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We demonstrate that wave-breaking dramatically affects the dynamics of nonlinear frequency
conversion processes that operate in the regime of high efficiency (strong multiple four-wave mixing).
In particular, by exploiting an all-optical-fiber platform, we show that input modulations propagating in
standard telecom fibers in the regime of weak normal dispersion lead to the formation of undular bores
(dispersive shock waves) that mimic the typical behavior of dispersive hydrodynamics exhibited, e.g., by
gravity waves and tidal bores. Thanks to the nonpulsed nature of the beat signal employed in our
experiment, we are able to clearly observe how the periodic nature of the input modulation forces adjacent
undular bores to collide elastically.
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I. INTRODUCTION

Under certain regimes, the behavior of light mimics the
dynamics of classical fluids and, in particular, hydrody-
namical phenomena [1–15]. The general ground for such
observation lies on the reduction of Maxwell equations to
the typical models of hydrodynamics, as recognized long
ago for both dissipative (i.e., lasers [1,2]) and conservative
settings [3]. Only recently, however, has the subject
attracted a great deal of interest, propelling important
experimental results as diverse as the first absolute obser-
vation of wave packets predicted in hydrodynamics (i.e.,
Peregrine and Kuznetsov-Ma solitons [6,7]), the study of
classical hydrodynamical instabilities (e.g., Raileigh-Taylor
[8]), the characterization of extreme events such as rogue
waves or tsunamis [9–12], the flow of quantum fluid of
light around defects at low and supersonic speed [13], or
the transition to turbulence in fiber lasers [14]. On one
hand, this allows us to improve the understanding of fluid
phenomena by means of accurate and more easily control-
lable lab experiments; on the other hand, it also stimulates
the transposal to hydrodynamics of concepts, e.g.,
generations of higher-order breathers and supercontinuum
[16–18], that are deeply studied in optics [19,20].

In this framework, another remarkable phenomenon that
allows for establishing an intriguing photon-fluid analogy,
which is of concern in this paper, is the generation of
undular bores (UBs), i.e., the formation of fast oscillating
wave trains that spontaneously emerge from points of
gradient catastrophe (shock formation [21]). In hydro-
dynamics, UB are fascinating structures that develop under
peculiar conditions involving, e.g., atmospheric gravity
waves (e.g., “Morning glory” phenomena [22]), internal
waves in the ocean [23] or, more commonly, large tidal
bores traveling upstream, typically along river estuaries
[24]. A spectacular and famous example of the latter
(among others visible in other parts of the world [24]) is
the so-called “mascaret” of the Dordogne river in France,
ridden by many surfers. The study of such phenomena
started indeed long ago in hydrodynamics [25] and inde-
pendently in the context of strongly rarified (i.e., collision-
less) plasma, where such structures were known as
collisionless shock waves [26–29]. Such studies estab-
lished dispersion as the driving mechanism that, by
regularizing the steep front characteristic of a classical
shock wave, leads to UBs (hence also the expression
“dispersive shock waves”). While the theoretical charac-
terization of such phenomena has improved steadily
[30–40], the field has suffered the lack of reproducible
lab experiments, until the universal role of UB was recently
recognized mainly in the dynamics of quantum superfluids
[41–47] and weakly diffracting light beams in defocusing
media [4,5,48–52], both described by defocusing nonlinear
Schrödinger (NLS, or Gross-Pitaevskii) models. At vari-
ance with such experiments where undulatory breaking
occurs in space, optics also offers the challenging
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possibility to investigate temporal wave breaking, as
realized for intense (hundreds of Watts peak power) pulses
that propagate in optical fibers in the normal group-velocity
(GVD) regime [53–56]. In this context, the aim of this
paper is twofold. First, we report evidence that temporal
breaking and emerging UBs affect a completely novel
realm, namely, frequency conversion processes, and spe-
cifically highly efficient multiple four-wave mixing (FWM)
[57–60], under different pump configurations. Second, we
show that the wave-breaking regime is accessible, in an all-
fiber platform without resorting to intense (psec or fsec)
pulses, using instead a tailorable, nearly periodic signal.
The latter feature is the key to our first observation of post-
breaking multiphase dynamics characterized by unavoid-
able collision of UBs due to the periodic nature of the input.
More generally, optical FWM is of great interest not only

because it is the fundamental paradigm for parametric
amplification and generation, but also because it is widely
exploitable in different materials and platforms including
planar (on-chip) devices [61–65], and it is the driving
mechanism of more complex phenomena such as super-
continuum generation and wave thermalization [19,20].
Moreover, FWM has made possible a host of modern
photonic applications ranging from ultrafast pulse train
generation [66], full signal regeneration [67], multiwave-
length parametric oscillators [68], stable ultrafast micro-
cavity lasers [69], and bridging of spectral windows [65], to
recent breakthroughs such as the implementation of noise-
less amplifiers for ultrasensitive links [70] and frequency
combs [71–74]. Along with these achievements, more
fundamental aspects related to the spectral dynamics of
FWM have also been the subject of recent studies
[60,73,75]. In this context, the problem of wave breaking,
which has never been addressed experimentally, is of
particular interest since it can affect the FWM in the
regime of weak normal dispersion, which is often exploited
to obtain several multiple signal-idler sideband pairs at
once [73–78]. Here, we report extensive evidence that, in
this regime, FWM unavoidably enters a new scenario in
which the initial modulation undergoes a hydrodynamic
type of instability that deeply affects the mixing process.
The light field indeed behaves as a fluid, though it exhibits
two distinct stages of evolution: the first featuring the
developments of gradient catastrophes typical of shallow-
water dynamics, followed by the onset of fast oscillations
characteristic of UBs of dispersive hydrodynamics.

II. UNDULAR BORES IN FOUR-WAVE MIXING

Two laser pumps (or a single modulated pump) produce,
via Kerr (cubic) nonlinearities, a frequency cascade via
multiple FWM, whose efficiency can be easily calculated in
the limit of zero dispersion [78]. However, even a small
dispersion can qualitatively change the FWM dynamics
[60,73]. Of particular interest is the normal GVD regime
which, since it is not affected by exponentially growing

perturbations (i.e., modulational instability [75,79]), exhib-
its a fluidlike shock-forming type of behavior in the regime
of propagation dominated by Kerr nonlinearity over
dispersion, as recently predicted in the case of a dual
pump [60]. Here, however, we considerably generalize
such a theory by showing that the phenomenon is not
restricted to dual-frequency input. Indeed, any initial
amplitude modulation tends to break when FWM operates
under weak, normal GVD. Specifically, we can treat,
in a unified way, a modulated carrier (triple-frequency
input with pulsations ω0, ω0 � Δω), as well as a suppres-
sed carrier or dual-frequency input at ω0 � Δω=2
(balanced dual-pump nondegenerate FWM or unbalanced
pump-signal configuration). Starting from the real-world
input envelope at central frequency ω0, say, AðZ ¼ 0; TÞ ¼
ffiffiffiffi

P
p

u0ðtÞ, which is modulated at frequency Δf ¼ Δω=2π
and carries total power P [u0ðtÞ is a dimensionless envelope
carrying unit power], these three configurations can be
described by the following general expression for the input

u0ðtÞ ¼
ffiffiffi

η
p þ ffiffiffiffiffiffi

ηþ
p

expðiΩt=mÞ þ ffiffiffiffiffi

η−
p

expð−iΩt=mÞ;
(1)

where, without loss of generality, the normalized time t ¼
T=T0 is measured in units of the characteristic rise time of
the modulation T0 ¼ 1=2Δf, which amounts to keeping
the normalized angular frequency Ω ¼ ΔωT0 ¼ π fixed. η
and η� ¼ ð1 − η� αÞ=2 stand for power fractions at
discrete frequencies ω0 and ω0 � Δω=m, respectively, with
constraint ηþ ηþ þ η− ¼ 1, while α≡ ηþ − η− defines the
input power imbalance. Here and in Eq. (1), m ¼ 1 or
m ¼ 2 for the triple-frequency (η ≠ 0) or dual-frequency
(η ¼ 0) input, respectively, so that Δω designates the
detuning between the input angular frequencies in all three
cases [see also the sketch in Fig. 1(a)].
When dispersion is weak, the modulated field produces a

FWM cascade, i.e., generation of harmonic sidebands at
normalized angular frequencies�nΩ=2 (n ¼ 4; 6; 8…with
triple-frequency input and n ¼ 3; 5; 7… for dual-frequency
input), which is described in terms of the normalized
envelope uðz; tÞ obeying the following NLS equation
(see Ref. [60] and also Ref. [80] for more details on the
normalization):

iε
∂u
∂z −

ε2

2

∂2u
∂t2 þ juj2u ¼ 0; (2)

where z ¼ Z
ffiffiffiffiffiffiffiffiffiffi

k00γP
p

=T0 is the normalized distance, and it
turns out that the dynamics depends on the single parameter
ε≡ Δf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4k00=γP
p

, where k00 ¼ d2k=dω2 and γ denote the
GVD and nonlinear coefficient of the fiber, respectively.
Our experiments address the weakly dispersive regime of

FWM characterized by ε ≪ 1 (ε ¼ 0.04 at the maximum
power reached in the experiment). In this regime, the light
field behaves as an ideal equivalent fluid or gas, where the
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smooth input modulation undergoes strong steepening
driven by the Kerr effect (cubic term in NLS equation [81]),
eventually forming shock waves through a gradient catas-
trophe. The latter is a universal mechanism that occurs
whenever the wave velocity becomes a function of the wave
elevation, as illustrated in Fig. 1(b) for a real field uðz; tÞ
obeying the prototypical Hopf or inviscid Burger equation
uz þ uut ¼ 0. [Here, we implicitly assume that t stands for
a retarded time in a frame moving at linear group velocity
vg as in the NLS equation (2). This means that the
deformation illustrated in Fig. 1(b) takes place, in the
lab frame, on top of a rigid translation with linear velocity

vg]. Since this model implies that portions of a waveform
with larger elevations move faster, a smooth envelope such
as, e.g., a Gaussian is deformed on propagation as shown in
Fig. 1(b), until it develops an infinite time gradient
(gradient catastrophe) at a finite distance zb, and a traveling
vertical front afterwards. The latter is a classical shock
wave that normalizes the post-catastrophe overtaking while
obeying the integral conservation law associated with the
differential model [21].
A similar mechanism, as we show here, occurs in FWM,

owing to the fact that the input field u0ðtÞ develops a self-
phase modulation that stems from the dominant nonlinear
term in Eq. (2). The acquired phase is proportional to
ju0ðtÞj2, in turn implying an instantaneous frequency
deviation (chirp) δωðtÞ ¼ ∂tϕðtÞ ¼ ∂tju0ðtÞj2 [54]. Such
a chirp is turned into an instantaneous change of velocity
δvðtÞ ∝ −δωðtÞ since in a normally dispersive medium the
velocity decreases for increasing frequency. As a result, the
instantaneous velocity turns out to be directed along
the outward direction around the maxima and along the
inward directions around the minima of the modulation, as
exemplified in Fig. 1(c) for the triple-frequency modulated
input with η ¼ 0.8, α ¼ 0. Therefore, compressional waves
are created that tend to steepen the initially smooth modu-
lation fronts around the intensity minima. In turn, the
steepening causes an additional increase in the modulus
of the opposite velocities across the minima, thus producing
further steepening, until the process leads to gradient
catastrophes at a finite distance. Formally, this can be seen
by applying the Wentzel-Kramers-Brillouin (WKB) or
Madelung transformation uðz; tÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

ρðz; tÞp

exp ½iε sðz; tÞ�
to Eq. (2), which allows us to map the original NLS equation
into the following quasilinear system of equations [3],

ρz þ ðρvÞt ¼ 0; vz þ vvt þ ρt ¼ 0; (3)
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FIG. 1. (a) Sketch of the input in frequency domain showing
the triple-frequency (solid blue arrows) and dual-frequency
(dashed brown arrows) cases, respectively. (b) Generic mecha-
nism of wave breaking via a gradient catastrophe (length of the
arrows is proportional to the local velocity at the point of
application over the input; the dashed vertical line is the classical
shock wave). (c) Initial power profile ju0ðtÞj2 and instantaneous
incremental velocity δvðtÞ resulting from the nonlinear self-
phase modulation for triple-frequency input [η ¼ 0.8, α ¼ 0,
m ¼ 1 in Eq. (1)].

FIG. 2. Breaking mechanism for an input modulated carrier (three-wave input, η ¼ 0.8 and α ¼ 0). (a) Normalized power ρ ¼ juj2 and
velocity v at wave-breaking distance z ¼ zb ≃ 0.37 from the reduced hydrodynamical model [Eqs. (3)]; the dashed curves stand for the
input. (b) Surface plot of power juðz; tÞj2 evolving according to the NLS equation [Eq. (2)] for ε ¼ 0.04. (c) Normalized breaking
distance zb vs pump power fraction η.
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where terms of higher orders in power of ε have been
discarded. Equations (3) are equations of the hydrodynamic
type, which can be integrated, up to the point where a
singularity appears, by means of the so-called hodograph
transformation [21]. Indeed, Eqs. (3) are identical to those
governing 1D shallow-water waves (or isentropic gas
dynamics), with the roles of space and time inverted, and
ρðz; tÞ ¼ juðz; tÞj2 and vðz; tÞ ¼ −∂tsðz; tÞ being the water
elevation and horizontal velocity, respectively. According to
this model, the light behaves as an equivalent fluid whose
instantaneous velocity is determined by the accumulated
chirp. The evolution of the fluid leads to the formation of an
array of twin shock points symmetrically located around the
minima of the input modulation, as shown in Fig. 2(a),
obtained by numerical integration of Eqs. (3). We point out
that this mechanism takes place regardless of the modulation
depth, though the breaking distance zb increases rapidly as
the modulation depth decreases (η → 1), as shown in
Fig. 2(c). Importantly, however, beyond zb, Eqs. (3) cease
to be valid because the GVD becomes important near the
vertical fronts, causing the onset of fast nonstationary
oscillations that fill characteristic shock fans. This is
displayed in Fig. 2(b), which is obtained by numerical
integration of the NLS equation. As shown, these structures,
namely, UBs (or dispersive shock waves), naturally collide
because of the periodic nature of the input. A similar
dynamics also takes place for the carrier-suppressed modu-
lation (two-wave input, η ¼ 0), which still leads to two
distinct points of breaking for each period of the modulation
in the imbalanced case (α ≠ 0). These points merge exactly
in the null points of the modulation in the limit α ¼ 0, as
discussed in more detail in Ref. [60].

III. EXPERIMENTAL IMPLEMENTATION

Our experiment was carefully designed in order to
succeed with two major challenges raised by the observa-
tion of the phenomenon discussed above: (i) to access the
highly nonlinear regime without using pulses, which would
unavoidably corrupt the visibility of the UBs; (ii) to
reproduce the evolution dynamics using a fixed fiber

length. To this end, in our setup, displayed in Fig. 3,
we make use of an L ¼ 6 km-long nonzero dispersion-
shifted fiber (NZDSF) with low normal dispersion D ¼
−2.5 ps=nmkm (k00 ¼ −Dλ20=2πc ¼ 3.2 ps2=km) and
nonlinear coefficient γ ¼ 1.7 W−1 km−1. We point out that
the choice of this value of dispersion arises from a tradeoff
between opposite requirements. On the one hand, the GVD
must be sufficiently low to enter the weakly dispersive
regime at the central frequency and at the power levels
involved in the experiment, while on the other hand, the
GVD needs to be large enough so that third-order
dispersion (as well as successive orders) remains negli-
gible. We inject the field Að0; TÞ ¼ ffiffiffiffi

P
p

u0ðtÞ, which is
obtained by starting from an external cavity laser (ECL)
emitting at wavelength λ0 ¼ 1555 nm, modulated by
means of a LiNbO3 intensity modulator (IM#1) at
Δf ¼ 28 GHz. By suitably driving the modulator, we
can select a dual-frequency (carrier-suppressed) or three-
frequency input modulation, depending on its bias operat-
ing point (see Ref. [80] for further technical details). The
peak power is then raised by means of further slicing in the
time domain (using modulator IM#2) and amplification in
an erbium-doped fiber amplifier (EDFA). The final input
signal consists of a burst of eight periods of the initial
28-GHz harmonic signal encapsulated into a 1∶4 duty-
cycle slower signal at 7-GHz (see inset in Fig. 3), which
allows us to reach the power P ¼ 37 dBm (P≃ 5 W)
without a significant impact from the spontaneous emission
of the EDFA and stimulated Brillouin backscattering within
the fiber under test. It is important to emphasize that the
eight-beats sequence is long enough to ensure that
the observed dynamics is, at least over the central periods
of the sequence, essentially that of the temporal infinite
beat signal. At the output, the temporal ultrafast waveform
can be observed directly over a triggered optical sampling
oscilloscope (OSO). In Fig. 3, we display traces of the input
and the output in the regime of UB formation, as seen on
the OSO display. Importantly, even if we use a fixed fiber
length L, the spatial dynamics along z is mimicked by
varying the input power P, recalling that z ¼ L

ffiffiffiffiffiffiffiffiffiffi

k00γP
p

=T0.

FIG. 3. Experimental setup. ECL: external cavity laser; IM: intensity modulators; PM: phase modulator; PPG: pulse pattern generator;
OSO: optical sampling oscilloscope; OSA: optical spectrum analyzer; NZDSF: nonzero dispersion shifted fiber. The insets show traces
of the input and output, as seen on the OSO.
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IV. EXPERIMENTAL RESULTS

The outcome of the experiments is illustrated in Figs. 4–6
under different input configurations of FWM. Figure 4
summarizes the results obtained for the case of balanced
dual-frequency input (symmetric pump beams, η ¼ α ¼ 0).
The experimental maps of the temporal dynamics vs input
power, reported both as a 3D surface [Fig. 4(a)] and a color-
level plot [Fig. 4(b)], clearly show the signature of UBs in
the evolution. Furthermore, the measured data are in
excellent quantitative agreement with the outcome of the
numerical integration of the NLS equation reported in
Fig. 4(c), without any adjustable parameter. Note that such
results are obtained from a set of numerical simulations of
the NLS equation in dimensional units [80], performed at
fixed physical length and variable power. In this configu-
ration, the input modulation is a cosine, and breaking is
expected through the formation of cusplike structures exactly
at the nulls of the input intensity pattern [60]. We observe
such behavior at the power level P ¼ 25.6 dBm, as shown
explicitly by the OSO trace reported in Fig. 4(d). After
breaking, strong oscillations characteristic of UBs start to
appear on a faster scale (few ps) compared with the input
periodicity Tm ¼ 1=Δf ¼ 35.7 ps. The undular bores are
nucleated from the breaking points at nulls and expand
outwards in a nonstationary and symmetric fashion until

wave trains from adjacent periods of the input beat signal
start to collide, as clearly shown also by the trace in Fig. 4(e).
We remark that the temporal structure of the overlapping
regions can be clearly observed, thanks to the nearly periodic
nonpulsed nature of the input, since the use of pulses would
hamper its visibility, as one can easily verify through
numerical simulations of the pulsed regime (not shown).
The signature of the fast oscillatory UB structure in the
frequency domain is a dramatic spectral broadening. In
Fig. 4(f), we compare the output spectrum before breaking
(blue trace, P ¼ 13 dBm) with that arising in the regime
where the UB is fully developed (red trace, P ¼ 34.6 dBm).
The latter involves tens of FWM harmonic pairs while
presenting significant deviations from the monotonic decay
(in log scale) characteristic of the low-power regime that
stems from the high frequencies corresponding to the
oscillatory structures. It is also interesting to highlight the
fact that in the experiment, the post-breaking undulations
clearly exhibit solitonlike features. Indeed, they present
negligible temporal spreading while moving with character-
istic velocity inversely proportional to their darkness and
colliding elastically. The main feature of the optical UB is, in
this case, the formation of a still temporal filament possess-
ing the features of a black soliton [the central filament in
Figs. 4(b) and 4(c)], which arises from the presence of null

FIG. 4. Measured UB dynamics for symmetric dual-pumped FWM (cosine type of input, η ¼ α ¼ 0). (a) 3D surface of output power
vs time and input power. (b),(c) Color-level plot from the output power profiles at different input powers from measured data (b),
compared with numerical simulations of the dimensional NLS equation [(c), color level plot of juj2]. (d),(e) Temporal OSO traces at
power levels: (d) P ¼ 25.6 dBm, close to breaking; (e) P ¼ 34.6 dBm, beginning of UB collision (the input is reported as a solid blue
line). (f) Output spectra in the low-power (P ¼ 13 dBm, preshock) and high-power (P ¼ 34.6 dBm, postshock) regimes.
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intensity points in the initial modulation. Gray solitons with
opposite velocity appear in pairs around the latter, progres-
sively filling a characteristic shock fan, at the edges of which
the oscillations (solitons) become progressively more shal-
low. Colliding shock fans form regions of so-called multi-
phase dynamics [37] characterized by very complicated
temporal dependence determined by the overlap of oscil-
lations arising from adjacent UBs. In this respect, the
dynamics is completely different from other schemes pro-
posed in the past for the generation of dark soliton trains
[34,56] and the related generation of broadband emission
[82]. Indeed, in these schemes, the use of powerful pulses is
mandatory, and the spectrum is not characterized by a
discrete-line (comb) structure. In addition, the asymptotic
state tends to a clean train of dark solitons, which is never the
case in any of our FWM experiments (see also the discussion
in the last paragraph of this section). Importantly, our data
show a remarkable degree of symmetry, both temporally
[Fig. 4(b)] and spectrally [Fig. 4(f)], giving evidence of the
negligible role of third-order dispersion in our experiment.
Indeed, it is easy to show that third-order dispersion would
induce temporal symmetry breaking (for instance, in this
configuration the central filament would acquire a velocity,
no longer possessing a zero-intensity dip) and resonant
enhancement of a low-frequency part of the spectral FWM
comb [73]. The absence of these effects proves that our
experiment is accurately described by the NLS equation (2)
with no extra term, despite the fact that GVD is weak.
We have also assessed, experimentally, the effect of an

input imbalance over the dual-frequency carrier-suppressed
configuration, where FWM is first responsible for the
generation of the idler (the spectral image of the weaker

input signal) and then for all the harmonics of the signal-
idler pair. As shown in Fig. 5, an imbalance α ¼ 0.3
introduced in the input causes the input waveform to break
at two distinct instants (per period) around the intensity
minima. From such a pair of breaking points, two asym-
metric undular bores emerge which fill shock fans pointing
in opposite directions. These fans, arising from adjacent
periods, then naturally collide. In this case, the input
waveform does not have intensity nulls, and the leading-
order oscillations (inner edges of the fans) are grey solitons
that possess different nonzero velocities, as shown in the
trace in Fig. 5(c). The data in Fig. 5(b) and the simulations
in Fig. 5(d) are in remarkably good agreement in this
case, too.
Finally, Fig. 6 illustrates the case of a modulated carrier

with symmetric sidebands corresponding to η ¼ 0.7,
α ¼ 0. In this case, breaking occurs, as already illustrated
in Fig. 2, at two distinct instants that, in this case, are
symmetrically located around the minima of the modula-
tion and occur at the same finite distance. The undular
bores reflect the symmetry of the problem, leading to two
symmetric shock fans with inner (leading) edges featuring
the deepest oscillations. Since the input waveform does not
vanish in this case either, these inner edges behave as a pair
of gray solitons traveling with opposite (low) velocities.
As in previous cases, the fans from adjacent periods of the
input modulation naturally collide, as also shown in the
snapshot in Fig. 6(c). We point out that, not only do we
obtain a close quantitative agreement between the data and
the numerics in this case, but the estimated breaking
distance zb ¼ 0.36 from Fig. 2(c) agrees well with the
measured value of power for breaking P ¼ 24.5 dBm,
which corresponds to z ¼ 0.364.

FIG. 5. Measured UB dynamics for the pump-signal input configuration (asymmetric dual-pumped FWM, η ¼ 0, α ¼ 0.3). (a) 3D
surface of measured output power vs time and input power. (b),(d) Color-level plot of the output power profile at different input powers
from measured data (b) and numerical simulations of the dimensional NLS equation (d). (c) Temporal OSO trace at P ¼ 30.6 dBm,
showing the onset of asymmetric oscillations (the solid blue line stands for the input).
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Before concluding, it is worth specifying in what sense one
can talk about solitons with reference to the fast wave trains
associated with the UB structure observed in Figs. 4–6. First,
it is interesting to note that our experiment, especially in
the configuration of Fig. 3 where the input is a cosine,
represents the realization, though in the framework of a
different model, of the conceptual numerical experiment
made in the celebrated paper published nearly 50 years ago
by Zabusky and Kruskal [27], which led them to coin the
word “solitons” to indicate nonlinear modes nucleated by
wave breaking of a sinusoidal input. Generally speaking,
however, an input wave packet that undergoes breaking and
forms dispersive shocks or UBs cannot be considered to be a
soliton phenomenon (with exceptions constituted by specific
examples; see, e.g., Ref. [38]). Indeed, UBs also manifest
themselves from breaking of waveforms that do not contain
any soliton at all (solitons are meant here in the strict sense of
integrable models, i.e., discrete eigenvalues of the input
potential in the scattering problem associated with the
evolution equation). Conversely, UBs are generally described
as a nonstationary slow modulation of nonlinear periodic
solutions (so-called cnoidal waves) [29]. Specifically, for the
case of periodic input waves treated in this paper, the inverse
scattering formulation of the NLS equation cannot be made in
terms of solitons but rather in terms of so-called finite-band
solutions [83]. Nevertheless, the term soliton, which is
introduced so as to illustrate the features of the post-
catastrophe dynamics in Figs. 4–6, finds, in this context,
its justification in the following argument. In the limit ε → 0,
the number of finite bands diverges while they tend to shrink
around their central value, thus reducing to equivalent
discrete eigenvalues that are characteristic of solitons on
the infinite line [34] (more details on this point, which is
evidently an issue of theoretical interest, will be given in a
future publication).

V. CONCLUSIONS

Thanks to the transposition based on the light-fluid
analogy, all-fiber platforms allow the scientific com-
munity to perform repeatable experiments on striking
and universal-wave phenomena whose exploration in
large-scale hydrodynamics remains, to date, extremely
challenging, at the same time revealing novel regimes of
light propagation. In this contribution, we have focused on
the first absolute demonstration of spontaneous temporal
wave breaking occurring in the most typical and exploited
frequency-conversion processes. More precisely, by means
of a specifically designed fiber experiment, we have
reported the direct observation of the generation of multiple
optical dispersive shocks or undular bores and their natural
interactions, under different four-wave mixing configura-
tions. These results thus provide a better understanding of the
rich scenarios offered by FWM interactions, especially in
connection with the several applications that make use of
FWM in the high-efficiency regime. Furthermore, at a
fundamental level, our experiment can have a deep impact
on the ability to understand dispersive shock waves. These
are indeed fascinating and ubiquitous phenomena, though
generally challenging to reproduce and characterize in their
original environment, as their long-standing history suggests.
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