ̂0

2
64
−1þ k2x kxky kxkz

kykx −1þ k2y kykz

kzkx kzky −1þ k2z

3
75þOðk3Þ ¼ 2t16− 2tð~kσ̂0Þ⊗ ð~kσ̂0ÞþOðk3Þ (A6)

and

Ẑ1 ¼ P̂T
4×3Ẑ0P̂4×3 ¼ 2

ffiffiffi
2

p
iζ

2
64

0 −σ̂z þσ̂y

þσ̂z 0 −σ̂x
−σ̂y þσ̂x 0

3
75þOðζk2Þ: (A7)
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The all-in–all-out mean field M̂0 is projected to the low-
energy subspace as

M̂1 ¼ P̂T
4×3M̂0P̂4×3 ¼

mffiffiffi
3

p

2
64

0 σ̂z σ̂y

σ̂z 0 σ̂x

σ̂y σ̂x 0

3
75: (A8)

a. Reduction from 6 × 6 to 4 × 4

Then, we extract a 4 × 4 Hamiltonian from Ĥ1 by using
a unitary transformation consisting of irreducible repre-
sentations E5=2 and G3=2 of the double group Td

ÛJ ¼

2
664
− 1ffiffi

3
p σ̂x − 1ffiffi

2
p σ̂z þ iffiffi

6
p σ̂y

− 1ffiffi
3

p σ̂y − iffiffi
2

p σ̂0 − iffiffi
6

p σ̂x

− 1ffiffi
3

p σ̂z 0 þ 2ffiffi
6

p σ̂0

3
775: (A9)

The first and second columns of ÛJ correspond to the E5=2
irreducible representation, and the other columns corre-
spond to the G3=2 irreducible representation. Then, the
kinetic term K1 is transformed as follows:

Û†
JK̂1ÛJ ¼ 2t16 − 2tÛ†

Jð~kσ̂0Þ ⊗ ð~kσ̂0ÞÛJ

¼ 2t16 − 2t

� 1
3
k2σ̂0 ~̂ν†ð~kÞ
~̂νð~kÞ κ̂ð~kÞ

�
; (A10)

where

~̂ν†ð~kÞ ¼
�
kzkxffiffiffi

6
p σ̂0 þ i

kykzffiffiffi
6

p σ̂z − i
k2x − k2yffiffiffi

6
p σ̂y

þ i
2kxkyffiffiffi

6
p ;

k2 − 3k2z
3
ffiffiffi
2

p σ̂z −
kzkxffiffiffi

2
p σ̂x −

kykzffiffiffi
2

p σ̂y

�
(A11)

and

κ̂ð~kÞ ¼

2
64

k2xþk2y
2

σ̂0 − k2x−k2y
2
ffiffi
3

p σ̂x −
kxkyffiffi

3
p σ̂y −

kzkxffiffi
3

p σ̂z þ i kykzffiffi
3

p σ̂0

− k2x−k2y
2
ffiffi
3

p σ̂x −
kxkyffiffi

3
p σ̂y −

kzkxffiffi
3

p σ̂z − i kykzffiffi
3

p σ̂0
k2þ3k2z

6
σ̂0

3
75: (A12)

The effective spin-orbit coupling and the all-in–all-out
mean field are transformed as

~Z2 ¼ Û†
JẐ1ÛJ ¼ 2

ffiffiffi
2

p
ζ

2
64
−2σ̂0 0 0

0 σ̂0 0

0 0 σ̂0

3
75 (A13)

and

~M2 ¼ Û†
JM̂1ÛJ ¼

2
64
0 0 0

0 0 þimσ̂x

0 −imσ̂x 0

3
75: (A14)

For ζ < 0, by counting the number of states, it becomes
clear that the chemical potential is located within the G3=2

manifold to keep the electron density at half-filling, in other
words, one electron per site. Here, the reduction to the
4 × 4 Hamiltonian Ĥ2 ≡ K̂2 þ Ẑ2 þ M̂2 is achieved by

ignoring the off-diagonal term ~̂ν†ð~kÞ, which generates
negligible corrections of Oðtk4=6 ffiffiffi

2
p jζjÞ. Here,

K̂2 ¼ κ̂ð~kÞ, while Ẑ2 and M̂2 are the lower right 4 × 4

components of ~Z2 and ~M2, respectively. We take the
notation for the tight-binding part as ĥ4×4 ≡ K̂2 þ Ẑ2,
where ĥ4×4 can be rewritten in a compact form as

ĥ4×4ð~kÞ ¼
�
þ2t

�
1 −

k2

3

�
− 2

ffiffiffi
2

p
jζj
�
14 − 2t~dð~kÞ · ~̂Γ;

(A15)

where

~dð~kÞT ¼ −
�
kykzffiffiffi

3
p ;

kzkxffiffiffi
3

p ;
kxkyffiffiffi

3
p ;

k2x − k2y
2
ffiffiffi
3

p ;
3k2z − k2

6

�
(A16)

and a vector of Dirac matrices ~̂Γ
T ¼ ðΓ̂1; Γ̂2; Γ̂3; Γ̂4; Γ̂5Þ,

which give time-reversal-symmetric terms for the Hilbert
space of the 4 × 4 Hamiltonian. The above Hamiltonian is
nothing but a variation of the Luttinger Hamiltonian. Dirac
matrices used here are defined as follows:

Γ̂1 ¼
�

0 −iσ̂0
þiσ̂0 0

�
; (A17)

Γ̂2 ¼
�

0 þσ̂z

þσ̂z 0

�
; (A18)

Γ̂3 ¼
�

0 þσ̂y

þσ̂y 0

�
; (A19)

Γ̂4 ¼
�

0 þσ̂x

þσ̂x 0

�
; (A20)
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Γ̂5 ¼
�þσ̂0 0

0 −σ̂0

�
; (A21)

where σ̂0 is the two-dimensional identity matrix and
σ̂a (a ¼ x, y, z) are the Pauli matrices. From these five
Dirac matrices, the other Dirac matrices representing time-
reversal symmetry-breaking perturbations are defined as

Γ̂ab ¼ ½Γ̂a; Γ̂b�=2i; (A22)

where, for example, the all-in– all-out magnetic order
parameter is represented by M̂2 ¼ mΓ̂54.

APPENDIX B: GREEN’S FUNCTION

By calculating the Green’s functions discussed below,
electronic spectra for the 4 × 4 Hamiltonian become
accessible. The Green’s function Ĝ4×4 for the Bloch
Hamiltonian ĥ4×4 is defined by

Ĝ4×4ð~k;ωÞ−1 ¼ ðωþ μÞσ̂0 ⊗ τ̂0 − ĥ4×4ð~kÞ −mΓ̂54

¼ ϖð~k;ωÞ14 þ 2t~dð~kÞ · ~̂Γ −mΓ̂54; (B1)

where ϖð~k;ωÞ ¼ ωþ μ − 2tþ 2
ffiffiffi
2

p jζj þ 2tk2=3.
Inverting the right-hand side of Eq. (B1), we obtain the

Green’s function as follows:

Ĝ4×4 ¼ ½ϖ14 − 2t~d · ~̂ΓþmΓ̂54� ½ϖ
2 − 4t2j~dj2 −m2�14 − 4mt½d3Γ̂21 þ d2Γ̂13 þ d1Γ̂32�
½ϖ2 − 4t2j~dj2 −m2�2 − 16m2t2½d21 þ d22 þ d23�

¼
�14
2
þ −2t~d·~̂ΓþmΓ̂54

2Eþ

ϖ − Eþ
þ

14
2
− −2t~d·~̂ΓþmΓ̂54

2Eþ

ϖ þ Eþ

��
14
2
− sgnðmÞ d3Γ̂

21 þ d2Γ̂13 þ d1Γ̂32

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d21 þ d22 þ d23

p �

þ
�14
2
þ −2t~d·~̂ΓþmΓ̂54

2E−

ϖ − E−
þ

14
2
− −2t~d· ~̂ΓþmΓ̂54

2E−

ϖ þ E−

��
14
2
þ sgnðmÞ d3Γ̂

21 þ d2Γ̂13 þ d1Γ̂32

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d21 þ d22 þ d23

p �
: (B2)

Here, we omit the ~k and ω dependences above and define the functions E� as

E�ð~kÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4t2j~dð~kÞj2 þm2 � 4jmjt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d1ð~kÞ2 þ d2ð~kÞ2 þ d3ð~kÞ2

qr
: (B3)

For the above calculation of the Green’s function, the
following two identities are useful:

j~dð~kÞj ¼ j~kj2=3 (B4)

and

½~dð~kÞ · ~̂Γ�2 ¼ j~dð~kÞj2: (B5)

APPENDIX C: DOMAIN WALLS

For each of three domain walls, namely, (011̄), (111),
and (100) domain walls, we introduce coordinate trans-
formations given as follows.
For the (011̄) domain wall, we introduce a new oblique

coordinate ðX; Y; ZÞ, with ðY; ZÞ parallel to the domain-
wall plane and corresponding momentum frame
ðκX; κY; κZÞ

~r ¼ X

2
64

0

þ2a

−2a

3
75þ Y

2
64

0

−2a
−2a

3
75þ Z

2
64
−4a
þ2a

þ2a

3
75 (C1)

and

~k ¼ κX

2
64

0

þ1=4a

−1=4a

3
75þ κY

2
64
−1=4a
−1=4a
−1=4a

3
75þ κZ

2
64
−1=4a

0

0

3
75: (C2)

For the (111) domain wall,

~r ¼ X

2
64
−2a
0

−2a

3
75þ Y

2
64
−2a
þ2a

0

3
75þ Z

2
64

0

þ2a

−2a

3
75 (C3)

and
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~k ¼ κX

2
64
−1=4a
−1=4a
−1=4a

3
75þ κY

2
64
−1=4a
þ1=4a

þ1=4a

3
75þ κZ

2
64
þ1=4a

þ1=4a

−1=4a

3
75: (C4)

For the (100) domain wall,

~r ¼ X

2
64
þ2a

þ2a

0

3
75þ Y

2
64

0

þ4a

þ4a

3
75þ Z

2
64

0

0

þ4a

3
75 (C5)

and

~k ¼ κX

2
64
þ1=2a

0

0

3
75þ κY

2
64
−1=4a
þ1=4a

0

3
75þ κZ

2
64
þ1=4a

−1=4a
þ1=4a

3
75: (C6)

APPENDIX D: 1D DIRAC EQUATIONS

In this section, we derive 1D Dirac equations that
describe low-energy single-electron states of the 4 × 4
effective Hamiltonian derived above. By using the derived
1D Dirac equations, we obtain an analytic description of
domain-wall states. For illustrative purposes, we focus on
the (011̄) domain wall and domain-wall states traced

back to the bulk Weyl electrons around ~kWeyl ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffijmj=2tp ð1; 1; 1ÞT and ~kWeyl ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffijmj=2tp ð−1; 1; 1ÞT .
Along a symmetry axis parallel to ~k ¼ ðþ1;þ1;þ1Þ, the

4 × 4 Hamiltonian is diagonalized by the following unitary
matrix

Ûð1;1;1Þ ¼

2
6664
−ai −bi þbi þai

−bϑ þaϑ −aϑ þbϑ

þbϑ� −aϑ� −aϑ� þbϑ�

þa þb þb þa

3
7775; (D1)

where

ϑ ¼ 1þ iffiffiffi
2

p ; (D2)

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

p þ 1
p
2 · 31=4

; (D3)

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

p
− 1

p
2 · 31=4

: (D4)

It is useful to list up the unitary transformation of the
matrices Γ̂i (i ¼ 1; 2; 3; 4; 5) and mΓ̂54:

Û†
ð1;1;1ÞΓ̂

1Ûð1;1;1Þ ¼

2
6664

þ2abðϑþ ϑ�Þ −2a2ϑ� þ 2b2ϑ 0 0

−2a2ϑþ 2b2ϑ� −2abðϑþ ϑ�Þ 0 0

0 0 þ2abðϑþ ϑ�Þ þ2a2ϑ − 2b2ϑ�

0 0 þ2a2ϑ� − 2b2ϑ −2abðϑþ ϑ�Þ

3
7775 (D5)

¼

2
6664

þ1=
ffiffiffi
3

p
−1=

ffiffiffi
6

p þ i=
ffiffiffi
2

p
0 0

−1=
ffiffiffi
6

p
− i=

ffiffiffi
2

p
−1=

ffiffiffi
3

p
0 0

0 0 þ1=
ffiffiffi
3

p þ1=
ffiffiffi
6

p þ i=
ffiffiffi
2

p

0 0 þ1=
ffiffiffi
6

p
− i=

ffiffiffi
2

p
−1=

ffiffiffi
3

p

3
7775; (D6)

Û†
ð1;1;1ÞΓ̂

2Ûð1;1;1Þ ¼

2
6664

þ2abðϑþ ϑ�Þ −2a2ϑþ 2b2ϑ� 0 0

−2a2ϑ� þ 2b2ϑ −2abðϑþ ϑ�Þ 0 0

0 0 þ2abðϑþ ϑ�Þ þ2a2ϑ� − 2b2ϑ

0 0 þ2a2ϑ − 2b2ϑ� −2abðϑþ ϑ�Þ

3
7775 (D7)

¼

2
6664

þ1=
ffiffiffi
3

p
−1=

ffiffiffi
6

p
− i=

ffiffiffi
2

p
0 0

−1=
ffiffiffi
6

p þ i=
ffiffiffi
2

p
−1=

ffiffiffi
3

p
0 0

0 0 þ1=
ffiffiffi
3

p þ1=
ffiffiffi
6

p
− i=

ffiffiffi
2

p

0 0 þ1=
ffiffiffi
6

p þ i=
ffiffiffi
2

p
−1=

ffiffiffi
3

p

3
7775; (D8)
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Û†
ð1;1;1ÞΓ̂

3Ûð1;1;1Þ ¼

2
6664
þ2ða2 − b2Þ þ4ab 0 0

þ4ab −2ða2 − b2Þ 0 0

0 0 þ2ða2 − b2Þ −4ab
0 0 −4ab −2ða2 − b2Þ

3
7775 (D9)

¼

2
6664
þ1=

ffiffiffi
3

p þ2=
ffiffiffi
6

p
0 0

þ2=
ffiffiffi
6

p
−1=

ffiffiffi
3

p
0 0

0 0 þ1=
ffiffiffi
3

p
−2=

ffiffiffi
6

p

0 0 −2=
ffiffiffi
6

p
−1=

ffiffiffi
3

p

3
7775; (D10)

Û†
ð1;1;1ÞΓ̂

4Ûð1;1;1Þ ¼

2
6664

0 0 0 þi

0 0 þi 0

0 −i 0 0

−i 0 0 0

3
7775; (D11)

Û†
ð1;1;1ÞΓ̂

5Ûð1;1;1Þ ¼

2
6664

0 0 0 −1
0 0 −1 0

0 −1 0 0

−1 0 0 0

3
7775; (D12)

and

þmÛ†
ð1;1;1Þ

�
0 −iσ̂x

þiσ̂x 0

�
Ûð1;1;1Þ

¼

2
664
þm 0 0 0

0 þm 0 0

0 0 −m 0

0 0 0 −m

3
775: (D13)

First, we consider the case of ~kWeyl ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffijmj=2tp ð1; 1; 1ÞT . For the (011̄) domain wall, we intro-
duce a new momentum frame ~κ ¼ ðκX; κY; κZÞT as

~k ¼ κX
π

~GX þ κY
π

~GY þ κZ
π

~GZ

¼ ð−κY − κZ;þκX − κY;−κX − κYÞT: (D14)

Then, the vector ~dð~kÞ ¼ ðd1; d2; d3; d4; d5ÞT is transformed
as

d1 ¼
−1ffiffiffi
3

p ð−κ2X þ κ2YÞ; (D15)

d2 ¼
−1ffiffiffi
3

p fþðκY þ κZÞκX þ ðκY þ κZÞκYg; (D16)

d3 ¼
−1ffiffiffi
3

p f−ðκY þ κZÞκX þ ðκY þ κZÞκYg; (D17)

d4 ¼
−1
2
ffiffiffi
3

p ð−κ2X þ 2κYκX þ κ2Z þ 2κYκZÞ; (D18)

d5 ¼
−1
6

ðκ2X þ 6κYκX − κ2Z − 2κYκZÞ: (D19)

Since k-independent and diagonal terms are absorbed
into the chemical potential renormalization, Ĥ2 ¼
ĥ4×4ð~kÞ þ M̂2 may be rewritten after the unitary trans-
formation Ûð1;1;1Þ as

Û†
ð1;1;1Þĥ4×4Ûð1;1;1Þ ¼ −

2

3
tk2σ̂0 ⊗ τ̂0 − 2tÛ†

ð1;1;1Þ~d · ~̂ΓÛð1;1;1Þ

¼ −
2

3
tk2σ̂0 ⊗ τ̂0 − 2t

�
−κ2Y σ̂z ⊗ τ̂0 þ κYκX

h
σ̂x ⊗ τ̂x þ

1ffiffiffi
3

p σ̂x ⊗ τ̂y
i

þ κY þ κZffiffiffi
3

p κX

� ffiffiffi
3

2

r
σ̂x ⊗ τ̂z −

1ffiffiffi
2

p σ̂y ⊗ τ̂0

�

þ κZðκZ þ 2κYÞ
�
−
1

6
σ̂x ⊗ τ̂x þ

1

2
ffiffiffi
3

p σ̂x ⊗ τ̂y

�

−
1ffiffiffi
3

p κZκY

�
2ffiffiffi
3

p σ̂z ⊗ τ̂0 þ
1ffiffiffi
6

p σ̂x ⊗ τ̂z þ
1ffiffiffi
2

p σ̂y ⊗ τ̂0

��
(D20)
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and

Û†
ð1;1;1ÞM̂2Ûð1;1;1Þ ¼ mσ̂0 ⊗ τ̂z; (D21)

where it is indeed diagonal at ~kWeyl ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffijmj=2tp ð1; 1; 1ÞT ,
which translates to κX ¼ κZ ¼ 0 and κY ¼
κ0=

ffiffiffi
3

p ≡� ffiffiffiffiffiffiffiffiffiffiffiffiffijmj=2tp
.

If m > 0, the second and third components constitute
the Weyl electrons. In other words, for m > 0, the
diagonal matrix þ2tκ2Y σ̂z ⊗ τ̂0 þmσ̂0 ⊗ τ̂z is nonzero
for the first and fourth components and possibly has
zero eigenvalues at κX ¼ κZ ¼ 0 only for the second and
third components, namely, at 2tκ2Y ¼ m. Then, by
extracting the second and third components, the 2 × 2
Hamiltonian is obtained as

ĥðþÞ
Γ~kWeyl

ðκX; δκY; κZÞ ¼ −
2t
3
k2 þ

2
6664
0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

3
7775Û†

ð1;1;1Þð−2t~d · ~̂ΓþmΓ̂54ÞÛð1;1;1Þ

2
6664
0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

3
7775

¼ −2tκ2Y −
4t
3
κZκY −

2t
3
κ2Z − 2t

�
κ2Y þ 2

3
κZκY

�
σ̂z −

4tffiffiffi
3

p κYκXσ̂y þ
2t
3
κZðκZ þ 2κYÞσ̂x þmσ̂z

≃ −2t
�
κ0ffiffiffi
3

p
�

2

− 4t
κ0ffiffiffi
3

p δκY −
4t

3
ffiffiffi
3

p κ0κZ − 2t

��
κ0ffiffiffi
3

p
�

2

þ 2
κ0ffiffiffi
3

p δκY þ 2

3
ffiffiffi
3

p κ0κZ

�
σ̂z −

4t
3
κ0κXσ̂y

þ 4t

3
ffiffiffi
3

p κ0κZσ̂x þmσ̂z: (D22)

If m < 0, zero eigenvalues may appear only for the first and fourth components. By extracting the first and fourth
components, the 2 × 2 Hamiltonian has a form similar to Eq. (D22) as

ĥð−Þ
Γ~kWeyl

ðκX; δκY; κZÞ ¼ 4t
κ0ffiffiffi
3

p
�
−
�
δκY þ 1

3
κZ

�
σ̂0 þ

�
δκY þ 1

3
κZ

�
σ̂z −

1ffiffiffi
3

p σ̂yκX þ 1

3
κZσ̂x þ

mðXÞ þ jmj
4tκ0=

ffiffiffi
3

p σ̂z

�
: (D23)

Then, surface and domain-wall states are obtained by
solving the Dirac Hamiltonians (D22) and (D23). For
simplicity, we concentrate on a pair of the Weyl points
~kWeyl ¼ �ð ffiffiffiffiffiffiffiffiffiffiffiffiffijmj=2tp

;
ffiffiffiffiffiffiffiffiffiffiffiffiffijmj=2tp

;
ffiffiffiffiffiffiffiffiffiffiffiffiffijmj=2tp ÞT and on a sur-

face or domain perpendicular to ð0;þ1;−1Þ, namely, a
(011̄) surface or domain. In the following discussion, we

take the coordination axis along ð0;þ1;−1Þ as the X axis.
Around these two Weyl points, low-energy quasiparticle

excitations are described by the lowest-order ~k · ~p-type

Hamiltonian ĥðþÞ
Γ~kWeyl

up to the linear order in −i∂X, δκY ,

and κZ

ĥðþÞ
Γ~kWeyl

ð−i∂X;δκY;κZÞ¼4t
κ0ffiffiffi
3

p
�
−
�
δκYþ

κZ
3

�
σ̂0þ

κZ
3
σ̂xþ

iffiffiffi
3

p σ̂y∂Xþ
�
−
�
δκYþ

κZ
3
þ jmj
4tκ0=

ffiffiffi
3

p
�
þ mðXÞ
4tκ0=

ffiffiffi
3

p
�
σ̂z

�
; (D24)

for mðXÞ ¼ þjmj, where we introduce a new momentum
frame and replace κX with −i∂X. Here, the pair of Weyl

points is given as ~kWeyl ¼ −κ0ð1=
ffiffiffi
3

p
; 1=

ffiffiffi
3

p
; 1=

ffiffiffi
3

p ÞT , with
κ0 ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3jmj=2tp
.

Then, the two-component one-dimensional Dirac equa-
tion

ĥðþÞ
Γ~kWeyl

ð−i∂X; δκY; κZÞ
�
ψ1ðXÞ
ψ2ðXÞ

�
¼ E

�
ψ1ðXÞ
ψ2ðXÞ

�
(D25)

gives a description of the bound states on the surface or
domain walls by carefully choosing the X-dependent
“mass" term mðXÞ as follows. Here, we note that the
all-out (all-in) domain is described by mðXÞ ¼ þjmj
[mðXÞ ¼ −jmj]. We also remind the readers that, for a

large enough order parameter jmj, the Weyl points are
annihilated in pairs and the bulk system becomes a trivial
magnetic insulator with a charge excitation gap. Note that
the mass term

mðXÞ ¼
�þjmj ðX < 0Þ
−jmj ð0 < XÞ (D26)

gives a magnetic domain wall at X ¼ 0, while the mass
term

mðXÞ ¼
�þjMj ðX < 0Þ
þjmj ð0 < XÞ; (D27)

with jMj ≫ jmj mimicking a surface between a vacuum
(X < 0) and the bulk (X > 0) at X ¼ 0.
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Indeed, for the Weyl point with κ0 < 0, we obtain the zero modes localized around the surface and the domain wall as

�
ψ1ðXÞ
ψ2ðXÞ

�
¼

8>>>>>><
>>>>>>:

1ffiffiffiffiffiffiffiffiffiffi
λdþΛd

p
" þ1ffiffi

2
p

þ1ffiffi
2

p

#�
eþX=λd ðX < 0Þ
e−X=Λd ð0 < XÞ ðκZ > 0; δκY ¼ 0Þ ðdomainwallÞ

1ffiffiffiffiffiffiffiffiffi
λsþΛs

p
" þ1ffiffi

2
p

−1ffiffi
2

p

#�
eþX=λs ðX < 0Þ
e−X=Λs ð0 < XÞ ðκZ < 0; δκY ¼ 0Þ ðsurfaceÞ;

(D28)

where inverse penetration lengths are λ−1d ¼ κZ=
ffiffiffi
3

p
> 0, Λ−1

d ¼ −3jmj=2κ0 − κZ=
ffiffiffi
3

p
> 0, λ−1s ¼ −3ðjMj − jmjÞ=2κ0þ

κZ=
ffiffiffi
3

p
> 0, and Λ−1

s ¼ −κZ=
ffiffiffi
3

p
> 0.

Around the Weyl points ~k0Weyl ¼ �ð− ffiffiffiffiffiffiffiffiffiffiffiffiffijmj=2tp
;
ffiffiffiffiffiffiffiffiffiffiffiffiffijmj=2tp

;
ffiffiffiffiffiffiffiffiffiffiffiffiffijmj=2tp Þ, by following a similar procedure used for ĥð�Þ

Γ~kWeyl
, a

Dirac Hamiltonian describing low-energy quasiparticle excitations is obtained as

ĥðþÞ
Γ~kWeyl

0 ð−i∂X; δκY; κZÞ ¼ 4t
κ0ffiffiffi
3

p
�
−
�
δκY
3

−
δκZ
3

�
σ̂0 −

�
2δκY
3

þ δκZ
3

�
σ̂x

þ iσ̂yffiffiffi
3

p ∂X þ
�
−
δκY
3

þ δκZ
3

þmðXÞ − jmj
4tκ0=

ffiffiffi
3

p
�
σ̂z

�
; (D29)

for mðXÞ ¼ þjmj. The zero modes for the above two-component Dirac Hamiltonian are given as

�
ψ1ðXÞ
ψ2ðXÞ

�
¼

8>>>>>><
>>>>>>:

1ffiffiffiffiffiffiffiffiffiffi
λdþΛd

p
" þ1ffiffi

2
p

þ1ffiffi
2

p

#�
eþX=λd ðX < 0Þ
e−X=Λd ð0 < XÞ ðδκZ < 0; δκY ¼ 0Þ ðdomain wallÞ

1ffiffiffiffiffiffiffiffiffi
λsþΛs

p
" þ1ffiffi

2
p

þ1ffiffi
2

p

#�
eþX=λs ðX < 0Þ
e−X=Λs ð0 < XÞ ðδκZ > 0; δκY ¼ 0Þ ðsurfaceÞ;

(D30)

where inverse penetration lengths are λ−1d ¼−δκZ=
ffiffiffi
3

p
>0,

Λ−1
d ¼−3jmj=2κ0þδκZ=

ffiffiffi
3

p
>0, λ−1s ¼ −3ðjMj − jmjÞ=2κ0

−δκZ=
ffiffiffi
3

p
> 0, and Λ−1

s ¼ δκZ=
ffiffiffi
3

p
> 0.

Similarly, we can obtain zero-mode solutions for the

Dirac equations ĥð−Þ
Γ~kWeyl

~ψ ¼ E~ψ and ĥð−Þ
Γ~k0Weyl

~ψ ¼ E~ψ . These

solutions are summarized in Figs. 3(b) and 9.

APPENDIX E: PAIR ANNIHILATION OF WEYL
ELECTRONS AT AN L POINT

To fully understand the pair annihilation of bulk Weyl
points and formation of the closed loop of the Fermi
surfaces on the domain walls, we need to examine the

structure of the original Hamiltonian K̂0ð~kÞ þ Ẑ0ð~kÞ
around the L point ðπ=4a; π=4a; π=4aÞ, where the pair
annihilation occurs, beyond the applicability of the lowest-

order ~k · ~p theory developed above.
Here, we expand the 8 × 8 Bloch Hamiltonian around

the L point by setting ~k ¼ ðπ=4a; π=4a; π=4aÞþ
ðδkx; δky; δkzÞ,

FIG. 9. Summary of solutions for the Dirac equations. Loci
of the domain-wall (surface) states are represented by solid
(dashed) lines, which are obtained as zero modes of the Dirac

Hamiltonians ĥð�Þ
Γ~kWeyl

, given in Eqs. (D22)–(D25), and ĥð�Þ
Γ~kWeyl

0 [see

Eq. (D29)]. Open circles and crosses illustrate the Weyl points
projected to the ðκY ; κZÞ plane.
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K̂0 ¼ −2tσ̂0

2
6664

0 1 1 −δkz − δkx
1 0 1 −δky − δkz
1 1 0 −δkx − δky

−δkz − δkx −δky − δkz −δkx − δky 0

3
7775þOðtδk2Þ; (E1)

and

Ẑ0 ¼
ffiffiffi
2

p
iζ

2
6664

0 þσ̂x þ σ̂y −σ̂y − σ̂z 0

−σ̂x − σ̂y 0 σ̂z þ σ̂x 0

σ̂y þ σ̂z −σ̂z − σ̂x 0 0

0 0 0 0

3
7775þOðζδkÞ: (E2)

It is easy to determine qualitative properties of the two-
component Dirac equations derived from the 8 × 8
Hamiltonian as follows. First, we examine a level crossing
at the L point under the influence of M̂0, which directly
corresponds to the pair annihilation of the Weyl points. The

level scheme at the L point for δ~k ¼ ~0 and m ¼ 0 is given

by four doublets E ¼ −t −
ffiffiffi
2

p
ζ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9t2 − 6

ffiffiffi
2

p
tζ þ 6ζ2

p
,

2tþ 2
ffiffiffi
2

p
ζ, and 0 [see Fig. 10(a)]. These doublets at the L

point are classified by the irreducible representation of the
point group D3d, as two Kramers pairs E1=2u at

E ¼ −t −
ffiffiffi
2

p
ζ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9t2 − 6

ffiffiffi
2

p
tζ þ 6ζ2

p
, one doublet

E3=2u at E ¼ 2tþ 2
ffiffiffi
2

p
ζ, and one Kramers pair E1=2g at

E ¼ 0, if we choose the site (0,0,0) in Fig. 2(b) as the center
of inversion, which corresponds to the seventh and eighth
components of the 8 × 8 Bloch Hamiltonian. When we
introduce a nonzero-order parameter m, namely, nonzero
M̂0, and break the time-reversal symmetry, the degener-
acies of the four doublets are all lifted. Then, if 2tþ
2
ffiffiffi
2

p
ζ > 0 holds, the level crossing between the two states

occurs at jmj ¼ mc, one originally from the state at E ¼
2tþ 2

ffiffiffi
2

p
ζ that splits downward for m ≠ 0 and the other

originally from the state at E ¼ 0 that splits upward for
m ≠ 0 [see Fig. 10(a)]. The classification of the four
doublets tells us an important fact further: Although the
all-in–all-out order parameter described by M̂0 lifts the
degeneracy of the doublets E1=2u at E ¼ 2tþ 2

ffiffiffi
2

p
ζ and the

Kramers pair E1=2g at E ¼ 0, the all-in–all-out order M̂0

does not hybridize them. Furthermore, M̂0 does not create
matrix elements among E1=2g and other doublets.
Therefore, the low-energy effective theory around the pair
annihilation of the Weyl points only consists of these two
doublets, namely, E3=2u and E1=2g.
Here, we construct a simplified 4 × 4 Hamiltonian

consisting of E3=2u and E1=2g from a full Hamiltonian

K̂0 þ Ẑ0 þ M̂0. We start with four eigenfunctions in the
irreducible representations E3=2u and E1=2g at an L point

ðπ=4a; π=4a; π=4aÞ, ϕT
u�3=2¼½~uT�;−ðR̂~u�ÞT;ðR̂2~u�ÞT;0;0�,

and ϕT
g�1=2 ¼ ½0; 0; 0; 0; 0; 0; ð1� ffiffiffi

3
p Þð1 − iÞ=2; 1�=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3� ffiffiffi
3

pp
, where we introduce an SU(2) rotation around

the (1,1,1) axis R̂ ¼ exp½þiðπ=3Þ · ð1=2Þ · ðσ̂x þ σ̂y þ
σ̂zÞ=

ffiffiffi
3

p � and define ~uT� ¼ ð∓ ffiffiffi
3

p
=2 − i=2Þ½1� ffiffiffi

3
p

;

1 − i�=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6� 2

ffiffiffi
3

pp
. Then, the 4 × 4 Hamiltonian up to

the OðtδkÞ and OðtζÞ is given as follows with a new

-5

-4

-3

-2

-1

 0

 1

 2

 3

 0  0.2  0.4  0.6  0.8  1

m/t

E
/t

m

E

E = E2 + m

E = E2 - m

E = E3 - m

E = E3 + m

+ |mc|- |mc| 0
E1

E2

E3

E4

(a) (b)

EFζ/t = -0.2

FIG. 10. Level scheme of the L point and its dependence on the
all-in—all-out order parameter. (a) Level splitting at the L point
due to the finite order parameter m. Here, the four doublets are

located at E1 ¼ −t −
ffiffiffi
2

p
ζ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9t2 − 6

ffiffiffi
2

p
tζ þ 6ζ2

p
, E2 ¼ 0,

E3 ¼ 2tþ 2
ffiffiffi
2

p
ζ, and E4 ¼ −t −

ffiffiffi
2

p
ζ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9t2 − 6

ffiffiffi
2

p
tζ þ 6ζ2

p
,

for m ¼ 0. The vertical dashed line shows m ¼ jmcj, for which
the bulk Weyl points are annihilated in pairs. The two blue (red)
states show the states adiabatically connected to the states that
form the domain-wall state at m ¼ mc (m ¼ −mc). Namely, the
two blue (red) lines indicate the two solutions of the 2 × 2 low-

energy Dirac Hamiltonian ĥðþÞ
L (ĥð−ÞL ) (E7). See (b) for a more

focused illustration. (b) Level splitting focused on the low-energy
states, around the chemical potential. The blue states around the
Fermi level EF form a domain-wall state confined in the side of
the positive magnetization, while the red states around the Fermi
level are confined in the opposite m < 0 side of the domain wall.
[See discussions below Eq. (E11).]
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momentum frame k1 ¼ ðδkx þ δky − 2δkzÞ=
ffiffiffi
6

p
, k2 ¼

ð−δkx þ δkyÞ=
ffiffiffi
2

p
, and k3 ¼ ðδkx þ δky þ δkzÞ=

ffiffiffi
3

p

2
666664

Eg −m 0 þ 2ffiffi
6

p tk�e þ 2ffiffi
3

p tk�e

0 Eg þm − 2ffiffi
3

p tke þ 2ffiffi
6

p tke

þ 2ffiffi
6

p tke − 2ffiffi
3

p tk�e Eu −m 0

þ 2ffiffi
3

p tke þ 2ffiffi
6

p tk�e 0 Eu þm

3
777775; (E3)

where Eg ¼ 0, Eu ¼ 2tþ 2
ffiffiffi
2

p
ζ, and ke ¼ k1 − ik2.

By introducing external gauge fields to the 4 × 4

Hamiltonian (E3), we can easily construct Landau levels
and clarify its topological natures, such as manifestation of
the chiral anomaly. An orbital part of external magnetic
fields B is introduced through introducing a real-space
coordinate x1 corresponding to k1 as k1 → −i∂x1 , k2 →
k2 − eBx1. The 4 × 4 Hamiltonian (E3) is rewritten as

2
666666664

Eg−m 0 −2it
ffiffiffiffi
eB
3

q
l̂− −2it

ffiffiffiffiffiffi
2eB
3

q
l̂−

0 Egþm −2it
ffiffiffiffiffiffi
2eB
3

q
l̂þ þ2it

ffiffiffiffi
eB
3

q
l̂þ

þ2it
ffiffiffiffi
eB
3

q
l̂þ þ2it

ffiffiffiffiffiffi
2eB
3

q
l̂− Eu−m 0

þ2it
ffiffiffiffiffiffi
2eB
3

q
l̂þ −2it

ffiffiffiffi
eB
3

q
l̂− 0 Euþm

3
777777775
;

(E4)

where ladder operators l̂− ¼ þ∂x1=
ffiffiffiffiffiffiffiffi
2eB

p þ ffiffiffiffiffiffiffiffiffiffiffi
eB=2

p ðx1 −
k2=eBÞ and l̂þ ¼ −∂x1=

ffiffiffiffiffiffiffiffi
2eB

p þ ffiffiffiffiffiffiffiffiffiffiffi
eB=2

p ðx1 − k2=eBÞ are
introduced. By using orthonormalized eigenfunctions of
harmonic oscillators φnðxÞ satisfying l̂−φnðx1−k2=eBÞ¼ffiffiffi
n

p
φn−1ðx1−k2=eBÞ, l̂þφnðx1−k2=eBÞ¼

ffiffiffiffiffiffiffiffiffiffi
nþ1

p
φnþ1

ðx1−k2=eBÞ, and
R
dxφ�

nðxÞφn0 ðxÞ ¼ δn;n0 , we obtain
eigenvectors of Eq. (E4) for Landau levels.
Two Landau levels become important when topological

properties of the magnetic domain walls are discussed: The
first one is an eigenvector ½0;φ0ðx1 − k2=eBÞ; 0; 0�T with
an eigenvalue Eg þm. The other is given by an eigenvector
½0;b1φ1ðx1−k2=eBÞ;b2φ0ðx1−k2=eBÞ;cφ0ðx1−k2=eBÞ�T ,
where b1, b2 → 0 and c → 1 for jm=tj ≫ 1 with an
eigenvalue approaching Eu þm. These two states are
nothing but a manifestation of the chiral anomaly; in other
words, the zeroth Landau levels of Weyl nodes are
annihilated in pairs for Eg þm ¼ Eu −m or Eg −m ¼
Eu þm at the L points. The asymptotic behavior of these
two zeroth Landau levels is also captured by decoupling the
4 × 4 Hamiltonian (E4) into a set of 2 × 2 effective
Hamiltonians ĥð�Þ

L .
These 2 × 2 effective Hamiltonians ĥðþÞ

L and ĥð−ÞL consist
of the third and second, and, the first and fourth

components of the 4 × 4 Hamiltonian (E4), respectively,
as

ĥðþÞ
L ¼

"
Eu −m − 2ffiffi

3
p tk�e

− 2ffiffi
3

p tke Eg þm

#
−
Eu þ Eg

2
σ̂0;

¼
�
Eu − Eg

2
−m

�
σ̂z −

2ffiffiffi
3

p tk1σ̂x þ
2ffiffiffi
3

p tk2σ̂y (E5)

and

ĥð−ÞL ¼
"
Eg −m þ 2ffiffi

3
p tk�e

þ 2ffiffi
3

p tke Eu þm

#
−
Eu þ Eg

2
σ̂0;

¼
�
Eg − Eu

2
−m

�
σ̂z þ

2ffiffiffi
3

p tk1σ̂x −
2ffiffiffi
3

p tk2σ̂y; (E6)

after subtracting the common diagonal term
ðEu þ EgÞσ̂0=2. In the following, we further derive one-
dimensional Dirac equations based on ĥðþÞ

L and ĥð−ÞL . The
three-dimensional Weyl equations introduced in Sec. V are
also obtained as follows. First, we apply a unitary trans-

formation ðσ̂x; σ̂y; σ̂zÞ → ð−σ̂x;þσ̂y;−σ̂zÞ for ĥðþÞ
L and

ðσ̂x; σ̂y; σ̂zÞ → ðþσ̂x;−σ̂y;−σ̂zÞ for ĥð−ÞL . Second, we rescale

ð2tk1=
ffiffiffi
3

p
; 2tk2=

ffiffiffi
3

p
; vk3Þ to ðp1; p2; p3Þ with a constant v

and introduce higher-order terms proportional to p2
3 to

reproduce pairwise annihilation of the Weyl nodes.
Now, we focus on the (011̄) domain wall for illustrative

purposes and note that, up to linear orders in κX, δκY ,
and κZ, 2 × 2 Dirac Hamiltonians describing low-energy
physics do not contain terms proportional to δκY , due
to the point symmetry of the electronic band around
~k ¼ ðπ=4a; π=4a; π=4aÞ. Here, we introduce a new
oblique coordinate ðκX; δκY; κZÞ through ðδkx; δky; δkzÞ ¼
ð−δκY − κZ;þκX − δκY;−κX − δκYÞ for the (011̄) domain
wall. It is easy to see that, along the (111) direction, the
band dispersion shows a quadratic band crossing at the
pair annihilation of the Weyl points. In other words, along
the κY axis parallel to the (111) direction, the linear
dispersion disappears. Therefore, in general, the pair of
the low-energy 2 × 2 Dirac Hamiltonians around the L
point is given as

ĥð�Þ
L ¼ −½m∓jmcj�σ̂z þ ðvð�Þ

Xx σ̂x þ vð�Þ
Xy σ̂yÞκX

þ ðvð�Þ
Zx σ̂x þ vð�Þ

Zy σ̂yÞκZ; (E7)

where velocities vð�Þ
Xx ¼ ∓ ffiffiffi

2
p

t, vð�Þ
Xy ¼ �2t=

ffiffiffi
6

p
, vð�Þ

Zx ¼
� ffiffiffi

2
p

t=3, and vð�Þ
Zy ¼ �2t=

ffiffiffi
6

p
are introduced, and jmcj ¼

tþ ffiffiffi
2

p
ζ is the critical value ofm for the pair annihilation of

the Weyl points. Here, we emphasize that the above set of
the Dirac Hamiltonian exploits the low-energy Hilbert
space E1=2u⊕E1=2g. The solution of Eq. (E7) as a function
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of m is illustrated in Fig. 10(b), which has, of course, the
same structure as Fig. 10(a) in the low-energy region. By
replacing m and κ with mðXÞ and −i∂X, respectively, we
obtain the following 1D Dirac equation:

ĥð�Þ
L ðXÞ ¼ −½mðXÞ∓jmcj�σ̂z − i ~vð�Þ

X ðcosφð�Þ
X σ̂x

þ sinφð�Þ
X σ̂yÞ∂X þ ~vð�Þ

Z ðcosφð�Þ
Z σ̂x

þ sinφð�Þ
Z σ̂yÞκZ; (E8)

where velocities ~vð�Þ
X and ~vð�Þ

Z and phases φð�Þ
X and φð�Þ

Z are

defined through ~vð�Þ
X eiφ

ð�Þ
X ¼ vð�Þ

Xx þ ivð�Þ
Xy and ~vð�Þ

Z eiφ
ð�Þ
Z ¼

vð�Þ
Zx þ ivð�Þ

Zy . Here, the (011̄) domain wall with an all-out
domain for X < 0 and an all-in domain for X > 0 is
described by the following X-dependent mass term

mðXÞ ¼ þjmjθð−XÞ − jmjθðþXÞ; (E9)

which is justified from the level scheme splitting illustrated
in Fig. 10(b).
Then, the solution for the 1D Dirac equation ĥðþÞ

L ðXÞ,
after the pair annihilation of the Weyl points (jmj > jmcj)

ĥðþÞ
L ðXÞ~ψ ¼ 0 · ~ψ (E10)

is given by

~ψðXÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λdL þ ΛdL

p ½θð−XÞeþX=λdL

þ θðþXÞe−X=ΛdL �
�

1=
ffiffiffi
2

p

ieiφX=
ffiffiffi
2

p
�
; (E11)

where the inverse penetration lengths are λ−1dL ¼
ðjmj − jmcjÞ= ~vðþÞ

X > 0 and Λ−1
dL ¼ jmj=~vðþÞ

X > 0, along
the locus defined by κZ ¼ 0. The above solution is mainly
confined in the side of the positive magnetization m > 0.

By solving the other 1D Dirac equation ĥð−ÞL ðXÞ~ψ ¼ 0 · ~ψ ,
the domain-wall state confined in the side of the negative
magnetization m < 0 is obtained in the same manner.
We note that, for κZ ¼ 0, an operator

Γ̂ ¼ − sinφðþÞ
X σ̂x þ cosφðþÞ

X σ̂y (E12)

becomes a chiral one for the above 1D Dirac equation that
satisfies the following identities:

Γ̂†ĥðþÞ
L ðXÞΓ̂ ¼ −ĥðþÞ

L ðXÞ (E13)

and Γ̂†Γ̂ ¼ 1. Here, we also note that, in the above
derivation, the chemical potential is assumed to be pinned
at the Weyl points.

Therefore, the domain-wall zero modes given by the
solution to Eq. (E11) are protected by the chiral operator Γ̂,
in other words, protected by the chiral symmetry of ĥðþÞ

L ðXÞ
with κZ ¼ 0 (see Ref. [2]). The classification of the
topological insulators introduced in Ref. [2] tells that the
1D chiral Dirac equations derived for the low-energy
physics around the L point describe the AIII Chern
insulators. From the above derivation, our 1D Dirac
equations turn out to be chiral, at least, around the L
point. As long as the chemical potential is pinned at the
Weyl point or the center of the bulk gap, then the zero
modes are preserved.

APPENDIX F: UNRESTRICTED
HARTREE-FOCK TREATMENT

We use the following mean-field decoupling throughout
the present paper for the unrestricted Hartree-Fock approxi-
mation:

n̂i↑n̂i↓ ≃ ½ĉ†i↑; ĉ†i↓�
 
ρi
2
σ̂0 −

~μi · ~̂σ
2

!�
ĉi↑
ĉi↓

�

− hn̂i↑ihn̂i↓i þ hĉ†i↑ĉi↓ihĉ†i↓ ĉi↑ i; (F1)

where the mean fields are defined as

ρi ¼ hn̂i↑i þ hn̂i↓i; (F2)

μxi ¼hĉ†i↑ ĉi↓ i þ hĉ†i↓ĉi↑i; (F3)

μyi ¼ −ihĉ†i↑ĉi↓i þ ihĉ†i↓ĉi↑i; (F4)

μzi ¼ hn̂i↑i − hn̂i↓i: (F5)

For instance, the all-in–all-out order is described with the
spin components of the mean fields ~μi pointing in the
configuration of all-in and all-out directions [18]. Here, a
bracket hÔi means the self-consistent average of a single-
particle operator Ô.

APPENDIX G: SUPERCELLS

For fully unrestricted Hartree-Fock calculations, we use
supercells to describe domain walls.
For the (011̄) domain-wall calculations, we specify the

sites within the supercell as

~rnlL ¼ ~rn þ l

2
64
−2a
þ2a

þ0

3
75þ L

2
64

0

þ2a

−2a

3
75; (G1)

where n, l, and L are integers, and ~rn (n ¼ 1; 2; 3; 4) is the
location of the nth site in the unit cell: ~r1 ¼ ða; 0; aÞT ,
~r2 ¼ ð0; a; aÞT , ~r3 ¼ ða; a; 0ÞT , and ~r4 ¼ ð0; 0; 0ÞT .
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For the (111) domain wall,

~rn0L ¼ ~rn þ L

2
64
−2a
0

−2a

3
75; (G2)

and, for the (100) domain wall,

~rnlL ¼ ~rn þ l

2
64
−2a
þ2a

þ0

3
75þ L

2
64
þ2a

þ2a

0

3
75: (G3)

For actual unrestricted Hartree-Fock calculations, we
chose l ¼ 0, 1 and L ¼ 0; 1;…; 39. We make sharp
domain walls between L ¼ 19 and L ¼ 20 as the initial
conditions. We use periodic boundary conditions parallel to
the domain walls and open boundary conditions
perpendicular to the domain walls.
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