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We study the generation of 2D turbulence in Faraday waves by investigating the creation of spatially
periodic vortices in this system. Measurements that couple a diffusing light imaging technique and particle
tracking algorithms allow the simultaneous observation of the three-dimensional fluid motion and of the
temporal changes in the wave-field topography. Quasistanding waves are found to coexist with a spatially
extended fluid transport. More specifically, the destruction of regular patterns of oscillons coincides with
the emergence of a complex fluid motion whose statistics are similar to that of two-dimensional turbulence.
We reveal that a lattice of oscillons generates vorticity at the oscillon scale in the horizontal flow. The
interaction of these vortices explains how 2D turbulence is fueled by almost standing waves. Remarkably,
the curvature of Lagrangian trajectories reveals a “footprint” of the forcing-scale vortices in fully developed
turbulence. Two-dimensional Navier-Stokes turbulence should be considered a source of disorder in
Faraday waves. These findings also provide a new paradigm for vorticity creation in 2D flows.

DOI: 10.1103/PhysRevX.4.021021 Subject Areas: Fluid Dynamics, Nonlinear Dynamics

I. INTRODUCTION

Parametrically excited waves are observed in many
physical systems: Faraday waves on the surface of liquids
[1], spin waves in ferrites [2], second sound waves in liquid
helium [3,4], and electrostatic waves in plasma [5]. On a
liquid surface, parametric waves can also be excited using
electric fields [6], ultrasonic excitation [7],wavepaddles [8],
plungers [9,10], etc.
Parametric surface waves can self-organize into various

motifs and they have been the focus of pattern-formation
physics for many years [11–13]. Stable patterns, crystals, or
even quasicrystals are produced on the surface of dissipa-
tive liquids [14–16] or granular media [17,18]. At higher
wave amplitudes, such patterns break down into disordered
lattices. Different pathways leading to disorder have been
described, such as defect-mediated turbulence, oscillatory
transition phase, or the lattice melting scenario [18–22].
Until recently, the physics of these parametrically excited

waves, and their transition to disorder, has been studied
almost exclusively based on the analysis of the wave
motion rather than the motion of their constitutive solid
grains or fluid particles. Nevertheless, recent studies of the

motion of floaters on the surface of Faraday waves (FW)
revealed an unexpected physics picture: the particle motion,
in these three-dimensional waves, reproduces in detail the
statistics of two-dimensional turbulence. Both the inverse
energy cascade and the spectral condensation have been
found, suggesting that Navier-Stokes two-dimensional
turbulence could be a source of disorder at work in low-
dissipation systems [23,24].
Although FWare quasistandingwaves, early studies have

pointed out that they can generate a random fluid particle
motion [25–27]. It was suggested that this Lagrangian
motion can be modeled by an extension of the Stokes drift
phenomenologyfor randomwavefield [26,28,29].However,
such a phenomenology shares almost no connection with
the recent observation of FW-driven two-dimensional tur-
bulence [23,24,30]. Indeed, this modeling approach poorly
describes the presence of a spectrally localized horizontal
forcingmechanism for 2D turbulence.Moreover, it contains
no ingredient to capture the existence of an inertial range.
Thus,what remainsunknown ishowandwhywavesproduce
2D turbulence, in particular, how the energy is injected into
horizontal flow from vertical oscillations and why it is
injected in a narrow range of scales leaving it to turbulence
to spread this energy over a broad inertial interval.
In this work, we address some of these shortcomings

and describe previously unexplored Lagrangian features of
particle trajectories in disordered and ordered Faraday
waves. We use a combination of a high-speed camera, a
diffusing light imaging technique, and tracking algorithms
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to reconstruct the 3D trajectories of floating tracers as
well as the topography of the wave field. This approach
gives new insights into how an essentially vertical energy
injection is converted into spatially extended horizontal
fluid motion. We confirm a clear distinction between the
wave and the fluid motion in disordered FW [24]. The wave
motion is equivalent to that of an assembly of oscillons
confined to the sites of a weakly irregular lattice. In this
sense, even disordered FW remain close to standing waves.
Conversely, particle motion is highly erratic and spatially
extended. We show that disordered quasistanding waves
generate vorticity in the horizontal fluid motion. Those
vortices are determined by a unique characteristic length
scale, and are the fuel of the 2D turbulent flow. As
demonstrated in this paper, a substantial increase inviscosity
results in the recovery of a perfect standing wave crystal
while the particlemotion becomes restricted to closed orbits.
Theemergingphysicalmodel ofFaraday ripples consists of a
spatially periodic 2Darray of oscillating solitons [17,31] that
contain vertical oscillatory energy but also inject horizontal
vortices into the flow at the scale of the oscillon size. This
horizontal energy is then spread over the broad range of
scalesby the inverseenergycascade, andat the same time,2D
turbulence disorders the underlying lattice.

II. RESULTS

In these experiments, the three-dimensional motion of
floating tracers in Faraday waves and the topography of the
wave field have been measured simultaneously.
Faraday waves are formed in a circular container

(178 mm diameter, 30 mm deep) filled with water. The
liquid depth is larger than the wavelength of the perturba-
tions at the surface (deep water approximation). The
container is vertically vibrated by an electrodynamic
shaker. The forcing is monochromatic and is set to either
f0 ¼ 30 Hz or f0 ¼ 60 Hz. Beyond a certain vertical
acceleration threshold (a > ath), the surface of the liquid
becomes unstable. This is the Faraday instability. The
waves that appear on the fluid surface are parametrically
forced; the dominant frequency of the excited surface ripples
is at the first subharmonic of the excitation frequency,
f ¼ f0=2. In the range of frequencies f0 ¼ ð30–60Þ Hz,
the Faraday wavelength is λ ≈ ð8–14Þ mm. We define the
supercriticality as ϵ ¼ ða − athÞ=ath, where ath is the thresh-
old for the parametric generation of Faraday waves.
The liquid surface is seeded with floating tracers to

visualize the horizontal fluid motion. The use of surfactant
and plasma treatment ensures that tracers do not aggregate
(see the Appendix).
We use a diffusing light imaging technique to measure

the topography of the wave field. A few percent of milk
added to water provides sufficient contrast to compute a
high-resolution reconstruction of the parametrically
excited wave field (see the Appendix). Three-dimensional
Lagrangian trajectories are obtained using a combination of

two-dimensional particle tracking velocimetry (PTV) tech-
nique and a subsequent estimation of the local elevation
along the trajectory (see the Appendix).

A. 3D features of Lagrangian trajectories
in Faraday waves

Figure 1(a) shows the 3D reconstruction of a trajectory
recorded for 1.6 s in a disordered Faraday wave field
forced at f0 ¼ 60 Hz and a vertical acceleration of
a ¼ 1.6g (ϵ ≈ 1.7). This trajectory is superimposed on a
reconstruction of the wave field that is built upon two
images corresponding to two successive maxima of the
parametric excitation (i.e., the blue and pink wave fields are
separated by a time interval dt ¼ 1=f0 ¼ 0.016 s).
Figure 1 illustrates qualitatively two important features

of the particle motion in disordered FW. (i) The particle
motion can be extremely convoluted, often forming twisted
patterns or even cusps, which coincide with a strong
orientational randomization of the trajectory [Fig. 1(b)].
These intricate loops are usually confined within a circle
whose radius is ≈λ=4. The lower the vertical acceleration,
the longer the time a particle spends doing this complex
motion. A pronounced cusp can be seen in Fig. 1(b). This is
a singular point in the trajectory geometry that corresponds
to a reversal of the particle velocity. (ii) A particle can
escape this trapping and it experiences intense velocity
peaks as shown in Fig. 1(c). From the top view [Fig. 1(b)],
the particle trajectory during such an event looks like a
long ballistic flight. However, this ballistic behavior is a
characteristic of the horizontal motion only. Indeed,
Fig. 1(a) clearly shows that the particle follows the complex
z topography of the wave field during such a flight.
In the following, we refer to “traps” and “flights” to

characterize these geometrical features observed in all
particle trajectories in disordered FW [27]. We also note
that the particle trajectory shows poor resemblance to the
classical Stokes drift picture [28], where a trajectory is
composed of slowly drifting vertical orbits, called trochoids.
Following the approach described in Ref. [27], we now

give a quantitative definition of traps and flights along a
trajectory. First, we compute the Lagrangian correlation
time TL ¼ R∞

0 ρðtÞdt, where ρðtÞ is the temporal autocor-
relation velocity function [32], as well as the spatial
Lagrangian correlation scale LL ¼ R

∞
0 ρðrÞdr, where ρðrÞ

is the spatial autocorrelation velocity function defined in
Ref. [30]. LL is the characteristic length scale of the particle
dispersion. It was shown that LL ≈ λ=2 for developed 2D
turbulence [30,33].
Then we consider, along the particle trajectory, the

“jumping function” defined as [27]

δrðtÞ ¼ j~rðtþ TL=2Þ − ~rðt − TL=2Þj: (1)

A position ~rðtÞ is called stagnant if δrðtÞ < LL; con-
versely, if δrðtÞ > LL, then ~rðtÞ is a jump. Finally, we refer
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to as traps any sequences of consecutive stagnant points
that correspond to a time span larger than 5TL. On the other
hand, a flight is a succession of jumps that lasts at least 3TL.
Points located at the trajectory ends (δt < TL=2) are not
considered for the trap-flight analysis. Figure 2(a) shows
the nature of traps and flights detected by these definitions.
Asexpected, trapsarecharacterizedbyextremelyconvoluted
twists in all trajectories. On the other hand, flights usually
correspond to the straightest parts of the trajectories.
To assess correlations existing between the wave-field

topography and the horizontal features of the trajectory, the
autocorrelation of the particle elevation was calculated in
both traps and flights. It is defined as

hθðtÞi ¼ h½ðzpðtÞzpðt0Þ�i; (2)

where hi denotes the statistical average, zpðtÞ is the particle
elevation at time t, and zpðt0Þ is its initial elevation, which
is obtained at the beginning of a trap or a flight.
We note that both autocorrelation functions in Fig. 2(b)

show an exponentially decaying envelope with a decay
time Tdec longer than the Faraday period TF. For traps, we
found Tdec ¼ 2.9TF, while Tdec ¼ 1.9TF for the flights.
Figure 2(b) also shows that traps are clearly correlated with
the subharmonic of the frequency excitation. This is
because trapped particles rarely cross over the nodal lines
around one wave peak. Conversely, the elevation autocor-
relation function computed on flights reveals a substantial
phase shift, which can be interpreted as a Doppler shift.
Indeed, in Fig. 1(a), the direction of the ballistic flight

seems to be insensitive to the wave elevation, and the flight
itself corresponds to a straight path probing different wave
phases. In Fig. 1(a), we also note that a trap is clearly
correlated with an area delimited by the nodal lines around
a wave peak.

B. 2D Turbulence in 3D Faraday waves

It was recently shown that the Faraday wave properties
are consistent with those of an ensemble of oscillating
solitons, or oscillons [31]. The oscillon peaks [Fig. 3(a)]
can be tracked, and these positions are used to construct
oscillon trajectories. Figure 3(b) shows a visualization of
these oscillon tracks along with six particle trajectories,
both were followed over 4 s at a supercriticality of
ϵ ¼ 1.67. The oscillons and the particle motions occur
on different length scales. An oscillon wanders erratically
within a cage whose typical size is roughly λ=2 [34].
Consequently, their confined tracks mark the sites of an
irregular lattice, as confirmed by a peaked wave number
spectrum of the surface elevation [see Fig. 3(c)]. But
particles move substantially in the wave field, similarly
to what was observed in Fig. 1(a). Although the presence of
these flights is connected with wave disorder [24], Fig. 3(b)
emphasizes a clear distinction between the disorder-
induced oscillon motion and the fluid motion.
Figure 1(c) suggests a possible connection between the

particles’ horizontal motions and high velocity events, or
flights. The key role played by inertia in particle behavior is
even better illustrated in the Eulerian frame. Figure 3(d)
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FIG. 1. (a) Perspective view of a three-dimensional particle trajectory followed for 1.6 s at a frame rate of 587 frames per second in a
wave field parametrically excited at a ¼ 1.6g (ath ¼ 0.6g) and f0 ¼ 60 Hz. Pink and blue wave fields correspond to two consecutive
phase extrema of the waves that are separated in time by one period of the shaker oscillation (Faraday waves are parametrically excited
waves). (b) Horizontal 2D projection of the same trajectory. A green circle of radius λ=4 ≈ 2 mm is indicated. (c) Absolute value of the
horizontal particle velocity averaged over one Faraday period.
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shows a wave number spectrum of the horizontal kinetic
energy of the fluid in Faraday waves. This spectrum was
computed from Eulerian horizontal velocity fluctuations
measured using a particle image velocimetry (PIV) tech-
nique (see the Appendix) at f0 ¼ 60 Hz and a vertical
acceleration a ¼ 1.6g (ϵ ¼ 1.67). Two scaling laws can
be identified: k−5=3 at wave numbers k < 1500 m−1 and
k−3 at k > 1500 m−1. As reported in Refs. [23,24], these
features are consistent with Kolmogorov-Kraichnan pre-
dictions for an inverse energy cascade and a direct ens-
trophy cascade, respectively, which were derived for an
incompressible fluid [35]. In these experiments, the vertical
motion of the particles might result in nonzero values for
the instantaneous divergence of the horizontal velocity
field; however, the divergence becomes close to zero when
it is averaged over space or in time over several Faraday
periods [23]. We also note that particles stay homo-
geneously distributed over the water surface. These

observations confirm that the 2D flow generated by FW
can be considered as incompressible. In contrast, floaters
driven by an underlying 3D turbulence form massive
ribbonlike clusters and their motion at the fluid surface
exhibits properties of a compressible fluid [36,37].
The kink observed in the spectrum of the horizontal

kinetic energy at k ≈ 1500 m−1 gives a forcing wave
number corresponding roughly to half the Faraday wave-
length λ=2 ≈ 4 mm [see Figs. 3(c) and 3(d)]. This obser-
vation raises the following question: How do Faraday
waves generate a spectrally localized forcing mechanism
of 2D turbulence?

C. Wave-induced vorticity

Figure 4 shows details of a three-dimensional trajectory
followed for 2 s in FWat relatively low drive (ϵ ¼ 0.67). By
decreasing the vertical acceleration, the average “trapping
time” increases [27]. Thus, some trajectories can consist
almost exclusively of consecutive trapping sequences, as
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FIG. 3. FW are excited at f0 ¼ 60 Hz and a ¼ 1.6g (ϵ ¼ 1.67)
at the water surface (water þ 10%milkþ surfactant) in a 178 mm
diameter circular container. (a) Diffusing light image of the fluid
surface elevation: peaks and troughs appear as dark and white
blobs, respectively. Particles have been removed from the raw
image by using a rolling ball algorithm. Local wave maxima
(dark peaks) are detected and subsequently followed by PTV
techniques. (b) Comparison between trajectories of oscillons
(black lines) having a phase maximum in (a) and an example of
six particle trajectories (orange lines). (c) Wave number spectrum
of the surface elevation. (d) Wave number spectrum of the kinetic
energy of the horizontal flow. The horizontal velocity field was
measured using PIV techniques (see details in the Appendix).
The red rectangle indicates a spectrally localized forcing mecha-
nism with a characteristic length scale lf ≈ 4 mm.
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FIG. 2. (a) Detection of traps [δrðtÞ < LL, blue segments] and
flights [δrðtÞ > LL, red segments] along particle trajectories
(underlying orange lines). Traps and flights last at least 5TL
and 3TL, respectively. The forcing frequency is f0 ¼ 60 Hz, the
Faraday wavelength is λ ≈ 8 mm, and TL ≈ 0.10 s. (b) Autocor-
relation function θðtÞ of the Lagrangian elevation estimated
during traps and flights events for a ¼ 1.6g and f0 ¼ 60 Hz.
Exponentially decaying envelopes are plotted (green and orange
lines). The dashed lines mark successive Faraday periods.
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seen in Fig. 4(c). Figure 4 also reveals an interesting feature
of particle trajectories that is somewhat hidden in the
complex Lagrangian picture of Fig. 1(a): traps can look
like almost perfectly circular loops around an oscillon. It
suggests that waves may generate local vorticity in the
horizontal flow. In Figs. 4(a)–4(c), these horizontal loops
have a diameter comparable to the size of an oscil-
lon (≈λ=2).
Moreover, Fig. 4 emphasizes that this circular particle

motion at the oscillon scale is somehow independent of
the Faraday period but seems related to a much longer time
scale. In Fig. 4(a), for instance, a particle describes an
almost circular loop that takes 24 Faraday periods corre-
sponding to the peaks in the green trajectory.
We now consider the horizontal projection of the particle

trajectory and test if there is any resilient feature of those
circular loops when the vertical acceleration is increased.
The geometry of the horizontal projection of a particle
trajectory can be characterized by its local curvature κ.
This quantity reveals the amount by which a trajectory
deviates from a straight line and thus indicates the presence
of loops or cusps: low values of κ are related to locally
straight flights, while higher values of κ occur in traps. The
instantaneous curvature κðtÞ along a trajectory is given by

κðtÞ~z ¼ ½~vxyðtÞ × ~axyðtÞ�=j~vxyðtÞj3; (3)

where ~vxy and ~axy stand for the horizontal velocity and
acceleration along a trajectory, ~z is the unit vector in the
vertical direction. As the computation of ~axy is quite
sensitive to the noise level, the curvature κðtÞwas smoothed
over one Faraday period Tf, such that
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FIG. 4. Three-dimensional loops along one particle trajectory in
FWat lowdrivea ¼ 1g andf0 ¼ 60 Hz(ϵ ¼ 0.67).Thecoordinate
system indicates the different viewpoints with z indicating the
ascending vertical. The green line is the three-dimensional trajec-
tory, the red line corresponds to the horizontal projection of this
trajectory. Pink and bluewave fields correspond to two consecutive
phase extrema of the waves that are thus separated in time by one
period of the shaker oscillation (Faraday waves are parametrically
excited waves). (a),(b) Close-up (perspective views) on almost
perfectlycircular loopsalong the trajectory, those loopshavea radius
close to≈λ=2. (c) Top view (orthogonal projection) on a portion of
this trajectory that corresponds to a 2 s interval. The view is zoomed
out to show the two complete loops displayed in (a) and (b).
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in a 8 × 8 cm2 domain imaged at 120 Hz with a spatial resolution of 100 μm.
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κTf
ðtÞ ¼ 1

Tf

Z
tþTf

t
½κðtÞ�dt: (4)

On a technical note, the local curvature diverges when
the velocity ~vxy is zero (i.e., the displacement is smaller
than the spatial resolution, which is 100 μm for the data
plotted in Fig. 5). These events correspond to the presence
of sharp cusps along the trajectory [see Fig. 1(b)]. In such
rare cases, locally diverging points in κðtÞ are removed
before the quantity is smoothed over Tf.
In Fig. 5, we show the probability density function (PDF)

of the curvature for different excitation frequencies f0
and vertical accelerations. First, these PDFs are wide with
distinct tails. The PDFs are found independent of the
vertical acceleration for a fixed f0, Fig. 5(a). However,
the PDF becomes more peaked and narrows around the
origin with the decrease in the forcing frequency f0. It
keeps a power-law tail, but high κTf

events get less

probable, Fig. 5(b). Although the entire PDF follows a
q-Gaussian distribution, it can be fitted by an exponential
decay law PðκTf

Þ ¼ α expð−lcκTf
Þ for the curvature values

within the range jκTf
j ≤ 1000 m−1. Since the curvature is

the inverse of the curvature radius, lc has the dimension of a
length scale. This characteristic length scale is roughly a
quarter of the Faraday wavelength, as seen from the fitting
parameters for two different cases at f0 ¼ 30 Hz and
f0 ¼ 60 Hz in Fig. 5(b).
In Fig. 5(c), the absolute value of the horizontal velocity

j~vxyðtÞj is compared with the curvature κTf
ðtÞ in disordered

FW (a ¼ 1.6g, ϵ ¼ 1.67). High values of j~vxyj are corre-
lated with low values for κTf

. Thus, fluid parcels with high
kinetic energy follow straight ballistic flights. On the other
hand, high curvature points, which characterize loops and
cusps, are related to low velocities. Thus, slow particles are
trapped along convoluted trajectories around oscillon sites.
The relation between the Lagrangian curvature and the

Eulerian vorticity is far from being trivial. To ascertain the
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FIG. 6. Flow driven by Faraday waves excited at the water surface at f0 ¼ 10 Hz and a ¼ 0.04g in a 40 × 40 cm2 square container.
Left: Fluid particle trajectories 1 min (a), 10 min (c) after the shaker has been turned on. In those images, particle streaks correspond to a
4 s time interval. Right: Corresponding vorticity fields measured by PIV techniques (see details in the Appendix) and averaged over a 4 s
time interval (¼ 20Tf). Movies were recorded at 5 frames per second with a spatial resolution of 200 μm.
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claim that FW actually generate vorticity in the horizontal
flow and to further clarify the existence of a unique scale
for the vorticity injection, we perform an additional set of
experiments. Here, Faraday waves are produced in a large
(400 mm) square container. At the excitation frequency of
f0 ¼ 10 Hz, a quasiregular square lattice of 7 × 7 oscillons
is excited. Shortly after the parametric waves are generated,
a matrix of vortices is formed, which roughly corresponds
to the underlying quasiregular lattice of oscillons, Fig. 6(a).
The characteristic diameter of the vortices is close to the
size of an oscillon. This configuration, however, is not
stable as the vortices interact with each other. The flow
evolves as illustrated in Fig. 6(c); the vortex interaction
results in the emergence of a disordered flow.
The evolution of the vertical vorticity field ~ωz ¼

ðδuy=δx − δux=δyÞ~z computed using the PIV velocity field
(see details in the Appendix) and averaged over 4 s is
shown in Figs. 6(b) and 6(d). In Fig. 6(b), the vorticity field
consists of an almost regular square pattern made of
counterrotating vortices. These vortices ultimately aggre-
gate into larger eddies [Fig. 6(d)]. The total vorticity
remains zero.

III. DISCUSSION

A. How do Faraday waves generate a spectrally
localized forcing mechanism of 2D turbulence?

Figure 6 demonstrates that Faraday waves create hori-
zontal vortices on the liquid surface at the early stage of the
flow development. Initially, a periodic array of vortices can
be detected. These vortices have a diameter given by the
size of an oscillon. As the flow develops, these vortices
merge into larger eddies in the process of the inverse energy
cascade. The initial vortices are the fuel of 2D turbulence.
The creation of vorticity by Faraday waves bears striking

similarity with that in electromagnetically driven turbu-
lence. Though the forcing-scale vortices in electromagnetic
turbulence are generated by periodic arrays of permanent
magnets, the electromagnetically driven vortices injected
into the flow are very similar to those illustrated in Fig. 6(a).
This explains why the 2D turbulence produced by these
two different methods is very similar [30]. In both methods,
the forcing-scale vortices are visible only in the Eulerian
frame in the initial stage of the turbulence develop-
ment [38].
The experimental data show that the shape of the

curvature PDF is a resilient feature of particle trajectories
in disordered FW. The most probable values for the
curvature can be fitted by an exponential decay law.
The characteristic decay diameter 2lc is determined by
the period of the oscillon lattice [24,34], which is also the
forcing scale of the kinetic energy spectrum, Fig. 3(d). We
note that a connection between a statistical property of the
Lagrangian curvature [lc in Fig. 5(b)] and the forcing scale
detected in the kinetic energy spectrum [Fig. 3(d)] is not

trivial. Indeed, the Lagrangian and Eulerian descriptions of
a flow are difficult to connect. Hence, it is remarkable that
the curvature of the Lagrangian trajectories still reveals a
“footprint” of the forcing-scale vortices in fully developed
turbulence.

B. Lagrangian motion in a 3D Faraday
wave crystal

Figure 7 is to be compared with Fig. 1. It shows the
particle trajectories observed in a crystal-like wave field.
An almost perfect wave crystal is realized in a viscous
solution of glycerol (73%), milk (10%), and water
(viscosity ¼ 40 cP) [16]. In such a crystal-like array of
waves, Fig. 7(a), particles no longer experience spatially
extended random walks. Instead, they move along closed
orbits of different geometries, Fig. 7(b). The orbital motion
is almost vertical near a wave antinode, while it shows
small horizontal oscillations close to a nodal line. Along a
nodal line, particle trajectories are U shaped. The crossover
of two nodal lines marks the location of a saddle point in
the wave topography where there is no particle motion.
As the vertical acceleration is increased (or if dissipation

is decreased), this ordered wave structure breaks down into

(a)

4 mm

(b)

2 mm

x

z

y

FIG. 7. Perspective view of three-dimensional particle trajecto-
ries in a FW crystal. FW are excited at the surface of a solution
of 73% glycerol þ 10%milkþ water (no added surfactant).
The vertical acceleration is a ¼ 2.8g (ath ¼ 2.6g, ϵ ¼ 0.08) at
f0 ¼ 60 Hz. (a)Waves showing a crystalline pattern. (b) Close-up
of 3D particle trajectories followed for 8 Faraday periods
(8Tf ≈ 264 ms) at thewavelength scale. Pink and bluewave fields
correspond to two consecutive phase extrema of the waves, which
are thus separated in time by one period of the shaker oscillation
(Faraday waves are parametrically excited waves).

THREE-DIMENSIONAL FLUID MOTION IN FARADAY … PHYS. REV. X 4, 021021 (2014)

021021-7



a disordered lattice of steep waves. Although Faraday
waves remain almost standing waves, the presence of
disorder in the wave field coincides with an increase in
the particle mobility and the emergence of 2D Navier-
Stokes turbulence. These observations suggest that 2D
turbulence should be considered as a potential source of
disorder in FW.

IV. CONCLUSIONS

These experiments prove that the deformation of a fluid
interface can be considered as a new paradigm for vorticity
creation in a 2D flow [39], this finding sheds new light on
the wave-induced fluid motion that is commonly consid-
ered in textbooks as an irrotational flow. As a consequence,
the influence of vorticity in surface-wave phenomena was
studied only relatively recently compared to the long-
standing history of surface-wave physics. To our knowl-
edge, the influence of vorticity has been mainly addressed
in viscous boundary layers [40,41], or in coastal shear flows
in oceanography [42]. In both cases, the presence of
vorticity can have significant effects on the flow. In the
latter case, the presence of strong nonlinearities in the
governing equations has already stressed the importance of
interacting vortices.
In Faraday ripples, a new physical model emerges: a 2D

lattice of oscillating solitons contains vertical oscillatory
energy, but it also produces horizontal vortices at the
oscillon size: the “turbulent fuel.” This horizontal energy
is ultimately spread over a wide range of scales by the
inverse energy cascade. This unexpected generation of 2D
turbulence is an interesting twist in our understanding of
the order-disorder transition in Faraday waves [19–21].
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APPENDIX: MATERIALS AND METHODS

Faraday waves are formed in a circular container
(178 mm diameter, 30 mm deep) filled with a liquid whose
depth is larger than the wavelength of the perturbations at
the surface (deep water approximation). The container is
vertically vibrated by an electrodynamic shaker (Bruel
and Kjaer). The forcing is monochromatic and set to either
f0 ¼ 30 Hz or f0 ¼ 60 Hz. The amplitude a of the vertical
acceleration imposed by the shaker is measured by an
accelerometer. An accurate control of the acceleration
amplitude is performed by a proportional-integral-derivative
controller.
We use a diffusing light imaging technique to measure

the topography of the wave field; see Fig. 8(a) and 8(d). The

fluid surface is illuminated by a LED panel placed under-
neath the transparent bottom of the container. A few percent
of milk (from 2% to 10%) added towater provides sufficient
contrast to obtain a high-resolution reconstruction of the
parametrically excitedwave field.The absorptioncoefficient
is calibrated before each experiment, bygradually increasing
the liquid depth and measuring the change in the light
intensity transmitted when the liquid surface is flat (i.e.,
when the container is not vibrated). This procedure allows us
to calibrate the wave-field elevation in millimeters. In these
experiments, the dynamic range of our images (16 bits)
allows us to resolve a 20 μm change in the fluid elevation.
Videos are recorded at a 16 bit resolution and at a high

frame rate using the Andor Neo sCMOS camera, which was
mounted above the tank. The typical field of view is either a
8 × 8 cm2 domain, imaged at 120 Hz with a resolution of
100 μm, or a 3 × 3 cm2 area, imaged at 587 Hz with a
resolution of 200 μm. Black floating particles spread on the
fluid surface are easy to observe and allow us to visualize the
horizontal motion of the fluid. We use particles with a
diameter within a range of 150 to 300 μm (300 μm is the
mesh size of the sieve used). Particles are made of carbon
glass and have been plasma treated to reduce their intrinsic
hydrophobicity. The use of surfactant and plasma treatment
ensures that particles do not aggregate on the surface. This is
illustrated in Fig. 8(a) with particles homogeneously dis-
tributed at the surface of the wave field.
To test if the particle size affects the observation of

turbulence generation in Faraday waves, additional mea-
surements were performed using 50 μm diameter polyamid
particles. No effect of the particle size was detected, in
agreement with observations reported in Refs. [23,30].

1. 3D-PTV techniques

Three-dimensional Lagrangian trajectories are retraced
using a combination of a two-dimensional PTV technique
and a subsequent estimation of the local elevation along
the trajectory [see Fig. 8(b) and 8(c)]. First, the horizontal
projection (x-y coordinates) of each point on a trajectory is
tracked using a nearest-neighbor algorithm [43]. In such
an algorithm, the maximum displacement allowed for a
particle in consecutive frames is set to be smaller than the
minimal distance separating particle pairs in the field of
view. Then the particle elevation (z coordinate) is estimated
as the mean of the wave elevation over a local window
(400 μm radius), which is centered on the x-y particle
coordinates at a given time. In all of our experiments, the
localness of the z-coordinate estimation is ensured by
choosing a sufficiently large Faraday wavelength (at
f0 ¼ 60 Hz, λ ≫ 400 μm). For each vertical acceleration
a at a given forcing frequency f0, thousands of particle
trajectories were followed for 4 s at 120 or 587 frames per
second. The 3D trajectories of the particle and the wave
field are visualized using the HoudiniðTMÞ 3D animation
tools (Side Effects Software). For the study of the
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horizontal features of particle trajectories, x-y particle
coordinates are first smoothed over one Faraday period
Tf. This filtering limits the noise induced by the projection
on the horizontal plane of the vertical oscillatory motion.
Similarly, the determination of the curvature κðtÞ requires
the computation of the horizontal acceleration ~axy, a
quantity quite sensitive to the noise level. To reduce the
noise, the measured curvature κðtÞ was also smoothed over
one Faraday period Tf.

2. 2D-PIV techniques

The particle image velocimetry (PIV) technique is used
to obtain the velocity field of the horizontal motion of the
flow in Figs. 3(d), 6(b), and 6(d). Images are split into a
large number of interrogation windows, which form a
regular grid. A velocity vector is calculated for each
interrogation area by temporal cross correlation of the

particle intensity distribution within each interrogation tile.
The PIV technique allows us to resolve subpixel displace-
ment and thus gives a high degree of accuracy in the
estimation of the velocity field.
In Fig. 3(d), the flow is recorded at a frame rate twice the

shaker frequency (i.e., equal to 4 times the parametric wave
frequency) for 4 s. The field of view is 80 × 80 mm2 with a
spatial resolution of 100 μm (pixel size). The PIV velocity
fields are computed on a 90 × 90 spatial grid (grid mesh
size is 0.89 mm), with a 2.6 × 2.6 mm2 interrogation
window size (the interrogation windows are overlapping).
The measurements of the instantaneous displacement are
accurate down to 10 μm. The energy spectrum in Fig. 3(d)
is averaged over 400 snapshots of the velocity field.
In Figs. 6(b) and 6(d), the flow is recorded at a frame rate

of 5 frames per second for more than 10 min. The field of
view is 400 × 400 mm2 with a spatial resolution of 200 μm

(b)

x
y

z

4 mm

x
y

z

z

x

y

z

x

y

4 mm

8 mm

4 m
m

(a)

(d)

(c)

FIG. 8. (a) Diffusing light image of the wave field at a ¼ 2g (ϵ ¼ 2.3) and f0 ¼ 60 Hz. Dark and light blobs give the location of wave
peaks and troughs, respectively. The tiny red dots are tracer particles (diameter of 150–300 μm), the locations of which are extracted
from the wave field using a “rolling ball” filter. A green circle of radius λ=4 ¼ 2 mm is indicated. (b) Slight zoom-in view on the
horizontal projection of an individual trajectory followed for 4 s at 120 frames per second. This trajectory is reconstructed using a PTV
technique. The blue line (barely visible) corresponds to raw data points, the red line is the trajectory smoothed over one Faraday period
(T ¼ 1=f ≈ 33 ms). (c) 3D reconstruction of the trajectory shown in (b). (d) 3DVisualization of the wave field topography shown in (a).
Particles have been removed from the image by using a rolling ball filter, the original image (80 × 80 mm2) was smoothed over a
0.8 × 0.8 mm2 window.
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(pixel size). The PIV velocity fields are computed on a
70 × 70 spatial grid (grid mesh size is 5.7 mm), with a
10 × 10 mm2 interrogation window size (the interrogation
windows are overlapping). The measurements of the
instantaneous displacement are accurate down to 20 μm.
The vertical vorticity fields in Figs. 6(b) and 6(d) are
averaged over a 4 s time interval (¼ 20Tf). The average
vorticity measurement is accurate down to 10−3 s−1.
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