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The study of non-Abelian Majorana zero modes advances our understanding of the fundamental physics
in quantum matter and pushes the potential applications of such exotic states to topological quantum
computation. It has been shown that in two-dimensional (2D) and 1D chiral superconductors, the isolated
Majorana fermions obey non-Abelian statistics. However, Majorana modes in a Z2 time-reversal-invariant
(TRI) topological superconductor come in pairs due to Kramers’s theorem. Therefore, braiding operations
in TRI superconductors always exchange two pairs of Majoranas. In this work, we show interestingly that,
due to the protection of time-reversal symmetry, non-Abelian statistics can be obtained in 1D TRI
topological superconductors and may have advantages in applications to topological quantum computation.
Furthermore, we unveil an intriguing phenomenon in the Josephson effect, that the periodicity of Josephson
currents depends on the fermion parity of the superconducting state. This effect provides direct
measurements of the topological qubit states in such 1D TRI superconductors.
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I. INTRODUCTION

The search for exotic non-Abelian quasiparticles has
been a focus of both theoretical and experimental studies in
condensed matter physics, driven by both the exploration of
the fundamental physics and the promising applications of
such modes to a building block for a fault-tolerant
topological quantum computer [1–7]. Following this pur-
suit, the topological superconductors have been brought to
the forefront, for they host exotic zero-energy states known
as Majorana fermions [8–16]. For a two-dimensional (2D)
chiral pþ ip-pairing state, which breaks time-reversal
symmetry, one Majorana mode exists in each vortex core
[2], and for the 1D p-wave case, such a state is located at
each end of the system [4]. Because of the particle-hole
symmetry, Majorana fermions in a topological supercon-
ductor are self-Hermitian modes that are identical to their
own antiparticles. A complex fermion, whose quantum
states span the physical space in the condensed-matter
system, is formed by two Majoranas that can be located far
away from each other. This property allows us to encode
quantum information in the nonlocal fermionic states,
which are topologically stable against local perturbations.

The existence of 2n Majorana zero modes leads to 2n−1-
fold ground-state degeneracy, and braiding two of such
isolated modes in 2D or 1D superconductors transforms
one state into another, which defines the non-Abelian
statistics [3,15]. Remarkably, Majorana end states have
been suggestively observed through tunneling measure-
ments [17–19] in 1D effective p-wave superconductors
obtained using heterostructures formed by semiconductor
nanowire and s-wave superconductor [20–22].
Recently, a new class of topological superconductors

with time-reversal symmetry, referred to as a DIII-
symmetry-class superconductor and classified by the Z2

topological invariant [23–27], has attracted rapidly growing
efforts [24–32]. Differently from chiral superconductors, in
DIII-class superconductors, the zero modes come in pairs
due to Kramers’s theorem. Many interesting proposals have
been studied to realize Z2 time-reversal-invariant (TRI)
Majorana quantum wires using the proximity effects of d-
wave, p-wave, s�-wave, or conventional s-wave super-
conductors. It was shown that at each end of such a
quantum wire are localized two Majorana fermions that
form a Kramers doublet and are protected by time-reversal
symmetry [30–38].
With the practicability in realization, a fundamental

question is, can the DIII-class topological superconductor
be applied to topological quantum computation? The
puzzle arises from the fact that braiding the end states in
a DIII-class 1D superconductor always exchanges
Majorana Kramers pairs rather than isolated Majorana
modes. While braiding two pairs of Majoranas in chiral
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topological superconductors yields Abelian operations, in
this work, we show interestingly that braiding Majorana
end states in DIII-class topological superconductors is non-
Abelian due to the protection of time-reversal symmetry.
We further unveil an intriguing phenomenon in the
Josephson effect, that the periodicity of Josephson currents
depends on the fermion parity of the superconducting state,
which provides direct measurements of all topological
qubit states in the DIII-class 1D superconductors.
The article is organized as follows. In Sec. II, we briefly

introduce how to engineer the DIII-class 1D topological
superconductor by inducing p-wave superconductivity in a
conducting wire in proximity to a noncentrosymmetric
superconductor. Then, in Sec. III, we turn to a detailed
study of the non-Abelian Majorana doublets in the DIII-
class 1D topological superconductor. Section IV is devoted
to investigating the Josephson effect, which shows an
interesting strategy to read out topological qubit states in
TRI superconductors. Finally, the conclusions are given
in Sec. V.

II. TOPOLOGICAL SUPERCONDUCTOR OF DIII
CLASS BY PROXIMITY EFFECT

Several interesting proposals have been considered to
realize DIII-class 1D topological superconductors, includ-
ing to use the proximity effects of d-wave, p-wave, s�-
wave, and conventional s-wave superconductors [30–33].
Here, we briefly introduce how to engineer such a Z2

topological superconductor by depositing a conducting
quantum wire on a noncentrosymmetric superconductor
thin film that can induce s-and p-wave pairings in the wire
by the proximity effect [39,40], as illustrated in Fig. 1. The
total Hamiltonian of the heterostructure system reads
H ¼ HSC þHwire þHt, where HSC, Hwire, and Ht re-
present the Hamiltonians for the substrate superconductor,
the conducting wire, and the tunneling at the interface,
respectively. Because of the lack of inversion symmetry, a
noncentrosymmetric superconductor has both s-wave and
p-wave pairings [39]. For convenience, we denote the

pairings in the substrate superconductor as Δð0Þ
s and Δð0Þ

p ,
respectively. The Bogoliubov de Gennes Hamiltonian for
the 2D noncentrosymmetric superconductor is given by

HSC ¼
X
kx;ky

½ϵ0ðkx; kyÞτz þ αð0ÞR sin kyσx − αð0ÞR sin kxσyτz

þ Δð0Þ
p sin kyσzτx − Δð0Þ

p sin kxτy − Δð0Þ
s σyτy�; (1)

where ϵ0ðkx; kyÞ ¼ −2tð0Þðcos kx þ cos kyÞ − μð0Þ is the
normal dispersion relation, with tð0Þ the hopping coefficient
in the superconductor; σj and τj (j ¼ x, y, z) are the Pauli
matrices acting on the spin and Nambu spaces, respec-

tively; αð0ÞR is the spin-orbit-coupling coefficient; and μð0Þ is
the chemical potential. The pairing order parameters can be

reorganized by Δ̂ ¼ ðΔð0Þ
s þ d · σÞðiσyÞ, with the d vectors

defined as d ¼ Δð0Þ
p ð− sin ky; sin kx; 0Þ.

A single-channel 1D conducting quantum wire, being
put along the x axis, can be described by the following
Hamiltonian:

Hwire ¼
X
kx

ð−2tw cos kx − μwÞτz; (2)

with tw the hopping coefficient and μw the chemical
potential in the wire. It is noteworthy that the intrinsic
spin-orbit interaction is not needed to reach the TRI
topological superconducting phase, while the proximity
effect can induce an effective spin-orbit interaction in the
nanowire. Now, we give the tunneling Hamiltonian Ht for
the interface. For simplicity, we consider that at the inter-
face, the coupling between the substrate superconductor
and the nanowire is uniform, and thus the momentum kx is
still a good quantum number. Then, the tunneling
Hamiltonian can be written down as

Ht ¼ −t⊥
X
kx;σ

c†σðkxÞdiy0;σðkxÞ þ H.c.; (3)

where σ ¼ ↑, ↓ are the spin indices, t⊥ denotes the
tunneling coefficient between the nanowire and substrate
superconductor, and c†σ , cσ and d†σ , dσ are the creation and
annihilation operators of electrons for the quantum nano-
wire and the superconductor, respectively. The site number
iy0 characterizes where the heterostructure is located on the
y axis in the noncentrosymmetric superconductor.
The induced superconductivity in the wire can be

obtained by integrating out the degree of freedom of the
superconductor substrate. We perform the integration in
two steps. First, for the uniform noncentrosymmetric
superconductor, we can determine its Green’s function
Gsðkx; iy0Þ with momentum kx and at the site iy0 below the
nanowire by the standard recursive method [41]. Then, the
coupling of the nanowire to the superconductor can be
reduced to the coupling to the site iy0 below the wire and
described by the Green’s function Gsðkx; iy0Þ. Integrating
out the degree of freedom of the sites in the superconductor
right below the nanowire yields a self-energy for

FIG. 1. The DIII-class 1D topological superconductor realized
by depositing a conducting nanowire (NW) on the top of a
noncentrosymmetric superconductor (SC). Both s- and p-wave
pairings can be induced in the conducting wire by tunneling
couplings through the interface between the NWand the substrate
superconductor.
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the Green’s function of the nanowire, which gives rise to
the proximity effect. The effective Green’s function of the
nanowire takes the form

Gwireðiω; kxÞ ¼
1

iω − ϵwðkxÞτz − ΣðiωÞ ; (4)

where ϵw ¼ −2tw cos kx − μw and the self-energy reads
ΣðiωÞ ¼ t2⊥Gsðkx; iy0Þ. Finally, the spectral function is
determined by

Aðω; kxÞ ¼ −
1

2π
ImfTr½τzGwireðωþ i0þ; kxÞ�g; (5)

with Im taking the imaginary part, Tr denoting the trace
over the spin and Nambu spaces, and 0þ a positive
infinitesimal. The spectral function determines the bulk
band structure, which is numerically shown in Fig. 2 with
different chemical potentials of the nanowire. In particular,
from the numerical results, we find that the nanowire is in
the topologically nontrivial regime when jμwj < 2jtwj and
jΔð0Þ

p j > jΔð0Þ
s j, which leads to the induced pairings in the

wire jΔpj > jΔsj, while it is in the trivial regime when

jΔð0Þ
s j > jΔð0Þ

p j or jμwj > 2jtwj (i.e., the chemical potential is
tuned out of the band of the wire). When tuning the

chemical potential down to the band bottom, the bulk gap in
the nanowire is reduced and closes right at the bottom,
implying the critical value of the chemical potential μcw ¼
−2tw (similar results can be obtained around 2tw, the top of
the band) [Figs. 2(a)–2(c)]. In the topological regime at
each end of the nanowire are localized two Majorana zero
modes γj and ~γj (j ¼ L, R) that form a Kramers’s doublet,
with their wave functions shown in Fig. 3. Further lowering
the chemical potential reopens the bulk gap, and the system
is driven into a trivial phase [Fig. 2(d)].
It is interesting that the phase diagram in the nanowire

does not depend on parameter details of the couplings
between the nanowire and the substrate superconductor,

and for jΔð0Þ
p j > jΔð0Þ

s j, the topological regime in the
nanowire can be obtained in a large parameter range that
−2tw < μw < 2tw. This result enables a feasible way to
engineer the DIII-class topological states in the experiment
by tuning μw to be below or above the band bottom of the
nanowire.
We note that the time-reversal symmetry is essential for

the existence of the Majorana doublets in the topological
phase. If time-reversal symmetry is broken, e.g., by
introducing a Zeeman term Mzσz, the two Majorana
modes at the same end will couple to each other and
open a gap. On the other hand, while we consider here the
DIII-class 1D topological superconductor through the
proximity effect of noncentrosymmetric superconductors,
the non-Abelian statistics predicted in this work are
fundamental physics that are proposal independent and
can also be studied with all other realistic setups for the
1D TRI topological superconductor, as proposed in recent
works [30–38]. In particular, the recent proposal based on
the proximity effect of s-wave conventional superconduc-
tors may be feasible for the experimental studies [33].

FIG. 2. The logarithmic plot of the spectral function for the
nanowire or noncentrosymmetric superconductor heterostructure.
The dotted yellow curves show the bulk band structure of the
nanowire system. The solid red areas (in the upper and lower
positions of each panel) represent the bulk states of the substrate
superconductor. (a) Topological regime with the chemical po-

tential μw set as −2tw þ 5jΔð0Þ
p j in the nanowire. In this regime, at

each end of the wire are localized two Majorana zero modes
(Fig. 3). (b) Topological regime with a reduced bulk gap by

tuning μw ¼ −2tw þ jΔð0Þ
p j close to the band bottom. (c) Critical

point μcw ¼ −2tw for the topological phase transition with the
bulk gap closed. (d) Trivial phase regime for the nanowire with

μ ¼ −2tw − jΔð0Þ
p j. Other parameters are taken that t⊥ ¼ 0.5tw ¼

0.5tð0Þ, jΔð0Þ
s j ¼ 0.5jΔð0Þ

p j, and αð0ÞR ¼ jΔð0Þ
p j.

FIG. 3. (a) Two Majorana bound modes exist at each end of the
nanowire in the topological regime with μ ¼ −2tw þ jΔð0Þ

p j, as
considered in Fig. 2(b). (b),(c) The wave functions of two
Majorana modes γLðRÞ and ~γLðRÞ at the same end have exactly
the same spatial profile, with ξ the coherence length in the
nanowire.
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III. NON-ABELIAN STATISTICS

In this section, we show in detail that Majorana
Kramers’s doublets obey non-Abelian statistics due to
the protection of time-reversal symmetry. In the previous
section, we have demonstrated that for the topological
phase, at each end of the Z2 Majorana quantum wire are
localized two Majorana modes γj and ~γj (j ¼ 1, 2),
transformed by a time-reversal operator that T −1γjT ¼
~γj and T −1 ~γjT ¼ −γj [24]. To prove the non-Abelian
statistics, we first show a new result that in a DIII-class
topological superconductor at zero temperature, the fer-
mion parity is conserved for each time-reversed sector of
the system. With this result, we then get that braiding
Majorana doublets can generically reduce to two indepen-
dent processes of exchanging, respectively, two pairs of
Majoranas belonging to two different time-reversed sectors,
which leads to the symmetry-protected non-Abelian
statistics.

A. Fermi-parity conservation

Fermion parity measures the even and odd numbers of
the fermions in a quantum system. Note that the non-
Abelian statistics are properties of the ground-state sub-
space of a topological superconductor. We only need to
consider the superconductor at zero temperature, in which
case no thermally excited quasiparticles exist and the
superconductor is characterized as a condensate. The
fermion number of a ground state can only vary by pairs
due to the presence of a pairing gap, which leads to the
fermion-parity conservation for the condensate. For the
DIII-class 1D topological superconductor, we prove here a
central result that by grouping all the fermionic modes into
two sectors that are time-reversed partners of each other, the
fermion parity is conserved for each sector of the con-
densate, not only for the entire system. It is trivial to know
that this result is true if the DIII-class topological super-
conductor is composed of two decoupled copies (e.g.,
corresponding to the spin-up and spin-down, respectively)
of 1D chiral p-wave superconductors. For the generic case,
the proof is equivalent to showing that in a TRI Majorana
quantum wire, which has four degenerate ground states
jn1 ~n1i (n1, ~n1 ¼ 0, 1), the four topological qubit states are
decoupled from each other with the presence of finite TRI
perturbations. (The change in the fermion parity for
each sector of the condensate necessitates the transition
between j0~1i and j1~0i or between j0~0i and j1~1i.) The
coupling Hamiltonian, assumed to depend on a manipu-
latable parameter λ, should take the generic TRI form
VðλÞ ¼ iE1ðλÞðγ1γ2 − ~γ1 ~γ2Þ þ iE2ðλÞðγ1 ~γ2 − γ2 ~γ1Þ, which
splits the two even-parity eigenstates j0~0i and j1~1i by an
energy EðλÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
1 þ E2

2

p
. Since j1~0i and j0~1i form a

Kramers’s doublet at an arbitrary λ value, the transition
between them is forbidden by time-reversal symmetry.
Then, the fermion-parity conservation requires that the

following adiabatic condition be satisfied in the manipu-
lation: jh1~1j_λ∂λj0~0ij ≪ 2EðλÞ, where _λ ¼ ∂λ=∂t. This
criterion is followed by

~R≡ 1

2EðλÞ
���� ∂λ∂t

∂θ
∂λ

���� ≪ 1; θ ¼ tan−1
E1

E2

: (6)

We show below that the above condition is generically
satisfied under realistic conditions.
According to the the previous section, the proximity

effect induces p-wave and s-wave superconducting pair-
ings in the nanowire. The effective tight-binding
Hamiltonian of the DIII-class Majorana nanowire in the
generic case can be written as

Heff
wire ¼

X
hi;ji;σ

tijc
†
iσcjσ þ

X
hi;ji

ðtSOij c†i↑cj↓ þ H.c.Þ

þ
X
hi;ji

ðΔp
ijci↑cj↑ þ Δp�

ij ci↓cj↓ þ H.c.Þ

þ
X
j

ðΔscj↑cj↓ þ H.c.Þ − μ
X
j;σ

njσ; (7)

where the hopping coefficients and the chemical potential
are generically renormalized by the proximity effect, with
the spin-conserved and the spin-orbit-coupled hopping
terms satisfying tij ¼ tji ¼ t and tSOij ¼ −tSOji ¼ tSO. For
the case with uniform pairing orders, the parameters Δs and
Δp can be taken as real. On the other hand, for the present
1D system, one can verify that the phases in the (spin-orbit)
hopping coefficients can always be absorbed into electron
operators. Therefore, below, we consider that all the
parameters in Heff

wire are real numbers. Then, in terms of
the electron operators, the Majorana bound modes take the
following general forms:

γ1 ¼
X
j

½uð1Þ↑ ðxjÞc↑ðxjÞ þ uð1Þ↓ ðxjÞc↓ðxjÞ

þ uð1Þ↑ ðxjÞc†↑ðxjÞ þ uð1Þ↓ ðxjÞc†↓ðxjÞ�; (8)

γ2 ¼ i
X
j

½uð2Þ↑ ðxjÞc↑ðxjÞ þ uð2Þ↓ ðxjÞc↓ðxjÞ

− uð2Þ↑ ðxjÞc†↑ðxjÞ − uð2Þ↓ ðxjÞc†↓ðxjÞ�; (9)

and ~γj ¼ T γjT −1. The coupling energies between the
Majorana modes at the left (γ1, ~γ1) and right (γ2, ~γ2) ends
are calculated by E1 ¼ ihγ1jHeff

wirejγ2i ¼ −ih~γ1jHeff
wirej~γ2i

and E2 ¼ ihγ1jHeff
wirej~γ2i ¼ −ih~γ1jHeff

wirejγ2i.
It can be found that the coefficients E1;2 are proportional

to the overlapping integrals of the left- and right-end
Majorana wave functions, which decay exponentially with
the distance d between the Majorana modes. Since γj and ~γj
are connected by a T transformation, their wave functions
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have exactly the same spatial profile, which leads to the
same exponential form of the coefficients E1;2ðλÞ ¼
α1;2ðλÞe−d=ξ, with ξ the coherence length in the nanowire.
The prefactors αjðλÞ depend on the local couplings, i.e., the
hopping terms and pairings in Heff

wire, between electrons
belonging to the same (for j ¼ 1) or different (for j ¼ 2)
sectors of the time-reversal partners. For the realistic
conditions, we consider that the chemical potential in
the nanowire is far below the half-filling condition and
thus the Fermi momentum satisfying kFa ≪ 1, and the
coherence length (in the order of 1.0 μm) is typically much
larger than the lattice constant ξ ≫ a (a ∼ 0.5 nm). Under
these conditions, we can verify that to E1;2, the contribu-
tions of the spin-orbit-coupling and p-wave-pairing terms
in Heff

wire vanish, and we find (details can be found in the
Appendix)

E1 ≃ t
X
hi;jiσ

uð1Þσ ðxiÞuð2Þσ ðxjÞ; (10)

E2 ≃ Δs

X
hi;jiσ

uð1Þσ ðxiÞuð2Þσ ðxjÞ: (11)

Therefore, while the magnitudes of E1;2 can vary with d and
the bulk gap, their ratio E1=E2 is nearly a constant, and we
always have ∂λθ ≈ 0, which validates the adiabatic con-
dition. The above results are consistent with the fact that
when Δs ¼ 0, the original Hamiltonian (7) can be block
diagonalized, and then E2 ≡ 0. The adiabatic condition is
clearly confirmed with the numerical results in Fig. 4. The
fermion-parity conservation for each sector of the con-
densate shows that an isolated DIII-class 1D Majorana
wire should stay in one of the four fermion-parity eigen-
states germinated by nonlocal complex fermion operators
fj and ~fj, given that time-reversal symmetry is not
broken. In particular, one can always prepare a nanowire
initially in the ground state j0~0i or j1~1i by controlling the
initial couplings E1;2ðλÞ and then manipulate the states
adiabatically.
It is noteworthy that for a realistic system at finite

temperature, the quasiparticle poisoning may exist, which
can change fermion parity and lead to the decoherence of
Majorana qubit states. At low temperature, the dominant
effect in the quasiparticle poisoning comes from the single-
electron tunneling between the nanowire and the substrate
superconductor [42]. The decoherence time in the chiral
Majorana nanowires ranges from 10 ns to 0.1 ms, depend-
ing on the parameter details [42]. We note that in realizing
chiral topological superconductors, an external magnetic
field is required to drive the system into the topological
phase [20–22], and such a field suppresses the proximity-
induced order parameter in the nanowires. Moreover, the
topological gap in the nanowire depends on the ratio of the
spin-orbit-coupling strength over the Zeeman energy and is
further reduced by the magnetic field. As a result, in the

experiments on chiral Majorana nanowires, the topological
gap is typically much smaller than the s-wave-pairing gap
in the proximate superconductor. For the DIII-class nano-
wires, without suppression of the external magnetic field,
the proximity-induced gap in the similar parameter regime
is expected to be larger compared with that in chiral
nanowires, which suggests a longer decoherence time in
the DIII-class Majorana nanowires [30–33].
To ensure that the decoherence effect induced by

quasiparticle poisoning does not lead to serious problems,
one requires that the adiabatic manipulation time for
Majorana modes should be much less than the decoherence
time. For the DIII-class Majorana nanowires, the adiabatic
time depends on the two characteristic time scales. One is
determined by the bulk gap τad1 ¼ h=Eg, and another τad2
corresponds to the fermion-parity conservation for each
time-reversal sector. The time scale τad1 with an induced
superconducting gap 0.1 meV in the DIII-class wire is
about 0.1 ns, which is much less than the decoherence time.
Furthermore, if using the parameter regime in Fig. 4, one
can estimate that τad2 < 1.0 ns. On the other hand, for the
proposals considered in Refs. [30,31,33], the effective
Hamiltonian has no s-wave-pairing order, and the time
scale τad2 then renders the magnitude of τad1 . These estimates

FIG. 4. Adiabatic condition and fermion-parity conservation
for each sector of the superconductor. (a),(b) The couplings E1;2
between Majorana modes are manipulated (a) by tuning the
chemical that changes the bulk gap (λ ¼ Ebulk) in the nanowire
and (b) by varying the length (λ ¼ d) of a trivial (gray) region that
separates the two pairs of Majoranas. (c),(d) The energy splitting
E between j0~0i and j1~1i (red curves) and the ratio ~R (blue
curves), (c) as functions of Ebulk and (d) versus the trivial region
distance d. The parameters in the nanowire are taken such that the
proximity-induced p-wave pairing Δp ¼ 1.0 meV, the s-wave
pairing Δs ¼ 0.5 meV, and the spin-orbit-coupling energy
ESO ¼ 0.1 meV. In the numerical simulation, we assume that
the coupling energy E is tuned from 0 to 1.0 meV in the time
1.0 μs. We also numerically confirm the adiabatic condition
~R ≪ 1 with other different parameter regimes.
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imply that the adiabatic manipulation of Majorana
modes may be reached in DIII-class 1D topological
superconductors.
On the other hand, when a weak time-reversal-breaking

term is present, e.g., in the presence of Zeeman couplings
induced by a stray field, the decoherence effect may also
result due to the couplings between qubit states with the
same total fermion parity. Note that Majorana doublets in a
DIII-class Majorana wire are of Ising type in the spin
degree of freedom; thus, the time-reversal-breaking cou-
plings can be induced by a stray field only along specific
directions, depending on the concrete setup used in the
experimental realization [35,37]. For the semiconductor
nanowires with large Landé factors, e.g., the InAs wire that
has a Landé factor g ≈ 20 [22], one can verify that the
resulting decoherence time is over 1.6 ns with a fluctuating
stray field of strength 0.01 T. This result implies that the
decoherence effect is negligible when the field strength is
several times less than 0.01 T. In general, using semi-
conductor nanowires with small g factors should be
preferred in realizing the DIII-class topological super-
conductors, in which case the braiding operations can be
stable against relatively stronger stray fields.

B. Braiding statistics

Note that braiding Majorana end modes is not well
defined for a single 1D nanowire and, as first recognized by
Alicea et al., the minimum setup for braiding requires a
trijunction, e.g., a T junction composed of two nanowire
segments [15]. The braiding can be performed by trans-
porting the Majorana zero modes following the steps as
illustrated in Figs. 5(a)–5(d).
The fermion-parity conservation for each sector shown

in the above subsection implies that the exchange of
Majorana end modes in a DIII-class topological super-
conductor generically reduces to two independent proc-
esses of braiding Majoranas of two different sectors,
respectively. The reason is because, first of all, braiding
adiabatically the Majorana pairs, e.g., γ1, ~γ1 and γ2, ~γ2 in
Fig. 5, does not affect the bulk states, which are gapped.
Furthermore, assuming that other Majorana modes are

located far away from γ1;2 and ~γ1;2, the braiding evolves
only the Majoranas that are exchanged. Finally, due to the
fermion-parity conservation for the condensate, in the
braiding, the qubit modes corresponding to f1 and ~f1
are decoupled and their evolution can be derived inde-
pendently. By a detailed derivative, we show that after
braiding, the topological qubit states evolve according to
(see the Supplemental Material [43])

j1~1ifinal ¼ j1~1iinitial;
j1~0ifinal ¼ ij1~0iinitial;
j0~1ifinal ¼ −ij0~1iinitial;
j0~0ifinal ¼ j0~0iinitial: (12)

We therefore obtain the braiding matrix by
U12ðT; ~TÞ ¼ exp½ðπ=4Þγ1γ2� exp½ðπ=4Þ~γ1 ~γ2�, which is
time-reversal invariant. This braiding operator can also
be obtained in a different generic way. Because of the
time-reversal symmetry, we have U12ðT; ~TÞj1~0i ¼ eiϕj1~0i
and U12ðT; ~TÞj0~1i ¼ e−iϕj0~1i, while j1~1i and j0~0i are
unchanged. For the present DIII-class superconductor, one
can show thatU4

12 ¼ 1, which is followed by ϕ ¼ 0, π=2, or
π. On the other hand, in the special situation that the DIII-
class topological superconductor is composed of two
decoupled copies of 1D chiral p-wave superconductors,
it can be derived straightforwardly that ϕ ¼ π=2 [43].
Furthermore, the Hamiltonian of a generic DIII-class
Majorana wire can be deformed continuously from the
special one of two decoupled copies, while the phase factor
ϕ only takes discrete values and cannot vary continuously.
Therefore, the result ϕ ¼ π=2 is valid for the generic
case, completing the proof. Note that the oppositely
handed braiding process of U12 reads U†

12ðT; ~TÞ ¼
exp½−ðπ=4Þγ1γ2Þ expð−ðπ=4Þ~γ1 ~γ2�, which describes a
process in which one first transports γ2 and ~γ2 to the
end of the vertical wire, then transports the two modes γ1
and ~γ1 to the right-hand end, and finally, transports the two
modes γ2 and ~γ2 to the left-hand end of the horizontal wire.
The braiding matrix U12 reflects that the two Majorana
pairs γ1, ~γ1 and γ2, ~γ2 are braided independently, which
leads to the symmetry-protected non-Abelian statistics as
presented below.
We consider two DIII-class wire segments with eight

Majorana modes γ1;…;4 and ~γ1;…;4 [Fig. 6(a)] that define
four complex fermion modes by f1 ¼ 1

2
ðγ1 þ iγ2Þ,

f2 ¼ 1
2
ðγ3 þ iγ4Þ, and ~f1;2 ¼ T −1f1;2T . The Hilbert space

of the four complex fermions is spanned by 16 qubit states
jn1 ~n1iLjn2 ~n2iR (n1;2, ~n1;2 ¼ 0, 1), where L (R) represents
the left (right) nanowire segment. If the initial state of the
system is j0~0iLj0~0iR, for instance, by braiding the two pairs
of Majoranas γ2, ~γ2 and γ3, ~γ3, we get straightforwardly

FIG. 5. (a)–(d) Braiding Majorana end modes through gating a
T junction following the study by Alicea et al. [15]. The dark
(light) gray area of the nanowires depicts the topological (trivial)
region, which can be controlled by tuning the chemical potential
in the nanowire. The arrows depict the direction that the Majorana
fermions are transported to in the braiding process.

XIONG-JUN LIU, CHRIS L. M. WONG, AND K. T. LAW PHYS. REV. X 4, 021018 (2014)

021018-6



U23ðT; ~TÞj0~0iLj0~0iR¼
1

2
ðj0~0iLj0~0iRþj1~1iLj1~1iR

þ ij1~0iLj1~0iR− ij0~1iLj0~1iRÞ: (13)

Here, the operator U23ðT; ~TÞ ¼ expðπ
4
γ2γ3Þ expðπ4 ~γ2 ~γ3Þ

takes the same form as U12, while γ2, ~γ2 and γ3, ~γ3 are
separated by a trivial region. Actually, the braiding operator
is independent of the existence of γ1;4 and ~γ1;4. We can
therefore fuse them by connecting the left-hand end of
the L wire and the right-hand end of the R wire, and
then U23ðT; ~TÞ is simply equivalent to exchanging two
Majorana pairs for a single wire segment [15]. It is
interesting that the above state is generically a four-
particle-entangled state, which shows the natural advantage
in generating a multiparticle-entangled state using DIII-
class topological superconductors. Furthermore, a full
braiding, i.e., braiding twice γ2, ~γ2 and γ3, ~γ3, yields the
final state j1~1iLj1~1iR, which distinguishes from the initial
state in that each copy of the p-wave superconductor

changes fermion parity. After braiding four times the
two pairs of Majoranas, the ground state returns to the
original state. On the other hand, it is also straightforward
to verify that U12U23 ≠ U23U12, implying the noncommut-
ability of the braiding processes. These results demonstrate
the non-Abelian statistics obeyed by Majorana doublets.
From the above discussion, we find that in the braiding,

the Majorana modes γj are unaffected by their time-reversal
partners ~γj, which is an essential difference from the
situation in exchanging two pairs of Majoranas in a chiral
superconductor and makes the braiding operator in the TRI
topological superconductor nontrivial. This property can be
pictorialized by assigning branch cuts for the Majorana
modes braided through the junction [15], as illustrated in
Figs. 6(b) and 6(c). Majorana modes of one time-reversed
sector do not experience the branch cuts of Majoranas
belonging to another sector. When exchanging Majorana
modes γ2, γ3 and ~γ2, ~γ3 in the DIII-class superconductor, γ2
(~γ2) crosses only the branch cut of γ3 (~γ3) and therefore
acquires a minus sign after braiding. In contrast, if braiding
two Majorana pairs in a chiral superconductor, for the
process in Fig. 6(c), γ2 (γ20) crosses the branch cuts of both
γ3 and γ30, and then no sign change occurs for the Majorana
operators after braiding [3]. Therefore, a full braiding of
two Majorana pairs always returns to the original state.
It is worthwhile to note that realizing a DIII-class

superconductor applies no external magnetic field, which
might be helpful to construct a realistic Majorana network
to implement braiding operations. In comparison, for the
chiral topological superconductor observed in a spin-orbit-
coupled semiconductor nanowire using the s-wave
superconducting proximity effect [20–22], the external
magnetic field should be applied perpendicular to the
spin-quantization axis by spin-orbit interaction, driving
optimally the nanowire into the topological phase
[20,22,44]. It is shown that for a network formed by
multiple nanowire segments, such an optimal condition
cannot be reached for all segments without inducing
detrimental orbital effects, which creates further experi-
mental challenges in braiding Majoranas [44]. It is clear
that such an intrinsic difficulty is absent in the present DIII-
class TRI topological superconductor, and one might have
more flexibility in constructing 2D and even 3D Majorana
networks for topological quantum computation.

IV. JOSEPHSON EFFECT IN DIII-CLASS
TOPOLOGICAL SUPERCONDUCTOR

It is important to study how to detect the topological
qubit states in a DIII-class Majorana quantum wire. The
ground states of a single DIII-class Majorana quantum wire
include two even- (j0~0i and j1~1i) and two odd- (j0~1i and
j1~0i) parity eigenstates. In a chiral topological super-
conductor, the ground states of the same fermion parity
are not distinguishable. On other hand, in the generic case,
the two different time-reversal sectors do not correspond to

FIG. 6. Symmetry-protected non-Abelian statistics in a DIII-
class 1D topological superconductor. (a) Majorana end modes γ2,
~γ2 and γ3, ~γ3 are braided through similar processes to those shown
in Fig. 5. (b) Braiding Majorana modes in a DIII-class super-
conductor are equivalent to two independent processes of
exchanging γ2, γ3 and ~γ2, ~γ3, respectively. Majorana modes
of one time-reversed sector do not experience the branch cuts of
Majoranas belonging to another sector. In the depicted process, γ2
(~γ2) crosses only the branch cut of γ3 (~γ3) and therefore acquires a
minus sign after braiding. (c) In contrast, if braiding two
Majorana pairs in a chiral superconductor, for the depicted
process, γ2 (γ20) crosses the branch cuts of both γ3 and γ3

0,
and then no sign change occurs for the Majorana operators after
braiding [3]. Therefore, by braiding twice two Majorana pairs the
system always returns to the original state.
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different measurable good quantum numbers. Therefore,
the two qubit states with the same total fermion parity,
e.g., j0~1i and j1~0i, cannot be distinguished via direct
quantum-number measurements. However, according to
the fermion-parity conservation shown in Sec. III A for
each time-reversed sector of the condensate, in a 1D TRI
topological superconductor, the two even- or odd-parity
states are decoupled due to time-reversal symmetry, imply-
ing that such two states should be distinguishable. We show
in this section that all four topological qubit states can be
measured by the Josephson effect in DIII-class topological
superconductors.
We consider a Josephson junction illustrated in Fig. 7(a)

formed by DIII-class superconductor. As derived in the
Appendix, the effective coupling Hamiltonian of the
Josephson junction is given by

HeffðϕÞ ¼ iΓ0 cos
ϕ

2
ðγLγR − ~γL ~γRÞ

þ iΓ1 sinϕðγL ~γL − γR ~γRÞ; (14)

where ϕ is the phase difference across the junction, and L
(R) represents the left-hand (right-hand) lead of the
junction. The Γ0 term in Heff represents the first-order
direct coupling between Majorana fermions at different
junction leads. It can be seen that the direct coupling term is
of 4π periodicity, which can be understood in the following
way. When the phase difference across the junction

advances 2π, the Cooper-pair wave function changes 2π
across the junction, while for single-electron operators, the
phase varies only π. This property implies that the periodic
coupling coefficients also change the π phase and thus
reverse sign, leading to the 4π periodicity of the direct
coupling term. The Γ1 term results from the second-order
perturbation of the tunneling process, and this term
vanishes if the s-wave pairing Δs ¼ 0. The reason is
because the couplings such as iγj ~γj (j ¼ L, R) break
time-reversal symmetry, while the direct coupling between
γj and ~γj does not experience the phase difference across
the junction and should preserve time-reversal symmetry.
Actually, a uniform pairing phase in one end of the junction
can be removed by a constant gauge transformation.
Therefore, the coupling between Majorana fermions at
the same end can only be induced by electron tunneling and
the minimum requirement is to consider the second-order
tunneling process. In the second-order perturbation, γL and
~γL (γR and ~γR) couple to the electron modes cR and ~cR in the
right-hand end (cL and ~cL in the left-hand end), respec-
tively. When a nonzero s-wave pairing is present in the
nanowires, the electrons cLðRÞ and ~cLðRÞ form a Cooper pair
and condense. This process leads to the effective coupling
between Majorana zero modes localized at the same end,
with the coupling strength proportional to the s-wave order
parameter. Finally, note that the system restores time-
reversal symmetry at ϕ ¼ mπ, which explains why the
Γ1 term is proportional to sinϕ and has 2π periodicity. All
these properties have been confirmed with numerical
results.
Redefining the Majorana bases by γ01 ¼ γL þ ~γR and

γ02 ¼ γR þ ~γL, we recast the above Hamiltonian into Heff ¼
iðΓ0 cosϕ=2þΓ1 sinϕÞγ01γ02− iðΓ0 cosϕ=2−Γ1 sinϕÞ~γ01 ~γ02.
The Andreev bound-state spectra are obtained straight
forwardly by

Enf0 ; ~nf0 ðϕÞ ¼
�
Γ0 cos

ϕ

2
þ Γ1 sinϕ

�
ð2nf0 − 1Þ

þ
�
Γ0 cos

ϕ

2
− Γ1 sinϕ

�
ð2n ~f0 − 1Þ; (15)

which is shown numerically in Figs. 7(b) and 7(c). Here,
nf0; ~f0 are complex fermion-number operators for f0 and ~f0

modes, respectively. The Josephson currents are obtained
by the slope of the Andreev bound-state spectra. In
particular, we have that the Josephson currents Jevenϕ ¼
� e

ℏΓ0 sin
ϕ
2
for the even-parity states j0~0i and j1~1i and

Joddϕ ¼ � e
ℏΓ1 cosϕ for the odd-parity states j0~1i and j1~0i,

respectively [Fig. 7(d)].
It is remarkable that the currents for odd-parity states

are of 2π periodicity, half of those for even-parity states
[Fig. 7(d)]. This result reflects that Jevenϕ is contributed from
the direct Majorana coupling induced by first-order

FIG. 7. Josephson measurement of the topological qubit states
in a DIII-class 1D topological superconductor. (a) The sketch of a
Josephson junction with phase difference ϕ. (b) The single-
particle Andreev bound-state spectra versus the phase difference
ϕ. (c) The energy spectra of the four qubit states jn1 ~n1i
(n1, ~n1 ¼ 0, 1) according to the results in (b). (d) The Josephson
currents (in units of 2eΔp=ℏ) for different topological qubit
states. Parameters used in the numerical calculation are taken
such that Δp ¼ 1.0 meV, Δs ¼ 0.25 meV, ESO ¼ 0.1 meV, and
the width of the junction d ¼ 0.5ξ, and in the middle trivial (gray)
region of the junction, the chemical potential is set to be at the
band bottom.
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single-electron tunneling [4], while Joddϕ is a consequence
of the second-order tunneling process, which corresponds
to the Cooper-pair tunneling. This nontrivial property is
essentially different from the the Josephson physics with
multiple Majorana end modes studied by Sticlet et al. in the
BDI-class Majorana chains [45], where a multicopy version
of the fractional Josephson effect with 4π periodicity is
investigated. The reason is because in a BDI-class topo-
logical superconductor, the time-reversal-symmetry oper-
ator T 2 ¼ 1 and the different copies of the superconductor
are not related by time-reversal symmetry (nor by any other
symmetry), while in the DIII-class topological supercon-
ductor, the two copies are related by T symmetry. The
present result is also consistent with the fact that the time-
reversal symmetry is restored with j0~1i and j1~0i, forming a
Kramers’s doublet at ϕ ¼ mπ, which necessitates the 2π
periodicity in their spectra. Furthermore, the two qubit
states with the same total parity (e.g., j0~0i and 1~1i) are
distinguished by the direction of the currents. The quali-
tative difference in the Josephson currents implies that the
four topological qubit states can be measured in the
experiment.

V. CONCLUSIONS

In summary, we have shown that Majorana doublets
obtained in the DIII-class 1D topological superconductors
obey non-Abelian statistics, due to the protection of time-
reversal symmetry. The key results are that the fermion
parity is conserved for each copy of the Z2 TRI topological
superconductor, and the exchange of Majorana end modes
can generically reduce to two independent processes of
braiding Majoranas of two different copies, respectively.
These results lead to the symmetry-protected non-Abelian
statistics for the Majorana doublets, and the braiding
statistics are protected by time-reversal symmetry.
Furthermore, we unveiled an intriguing phenomenon in
the Josephson effect, that the periodicity of Josephson
currents depends on the fermion parity of the 1D TRI
topological superconductors. We found that this effect can
provide direct measurements of the topological qubit states
in the DIII-class Majorana quantum wires. Our results will
motivate further studies in both theory and experiments on
the braiding statistics and nontrivial Josephson effects
in the wide classes of symmetry-protected topological
superconductors.
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APPENDIX

1. Fermi-parity conservation

We consider a single Majorana quantum wire, which
hosts four Majorana end modes denoted by γ1;2 and ~γ1;2 and
is transformed via T −1γjT ¼ ~γj and T −1 ~γjT ¼ −γj. With
the four Majorana states, we can define two nonlocal
complex fermions by f1¼1

2
ðγ1þiγ2Þ and ~f1 ¼ 1

2
ð~γ1 − i~γ2Þ,

which germinate four topological qubit states jn1 ~n1i with
n1, ~n1 ¼ 0, 1. Note that at zero temperature, the super-
conductor stays in the ground-state manifold. The proof of
fermion-parity conservation for each sector of the con-
densate is equivalent to showing that the four topological
qubit states jn1 ~n1i are generically decoupled from each
other in the presence of TRI perturbations.
Note that the coupling between the Majorana modes

localized at the same end of the nanowire γj and ~γj breaks
time-reversal symmetry. The coupling Hamiltonian in
terms of Majorana end modes should take the following
generic TRI form:

VðλÞ ¼ iE1ðλÞðγ1γ2 − ~γ1 ~γ2Þ þ iE2ðλÞðγ1 ~γ2 − γ2 ~γ1Þ; (A1)

where we assume that the couplings coefficients E1;2ðλÞ
depend on an experimentally manipulatable parameter λ
(e.g., the bulk gap in the nanowire or the distance between
the Majorana modes). The above Hamiltonian can be
rewritten in the block-diagonal form with new Majorana
bases such that

VðλÞ ¼ iEðλÞ½γð1Þγð2Þ − ~γð1Þ ~γð2Þ�; (A2)

where γð1Þ ¼ γ1, ~γð1Þ ¼ ~γ1, γð2Þ ¼ sin θγ2 þ cos θ~γ2,
~γð2Þ ¼ sin θ~γ2 − cos θγ2, and E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
1 þ E2

2

p
. The mixing

angle θ is defined via tan θ ¼ E1=E2. The complex
fermions fð1Þ and ~fð1Þ in the eigenbasis are then defined by

fð1Þ ¼ 1

2
½γð1Þ þ iγð2Þ�; ~fð1Þ ¼ 1

2
½~γð1Þ − i~γð2Þ�: (A3)

It is easy to know that the even-parity eigenstates j0~0i and
j1~1i germinated by fð1Þ and ~fð1Þ acquire an energy splitting
2EðλÞ, while the odd-parity states j0~1i and j1~0i are still
degenerate due to time-reversal symmetry. To prove the
fermion-parity conservation for each sector, we need to
confirm that all four topological qubit states jn1 ~n1i can
evolve adiabatically when the coupling Hamiltonian VðλÞ
varies with the parameter λ. Since j1~0i and j0~1i form a
Kramers’s doublet, the transition between them is forbid-
den by the time-reversal symmetry. Therefore, we only
need to consider the adiabatic condition for the two
even-parity states. The fermion-parity conservation for
each sector is guaranteed when the following adiabatic
condition is satisfied in the manipulation:
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����h1~1j ∂λ∂t
∂
∂λ j0~0i

���� ≪ 2jEðλÞj: (A4)

It should be noted that the adiabatic condition needs to be
justified only in the presence of finite couplings. When
EðλÞ → 0, the couplings between Majorana end modes
vanish and then all the topological qubit states are auto-
matically decoupled from each other. One can verify that

∂fð1Þ
∂λ ¼ i

2

∂θ
∂λðcosθγ2−sinθ~γ2Þ¼

1

2

∂θ
∂λð ~f

ð1Þ†− ~fð1ÞÞ; (A5)

∂ ~fð1Þ
∂λ ¼ −

i
2

∂θ
∂λ ðcos θ~γ2 þ sin θγ2Þ ¼ −

1

2

∂θ
∂λ ðf

ð1Þ† − fð1ÞÞ:
(A6)

With some calculation, one can show that in the above
formulas, the derivatives of the bases γj, ~γj with respect to λ
will not contribute to the left-hand side of Eq. (A4) and are
therefore neglected. The condition (A4) then reads

���� ∂λ∂t
∂θ
∂λ

���� ≪ 4jEðλÞj: (A7)

We show below that the above condition is generically
satisfied in the realistic materials.
With the proximity-induced p-wave and s-wave

superconducting pairings, the effective tight-binding
Hamiltonian in the nanowire can be generically written as

Heff
wire ¼

X
hi;ji;σ

tijc
†
iσcjσ þ

X
hi;ji

ðtSOij c†i↑cj↓ þ H.c.Þ

þ
X
hi;ji

ðΔp
ijci↑cj↑ þ Δp�

ij ci↓cj↓ þ H.c.Þ

þ
X
j

ðΔscj↑cj↓ þ H.c.Þ

− μ
X
j;σ

njσ þ
X
j;σ

Vdis
j njσ; (A8)

where the hopping coefficients and the chemical potential
are generically renormalized by the proximity effect.
Without loss of generality, in the above Hamiltonian, we
have taken into account the spin-orbit interaction described
by the tSOij term and the random on-site disorder potential
Vdis
j with hVdis

j i ¼ 0. For the case with uniform pairing
orders, the parameters Δs and Δp can be taken as real. On
the other hand, for the present 1D system, one can verify
that the phases in the (spin-orbit) hopping coefficients can
always be absorbed into electron operators. Therefore, in
the following study, we consider that all the parameters in
Heff

wire are real numbers.
In the topological regime, at each end of the wire, we

obtain two Majorana zero modes that are transformed to

each other by a time-reversal operator. In terms of the
electron operators, these bound modes take the form

γ1 ¼
X
j

½uð1Þ↑ ðxjÞc↑ðxjÞ þ uð1Þ↓ ðxjÞc↓ðxjÞ

þ uð1Þ�↑ ðxjÞc†↑ðxjÞ þ uð1Þ�↓ ðxjÞc†↓ðxjÞ�; (A9)

~γ1 ¼
X
j

½uð1Þ�↑ ðxjÞc↓ðxjÞ − uð1Þ�↓ ðxjÞc↑ðxjÞ

þ uð1Þ↑ ðxjÞc†↓ðxjÞ − uð1Þ↓ ðxjÞc†↑ðxjÞ�; (A10)

γ2 ¼ i
X
j

½uð2Þ↑ ðxjÞc↑ðxjÞ þ uð2Þ↓ ðxjÞc↓ðxjÞ

− uð2Þ�↑ ðxjÞc†↑ðxjÞ − uð2Þ�↓ ðxjÞc†↓ðxjÞ�; (A11)

~γ2 ¼ i
X
j

½uð2Þ�↑ ðxjÞc↓ðxjÞ − uð2Þ�↓ ðxjÞc↑ðxjÞ

− uð2Þ↑ ðxjÞc†↓ðxjÞ þ uð2Þ↓ ðxjÞc†↑ðxjÞ�: (A12)

Note that the coefficients in Heff
wire are real, and we have

that uð1;2Þ↑;↓ ¼ uð1;2Þ�↑;↓ . The coupling energies between the
Majorana modes at the left (γ1, ~γ1) and right (γ2, ~γ2) ends
are calculated by E1 ¼ ihγ1jHeff

wirejγ2i ¼ −ih~γ1jHeff
wirej~γ2i

and E2 ¼ ihγ1jHeff
wirej~γ2i ¼ −ih~γ1jHeff

wirejγ2i. Using the
relations

cj↑ ≃ uð1Þ↑ ðxjÞγ1 − uð1Þ↓ ðxjÞ~γ1 − iuð2Þ↑ ðxjÞγ2
þ iuð2Þ↓ ðxjÞ~γ2; (A13)

cj↓ ≃ uð1Þ↓ ðxjÞγ1 þ uð1Þ↑ ðxjÞ~γ1 − iuð2Þ↓ ðxjÞγ2 − iuð2Þ↑ ðxjÞ~γ2;
(A14)

we obtain that

E1 ¼
X
hi;jiσ

tiju
ð1Þ
σ ðxiÞuð2Þσ ðxjÞ þ

X
hi;jiσ

Δp
iju

ð1Þ
σ ðxiÞuð2Þσ ðxjÞ

þ
X
hi;ji

tSOij ½uð1Þ↑ ðxiÞuð2Þ↓ ðxjÞ þ uð1Þ↓ ðxjÞuð2Þ↑ ðxiÞ�

þ
X
j

Δs½uð1Þ↑ ðxjÞuð2Þ↓ ðxjÞ − uð1Þ↓ ðxjÞuð2Þ↑ ðxjÞ�

þ
X
j;σ

Vdis
j uð1Þσ ðxjÞuð2Þσ ðxjÞ; (A15)
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E2 ¼
X
hi;ji

tij½uð1Þ↑ ðxiÞuð2Þ↓ ðxjÞ − uð1Þ↓ ðxiÞuð2Þ↑ ðxjÞ�

þ
X
hi;ji

Δp
ij½uð1Þ↑ ðxiÞuð2Þ↓ ðxjÞ − uð1Þ↓ ðxiÞuð2Þ↑ ðxjÞ�

þ
X
hi;ji

tSOij ½uð1Þ↑ ðxiÞuð2Þ↑ ðxjÞ − uð1Þ↓ ðxjÞuð2Þ↓ ðxiÞ�

þ
X
j

Δs½uð1Þ↑ ðxjÞuð2Þ↑ ðxjÞ þ uð1Þ↓ ðxjÞuð2Þ↓ ðxjÞ�

þ
X
j;σ

Vdis
j ½uð1Þ↑ ðxjÞuð2Þ↓ ðxjÞ − uð1Þ↓ ðxjÞuð2Þ↑ ðxjÞ�:

(A16)

Note that tSOij ¼ −tSOji due to time-reversal symmetry,
and for a uniform nanowire, we have thatP

hi;jiu
ð1Þ
↑ ðxiÞuð2Þ↓ ðxjÞ ¼ P

hi;jiu
ð2Þ
↑ ðxiÞuð1Þ↓ ðxjÞ andP

ju
ð1Þ
↑ ðxjÞuð2Þ↓ ðxjÞ ¼

P
ju

ð2Þ
↑ ðxjÞuð1Þ↓ ðxjÞ. With these

properties, we find that in E1, the terms corresponding
to tSOij and Δs vanish, while in E2, the terms for tij, Δp,
and Vdis

j vanish. We then have

E1 ¼
X
hi;jiσ

tiju
ð1Þ
σ ðxiÞuð2Þσ ðxjÞ þ

X
hi;jiσ

Δp
iju

ð1Þ
σ ðxiÞuð2Þσ ðxjÞ

þ
X
j;σ

Vdis
j uð1Þσ ðxjÞuð2Þσ ðxjÞ; (A17)

E2 ¼
X
hi;jiσ

tSOij uð1Þσ ðxiÞuð2Þσ ðxjÞ þ
X
j;σ

Δsu
ð1Þ
σ ðxjÞuð2Þσ ðxjÞ:

(A18)

The wave functions of Majorana bound modes decay
exponentially as a function of the distance from the end
of the nanowire, multiplying by an oscillatory function
with the oscillating period equal to the Fermi wavelength

in the nanowire. This property implies that uð1Þσ ∝
sinðkFxÞe−x=ξ and uð2Þσ ∝ sin e−ðL−xÞ=ξ, where ξ is the
effective coherence length of the wire. In the realistic
material, we consider that the chemical potential in the
nanowire is far below the half-filling condition, and thus

kFa ≪ 1. In this way, we have uð1Þσ ðxjÞuð2Þσ ðxjÞ≈
uð1Þσ ðxjÞuð2Þσ ðxj�1Þe∓a=ξ. Furthermore, the coherence length
(in the order of 1.0 μm) is typically much larger than the
lattice constant ξ ≫ a (a ∼ 0.5 nm), and we can further

approximate that uð1Þσ ðxjÞuð2Þσ ðxjÞ ≈ uð1Þσ ðxjÞuð2Þσ ðxj�1Þ.
Bearing this result in mind, we get

E1 ¼
X
hi;jiσ

tiju
ð1Þ
σ ðxiÞuð2Þσ ðxjÞ þ

X
hi;jiσ

Δp
iju

ð1Þ
σ ðxiÞuð2Þσ ðxjÞ

þ
X
j;σ

Vdis
j uð1Þσ ðxjÞuð2Þσ ðxjÞ; (A19)

E2 ¼
X
hi;jiσ

tSOij u
ð1Þ
σ ðxiÞuð2Þσ ðxjÞ þ

X
hi;jiσ

Δsu
ð1Þ
σ ðxiÞuð2Þσ ðxjÞ:

(A20)

The spin-orbit hopping coefficient tSOij ¼ −tSOji and the
p-wave pairing Δp

ij ¼ −Δp
ji are staggered parameters. In

the limit that kFa ≪ 1 and ξ ≫ a, the summation for such
two terms in E1 and E2 also turns out to be 0. On the other
hand, the spin-conserved hopping is a constant, and we
denote tij ¼ tji ¼ t. Finally, if the the random potential
Vdis
j with hVdis

j i ¼ 0 is distributed homogeneously in the
nanowire, we expect that the last term in E1 gives

V0

P
j;σu

ð1Þ
σ ðxjÞuð2Þσ ðxjÞ, with the constant factor V0

depending on the specific disorder profile and much less
than the amplitude of the disorder potential. The couplings
E1;2 become

E1 ≃ ðtþ V0Þ
X
hi;jiσ

uð1Þσ ðxiÞuð2Þσ ðxjÞ; (A21)

E2 ≃ Δs

X
hi;jiσ

uð1Þσ ðxiÞuð2Þσ ðxjÞ: (A22)

From the above result, we find that E2=E1 ≈ Δs=ðtþ V0Þ,
which is consistent with the fact that when Δs ¼ 0, the
original Hamiltonian (A8) can be block diagonalized, and
then E2 ≡ 0. These results show that in the realistic
nanowire materials, while the magnitudes of E1;2ðλÞ
depend on λ, which determines the overlapping between
the wave functions of Majorana bound modes at the left and
right ends, their ratio is nearly a constant. Therefore, we
always have

∂λθ ≈ 0; (A23)

which validates the adiabatic condition. The results in
Eqs. (A21) and (A22) can be interpreted by an intuitive
physical picture. Being proportional to the overlapping
between the wave functions of Majorana bound modes at
different ends, the coupling coefficients E1;2 are exponen-
tial decaying functions of the nanowire length. Since the
Majorana modes γj and ~γj are connected by a T trans-
formation, their wave functions have exactly the same
spatial profile, which leads to the same exponential form
for the coefficients E1;2ðλÞ ¼ α1;2ðλÞe−d=ξ, with d the
distance between the left and right Majorana end modes.
The prefactors αjðλÞ depend on the local couplings, i.e., the
hopping coefficients and pairings between electrons
belonging to the same (for j ¼ 1) or different (for
j ¼ 2) sectors of the time-reversal partners. For the case
with constant and homogeneous local couplings, we have
that their ratio α1=α2 is proportional to the ratio of
couplings between electrons of the same and different
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sectors and is nearly a constant, justifying the adiabatic
condition. The above derivative is clearly confirmed with
numerical results in the realistic systems with the presence
of random on-site disorder scattering, as shown in Fig. 8.
It is worthwhile to note that for a fixed parameter λ, the

physics of the fermion-parity conservation for each sector
can be easily understood in another way. For a DIII-class
topological superconductor, the helical p-wave pairings
occur between two electrons belonging to the same sector
of the time-reversal partners. While the change by 1 in the
fermion number of each sector conserves the total fermion
parity of the system, it changes fermion parity for each
sector and thus breaks a p-wave Cooper pair in each sector.
This process costs finite energy and is completely sup-
pressed by the p-wave-pairing gap at zero temperature, if
Δp dominates over Δs and the time-reversal symmetry is
not broken. The previous study in this section further
proves this conservation law when the couplings between
Majorana end modes are allowed and adjusted adiabati-
cally. To simplify the notations in the further discussion, we
relabel the block-diagonal Majorana modes γð1Þj , ~γð1Þj as γj,
~γj. Accordingly, the diagonal complex fermion modes are
redefined as fj, ~fj.

2. Josephson effect in the DIII-class 1D topological
superconductor

Now, we study how to measure the topological qubit
states with the Josephson effect. It has been predicted that
in the chiral 1D topological superconductor, the Josephson
current has 4π periodicity [4], and the topological qubit
states for a single wire j0i and j1i can be read out from the
direction of Josephson currents in the junction [8,15]. In
this section, we predict a novel phenomenon in the
Josephson effect of the DIII-class 1D topological

superconductor, which provides a feasible scheme to read
out the topological qubit states in a TRI Majorana quan-
tum wire.

a. Effective coupling Hamiltonian

We consider a Josephson junction formed by two
Majorana nanowire ends with a phase difference ϕ ¼
ϕR − ϕL, as illustrated in Fig. 9(a), and derive the effective
coupling Hamiltonian for the Majorana zero modes local-
ized at the left ðLÞ and right ðRÞ ends. The electron
tunneling process in the junction is described by

HT ¼ ϒc†L;NcR;1 þϒ~c†L;N ~cR;1 þ H.c.; (A24)

where cL;N , ~cL;N and cR;1, ~cR;1 represent the electron
operators for the Nth site at the left end and the first site
at the right end of the junction, respectively, and ϒ is the
tunneling coefficient across the junction. The Majorana end
modes can be generically expanded in terms of electron
operators

γL ¼
X
j

ðuL;jcL;j þ u�L;jc
†
L;jÞ;

~γL ¼
X
j

ð ~uL;j ~cL;j þ ~u�L;j ~c
†
L;jÞ; (A25)

FIG. 8. Adiabatic condition and fermion-parity conservation
for each sector of time-reversal partners in the presence of
disorder scattering. The energy splitting E between j0~0i and
j1~1i (red curves) and the ratio ~R (blue curves) versus (a) the bulk
gap that varies by tuning the chemical potential and (b) the
distance between the Majorana end modes. In the numerical
simulation, the random on-site disorder potential is considered,
with the potential amplitude Vdis ∼ 1.0 meV. Other parameters in
the nanowire are taken such that Δp ¼ 1.0 meV, Δs ¼ 0.5 meV,
and ESO ¼ 0.1 meV. The coupling energy E is tuned from 0 to
1.0 meV within the time 1.0 μs.

FIG. 9. Josephson effect in a DIII-class 1D topological super-
conductor with the inclusion of random disorder scattering.
(a) The sketch of a Josephson junction with phase difference
ϕ. (b) The single-particle Andreev bound-state spectra versus the
phase difference ϕ. (c) The energy spectra of the four qubit states
jn1 ~n1i (n1, ~n1 ¼ 0, 1) according to the results in (b). (d) The
Josephson currents (in units of 2eΔp=ℏ) for different topological
qubit states. In the numerical simulation, the amplitude of the
random on-site disorder potential is set as Vdis ∼ 1.0 meV. Other
parameters are taken such that Δp ¼ 1.0 meV, Δs ¼ 0.25 meV,
ESO ¼ 0.1 meV, and the width of the junction d ¼ 0.75ξ, and in
the middle trivial (gray) region of the junction, the chemical
potential is set to be at the band bottom.
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γR ¼
X
j

ðuR;jcR;j þ u�R;jc
†
R;jÞ;

~γR ¼
X
j

ð ~uR;j ~cR;j þ ~u�R;j ~c
†
R;jÞ; (A26)

where uLðRÞ;j ¼ ~u�LðRÞ;j if ϕLðRÞ ¼ 0. Note that cj and ~cj
represent electron operators of a general time-reversal pair
at the jth site, not necessarily corresponding to spin-up and
spin-down, since the spin is not a good quantum number
when spin-orbit coupling and s-wave order are present.
From the above formulas, we can solve the electron
operators in terms of Majorana and nonzero-energy
Bogoliubov quasiparticle operators. Reexpressing the
Bogoliubov quasiparticles in terms of electron operators,
we can interpret cL;N , ~cL;N and cR;1, ~cR;1 by

cL;N ¼ u�L;NγL −
XN
j¼1

aL;jcL;j −
XN
j¼1

b�L;jc
†
L;j; (A27)

~cL;N ¼ ~u�L;NγL −
XN
j¼1

~aL;j ~cL;j −
XN
j¼1

~b�L;j ~c
†
L;j; (A28)

cR;1 ¼ u�R;1γR −
XN
j¼1

aR;jcR;j −
XN
j¼1

b�R;jc
†
R;j; (A29)

~cR;1 ¼ ~u�R;1γR −
XN
j¼1

~aR;j ~cR;j −
XN
j¼1

~b�R;j ~c
†
R;j; (A30)

with a constant normalization factor neglected. Here,
aLðRÞ;j, ~aLðRÞ;j and bLðRÞ;j, ~bLðRÞ;j are expansion coeffi-
cients, originated from the quasiparticle operators other
than the corresponding Majorana mode. Substituting these
results into the tunneling Hamiltonian HT yields that

HT ¼ ϒ

�
uL;NγL −

XN
j¼1

a�L;jc
†
L;j −

XN
j¼1

bL;jcL;j

��
u�R;1γR −

XN
j¼1

aR;jcR;j −
XN
j¼1

b�R;jc
†
R;j

�

þϒ

�
~uL;N ~γL −

XN
j¼1

~a�L;j ~c
†
L;j −

XN
j¼1

~bL;j ~cL;j

��
~u�R;1 ~γR −

XN
j¼1

~aR;j ~cR;j −
XN
j¼1

~b�R;j ~c
†
R;j

�
þ H.c.

≈ Hð0Þ þHð1Þ; (A31)

where

Hð0Þ ¼ ϒuL;Nu�R;1γLγR þϒ ~uL;N ~u�R;1 ~γL ~γR þ H.c.;

Hð1Þ ¼ −ϒuL;NγL

�XN
j¼1

aR;jcR;j þ
XN
j¼1

b�R;jc
†
R;j

�
−ϒuR;1γR

�XN
j¼1

aL;jcL;j þ
XN
j¼1

b�L;jc
†
L;j

�

−ϒ ~uL;N ~γL

�XN
j¼1

~aR;j ~cR;j þ
XN
j¼1

~b�R;j ~c
†
R;j

�
−ϒ ~uR;1 ~γR

�XN
j¼1

~aL;j ~cL;j þ
XN
j¼1

~b�L;j ~c
†
L;j

�
þ H.c.

In the second equation of the formula (A31), we have
neglected the higher-order irrelevant terms. The term Hð0Þ
represents the direct coupling between Majorana modes at
different junction ends, which gives the first term of the
effective Hamiltonian Heff in the main text. This result can
be seen by noticing that

uL;N ¼ ijuL;N jeiϕL=2; uR;1 ¼ juR;1jeiϕR=2;

~uL;N ¼ −ij ~uL;N jeiϕL=2; ~uR;1 ¼ j ~uR;1jeiϕR=2; (A32)

with which we can recast Hð0Þ into

Hð0Þ ¼ iΓ0 cos
ϕ

2
ðγLγR − ~γL ~γRÞ;

Γ0 ¼ 2ϒjuL;NuR;1j: (A33)

On the other hand, for Hð1Þ, we shall calculate up to the
second-order perturbation, which is responsible for the
second term of Heff in the main text. From Hð1Þ, we know
that Majorana modes at one end (e.g., the left end) also
couple to the electron modes at another end (the right end).
In the second-order perturbation, γL and ~γL (γR and ~γR)
couple to cR and ~cR (cL and ~cL), respectively. When a
nonzero s-wave pairing is present in the quantum wires, the
electrons cLðRÞ and ~cLðRÞ form a Cooper pair and condense.
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This process leads to an effective coupling between Majorana zero modes localized at the same end. Therefore, up to the
second-order perturbation in the tunneling process, we obtain that

Hð1Þ
eff ¼

1

2
ϒ2uL;N ~uL;NγL ~γL

�XN
j¼1

aR;j ~aR;j

Z
dτhTτcR;jðτÞ~cR;jð0Þi þ

XN
j¼1

b�R;j ~b
�
R;j

Z
dτhTτc

†
R;jðτÞ~c†R;jð0Þi

�

þ 1

2
ϒ2uR;1 ~uR;1γR ~γR

�XN
j¼1

aL;j ~aL;j

Z
dτhTτcL;jðτÞ~cL;jð0Þi þ

XN
j¼1

b�L;j ~b
�
L;j

Z
dτhc†L;jðτÞ~c†L;jð0Þi

�
þ H.c: (A34)

Here,
R
dτhTτ � � �i represents a time-ordered integral. Assuming that the superconducting pairings are uniform in the

Majorana nanowires, we obtain from the above formula that

Hð1Þ
eff ¼

1

2
ϒ2uL;N ~uL;NγL ~γL

�XN
j¼1

aR;j ~aR;j
X
k

Δ�
s;R

E2
RðΔs;R;Δp;R; kÞ

−
XN
j¼1

b�R;j ~b
�
R;j

X
k

Δs;R

E2
RðΔs;R;Δp;R; kÞ

�

þ 1

2
ϒ2uR;1 ~uR;1γR ~γR

�XN
j¼1

aL;j ~aL;j
X
k

Δ�
s;L

E2
LðΔs;L;Δp;L; kÞ

−
XN
j¼1

b�L;j ~b
�
L;j

X
k

Δs;L

E2
LðΔs;L;Δp;L; kÞ

�
þ H:c:

¼ iϒLðϕÞγL ~γL þ i ~ϒRðϕÞγR ~γR; (A35)

with ELðRÞðΔs;R;Δp;R; kÞ the bulk excitation spectra in the left (for L) and right (for R) wires of the junction, respectively.
The coupling coefficients read

ϒLðRÞðϕÞ ¼ −i
1

2
ϒ2uLðRÞ;N=1 ~uLðRÞ;N=1

�XN
j¼1

aRðLÞ;j ~aRðLÞ;j
X
k

Δ�
s;RðLÞ

E2
RðLÞðΔs;RðLÞ;Δp;RðLÞ; kÞ

−
XN
j¼1

b�RðLÞ;j ~b
�
RðLÞ;j

X
k

Δs;RðLÞ
E2
RðLÞðΔs;RðLÞ;Δp;RðLÞ; kÞ

�
− c.c: (A36)

With the relations obtained in Eqs. (A27)–(A30), we have
that aRðLÞ;j ~aRðLÞ;j ¼ jaRðLÞ;j ~aRðLÞ;jj and bRðLÞ;j ~bRðLÞ;j ¼
jbRðLÞ;j ~bRðLÞ;jjei2ϕRðLÞ . Together with the results in
Eq. (A32), we can simplify ϒLðRÞðϕÞ to be

ϒLðϕÞ ¼ −iΓ1eiϕ − c.c. ¼ Γ1 sinϕ;

ϒRðϕÞ ¼ −iΓ1e−iϕ − c.c. ¼ −Γ1 sinϕ;

and the effective coupling Hamiltonian for Majorana
fermions at the same end takes the following form:

Hð1Þ
eff ¼ iΓ1 sinϕðγL ~γL − γR ~γRÞ: (A37)

The coupling constant Γ1 is calculated by

Γ1 ¼ ϒ2juL;N ~uL;N j
�XN
j¼1

jaR;j ~aR;jj
X
k

jΔs;Rj
E2
RðΔs;R;Δp;R; kÞ

−
XN
j¼1

jb�R;j ~b�R;jj
X
k

jΔs;Rj
E2
RðΔs;R;Δp;R; kÞ

�
: (A38)

We have assumed the uniformity of the parameters in the
left and right wires of the junction such that jΔs;Lj ¼ jΔs;Rj
and jΔp;Lj ¼ jΔp;Rj, and therefore juL;N ~uL;N j ¼ juR;1 ~uR;1j
and ELðΔs;L;Δp;L; kÞ ¼ ERðΔs;R;Δp;R; kÞ. We note that
this condition is typically satisfied in the realistic systems.
It is clear that the Γ1 term vanishes when the s-wave pairing
Δs;LðRÞ is absent in the wires.
To this end, we combine Hð0Þ and Hð1Þ

eff to finally reach
the effective Hamiltonian for a Josephson junction formed
by DIII-class topological superconductors that

HeffðϕÞ ¼ iΓ0 cos
ϕ

2
ðγLγR − ~γL ~γRÞ

þ iΓ1 sinϕðγL ~γL − γR ~γRÞ: (A39)

Note that if treating ϕ as a fixed parameter, the Γ1 term in
the above formula breaks time-reversal symmetry. This
property reflects that the leading-order contribution to the
coupling between Majoranas at the same end (iγj ~γj) should
come from the second-order perturbation in the tunneling
process. Actually, the direct coupling between γj and ~γj
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does not experience the phase difference across the junction
and should preserve time-reversal symmetry. The reason is
because a uniform pairing phase in one end of the junction
can be removed by a constant gauge transformation.
Therefore, the coupling between Majorana fermions at
the same end can only be induced by electron tunneling
across the junction, and the minimum requirement is to
consider the second-order tunneling process. Furthermore,
the system restores time-reversal symmetry at ϕ ¼ mπ,
which explains why the Γ1 term is proportional to sinϕ,
and has 2π periodicity.

b. Josephson current

The Hamiltonian (A39) can be block diagonalized by a
constant transformation in the Majorana bases that
γ01 ¼ γL þ ~γR, γ02 ¼ γR þ ~γL, and ~γ01;2 ¼ T γ01;2T

−1, which
sends Heff to be Heff ¼ iðΓ0 cosϕ=2þ Γ1 sinϕÞγ01γ02−
iðΓ0 cosϕ=2 − Γ1 sinϕÞ~γ01 ~γ02. The Andreev bound-state
spectra are obtained straightforwardly by Enf0 ; ~nf0 ðϕÞ ¼
ðΓ0 cosϕ=2þ Γ1 sinϕÞð2nf0 − 1Þ þ ðΓ0 cosϕ=2− Γ1 sinϕÞ
ð2n ~f0 − 1Þ, which are doubly degenerate at ϕ ¼ mπ,
reflecting the time-reversal symmetry at these points.
Here, nf0; ~f0 are complex fermion-number operators for

the f0 and ~f0 modes, respectively. The Josephson current
then reads

Jϕ ¼
�
eΓ0

2ℏ
sin

ϕ

2
þ eΓ1

2ℏ
cosϕ

�
ð2nf0 − 1Þ

þ
�
eΓ0

2ℏ
sin

ϕ

2
−
eΓ1

2ℏ
cosϕ

�
ð2n ~f0 − 1Þ: (A40)

From Eq. (A40), we find that for the even-parity states
(j0~0i and j1~1i), the Josephson currents Jevenϕ ¼
�ðe=ℏÞΓ0 sin

ϕ
2
, which are of 4π periodicity, while

for the odd-parity states (j0~1i and j1~0i), Joddϕ ¼
�ðe=ℏÞΓ1 cosϕ exhibit 2π periodicity. The difference in
the periodicity reflects different mechanisms for Jeven; oddϕ .
The currents Jevenϕ are contributed from the Γ0 term in the
effective coupling Hamiltonian, which is due to the direct
coupling between Majorana modes at different ends of the
junction. Therefore, the currents Jevenϕ are a consequence of
the single-electron tunneling process and have 4π perio-
dicity. On the other hand, as contributed from the Γ1 term,
the Josephson currents Joddϕ result from the second-order
tunneling process, which corresponds to the Cooper-pair
tunneling, therefore being of 2π periodicity. Furthermore,
the currents Joddϕ are nonzero even for ϕ ¼ 0, which reflects
the fact that the odd-parity states violate the time-reversal
symmetry that even Heff preserves at ϕ ¼ mπ.
The 4π periodicity of the Josephson currents for even-

parity states can also be understood in the following way.

When the phase difference across the junction advances 2π,
the Cooper-pair wave function changes 2π across the
junction, while for single-electron operators, the phase
varies only π. Therefore, the coupling coefficients also
change π phase and thus reverse sign, leading to the 4π
periodicity of the direct coupling term. The generality of
this argument implies that the 4π periodicity of Jevenϕ is
stable against the disorder scattering without breaking time-
reversal symmetry. On the other hand, for odd-parity states,
the twofold degeneracy at ϕ ¼ mπ is protected by time-
reversal symmetry, which shows that the qualitative proper-
ties of the Josephson currents Joddϕ are also stable against
the TRI disorder scattering. The numerical results are
shown in Fig. 9.
With the above results, we can have different strategies in

the experiment to distinguish Jevenϕ and Joddϕ . For instance,
one can measure the periodicity of the Josephson currents
or measure the currents at ϕ ¼ π=2, where Jevenϕ ¼
�ðe= ffiffiffi

2
p

ℏÞΓ0 and Joddϕ ¼ 0. Furthermore, the two qubit
states of the same total parity are distinguished by current
directions. The qualitative difference in the Josephson
measurements provides direct detection of the four topo-
logical qubit states.
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